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Abstract

Conditional efficiency measures are very natural tools to capture the efficiency of firms
facing heterogeneous environmental conditions. They are defined by the distance of a unit
to the support of a conditional distribution, conditional to the level of these external factors.
The traditional approach is to estimate nonparametrically this distribution and this requires
the use of appropriate smoothing techniques. In this paper, we consider an alternative
approach to estimate its support. We first assume flexible nonparametric location-scale
models linking the inputs and the outputs to the environmental factors to eliminate in the
inputs/outputs the dependence on Z. Then we use these “pre-whitened” inputs and outputs
to define the optimal frontier function. This provides a “pure” measure of efficiency more
reliable to produce rankings or benchmarks of units among themselves, since the influence
of external factors has been eliminated. We estimate both the full frontier and its more
robust version, the order-m frontier. The asymptotic properties are established. We can
also recover the frontiers in the original inputs/outputs space and we give their asymptotic
properties. The approach is illustrated with some selected simulated data but also with a
real dataset from the bank industry.
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1 Introduction

In production theory and efficiency analysis, we analyze how firms transform their inputs

(factors of production) to produce a set of outputs. The efficient production frontier is

then defined in the input-output space as the locus of the maximal attainable level of

outputs, given the level of the inputs. In other setups, we are rather willing to estimate

an input (or cost) frontier that is defined as the minimal attainable level of the inputs

for producing a given level of outputs. In both cases the problem can be viewed as

estimating a surface under shape constraints induced by the underlying economic model

(monotonicity, . . .). The efficiency score of a given production unit is then determined by

an appropriate distance (in the output direction, or in the input direction) of this unit

to the optimal frontier. Farrell–Debreu radial distances (Debreu, 1951, Farrell, 1957) are

often used in this perspective. For the empirical researcher, the attainable set of inputs

and outputs is not known, neither its production frontier and the derived efficiency scores.

The econometric literature has proposed many ways for producing estimators based on a

sample of observed units. Nonparametric estimators are particularly attractive because

they do not rely on restrictive parametric hypotheses on the process that generates the

data. This includes assumptions on the shape of the attainable set and on the distribution

of inputs and outputs in the attainable set (see Simar and Wilson, 2008, for a recent

survey).

During the last decades, the efficiency literature has become more concerned with

connecting the efficiency measures to environmental factors that cannot be controlled by

the producers, but might influence the production process. In this paper, we address this

latter issue and we propose an original way to complement previous approaches of the

literature. Our presentation is for the input orientation case, where we want to estimate

the minimal input (cost) frontier.1 Formally, let Y ∈ R+ denote the input (or the cost of

production), X ∈ R
dx
+ be the vector of goods or services produced, and we will denote by

Z ∈ R
dz the set of environmental factors.

A traditional approach in the efficiency literature to investigate the effect of these

environmental factors on the efficiencies, is a two-stage procedure. In this approach,

the efficiency scores are nonparametrically estimated in a first stage, in the input-output

space and then, in a second stage, the estimated efficiency scores are regressed, by some

appropriate model (mainly parametric models) on the environmental variables (see Simar

1The presentation for the output oriented case, where we want to estimate the maximal production

frontier, is a straightforward adaptation of what is done here.
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and Wilson, 2007, 2011, and the dozens of references quoted there). However, as pointed

out by Simar and Wilson, these two-stage approaches are restricted to situations where

these factors do not influence the shape of the production set, but can only affect the

probability of being more or less efficient. As demonstrated in Simar and Wilson (2011)

in some very simple examples, if this is not the case (i.e., if the environmental conditions

may affect the attainable set), the first stage efficiency estimates in the input-output space

have no economic meaning. If the two-stage approach is validated, by some appropriate

test (see e.g. Daraio et al., 2010), one can indeed regress the first stage efficiencies on

the environmental factors. However, usual inference on the regression coefficients is not

available in this framework (because the first stage efficiency estimators are biased and

correlated) and if used, this may lead to wrong inference. Bootstrap based procedures

may help to solve the problem (see Simar and Wilson, 2007, for details).

A more general and appealing approach is to consider the probabilistic formulation

of the production process proposed by Cazals et al. (2002). Here the production set is

the support of some probability measure in the input-output space and the traditional

Debreu–Farrell efficiency scores can be defined in terms of some nonstandard conditional

distribution function. This approach also allows to define the concepts of partial order

frontiers (order-m or order-α quantile), which are less extreme than the boundary of the

support and allow to determine frontier and efficiency estimators that are less sensitive

to extreme or outlying data points. See Cazals et al. (2002), Aragon et al. (2005), Daouia

and Simar (2007), and Daraio and Simar (2007) for an overview of these approaches.

The probabilistic formulation of the production process allows also to accommodate quite

naturally the model to the presence of environmental factors. This leads to efficient

conditional frontiers and to conditional Debreu–Farrell efficiency scores.

Nonparametric estimators of the conditional frontiers and efficiency scores can easily

be derived (see Cazals et al., 2002, Daraio and Simar, 2005, and Daouia and Simar, 2007)

and their asymptotic properties have been established (see Cazals et al., 2002, Daouia and

Simar, 2007, and Jeong et al., 2010). These estimators are based on nonparametric esti-

mators of conditional distribution functions (or conditional survival functions), where the

conditioning is on the environmental factors Z. This requires smoothing techniques for

the environmental variables including selection of smoothing parameters (bandwidths).

Data-driven procedures have been proposed in this setup by Bădin et al. (2010), pro-

viding optimal bandwidths. However, the resulting estimators have rates of convergence

deteriorated by the dimension of Z (known as the “curse of dimensionality”).
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The approach developed in this paper contributes to the literature on conditional

frontiers and efficiency scores, but avoids (or at least reduces the impact of) this curse

of dimensionality. This will be obtained by assuming flexible nonparametric location-

scale models linking the input and the outputs to the environmental factors. In a sense,

our approach could be seen as a two-stage method, but the other way around. First we

eliminate in the input and the outputs the dependence on Z by means of nonparametric

location-scale models and then, in a second step, we estimate the frontier and the effi-

ciencies of the units using “pure” or “pre-whitened” inputs and outputs, whitened from

the influence of Z. This allows to define a “pure” measure of managerial efficiency, pure

in the sense that all the external influence of the Z-factors has been eliminated. This

measure of pure efficiency is certainly more reliable to produce rankings or benchmarks

of units among themselves, since the influence of external factors has been eliminated.

We will see that the resulting estimators will be free of the curse of dimensionality due to

the dimension of Z, which is another advantage. We can estimate both the full frontier

and their more robust versions. In this paper we will only focus on the order-m frontiers,

but the extension to order-α quantile frontiers is immediate. The asymptotic properties

of the estimators will be established. We will also be able to recover estimators of the

full and of the order-m conditional frontier in the original input-output space and we give

their asymptotic properties.

The paper is organized as follows. In the next section we summarize and recall some

basic concepts and notations. Then, in Section 3 we introduce our nonparametric location-

scale regression model. An estimator of the frontier under this model is proposed in

Section 4, and its asymptotic properties are presented. Section 5 comments on some

practical aspects of our procedure and suggests some variants of the model. In Section

6 we illustrate how the procedure works in practice through some simulated data and

through a real data example on bank efficiencies previously discussed in the literature.

Finally, Section 7 states some general conclusions.

2 Basic Notations

It is useful to consider the production process as a process generating the random variables

(X, Y, Z) on an appropriate probability space. Cazals et al. (2002) and Daraio and Simar

(2005) consider a probability model, where the conditional distribution of (X, Y ) given

a particular value of Z will be of particular interest. This conditional process can be
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described by the conditional survival function

SX,Y |Z(x, y|z) = P (X ≥ x, Y ≥ y|Z = z) = SY |X,Z(y|x, z)SX|Z(x|z), (1)

where SY |X,Z(y|x, z) = P (Y ≥ y |X ≥ x, Z = z) and SX|Z(x|z) = P (X ≥ x|Z = z). It

should be noticed that the only difference between the mathematical treatment of X and

Z in SY |X,Z , is that we condition on Z = z for the environmental factors but on X ≥ x

for the outputs.

The conditional minimum input frontier is then defined as the minimal achievable

input level for units producing at least the level x of outputs, but facing the environmental

conditions z. This defines the conditional frontier

τ(x, z) = inf{y : SY |X,Z(y|x, z) < 1}. (2)

Cazals et al. (2002) introduce also the order-m conditional frontier as less extreme

frontier for benchmarking the different units. For a given integer m ≥ 1, it is defined as

τm(x, z) = E(min(Y1, . . . , Ym) |X ≥ x, Z = z) =

∫ ∞

0

Sm
Y |X,Z(y|x, z) dy. (3)

Of course, as m → ∞, τm(x, z) → τ(x, z). Nonparametric estimators of the frontier

functions are obtained by plugging in a nonparametric estimator of the conditional survival

function. This requires some smoothing relative to the Z variables and provides

ŜY |X,Z(y | x,z) =
∑n

i=1 I(Xi ≥ x, Yi ≥ y)
∏dz

j=1 k((zj − Zij)/hj)
∑n

i=1 I(Xi ≥ x)
∏dz

j=1 k((zj − Zij)/hj)
, (4)

where for a vector a, aj denotes its j
th component, and we choose here a product kernel for

Z, with each k(·) being a univariate kernel with compact support and hj > 0, j = 1, . . . , dz

being the bandwidths.

Of course, when no environmental factors Z are considered, the main object of interest

is the survival function SY |X(y|x) = P (Y ≥ y |X ≥ x) providing the unconditional

frontiers ψ(x) and ψm(x) when replacing SY |X,Z(y|x, z) by SY |X(y|x) in the expressions

(2) and (3) above. In this case, nonparametric estimators of the frontiers are obtained by

plugging in the empirical conditional survival function (no smoothing is required).

The asymptotic properties of these estimators are established, see Cazals et al. (2002)

for the order-m frontiers and Park et al. (2000), Daouia et al. (2010) and Jeong et

al. (2010) for the full frontier case. For the conditional frontier estimator, the rates of

convergence are deteriorated by the smoothing in Z to get the estimator ŜY |X,Z , in the
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sense that n is to be replaced by n
∏dz

j=1 hj when product kernels are used for smoothing

the dz components of Z, which leads to rates of order n4/((dz+4)(dx+1)) for full frontiers and

n2/(dz+4) for the order-m frontiers (see Jeong et al., 2010 for details). In the next section

we propose to model the links between (X, Y ) and Z by flexible nonparametric location-

scale models, and we will derive estimators of the conditional frontiers, that suffer less

from the “curse of dimensionality” problem than the traditional nonparametric estimators

based on ŜY |X,Z . We will also propose so-called “whitened” or “pure” frontier estimators,

which will have parametric rate of convergence, and which will be free of the influence of

Z.

3 The Location-Scale Model

Suppose the vector (X, Y, Z) follows the following location-scale regression model:

{
Xj = µ1j(Z) + σ1j(Z)ε1j (j = 1, . . . , dx)

Y = µ2(Z) + σ2(Z)ε2,
(5)

where we assume that (ε1, ε2) is independent of Z, and where ε1 = (ε11, . . . , ε1dx)
t,

µ1j(Z) = E(Xj |Z), µ2(Z) = E(Y |Z), σ2
1j(Z) = Var(Xj|Z) and σ2

2(Z) = Var(Y |Z). Also,
denote µ1(Z) = (µ11(Z), . . . , µ1dx(Z))

t and σ2
1(Z) = (σ2

11(Z), . . . , σ
2
1dx

(Z))t. Our goal is to

estimate the conditional full frontier τ(x, z) and the conditional order-m frontier τm(x, z),

under the above model (5). We will see that this can be done without estimating directly

the conditional survival function SY |X,Z(y | x, z). Indeed, note that

τ(x, z) = inf
{
y : P

(Y − µ2(Z)

σ2(Z)
≥ y − µ2(z)

σ2(z)

∣∣∣X ≥ x, Z = z
)
< 1

}

= µ2(z) + inf
{
t2 : P

(
ε2 ≥ t2

∣∣∣ε1 ≥
x− µ1(z)

σ1(z)

)
< 1

}
σ2(z)

= µ2(z) + ϕ
(x− µ1(z)

σ1(z)

)
σ2(z), (6)

where

ϕ(t1) = inf{t2 : Sε2|ε1(t2|t1) < 1}

and Sε2|ε1(t2|t1) = P (ε2 ≥ t2|ε1 ≥ t1). Hence, under model (5) the frontier τ(x, z) can

be derived from appropriate estimators of the functions µj(z) and σj(z) (j = 1, 2) (which

require only smoothing in z in the center of the data cloud), and an estimator of the

survival function Sε2|ε1(t2|t1), which can be estimated at parametric rate. The fact that
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we avoid smoothing at the frontier is important, as typically the data can be rather sparse

there and estimators are sensitive to outliers.

In a similar way we can show the following identity for the conditional order-m frontier:

τm(x, z) = µ2(z) + ϕm

(x− µ1(z)

σ1(z)

)
σ2(z),

where

ϕm(t1) = E
(
min(ε21, . . . , ε2m)

∣∣∣ε1 ≥ t1

)
(7)

is the order-m frontier of ε2 given that ε1 ≥ t1, and where ε21, . . . , ε2m are i.i.d. copies of ε2.

Interpretation

To appreciate the flexibility of our model (5), consider the particular case where Z would

be independent of the input Y and of all the outputs X . In such a case, all the functions

µ1j(Z), σ1j(Z), j = 1, ...dx, µ2(Z) and σ2(Z) would be constant and the vector (ε1, ε2)

would simply be a standardized version (mean zero and unit variance) of the original

input and outputs. Model (5) is much more flexible since it allows more general setups

where some dependence is possible between (X, Y ) and Z. So, under the assumptions of

model (5), ε2 and ε1 can be interpreted as “pure” input and outputs, because due to the

independence between the vector (ε1, ε2) and Z, they can be viewed as being whitened

versions of Y and X , respectively. Note that no particular assumption is made on the

distribution of (ε1, ε2). So our model remains basically nonparametric.

The minimum input frontier defined as ϕ(ε1), gives the minimal achievable level of

the input ε2 for units producing at least the level of output ε1. In the same spirit, we can

also define in this space of pure input and outputs the order-m frontier, to obtain a less

extreme benchmark frontier.

For a particular unit with current value (ε1, ε2), it will be easy to define a pure (input)

inefficiency measure by the distance between this value and the point (ε1, ϕ(ε1)). Since

values of the variables can be negative (they are centered and scaled), directional distances

can be used. We choose to work with the difference as measure of pure inefficiency:

ρ(ε1, ε2) = ε2 − ϕ(ε1). (8)

Note that ρ(·, ·) is always non-negative for points in the attainable set, and ρ(ε1, ε2) = 0

indicates an efficient unit.

It should be noticed, that under model (5), comparison and ranking of firms is le-

gitimate, since the effect of environmental factors has been eliminated. In the standard
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approach, a measure of efficiency based on ψ(x) ignores completely the possible effect of

the factors Z, and a measure based solely on τ(x, z) is useless when comparing firms with

different values of z.

Updating the ideas of Daraio and Simar (2005, 2007), the analysis of the global effect

of the environmental factors on the production process can be captured by analyzing the

ratios τ(x, z)/ψ(x) and τm(x, z)/ψm(x) as a function of z, at various fixed levels of the

outputs x. For the input orientation, and for a fixed level of the outputs, when these ratios

are globally increasing with z, this indicates an unfavorable effect of z on the production

process (Z behaves like an undesirable output). On the contrary, when these ratios are

globally decreasing with z, we have a favorable effect of z on the process (Z behaves like a

free available input). Note that the analysis of these ratios has to be done for fixed levels

of outputs x, averaging over possible values of x would introduce additional features that

make the interpretation much more delicate (depending on the dependence between Z

and X). As pointed out in Bădin et al. (2011), the full frontier ratios indicate only the

effect of z on the shape of the frontier, whereas with partial frontiers (unless m is large),

this effect may combine effects on the shape of the frontier and effects on the conditional

distribution of the inefficiencies (for instance, in the limiting case where m = 1 the order-

m frontier captures the average behavior of the input and not its boundary). Of course,

in practice, we are mainly interested in frontier estimation and so m will be large for this

purpose; however, for the practitioner, the analysis of both ratios, eventually with several

values of m, may also be useful.

What might also be of interest, is the analysis of the changes in the frontier levels in

the input-output space, when varying the value of z. A graphical view of this would be

possible in the bivariate case only (one input y and one output x) by plotting in the (x, y)

coordinates, the function y = τ(x, z) for various values of z. We could also compare these

conditional frontiers with the marginal frontier y = ψ(x), the latter having no particular

economic interpretation if Z is not “separable” from (X, Y ), but can always be viewed as

minz τ(x, z).

Note finally, that our approach also offers to the practitioner the additional tools

µ1(z) and µ2(z) allowing to appreciate, marginally, the mean behavior of the input and

the outputs as a function of z, in a flexible model.

Of course all these quantities are unknown and have to be estimated. In the next

section we address the problem of estimating the model and its various components.
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4 Estimation

4.1 The proposed estimator

Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be i.i.d. data generated from model (5), where we denote

the components of Xi by (Xi1, . . . , Xidx) and the components of Zi by (Zi1, . . . , Zidz)

(i = 1, . . . , n). We start by estimating the regression function µ2(z) and the variance

function σ2
2(z) for an arbitrary point z = (z1, . . . , zdz) in the support RZ of Z in R

dz ,

which we suppose to be compact. We estimate µ2(z) by a local polynomial estimator of

degree p [see Fan and Gijbels (1996) or Ruppert and Wand (1994), among others], i.e.

µ̂2(z) = β̂0, where β̂0 is the first component of the vector β̂, which is the solution of the

local minimization problem

min
β

n∑

i=1

{
Yi − Pi(β, z, p)

}2

Kh(Zi − z), (9)

where Pi(β, z, p) is a polynomial of order p built up with all 0 ≤ k ≤ p products of

factors of the form Zij − zj (j = 1, . . . , dz). The vector β is the vector consisting of all

coefficients of this polynomial. Here, for u = (u1, . . . , udz) ∈ R
dz , K(u) =

∏dz
j=1 k(uj)

is a dz-dimensional product kernel, k is a univariate kernel function, h = (h1, . . . , hdz)

is a dz-dimensional bandwidth vector converging to zero when n tends to infinity, and

Kh(u) =
∏dz

j=1 k(uj/hj)/hj . In a similar way, we define σ̂2
2(z) = γ̂0, where γ̂0 is the first

component of the vector γ̂, which is the solution of the local minimization problem2

min
γ

n∑

i=1

{
(Yi − µ̂2(Zi))

2 − Pi(γ, z, p)
}2

Kh(Zi − z). (10)

Now, let for i = 1, . . . , n,

ε̂2i =
Yi − µ̂2(Zi)

σ̂2(Zi)
.

In order to estimate the components of µ1(·) and σ2
1(·), we follow the same local polynomial

estimation procedure as above but with Yi replaced by the components of Xi, which leads

to

ε̂1i =
Xi − µ̂1(Zi)

σ̂1(Zi)

(where the ratio has to be understood componentwise).

2For simplifying the presentation the order of the polynomial and the bandwidth vector are taken to

be the same as for the estimation of µ2(z), but we could also work with different orders and bandwidths.
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We are now ready to estimate the (full) frontier ϕ(t1) of ε2 given ε1 ≥ t1:

ϕ̂(t1) = min{ε̂2i : ε̂1i ≥ t1}.

For the order-m frontier ϕm(t1) defined in (7), note that for any M ≤ ϕ(t1), this can also

be written as

ϕm(t1) = −
∫ ∞

−∞

t2dS
m
ε2|ε1

(t2|t1) = −
∫ ∞

M

t2dS
m
ε2|ε1

(t2|t1) =M +

∫ ∞

M

Sm
ε2|ε1

(t2|t1) dt2.

Hence, a natural estimator of ϕm(t1) is

ϕ̂m(t1) =M +

∫ ∞

M

Ŝm
ε2|ε1

(t2|t1) dt2,

where

Ŝε2|ε1(t2|t1) =
n−1

∑n
i=1 I(ε̂1i ≥ t1, ε̂2i ≥ t2)

n−1
∑n

i=1 I(ε̂1i ≥ t1)
.

We suppose in the sequel that M is known. In practice, M can be chosen as any value

smaller than min(ε̂21, . . . , ε̂2n). Note that the value ofM has no influence on the estimator

ϕ̂m(t1).

Finally, define

τ̂(x, z) = µ̂2(z) + ϕ̂
(x− µ̂1(z)

σ̂1(z)

)
σ̂2(z),

and

τ̂m(x, z) = µ̂2(z) + ϕ̂m

(x− µ̂1(z)

σ̂1(z)

)
σ̂2(z).

4.2 Asymptotic results

From now on, for simplicity we take all hj equal: hj = h for j = 1, . . . , dz. We restrict

attention to the case where p is odd, as it is well known that this case outperforms the

case where p is even in terms of the mean squared error of the estimators µ̂j(z) and σ̂j(z)

(j = 1, 2).3 For any z ∈ RZ and for j = 1, 2, we know that there exists functions bµj
and

bσj
such that (where fZ(z) = F ′

Z(z) and FZ(z) = P (Z ≤ z))

µ̂j(z)− µj(z) = n−1
n∑

i=1

Kh(Zi − z)εjiσj(z)f
−1
Z (z) + hp+1bµj

(z) + oP ((nh
dz)−1/2)

σ̂j(z)− σj(z) =
1

2
n−1

n∑

i=1

Kh(Zi − z)(ε2ji − 1)σj(z)f
−1
Z (z) + hp+1bσj

(z) + oP ((nh
dz)−1/2),

3Our asymptotic theory also works in the case where p is even, but the formulae of the bias of µ̂j(z)

and σ̂j(z) are different in that case.
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provided (nhdz)h2(p+1) = O(1). See e.g. Fan and Gijbels (1996) or Masry (1997) for the

precise formula of bµj
. The formula of bσj

can be obtained using a similar development.

For what follows, we also need the notation fε2|ε1(t2|t1) = − ∂
∂t2
Sε2|ε1(t2|t1), which is the

conditional probability density function of ε2 given that ε1 ≥ t1.

The assumptions under which the results below are valid, can be found in the Ap-

pendix. The results below rely on Akritas and Van Keilegom (2001) and Neumeyer and

Van Keilegom (2010), who studied the asymptotic properties of the estimator Ŝε1(t1) =

n−1
∑n

i=1 I(ε̂1i ≥ t1) when dz = 1 and when dz ≥ 1 respectively.

Theorem 1 Assume (C1)-(C5) and assume h satisfies nh2p+2 = O(1). Then,

Ŝε2|ε1(t2|t1)− Sε2|ε1(t2|t1) = n−1
n∑

i=1

h(Xi, Yi, Zi, t2|t1) + hp+1b(t2|t1) +Rn(t2|t1),

where (with ε1 = (X − µ1(Z))/σ1(Z) and ε2 = (Y − µ2(Z))/σ2(Z))

h(X, Y, Z, t2|t1) =
I(ε1 ≥ t1)

Sε1(t1)

[
I(ε2 ≥ t2)− Sε2|ε1(t2|t1)

]

+
∂

∂t1
Sε2|ε1(t2|t1)

[
ε1 +

t1
2
{ε21 − 1}

]
− fε2|ε1(t2|t1)

[
ε2 +

t2
2
{ε22 − 1}

]
,

b(t2|t1) =
∂

∂t1
Sε2|ε1(t2|t1)

∫
bµ1

(z) + t1bσ1
(z)

σ1(z)
fZ(z) dz

−fε2|ε1(t2|t1)
∫
bµ2

(z) + t2bσ2
(z)

σ2(z)
fZ(z) dz,

and where

sup
t1,t2

|Rn(t2|t1)| = oP (n
−1/2).

Corollary 2 Assume (C1)-(C5). Then,

(i) If h satisfies h = C1n
−1/(2p+2)(1 + o(1)) for some 0 ≤ C1 < ∞, the process

n1/2(Ŝε2|ε1(t2|t1) − Sε2|ε1(t2|t1)), t1 ∈ R
dx , t2 ∈ R, converges weakly to a Gaussian

process W (t2|t1) with covariance function given by

Cov(W (s2|s1),W (t2|t1)) = E[h(X, Y, Z, s2|s1)h(X, Y, Z, t2|t1)],

and mean function given by E(W (t2|t1)) = Cp+1
1 b(t2|t1).

(ii) If h satisfies h = C1n
−1/(2p+2)(1 + o(1)) for some 0 ≤ C1 < ∞, the process

n1/2(ϕ̂m(t1) − ϕm(t1)), t1 ∈ R
dx (m fixed), converges weakly to a Gaussian process

10



Z(t1) with covariance function given by

Cov(Z(s1), Z(t1))

= m2

∫ ∫
Sm−1
ε2|ε1

(s2|s1)Sm−1
ε2|ε1

(t2|t1)Cov(W (s2|s1),W (t2|t1)) ds2dt2,

and mean function given by

E(Z(t1)) = Cp+1
1 m

∫
Sm−1
ε2|ε1

(t2|t1)b(t2|t1) dt2.

(iii) If h satisfies h = C2n
−1/(2p+2+dz)(1 + o(1)) for some 0 ≤ C2 < ∞, the process

(nhdz)1/2(τ̂m(x, z) − τm(x, z)), x ∈ R
dx (with both z ∈ RZ and m fixed), converges

weakly to a Gaussian process V (x) with covariance function given by

Cov(V (x1), V (x2)) = E
[
g(X, Y, Z, x1)g(X, Y, Z, x2)|Z = z

] ∫
K2(u) du f−1

Z (z),

where

g(X, Y, Z, x) =
[
ε2 +

1

2
ϕm

(x− µ1(z)

σ1(z)

)
(ε22 − 1)

−ϕ′
m

(x− µ1(z)

σ1(z)

){
ε1 +

x− µ1(z)

2σ1(z)
(ε21 − 1)

}]
σ2(z),

and mean function given by

E(V (x)) = C
p+1+dz/2
2

[
bµ2

(z) + ϕm

(x− µ1(z)

σ1(z)

)
bσ2

(z)

+σ2(z)m

∫
Sm−1
ε2|ε1

(
t2

∣∣∣x− µ1(z)

σ1(z)

)
b
(
t2

∣∣∣x− µ1(z)

σ1(z)

)
dt2

−ϕ′
m

(x− µ1(z)

σ1(z)

){bµ1
(z)

σ1(z)
+
x− µ1(z)

σ2
1(z)

bσ1
(z)

}
σ2(z)

]
.

Note that as z is kept fixed, we do not have a process in z and hence there are no

tightness problems in z. Moreover, the estimator of ϕm(·) has no effect on the limit, since

it converges at faster rate than the estimators µ̂j(z) and σ̂j(z) (j = 1, 2). Also, note that if

µj and σj (j = 1, 2) would be estimated parametrically, τ̂m(x, z) would have a parametric

rate of convergence, and both ϕ̂m, µ̂j and σ̂j would contribute to the limit.

As a last asymptotic result of this section we show the weak consistency of the esti-

mators ϕ̂(t1) and τ̂ (x, z) of the full frontiers ϕ(t1) and τ(x, z). The weak convergence of

these estimators is a much harder problem, and is beyond the scope of this paper.
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Theorem 3 Assume (C1)-(C5). Then,

ϕ̂(t1)− ϕ(t1) = oP (1),

and

τ̂(x, z)− τ(x, z) = oP (1),

for all t1, x ∈ R
dx and z ∈ RZ .

5 Practical Aspects

In this section we focus on a number of important issues related to our method, and we

explain how they can be dealt with in practice: the use of a bootstrap method to approx-

imate the distribution of the pure and the conditional frontier functions, the validity of

our model when working with other location and scale functionals, and the verification of

our location-scale model. Other issues (like the selection of the bandwidth parameters)

will be explained in detail in the simulation section.

Bootstrap approximation

Although the asymptotic limits obtained in the previous section are normal distributions

and the formulas of the asymptotic bias and variance are explicit, their estimation in

practice can be cumbersome. It might therefore be useful to have a bootstrap procedure

at hand, which can be used to calculate confidence intervals or test hypotheses concerning

the frontier function. We propose to work with the following bootstrap method. For

i = 1, . . . , n, generate




Z∗
i = Zi,

(ε∗1i, ε
∗
2i) ∼ F̃ε1,ε2 i.i.d.,

X∗
i = µ̂1(Z

∗
i ) + σ̂1(Z

∗
i )ε

∗
1i and Y ∗

i = µ̂2(Z
∗
i ) + σ̂2(Z

∗
i )ε

∗
2i,

where F̃ε1,ε2(t1, t2) is the distribution corresponding to the density

f̃ε1,ε2(t1, t2) =
1

nadx+1
n

n∑

i=1

K
( ε̃1i − t1

an

)
k
( ε̃2i − t2

an

)
,

where ε̃ji = [ε̂ji − ε̂j ]/std(ε̂j) is the standardized version of the residual ε̂ji (with ε̂j =

n−1
∑n

i=1 ε̂ji and std2(ε̂j) = (n−1)−1
∑n

i=1[ε̂ji−ε̂j ]2), and where k is a univariate kernel, K

is a dx-dimensional kernel, and an is an appropriate bandwidth sequence. The consistency

of this smooth residual bootstrap procedure has been shown by Neumeyer (2006, 2009a)

12



in the case of a single error variable, and has been applied in various papers in the

literature, see e.g. Dette et al. (2007). Note that the smoothness of the distribution of the

bootstrap residuals (ε∗1i, ε
∗
2i) is crucial to prove the consistency of the bootstrap. This can

be explained by the fact that the asymptotic representation of Ŝε1,ε2(t1, t2) (see Theorem

1) depends on the derivatives of Sε1,ε2(t1, t2) with respect to t1 and t2. In practice the

bandwidth an can be chosen very small, usually much smaller than bandwidths used for

estimation purposes, although the bootstrap procedure is quite stable with respect to the

choice of an.

Based on this new bootstrap sample (X∗
i , Y

∗
i , Z

∗
i ) (i = 1, . . . , n), we can now recalcu-

late the pure and the conditional frontier. By repeating this procedure a large number of

times, we obtain an approximation of the distribution of these frontiers.

Choice of µj and σj

Suppose that instead of working with the conditional mean (µ1(Z) = E(X|Z) and

µ2(Z) = E(Y |Z)) and the conditional variance (σ2
1(Z) = (Var(X1|Z), . . . ,Var(X1dx |Z))t

and σ2
2(Z) = Var(Y |Z)), one would like to work with another location function µ̃j (e.g. the

conditional median or trimmed mean) and another scale function σ̃j (e.g. the conditional

interquartile range). Then, we can write

{
X = µ̃1(Z) + σ̃1(Z)ε̃1

Y = µ̃2(Z) + σ̃2(Z)ε̃2,
(11)

for certain new error terms ε̃1 and ε̃2. An important question is then the following one:

“Is model (11) again a location-scale model, i.e. is (ε̃1, ε̃2) independent of Z ?”. In Lemma

4 in the Appendix we show that this is indeed the case for any location function µ̃j and

any scale function σ̃j . Hence, all the results and interpretations of this paper are valid

not only for the classical mean-variance model, but for any location-scale model.

Testing the independence between (ε1, ε2) and Z

A crucial assumption of our location-scale model is the independence between the vector

of errors (ε1, ε2) and the vector of environmental variables Z. In the literature procedures

have been developed for testing the independence between a single error (say ε1) and a

single variable (say Z1), see e.g. Einmahl and Van Keilegom (2008a, 2008b) and Neumeyer

(2009b). These tests can however be easily generalized to multivariate errors and environ-

mental variables. Consider e.g. the test developed in Einmahl and Van Keilegom (2008a),

which relies on the difference F̂ε1,Z1
− F̂ε1F̂Z1

. The obvious extension to our case consists
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in considering the process

F̂ε1,ε2,Z(·, ·)− F̂ε1,ε2(·)F̂Z(·),

from which a Kolmogorov-Smirnov or Cramer-von Mises type test statistic can be easily

developed. Einmahl and Van Keilegom (2008a) show that the process is asymptotically

distribution free (and the limit equals the limit one would obtain when ε1 and ε2 would

be observed!). However, the convergence to this limit being rather slow, they advocate

the use of bootstrap methods to obtain the critical values of the proposed test statistics.

Note that, as shown above, either the assumption of independence holds for all location

and scale functions µj and σj , either for none.

6 Numerical Illustrations

6.1 Simulated samples

We will illustrate our approach in two simulated scenarios. We restrict the analysis to the

univariate case, because it allows to illustrate the different components of our model in 2

or 3-dimensional pictures.

Example 1

We first simulate data according to the following scheme. Let the exogenous factor Zi

be uniformly distributed on the interval [1, 3] and the “pure” output ε1i be uniformly

distributed on the interval [−
√
3,
√
3] (note that the ε1i’s have mean zero and variance

one). We define the pure efficient frontier by the function ϕ̃(ε1) = exp(ε1) and we generate

the inefficient pure input as ε̃2i = ϕ̃(ε1i) + Ui where Ui ∼ N+(0, σ2
U) with σU = 1. We

rescale then the values of the ε̃2i’s so that they have mean zero and variance one. The

new (standardized) frontier is then denoted by ϕ(ε1i).

For the location-scale model, we choose to impact mostly the inputs by Z (location

and scale) and to impact only the scale function for the outputs:

µ1(Z) = 6 and σ1(Z) = 1 + Z,

µ2(Z) = 10− 2Z and σ2(Z) = 1 + 4(Z − 2)2.

We present the results for a sample of size n = 100. Bandwidths were selected for each

nonparametric regression by least-squares cross validation. Figure 1 displays the true and

estimated location and scale functions for both the output X (left panel) and the input Y
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Figure 1: Example 1: True and estimated location and scale functions: output case (left

panel) and input case (right panel).
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Figure 2: Example 1: Pure input and output: simulated (true values) and estimated pairs,

with the true pure efficient frontier and its estimates (full and order-m, with m = 25).

(right panel). In Figure 2, we see how well the pure input and output have been estimated:

both the simulated original “true” values and the estimates are displayed. The Figure

shows also the true full frontier and the two estimators: full-frontier and order-m, with

m = 25. If we go back to the original units, in the input and output space we obtain

the results shown in Figure 3. For each data point (Xi, Yi), we have the estimate of the

conditional efficient frontier (corresponding to its value of Zi) and the corresponding true

value. We can appreciate how well the estimator performs even with a relatively small
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Figure 3: Example 1: Input and output in the original units: the data points, the true

conditional efficient frontier for each data point and its estimate (we display here only the

full frontier estimates).

sample size.

Figure 4 is another way to appreciate the quality of the fit: a perfect fit would give

a straight line as the solid line in the figure. The figure also plots the fitted values

one would obtain by following the traditional nonparametric approach, based on the

nonparametric estimators of SY |X,Z(y|x, z), as described in Cazals et al. (2002) and

Daraio and Simar (2005). Of course, this is just an example with one simulated sample,

but it indicates a very good behavior of our estimator, and as expected, better than

the nonparametric estimator since we simulated the data according to a location-scale

model. The integrated squared error (ISE) of the two estimators, estimated over the 100

data points, is respectively 0.8065 for the nonparametric estimator and 0.0969 for our

location-scale estimator.

Example 2

We keep the same dataset as above but we add an outlier at the point (ε1i, ε2i) =

(0.5,−1.25) (it appears clearly in Figure 6). It is remarkable how the estimators of

the location and of the scale functions are not sensitive to this data point (because they

smooth the data in their center). We also see how, as expected, even with m = 25, the

order-m frontier is well resistant to this outlying data point, which is not the case for the

full frontier estimate. The results are displayed below. In Figure 8 we observe again a
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Figure 4: Example 1: The horizontal axis is for the true levels of the conditional efficient

full frontier, evaluated at all the data points, the squares are their corresponding location

scale estimates and the diamonds are the corresponding nonparametric estimates.

1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

10

Values of Z

Output X

 

 
m1fit
s1fit
data X
m1true
s1true

1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

Values of Z

Cost Y

 

 
m2fit
s2fit
data Y
m2true
s2true

Figure 5: Example 2: True and estimated location and scale functions: output case (left

panel) and input case (right panel).

very good quality of the fit of our estimator, again better than the nonparametric one

(the respective ISE’s are here 0.2417 and 0.9036).
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Figure 6: Example 2: Pure input and output: simulated (true values) and estimated pairs,

with the true pure efficient frontier and its estimates (full and order-m, with m = 25).
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Figure 7: Example 2: Input and output in the original units: the data points, the true

conditional efficient frontier for each data point and its estimate (we display here only the

full frontier estimates).
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Figure 8: Example 2: The horizontal axis is for the true levels of the conditional efficient

full frontier, evaluated at all the data points, the squares are their corresponding location

scale estimates and the diamonds are the corresponding nonparametric estimates.

6.2 Efficiency in the banking sector

We illustrate our procedure with a real dataset coming from the banking sector.4 Simar

and Wilson (2007) analyzed these data based on Aly et al. (1990) using data on 6.955

US commercial banks observed at the end of the 4th quarter of 2002.

The original dataset contains 3 inputs (purchased funds, core deposits and labor) and

4 outputs (consumer loans, business loans, real estate loans, and securities held) for banks.

Aly et al. (1990) considered 2 continuous environmental factors, the size of the banks Z1,

and a measure of the diversity of the services proposed by the banks Z2 (see Aly. et al.,

1990, for details). We will use, as in Simar and Wilson (2007), a measure of the size of

the banks by the log of the total assets, rather than the total deposit.

Daraio et al. (2010) used the same dataset to test the “separability” condition in

the same setup. The hypothesis was rejected at any reasonable level, indicating that

any traditional two-stage procedure is meaningless for this dataset. So, the approach

using conditional efficiency scores seems to be much more appropriate. This was sug-

gested in Bădin et al. (2011) where they used the traditional nonparametric estimator of

SY |X,Z(y | x, z). We will rather use our location-scale model. We select, for the illustra-

tion, a subset of 303 banks as in Simar and Wilson (2007) and in Bădin et al. (2011). In

4We would like to thank Paul W. Wilson who provided us this dataset.
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Figure 9: Bank example: location (left) and scale (right) regression at observed data points

for the output X (top panels) and for the input Y (bottom panels). Z1 is SIZE and Z2 is

DIVERSITY.

the latter paper it is explained that the inputs can be aggregated in a one dimensional

input measure, without loosing much information and the same is true for the outputs.

The final output X is highly correlated (more than 0.93) with all the original outputs and

the same is true for the input Y (correlation with the original inputs of more than 0.97).

This facilitates the presentation of our empirical illustration.

Figure 9 gives the location and the scale functions for the output and for the input.

We see from this first result that the variable Z1 (SIZE) has much more influence on the

two variables X and Y than Z2 (DIVERSITY).

We also observe that the variable Z1 has a positive effect on both the input and the

output (exponential effect on the location and linear effect on the scale), as expected, since

the size of the banks is certainly determining the levels of the inputs and the outputs.

The variable Z2 does not show substantial effects on neither input nor output.
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Figure 10: Bank example: Estimated “pure” inputs and outputs, and efficient frontiers.

Figure 10 displays the values of the estimated errors ε̂1 and ε̂2 together with the full

frontier ϕ̂ and the order-m frontier ϕ̂m with m = 30 (we select m = 30 for illustration: the

units are benchmarked against 10 percent of the full dataset). We observe that there is one

extreme data point around (ε̂1, ε̂2) = (0.2,−2.5), that is rather influential for both the full

and, to a lesser extent, the order-m frontier (note that for m = 10, the order-m frontier is

not attracted by this extreme data point). The distribution of the resulting measures of

inefficiency ρ̂(ε̂1, ε̂2) and ρ̂m(ε̂1, ε̂2) (defined in (8) above) is displayed in Figure 11. The

distributions seem to be regular and reasonably bell-shaped, with some rare very inefficient

banks. In a practical application, the detailed analysis of these efficiencies would be very

informative. Tables 1 and 2 below give some detailed results for 15 randomly chosen

banks.

It is also possible to draw a picture of the conditional frontier (and its order-m version)

in the original units to stress the difference with the preceding one. Figure 12 displays the

data points (Xi, Yi) and the estimates τ̂(x, z) evaluated for each pair (Xi, Zi). Of course,

the frontier points (diamonds in the figure) do not follow the shape of the lower boundary

of the cloud of data points (as would do the marginal frontier estimate ψ̂(Xi)), because

here, each bank is facing different exogenous conditions determined by Zi. Neither the

marginal nor the order-m frontier estimates are displayed to make the picture more clear.
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Figure 11: Bank example: distribution of the estimated inefficiencies, relative to the full

frontier and to the order-m frontier.
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Figure 12: Bank example: Data points (Xi, Yi) and estimated (full) frontier points

τ̂ (Xi, Zi) in the original units of the inputs and outputs.

Let us now look at the shape of the frontier in the (X, Y ) space for fixed values of

the environmental conditions Z. Here Z is bivariate, so we do the exercise for selected

fixed values of Z1 and Z2. We selected the 9 pairs (QZ1k, QZ2ℓ), for k, ℓ = 1, 2, 3, where

QZik is the kth quartile of Zi (i = 1, 2). Of course for each selected pair (QZ1k, QZ2ℓ) we

do not have many data points (for a fixed value of e.g. SIZE, we do not have so many

data points with largely varying output values X) and the nonparametric evaluation of
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Figure 13: Frontier estimates when fixing the level of Z. Here Z2 is fixed at its median

value, and Z1 is fixed at its 3 quartiles (from the left to the right).

the location-scale model remains rather imprecise. We would require more data points to

give more sensible results. Still, for the illustration, the results are presented in Figure

13 for the median value of Z2 and for the 3 different quartile values of Z1. We see indeed

that the frontier is moving when changing the level of Z1, but the effect of X is difficult

to capture when Z1 is fixed. The pictures (not displayed here) were almost the same for

the other 2 quartiles of Z2 confirming the fact that Z2 does not seem to have an effect on

the production process.

Another question of interest, as explained in Section 3, is to see if the support of

(X, Y ) is changing with Z. We look at the ratios τ̂ (x, z)/ψ̂(x) as a function of Z, for

fixed values of X . Figure 14 shows the results for the output X fixed at its median value.

We clearly see an effect of the variable Z1 (SIZE), indicating a shift of the support of Y

(non-favorable effect of Z1 on the support of Y ). The variable Z2 seems to be without

effect on the support of Y . The pictures for other values of X have the same shape (only

the level of the surface is changing) and the pictures for the order-m ratios are also similar

and are not reproduced for saving space. The analysis done on these ratios, with the same

data, but using traditional nonparametric estimators of SY |X,Z(y|x, z) (see Bădin et al.,

2011) provided a less clear picture, but they arrived at the same qualitative conclusions

(even if there, an output orientation was selected). Note also that this confirms that the

separability condition is not reasonable, and so, two stage approaches are meaningless.
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Figure 14: Bank example: analysis of the ratios τ̂(x, z)/ψ̂(x) for a fixed value of x =

Median(X).

Note that Aly et al. (1990) arrived by using this meaningless method to an opposite

conclusion on the effect of SIZE.

Finally we use the bootstrap algorithm to test the independence between (ε1, ε2) and

Z (see Section 5 for more details about the bootstrap approximation and about the tests

for independence). We know that the bandwidths for determining (ε̂1, ε̂2) should be of

smaller order than the optimal bandwidths determined by least-squares cross validation

(LSCV). We computed the p-value of the null hypothesis scaling the optimal bandwidths

by a factor c ranging from 0.25 to 1. Figure 15 shows the results, based on 2000 bootstrap

replications. We see that the resulting p-values do not provide any evidence that we

have to reject the null hypothesis of independence, since the p-values range from 0.83

(c = 0.25) to 0.09 (c = 1). Tables 1 and 2 give detailed individual results for 15 randomly

selected banks, including 95% confidence intervals for the order-m individual efficiency

scores. Note in the second column of Table 2 the ranking of these units based on the

measure of pure inefficiencies.

7 Conclusions

We have considered the estimation of an input oriented frontier, conditional on environ-

mental factors. The output oriented case can be considered following the same ideas.

Traditional methods are based on a nonparametric estimator of a conditional survival
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Unit i Xi Yi Z1i Z2i ϕ̂(ε̂1i) ϕ̂m(ε̂1i) τ̂(Xi, Zi) τ̂m(Xi, Zi)

259 8.5127 7.2986 1.1778 1.1388 -1.5648 -1.5486 6.7794 6.7871

237 0.5186 0.3505 0.9409 0.8371 -2.4136 -1.8333 0.3026 0.3682

258 0.2958 0.1998 0.8700 1.2650 -2.4136 -1.8113 0.1207 0.1511

1 1.3999 1.1985 1.0199 0.8539 -2.4136 -1.8967 0.8848 0.9895

241 0.8173 0.8693 0.9863 0.8737 -2.4136 -1.7430 0.5892 0.6913

66 0.3546 0.3421 0.9028 0.8407 -2.4136 -1.8017 0.1463 0.2024

164 2.1868 1.8694 1.0551 1.1069 -2.4136 -1.8419 1.4248 1.5724

274 0.4185 0.4026 0.9152 1.0590 -2.4136 -1.7635 0.2086 0.2676

303 0.5053 0.2969 0.9024 1.1611 -1.8215 -1.7326 0.2263 0.2328

199 2.9132 2.6751 1.0786 0.9124 -1.5648 -1.5217 2.1336 2.1468

216 6.6494 7.2741 1.1670 1.0387 -2.4136 -1.7935 5.5037 5.8232

125 1.1407 1.0559 1.0111 0.6974 -2.4136 -1.8344 0.8100 0.9170

239 1.7164 1.3945 1.0330 1.2376 -2.4136 -1.7849 1.1322 1.2698

170 2.4389 2.9572 1.0807 0.8205 -2.4136 -1.8250 1.9605 2.1451

242 2.1842 1.8388 1.0735 0.8725 -2.4136 -1.8001 1.7629 1.9470

Table 1: Results for 15 randomly selected banks. Data values and estimates of the frontier

levels at the data points. Full and order-m frontiers, with m = 30.

Unit i Rank ρ̂m,i low up θ̂m(Xi, Zi) low up

259 129 1.0800 0.3436 1.7342 0.9299 0.8512 1.0141

237 3 -0.1572 -0.4273 0.1667 1.0507 0.8655 1.2895

258 105 0.9659 0.6929 1.2543 0.7560 0.8350 1.2592

1 119 1.0322 0.7212 1.4994 0.8256 0.6829 0.8974

241 139 1.1700 0.8825 1.2963 0.7952 0.7341 0.9146

66 189 1.5240 1.2444 1.7963 0.5917 0.4068 0.7686

164 138 1.1503 0.8907 1.4845 0.8411 0.7197 0.8687

274 184 1.4887 1.2002 1.6789 0.6647 0.6267 0.8582

303 94 0.8806 0.3203 1.5229 0.7841 0.6713 1.1445

199 209 1.7194 0.9145 2.2559 0.8025 0.6845 0.8691

216 294 2.8157 2.5357 3.0725 0.8005 0.7342 0.8432

125 72 0.7521 0.4226 1.1091 0.8685 0.7242 0.9907

239 50 0.5693 0.3276 0.6972 0.9106 0.7999 0.9635

170 290 2.5893 2.3239 2.8951 0.7254 0.6284 0.7402

242 2 -0.3607 -0.5861 -0.1834 1.0589 0.9307 1.0793

Table 2: Results for the same units. Ranks obtained by ranking the ρ̂i and the estimates

of the order-m inefficiencies with 95% confidence intervals. Here θ̂m = τ̂m(Xi, Zi)/Yi.
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Figure 15: Bank example: p-values for selected values of the scaling factor c of the LSCV

optimal bandwidths.

function, where one conditions on the level of these external factors. This requires the

use of appropriate smoothing techniques, and hence these methods suffer from the curse

of dimensionality.

In order to overcome these problems, we rather assume in this paper a location-scale

model for both the input and the outputs, which avoids the curse of dimensionality at

the boundary in the space of the whitened input and outputs.

This allows to estimate ”pure” efficiencies by eliminating the effect of the environmen-

tal factors. Both full and order-m frontiers are estimated and we derive the asymptotic

properties of these estimators. These measures of efficiency allow more reliable ranking

of firms facing heterogeneous conditions of production.

We can also recover the frontiers in the original inputs/outputs space and we give their

asymptotic properties. The approach is illustrated with some selected simulated data and

also with a real dataset from the bank industry.

Appendix: Proofs

(C1) k is a symmetric probability density function supported on [−1, 1], k is dz times

continuously differentiable, and k(j)(±1) = 0 for j = 0, . . . , dz − 1.

(C2) h satisfies nh3dz+δ → ∞ for some small δ > 0.
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(C3) All partial derivatives of FZ up to order 2dz +1 exist on the interior of RZ , they are

uniformly continuous and infz∈RZ
fZ(z) > 0.

(C4) For j = 1, 2, all partial derivatives of µj and σj up to order p+2 exist on the interior

of RZ , they are uniformly continuous and infz∈RZ
σj(z) > 0.

(C5) Sε1,ε2 is twice continuously differentiable with respect to its components,

maxj,k=1,2 supt1,t2 |tjtk ∂2

∂tj∂tk
Sε1,ε2(t1, t2)| <∞, and E(ε6j) <∞ (j = 1, 2).

Proof of Theorem 1. Write

Ŝε2|ε1(t2|t1)− Sε2|ε1(t2|t1)

= Ŝε1,ε2(t1, t2)
[ 1

Ŝε1(t1)
− 1

Sε1(t1)

]
+

1

Sε1(t1)

[
Ŝε1,ε2(t1, t2)− Sε1,ε2(t1, t2)

]
, (1)

where Ŝε1(t1) = n−1
∑n

i=1 I(ε̂1i ≥ t1) and Ŝε1,ε2(t1, t2) = n−1
∑n

i=1 I(ε̂1i ≥ t1, ε̂2i ≥ t2).

We start with considering the second term of (1). Along the same lines as in the proof of

Lemma A.3 in Neumeyer and Van Keilegom (2010), we can easily show that

sup
t1,t2

∣∣∣n−1
n∑

i=1

{
I(ε̂1i ≥ t1, ε̂2i ≥ t2)− I(ε1i ≥ t1, ε2i ≥ t2)− Sε̂1,ε̂2(t1, t2) + Sε1,ε2(t1, t2)

}∣∣∣

= oP (n
−1/2),

where Sε̂1,ε̂2 is the bivariate survival function of (ε̂1, ε̂2) conditionally on the data (Xi, Yi, Zi),

i = 1, . . . , n (i.e. considering µ̂1, µ̂2, σ̂1 and σ̂2 as fixed functions). It now follows that

Ŝε1,ε2(t1, t2)− Sε1,ε2(t1, t2)

= n−1

n∑

i=1

I(ε1i ≥ t1, ε2i ≥ t2)− Sε1,ε2(t1, t2)

+

∫ {
Sε1,ε2

(t1σ̂1(z) + µ̂1(z)− µ1(z)

σ1(z)
,
t2σ̂2(z) + µ̂2(z)− µ2(z)

σ2(z)

)
− Sε1,ε2(t1, t2)

}
dFZ(z)

+oP (n
−1/2)

= n−1

n∑

i=1

I(ε1i ≥ t1, ε2i ≥ t2)− Sε1,ε2(t1, t2)

+

2∑

j=1

[ ∂

∂tj
Sε1,ε2(t1, t2)

∫
σ−1
j (z)

{
tj(σ̂j(z)− σj(z)) + µ̂j(z)− µj(z)

}
dFZ(z)

]

+OP

(
max
j=1,2

sup
z

|µ̂j(z)− µj(z)|2
)
+OP

(
max
j=1,2

sup
z

|σ̂j(z)− σj(z)|2
)
+ oP (n

−1/2).
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The OP -terms above are OP ((nh
dz)−1 log n) = oP (n

−1/2), which follows from the proof

of Lemma A.1 in Neumeyer and Van Keilegom (2010). Therefore, using Lemma A.2 in

Neumeyer and Van Keilegom (2010), we have that

Ŝε1,ε2(t1, t2)− Sε1,ε2(t1, t2) (2)

= n−1
n∑

i=1

I(ε1i ≥ t1, ε2i ≥ t2)− Sε1,ε2(t1, t2)

+
2∑

j=1

[ ∂

∂tj
Sε1,ε2(t1, t2)

{
n−1

n∑

i=1

(
εji +

tj
2
[ε2ji − 1]

)

+hp+1

∫
bµj

(z) + tjbσj
(z)

σj(z)
fZ(z) dz

}]
+ oP (n

−1/2),

uniformly in t1 and t2. Note that contrary to Neumeyer and Van Keilegom (2010), the

asymptotic bias of µ̂j(z) and σ̂j(z) is not negligible here, since we assume that nh2p+2 =

O(1) (instead of nh2p+2 → 0 in the latter paper).

Consider now the first term of (1):

Ŝε1,ε2(t1, t2)
[ 1

Ŝε1(t1)
− 1

Sε1(t1)

]

= −Sε1,ε2(t1, t2)S
−2
ε1

(t1)
[
n−1

n∑

i=1

I(ε̂1i ≥ t1)− Sε1(t1)
]
+ oP (n

−1/2)

= −Sε1,ε2(t1, t2)S
−2
ε1 (t1)

[
n−1

n∑

i=1

I(ε1i ≥ t1)− Sε1(t1) (3)

−fε1(t1)
∫
σ−1
1 (z)

{
t1(σ̂1(z)− σ1(z)) + µ̂1(z)− µ1(z)

}
dFZ(z)

]
+ oP (n

−1/2),

uniformly in t1 and t2, which follows using similar arguments as in the bivariate case,

and provided Ŝε1,ε2(t1, t2)− Sε1,ε2(t1, t2) = OP (n
−1/2) uniformly in t1 and t2. Indeed, it is

easily seen that the class

F =
{
(e1, e2) → I(e1 ≥ t1, e2 ≥ t2)− Sε1,ε2(t1, t2) +

2∑

j=1

∂

∂tj
Sε1,ε2(t1, t2)

[
ej +

tj
2
(e2j − 1)

]
:

t1 ∈ R
dx , t2 ∈ R

}
(4)

is Donsker (see again Neumeyer and Van Keilegom (2010) for more details). It now follows

from (2) that n1/2(Ŝε1,ε2 −EŜε1,ε2) converges weakly to a Gaussian process, and hence

sup
t1,t2

|Ŝε1,ε2(t1, t2)− Sε1,ε2(t1, t2)| = OP (n
−1/2),
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since we also know that supt1,t2 |EŜε1,ε2(t1, t2)− Sε1,ε2(t1, t2)| = O(hp+1) = O(n−1/2).

The result now follows from (1), (2) and (3), since it is readily seen that

Sε1,ε2(t1, t2)

S2
ε1(t1)

fε1(t1) +
1

Sε1(t1)

∂

∂t1
Sε1,ε2(t1, t2) =

∂

∂t1
Sε2|ε1(t2|t1).

This completes the proof. 2

Proof of Corollary 2. (i) Define the class

F =
{
(e1, e2) →

I(e1 ≥ t1)

Sε1(t1)

[
I(e2 ≥ t2)− Sε2|ε1(t2|t1)

]

+
∂

∂t1
Sε2|ε1(t2|t1)

[
e1 +

t1
2
{e21 − 1}

]
− fε2|ε1(t2|t1)

[
e2 +

t2
2
{e22 − 1}

]
:

t1 ∈ R
dx , t2 ∈ R

}
.

In a similar way as for the class defined in (4), we can show that the class F is Donsker,

and hence by Theorem 1 the process n1/2(Ŝε2|ε1(t2|t1) − Sε2|ε1(t2|t1)) (t1 ∈ R
dx , t2 ∈ R)

converges weakly to a Gaussian process, with mean function given by Cp+1
1 b(t2|t1).

(ii) It can be easily seen that

Ŝm
ε2|ε1

(t2|t1)− Sm
ε2|ε1

(t2|t1) = mSm−1
ε2|ε1

(t2|t1)(Ŝε2|ε1(t2|t1)− Sε2|ε1(t2|t1)) + oP (n
−1/2).

Hence,

n1/2(ϕ̂m(t1)− ϕm(t1))

= m n1/2

∫
Sm−1
ε2|ε1

(t2|t1)(Ŝε2|ε1(t2|t1)− Sε2|ε1(t2|t1)) dt2 + oP (1),

and hence the result follows from part (i).

(iii) Note that, uniformly in x,

τ̂m(x, z)− τm(x, z)

= µ̂2(z)− µ2(z) + ϕm

(x− µ1(z)

σ1(z)

)
[σ̂2(z)− σ2(z)]

+
[
ϕm

(x− µ̂1(z)

σ̂1(z)

)
− ϕm

(x− µ1(z)

σ1(z)

)]
σ2(z) + oP ((nh

dz)−1/2)

= µ̂2(z)− µ2(z) + ϕm

(x− µ1(z)

σ1(z)

)
[σ̂2(z)− σ2(z)]

−ϕ′
m

(x− µ1(z)

σ1(z)

)[ µ̂1(z)− µ1(z)

σ1(z)
+
x− µ1(z)

σ2
1(z)

(σ̂1(z)− σ1(z))
]
σ2(z)

+oP ((nh
dz)−1/2),
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by part (ii). Hence, the result follows from the i.i.d. expansions of µ̂j(z) and σ̂j(z)

(j = 1, 2) given in Section 4.2. 2

Proof of Theorem 3. For simplifying the presentation suppose that Z is one-dimensional

(the general case where dz ≥ 1 can be treated similarly, but is technically a bit more

involved). Let

i1 = argminjZj ,

i2 = argminj:Zj−Zi1
>2h(Zj − Zi1),

i3 = argminj:Zj−Zi2
>2h(Zj − Zi2),

...

define V = {i1, i2, i3, . . .}, and denote the cardinality of V by rn = O(h−1). By construc-

tion, the variables ε̂ji1, ε̂ji2, . . . , ε̂jirn are mutually independent (for j = 1, 2). Also, note

that 0 ≤ ϕ̂(t1)− ϕ(t1) ≤ min{ε̂2i : i ∈ V, ε̂1i ≥ t1} − ϕ(t1).

Now, fix s > 0 and consider

P
(
ϕ̂(t1)− ϕ(t1) ≤ s

)

≥ P
(
min{ε̂2i : i ∈ V, ε̂1i ≥ t1} ≤ ϕ(t1) + s

)

= 1− P
(
ε̂1i1 < t1 or ε̂2i1 > ϕ(t1) + s

)
. . . P

(
ε̂1irn < t1 or ε̂2irn > ϕ(t1) + s

)
. (5)

We will show that

p := max
k=1,...,rn

P
(
ε̂1ik < t1 or ε̂2ik > ϕ(t1) + s

)
< 1. (6)

From (6) it will follow that (5), which is greater than or equal to 1 − prn, converges to

one, since rn → ∞ as n→ ∞. For δn → 0, write

P
(
ε̂1ik < t1 or ε̂2ik > ϕ(t1) + s

)

≤ P
({
ε̂1ik < t1 or ε̂2ik > ϕ(t1) + s

}
and sup

z,j=1,2
|µ̂j(z)− µj(z)| ≤ δn

)

+P
(

sup
z,j=1,2

|µ̂j(z)− µj(z)| > δn
)

≤ P
(
ε1ik < t1 + δn or ε2ik > ϕ(t1) + s− δn

)
+ νn

≤ P
(
ε1ik < t1 + δn or ε2ik > ϕ(t1 + δn) +

s

2

)
+ νn

:= 1− q + νn

≤ 1− q

2
< 1,
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for νn sufficiently small, since q > 0. This shows (6), and hence ϕ̂(t1)− ϕ(t1)
P→ 0.

Next, consider

τ̂(x, z)− τ(x, z)

= µ̂2(z)− µ2(z) + ϕ
(x− µ1(z)

σ1(z)

)
(σ̂2(z)− σ2(z))

[
ϕ̂
(x− µ̂1(z)

σ̂1(z)

)
− ϕ

(x− µ1(z)

σ1(z)

)]
σ2(z) + oP (1),

and this converges in probability to zero thanks to the weak consistency of µ̂2(z) and

σ̂2(z), and provided we can show that

ϕ̂
(x− µ̂1(z)

σ̂1(z)

)
− ϕ

(x− µ1(z)

σ1(z)

)
P→ 0. (7)

By following the same proof as for ϕ̂(t1)−ϕ(t1), it is easily seen that (7) holds true, using

the weak consistency of µ̂1(z) and σ̂1(z). 2

Lemma 4 Assume that model (5) is valid, i.e. assume that (ε1, ε2) is independent of Z.

Let µ̃1 and µ̃2 be arbitrary location functions, let σ̃1 and σ̃2 be arbitrary scale functions,

and define

ε̃1 =
X − µ̃1(Z)

σ̃1(Z)
and ε̃2 =

Y − µ̃2(Z)

σ̃2(Z)
.

Then, (ε̃1, ε̃2) is also independent of Z.

Proof. First, by definition of a location and scale function, we can write µ̃2(z) =

T (FY |Z(·|z)) and σ̃2(z) = S(FY |Z(·|z)) for some functionals T and S, that satisfy

T (FaY+b|Z(·|z)) = aT (FY |Z(·|z)) + b and S(FaY+b|Z(·|z)) = aS(FY |Z(·|z)),

for all a ≥ 0 and b ∈ R, where for the purpose of this proof, we use the notations

FY |Z(·|z), respectively FY (·), for the conditional (on the vector Z), respectively marginal,

distribution of any random variable Y (see also Huber (1981), p. 59, 202).

Write

ε̃2 =
µ2(Z)− µ̃2(Z)

σ̃2(Z)
+
σ2(Z)

σ̃2(Z)
ε2.

In a first step, we will show that σ2(Z)/σ̃2(Z) is independent of Z. We have that

σ̃2(z) = S
(
Fµ2(z)+σ2(z)ε2|Z(·|z)

)
= σ2(z)S

(
Fε2|Z(·|z)

)
= σ2(z)S

(
Fε2(·)

)
,

31



for arbitrary z, i.e. σ2(z)/σ̃2(z) is the same for all values of z. In a similar way we can show

that (µ2(z)− µ̃2(z))/σ̃2(z), σ1(z)/σ̃1(z) and (µ1(z)− µ̃1(z))/σ̃1(z) are also independent of

z. It now follows that

P (ε̃1 ≤ t1, ε̃2 ≤ t2|Z)

= P
(µ1(Z)− µ̃1(Z)

σ̃1(Z)
+
σ1(Z)

σ̃1(Z)
ε1 ≤ t1,

µ2(Z)− µ̃2(Z)

σ̃2(Z)
+
σ2(Z)

σ̃2(Z)
ε2 ≤ t2

∣∣∣Z
)

= P (A1 + A2ε1 ≤ t1, C1 + C2ε2 ≤ t2|Z)
= P (ε̃1 ≤ t1, ε̃2 ≤ t2),

where A1 := (µ1(z) − µ̃1(z))/σ̃1(z), A2 := σ1(z)/σ̃1(z) C1 := (µ2(z) − µ̃2(z))/σ̃2(z) and

C2 := σ2(z)/σ̃2(z) for all z, and where the third equality follows from the fact that (ε1, ε2)

is independent of Z. 2
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