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Abstract

A new heteroskedastic hedonic regression model is suggested. It
takes into account time-varying volatility and is applied to a blue
chips art market. Furthermore, a nonparametric local likelihood es-
timator is used. This estimator is more precise than the often used
dummy variables method. The empirical analysis reveals that errors
are considerably non-Gaussian, and that a student distribution with
time-varying scale and degrees of freedom does well in explaining de-
viations of prices from their expectation. The art price index is a
smooth function of time and has a variability that is comparable to
the volatility of stock indices.
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1 Introduction

It is well documented that volatility of many commodities and stocks displays
a certain degree of time variation. This feature has important consequences
for economists, policy makers, economic agents, actors in the financial and
commodity markets. Since Engle (1982)’s ARCH model, several models have
been built to investigate volatility of commodities, and a large literature is
now dedicated to its time-varying structure.

Surprisingly, while considerable efforts have been devoted to assess re-
turns in the art market, few studies attempt to investigate the volatility
structure of art as a function of time. Yet, volatility of fine art is worth
investigating, and a better understanding of its structure may be of practi-
cal use for market participants, more particularly for participants exposed to
derivatives on art. Such derivatives include price guarantees underwritten by
auction houses (Greenleaf et al., 1993) that are similar to short positions in
put options. Volatility of fine art also plays a role when pieces of art are used
as collateral for loans (McAndrew and Thompson, 2007). Campbell and
Wiehenkamp (2008) illustrate the mechanism of another art-based option:
the Art Credit Default Swap: A bank lends money to an entity on the one
hand, and buys an option (the Art Credit Default Swap) from a third party
-the seller of protection- on the other hand. This option gives the bank the
right to swap the art object against cash, would the borrower default. Many
other derivatives, sensitive to volatility, abound in the market for physical
insurance on luxury goods and art. Unlike commodities exchanged on organ-
ised platforms, a common complication in analysing the market for art and
antiques is the heterogeneity of exchanged goods. This feature prevents the
observer from directly estimating returns and volatility of the market. As
far as returns are concerned, two main methodologies have been developed
to cope with this issue: the repeat sale methodology (RSM) and the hedonic
regression. RSM is based on various goods that have been sold several times
in different periods, so as to compute an average rate of return. RSM has
been used by Baumol (1986), Goetzmann (1993), Pesando (1993), as well as
Mei and Moses (2002). A major critique against RSM is that it focuses on
a small, biased sample of goods (Collins et al., 2009) that have been resold
through time.

This paper focuses on the hedonic regression methodology (HRM) that is
further detailed in Section 2. Hedonic regression has been favoured to study
the art market by Chanel et al. (1994), Hodgson and Vorkink (2004), Collins

2



et al. (2009), Oosterlinck (2010), Renneboog and Spaenjers (2009) and Bo-
cart and Oosterlinck (2011). Hedonic regression has the advantage of using
all goods put for sale. The approach is to regress a function of the price of
each good on its characteristics, including time dummy variables whose coef-
ficients will constitute the basis for building an index. The main disadvantage
of hedonic regression methodology is that the index depends on the explana-
tory variables. Ginsburgh et al. (2006) discuss the main problems of hedonic
regression applied to the art markets, such as the choice of a functional form,
the specification bias and the “revision volatility” -that is, as new data are
included in the dataset, the price index changes. Methodology-wise, ordinary
least squares are usually employed to estimate parameters. Recent research
aims at correcting methodological flaws in hedonic regression: Collins et al.
(2009) introduce the Heckman procedure to take into account a sample se-
lection bias linked to unsold artworks as well as a Fisher index to cope with
time instability of parameters. Jones and Zanola (2011) detail the use of a
so-called smearing factor to correct for a retransformation bias when a log
scale of prices is used in the regression. Scorcu and Zanola (2010) suggest a
quantile regression to take into account the fact that parameters depend on
price levels. Hodgson and Vorkink (2004), highlight that for the art market,
non-Gaussianity is an issue that needs to be treated, since OLS estimates are
not efficient. They assume an i.i.d. error term with nonparametric density
function, and suggest Bickel’s adaptive estimation to obtain efficient esti-
mates. While this is an important improvement of standard OLS estimation
in this framework, the assumption of i.i.d. errors may seem too restrictive
for markets which exhibit time-varying features such as changing uncertainty
concerning the evaluation of art. In particular, we show in this paper that
art markets can be heteroskedastic.

We recommend a local maximum likelihood procedure to obtain time-
varying estimates of higher moments, i.e., variance, skewness and kurtosis.
The time-varying variance is later used to derive what we call “volatility
of predictability”. It can also be used to obtain more efficient parameter
estimates by using weighted least squares. However, our main interest lies
in volatility in itself, as it can be used further e.g. for derivative pricing.
Modelling unconditional volatility as a deterministic function of time has
become popular recently in financial markets, starting from Engle and Rangel
(2008) who use a spline estimator for unconditional volatility combined with
a classical GARCH model for conditional volatility. Our research follows the
same spirit but allows moreover for time-varying skewness and kurtosis.
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The paper is organised as follows: Section 2 introduces the data we use
to build a blue-chips art index and presents the HRM methodology and
a time-dependent estimator for variance. Section 3 illustrates our results.
Concluding remarks are presented in section 4.

2 Data and methodology

2.1 Data

We choose to restrict our analysis to two-dimensional artworks, excluding
works on paper and photographs, made by artists ranked amongst the top
100 sellers (in sales revenue in auction houses, according to Artprice, a com-
pany specialized in publishing auction results), both in 2008 and 2009. The
rationale behind this choice is that large volumes of sales may signal a par-
ticular interest from the market for these artists.

We believe that these artists are more likely to be seen both as consump-
tion goods and investment goods unlike many little traded artists whose
objects are more likely to be bought as pure consumption goods. Indeed,
Frey and Eichenberger (1995) state that “pure speculators” who consider art
as an investment may avoid markets presenting too much uncertainty (such
as financial risk or attribution risk).

Furthermore, Goetzmann (1993) emphasizes that art prices are influenced
by “stylistic risk”, that is the risk of having not enough bidders when reselling
the artwork. Mei and Moses (2002) compare stylistic risk in art markets
to liquidity risk in financial markets. Unknown and relatively little traded
artists are typically cursed by considerable financial and liquidity risk, as it
can be difficult to realize a sale in a market where demand is weak.

On the other hand, buyers of liquid artists – with a low stylistic risk –
know ex-ante that they will be able to re-sell artworks, which might attract
speculators and investors. In practice, art is actually traded as an investment.
This is empirically confirmed by activity from dealers, funds, foundations
and private individuals who store artworks in warehouses, bank vaults, or in
Switzerland’s port-franc containers, where obviously the aesthetic return is
null.

Based on the assumption that liquid artists can be seen as an investment,
we focus on “Blue Chips Artists”: we need to select artists who stay in the
top 100 of best sellers two consecutive years, in order to avoid bias from
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exceptional or unusual sales. Forty artists correspond to this description,
out of which 32 stayed in the top 100 from 2005 to 2010 in a row. We record
auction data from January 2005 to June 2010. 5612 sold pieces are recorded.
An auction process is an opportunity to record information. Auction houses
announce weeks to months in advance the dates when auctions will occur.
Sometimes, a single auction is split into several days. In most cases, the sale is
organized around a certain theme (“Impressionist art” for instance). Prior to
the auction, a catalogue is published by the auction house. In this catalogue,
each artwork is linked to a lot number, a price estimate, and a description.
The length of the description differs from one artwork to another, but key
variables are systematically recorded. For each sale, we gather the following
information: the price in USD, and whether it is a hammer price (that is,
the price reached at auction), or a premium price (the price including the
buyer’s premium), the sales date, the artist’s name, the width and height of
the painting in inches, the year it has been made, the painting’s title, the
auction house and city where the sale occurred and the title of the auction
house’s sales theme. From this information we extract additional variables,
such as the subject of the painting (derived from the title), the theme of the
auction (modern, contemporary, impressionist, etc.), derived from the sale’s
title, the artist’s birthday, at what age he painted the piece and whether he
was alive or dead at the time of the auction. We also derive the weekday
of the sale. Some factors are omitted that may influence the final price for
a painting, such as exhibition costs, transaction costs, and transport. All
variables are presented in tables 3, 4 and 6.

2.2 Hedonic Regression Methodology

Hedonic regression is a common tool to estimate consumer price indices (see
e.g. Ginsburgh et al., 2006) and has been widely used in real estate and art
markets. Let pi denote the price of sale i. The logarithm of this price is
usually modelled by the following hedonic regression model,

log pi = ν +
T∑
t=1

βtdi,t +
K∑
k=1

αkvi,k + ui, i = 1, ..., N. (1)

di,t is a dummy variable taking the value 1 if the artwork i was sold in period
t, and 0 otherwise. ν is a constant term. The time index t = 1 corresponds
to the very first period of the series and is used as benchmark. In our case,
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it would be the first quarter of 2005. For identification, we set β1 equal to
zero. The K variables vi,k are all other characteristics of the piece of art i
(for instance: the height, surface, and dummies for the artists, subject, etc.).
The index, with base 100 in t = 1, using a bias correction factor based on
Duan (1983) is then defined as follows, see Jones and Zanola (2011):

Indext = 100× eβt ×
1
Nt

∑N
i=1 di,te

ûi

1
N1

∑N
i=1 di,1e

ûi

, (2)

where Nt =
∑N

i=1 di,t is the number of observations at time t. Regression
(1) is generally estimated using Ordinary Least Squares (OLS). OLS esti-
mators are efficient when errors ui are normally distributed with constant
variance, i.e., ui ∼ N(0, σ2

u). Data from art sales, however, often violate this
assumption. Hodgson and Vorkink (2004) and Seckin and Atukeren (2006)
focus on the normality part and propose a semiparametric estimator of the
index based on a nonparametric error distribution, while maintaining the
assumption that ui is i.i.d. and, hence, homoskedastic.

Furthermore, indices based on the OLS methodology suffer from a sample
selection bias. Indeed, only sold paintings are taken into account, whereas
unsold paintings carry important information as well. Collins et al. (2009)
suggest a two-stage estimation to cope with the issue. Let Si denote a dummy
variable taking value 1 if the painting i has been sold and 0 otherwise. The
first stage involves a probit estimation:

P (Sj = 1 | wj) = Φ

(
P∑

p=1

δpwj,p

)
, j = 1, ..., N + U, (3)

where Φ is the cumulative distribution of the standard normal, N is the num-
ber of pieces sold and U is the number of unsold pieces. The P variables wj,p

are characteristics of the piece of art j (for instance: the height, surface, and
dummies for the artists, subject, etc.), and δ = (δ1, . . . , δP )

′ is a parameter
vector.

The second stage involves an OLS estimation similar to equation (1), but
only for the sold pieces (Si = 1):

log pi = ν +
T∑
t=1

βtdi,t +
K∑
k=1

αkvi,k + κζi + ui, i = 1, ..., N. (4)
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The term ζi is a correcting variable, based on parameters of the probit esti-
mation and found using the procedure of Heckman (1979).

We now propose to modify the time component, replacing the time dum-
mies di,t by a smooth unknown function of time, and allowing for het-
eroskedasticity of unknown form. An important advantage of choosing a
continuous function β(t) rather than time dummies is that one avoids gath-
ering paintings sold at different periods in a single variable. We also remove
the normality assumption, allowing for skewness and leptokurtosis. In partic-
ular, we assume that residuals are distributed according to a student-skewed
distribution. Our semiparametric heteroskedastic model can then be written
as

log pi = ν +
K∑
k=1

αkvi,k + κζi + β(ti) + σ(ti)εi, i = 1, ..., N, (5)

or, alternatively:

log pi =
M=2+K∑
m=1

γmxi,m + ξi, i = 1, ..., N, (6)

where xi = (1, vi,1, ...vi,k, ..., vi,K , ζi), and

ξi = β(ti) + σ(ti)ϵi = β(ti) + ui, ui = σ(ti)ϵi. (7)

The function σ(t) is a smooth function of time, ti is the selling time of the
i-th sale, β(t) is the trend component of the log price at time t, and for
identification we restrict its mean to zero. The error term ε is independent,
but not identically distributed, with mean zero and variance one, given by a
standardized student skewed distribution. The probability density function
of the student skewed distribution t(η, λ) with mean zero and variance equal
to one is provided by Hansen (1994):

g(ε | λ, η) = bc

(
1 +

1

η − 2
(
ε+ a

1− λ
)2
)−(η+1)

2

∀ε < −a/b, (8)

and

g(ε | λ, η) = bc

(
1 +

1

η − 2
(
ε+ a

1 + λ
)2
)−(η+1)

2

∀ε ≥ −a/b, (9)

where η stands for the degrees of freedom with 2 < η < ∞, and λ is a
parameter characterizing the skewness of the distribution, with −1 < λ < 1.
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The constants are given by

a = 4λc
η − 2

η − 1
, b2 = 1 + 3λ2 − a2, c =

Γ(η+1
2
)√

π(η − 2)Γ(η
2
)
. (10)

A first stage estimation of γ is a prerequisite. We suggest constructing
feasible weighted least squares (FWLS) estimators of γ:

γ̂ = (X ′ŴX)−1X ′ŴY, (11)

where X is the N×M matrix of observed independent variables, Y is the
N × 1 vector of observed log-prices, Ŵ is an N×N diagonal matrix with
wii = σ̂−2(ti). If a nonparametric Nadaraya-Watson estimator is used for
σ̂2, then the estimator (11) has been first proposed by Rose (1978). For the
case of a volatility function depending on an i.i.d. random variable, Carroll
(1982) showed that it is asymptotically equivalent to the WLS estimator with
known volatility function. We can consistently estimate the variance of the
FWLS estimator by

V̂ar(γ̂) = (X ′ŴX)−1. (12)

Because it yields more precision in parameter estimates, FWLS may
lead to a better selection of explanatory variables, as compared to the OLS
methodology. This is important since “choosing the functional form and the
variables that represent quality are pervasive in hedonic indexing, and can
lead to all the problems linked to mis-specification” (Ginsburgh et al., 2006).

Conditional on this first stage estimate of γ, we use a nonparametric
estimation, introducing a kernel function K and a bandwidth h. We suggest
estimating the local parameter vector θ = (β, σ, η, λ)′ by local maximum
likelihood. One advantage of considering θ as a function of continuous time
is the improved stability of estimation compared to ordinary least squares
with time dummies. Indeed, we avoid all risks linked to the inversion of
a near singular matrix, a problem often met when few data are available
in a given period. Smoothing over several adjacent time periods allows to
stabilize the estimation of a parameter at a given time. Formally, the local
likelihood estimator of θ is defined as

θ̂(τ) = argmax[l(θ | ξ, τ, h)], (13)

where

l(θ | ξ, τ, h) =
N∑
i=1

log[gs(ξi | θ)]K(
ti − τ

h
), (14)
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gs(ξi | θ) =
1

σ
g

(
ξi − β

σ
| λ, η

)
, (15)

and where g(·) is the standardized skewed student t density given in (8) and
(9). No closed form solution for (13) is available in the general case, but
numerical methods can be employed in a straightforward way to maximize
the local likelihood function and thus obtain local parameter estimates.

In order to construct pointwise confidence intervals, we proceed as in
Staniswalis (1989). Let υ denote one of the four local parameters (β, σ, η, λ)
and ι, the three others. An expression for the variance Var(υ̂) is given by

Var(υ̂) =
|| K ||2

NhI(υ)f(t)
, (16)

where

I(υ) = E

{(
∂log[gs(υ | ι)]

∂υ

)2

| u

}
, (17)

f(t) is the density of the time of sales, and || K ||2 is the L2 norm of the kernel
used in equation (14). Based on the asymptotic normality of the estimator
of θ(τ), one can then construct pointwise confidence intervals as usual.

The special case where λ(t) = 0 and η(t) = ∞ yields the Gaussian likeli-
hood, for which the maximizer is available in closed form and given by the
Nadaraya-Watson estimator (Hardle, 1990). Hence, our estimator nests the
Nadaraya-Watson estimator as a special case.

Bandwidth selection can be based on a classical plug-in methodology for
bandwidth selection, following Boente et al. (1997):

h = N−1/5 || K ||2 σ2

C2
2(K)

∫ 1

0
m′′(u)2du

, (18)

where C2(K) =
∫ +∞
−∞ x2K(x)dx = 1, m′′(u) =

∑n
i=1

1
Nh3

0
K ′′(u−ui

h0
)ui, σ

2 is the

empirical variance of ξ and h0 is a pilot bandwidth. We follow this procedure
in the empirical example of the following section.

3 Results

3.1 Hedonic Regression

We first build a quarterly index using time dummies, using an OLS method-
ology with Heckman correction. The variables selected in the probit equation
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Figure 1: Price index resulting from equation (2), based on time dummies
and estimated by Ordinary Least Squares.

.

(3) are presented in Table 2. Variables included in regression (4) are selected
following a backward selection methodology: they are kept in the model if
significant at a level of 5% using OLS regression. Advantages and disadvan-
tages of backward selection are discussed e.g. in Hendry (2000). As compared
to other selection methodologies such as forward selection, backward selec-
tion suffers from the fact that the initial model may be inadequate. Indeed,
non-orthogonality of variables may lead to erroneously eliminate variables,
or wrongly keep colinear variables. To avoid this problem, we run different
initial models, separating variables that share a high degree of colinearity.
The model presenting the highest adjusted-R2 has been kept.

Table 1 summarizes results from the regression and Figure 1 presents the
resulting OLS-based price index. The need to correct for time dependent
error variance is indicated by a Breusch-Pagan test for heteroskedasticity on
OLS residuals, which delivers a p-value of 0.02. We hence reject the null
hypothesis of homoskedasticity at a level of 5%. The quantile plot in Figure
7 highlights that normality of residuals is an unrealistic assumption.

We then proceed with our methodology: we discard time-dummy vari-
ables and select explanatory variables with a backward selection methodology
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Table 1: Parameters estimates of regression 5. Variables are selected by
backward selection at a level of 5% with an OLS and a FWLS estimation,
respectively.

Estimate OLS Estimate FWLS Std. Error (OLS) Std. Error (FWLS)

(Intercept) 10.85 *** 11.03 *** 0.16 0.12
AgePainted -0.004 *** -0.004 *** 0.001 0.001

Alexander.Calder -3.24 *** -3.28 *** 0.17 0.17
Alexej.Jawlensky -0.38 *** -0.34 *** 0.09 0.09

Andy.Warhol -0.75 *** -0.74 *** 0.07 0.07
Bonhams -0.42 *** - 0.19 -

Camille.Pissarro -0.18 *** - 0.11 -
Childe.Hassam -0.58 *** -0.53 *** 0.16 0.16

Christies 0.19 *** 0.24 *** 0.06 0.07
Collection 0.38 *** 0.34 *** 0.11 0.11

Contemporary -0.23 *** -0.17 *** 0.06 0.06
Damien.Hirst -0.76 *** -0.68 *** 0.10 0.11

DaySales -0.28 *** -0.2 *** 0.05 0.06
Dead 0.68 *** 0.67 *** 0.09 0.09

Donald.Judd -1.66 *** -1.53 *** 0.37 0.39
Edgar.Degas -0.82 *** -0.78 *** 0.20 0.21

Edouard.Vuillard -1.10 *** -1.11 *** 0.11 0.11
Evening 1.37 *** 1.45 *** 0.05 0.05

Georges.Braque -0.68 *** -0.68 *** 0.12 0.12
Gerhard.Richter -0.32 *** -0.29 *** 0.10 0.10

Hammer -0.20 *** -0.27 *** 0.06 0.07
Henri.de.Toulouse.Lautrec -0.71 *** -0.65 *** 0.19 0.20

Henri.Matisse 0.47 *** 0.56 *** 0.13 0.14
Henry.Moore -2.94 *** -3.07 *** 0.52 0.55
HongKong 1.13 *** 1.17 *** 0.14 0.14

Impressionist -0.11 *** -0.16 *** 0.06 0.06
Jean.Michel.Basquiat -0.61 *** -0.59 *** 0.10 0.11

Kees.van.Dongen -0.51 *** -0.54 *** 0.09 0.09
KollerAuktionen 0.54 *** 0.74 *** 0.20 0.21

London 0.93 *** 0.91 *** 0.07 0.07
Mark.Rothko 0.32 *** - 0.16 -

Maurice.de.Vlaminck -1.40 *** -1.44 *** 0.07 0.07
Max.Ernst -0.89 *** -0.85 *** 0.09 0.10

Milan 0.38 ** 0.5 ** 0.15 0.15
NY 0.87 *** 0.91 *** 0.06 0.07

Pablo.Picasso 0.36 *** 0.39 *** 0.08 0.08
Paris 0.44 *** 0.52 *** 0.07 0.07

Pierre.Auguste.Renoir -0.43 *** -0.44 *** 0.07 0.07
Raoul.Dufy -1.00 *** -1.02 *** 0.09 0.09

SaintCyr -0.51 *** -0.52 *** 0.13 0.14
Sam.Francis -2.00 *** -2.06 *** 0.07 0.07

Sothebys 0.13 *** 0.21 *** 0.06 0.06
Surface -0.00002 *** -0.00002 *** 0.000001 0.000001

ThemeWord 0.01 *** 0.009 *** 0.002 0.002
Tokyo -2.79 *** - 0.23 -

Untitled -0.44 *** -0.43 *** 0.06 0.06
VillaGrisebach 0.71 *** 0.83 *** 0.15 0.16

Width 0.02 *** 0.02 *** 0.0007 0.0007
Woman 0.19 *** 0.2 *** 0.06 0.06

Yayoi.Kusama -1.46 *** -1.47 *** 0.10 0.11
Heckman Correction 0.10 0.12 0.18 0.20

Adjusted R2 68% 65%
Maximum VIF (Variance Inflation Factor) 6.53

Median VIF (Variance Inflation Factor) 1.46
Maximum Cook’s distance 0.04

Median Cook’s distance 0.0005
Standard Deviation of Residuals 1.07
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Table 2: Variables and estimators of parameters of probit equation (3) -first
stage for Heckman procedure-

Estimate Std. error

(Intercept) 0.77 *** 0.04
Contemporary 0.16 ** 0.06
Impressionist -0.15 ** 0.07
DaySales -0.25 *** 0.06
Sam.Francis -0.14 * 0.08
Kees.van.Dongen -0.26 ** 0.11
Georges.Braque -0.44 *** 0.14
Edouard.Vuillard -0.33 ** 0.13
Andy.Warhol -0.42 *** 0.08
Christies 1.04 *** 0.07
Sothebys 0.64 *** 0.06

McFadden Pseudo R2 14%

at a 5% level, this time using FWLS regression. Table 1 compares results
from OLS with those from FWLS. As we expected, the model changes as
some variables prove not significantly different from zero at a 5% level with
the FWLS estimation. These four variables are Mark Rothko and Camille
Pissarro, pieces sold in Tokyo and artworks sold at Bonhams.

The 23 artists (out of 40 available) present in the table have a significant
impact on price, ceteris paribus, compared to the other 17 that were not
included. However, one should not try to draw a ranking from this table, as
difference between artists would not always be statistically significant. Some
other results from Table 1 are in line with existing literature: the size (width)
has a positive effect on price, but the surface has a negative one, reflecting
the idea that a bigger artwork is more expensive, up to the point that it is too
big to hang. Prestigious auction houses, like Sotheby’s or Christie’s are also
statistically different from the other ones. Surprisingly, Villa Grisebach (in
Germany) stands in the same category. The negative sign linked to the age
of the artist reveals that the market prefers, on average, earlier works of the
artist whereas untitled artworks are less favoured by the public. Interestingly,
mentioning a collection in the title of the sale (for instance: “Important works
from the collection of...”) leads to higher price. We believe this may be linked
to a signal of “good provenance”. Also, evening sales tend to exhibit more
expensive paintings than day sales.

The second stage of our methodology consists of estimating four contin-
uous time dependent parameters: β(t), that will be used to create a price
index, σ(t), a heteroskedastic term, η(t) and λ(t) are the parameters that
shape the student-skewed distribution of residuals of regression (5). We es-
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Figure 2: Local maximum likelihood estimator of the heteroskedastic term
σ(t) from equation (5).

timate numerically the parameters by finding the values that maximize the
local log-likelihood function in equation (14).

In order to be as precise as possible, we use the day as unit for t. For the
local likelihood estimation, we choose a Gaussian kernel and a bandwidth
of h = 88 following the plug-in method described above, where the pilot
bandwidth h0 was chosen in the range h0 = [1; 30].

Figures 2, 3 and 4 plot the estimates of σ(t), λ(t) and η(t), respectively.
In order to obtain pointwise confidence intervals, it is necessary to estimate
their variance. Figure 8 in appendix illustrates the estimated function f(t)
used in equation (16). Practically, this function is estimated by a Nadaraya-
Watson estimator.

When considering the parameters, one can first conclude from Figure 3
that we cannot reject the null hypothesis that λ(t) = 0. In other words, the
skewness parameter does not prove useful for this precise example. Never-
theless, we believe one should not draw the conclusion that asymmetry of
residuals is typically an unrealistic assumption. For instance, with the same
data, we observed that λ(t) is significantly different from zero when the Heck-
man correction is neglected. Concerning the tail parameter η(t), it is clear
from Figure 4 that tails are fat and that a student distribution better fits
data than the Gaussian. For both parameters, however, we cannot conclude
that time dependency significantly adds value to the model as compared to
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Figure 3: Local maximum likelihood estimator of the symmetry parameter
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a constant term.
On the other hand, it is indispensable to allow for heteroskedasticity

through a time dependent scaling function. Furthermore, the behaviour of
σ(t) has an economic meaning: σ(t) can be interpreted as the degree of devi-
ation of the realized logged-price of a given painting from the rest of the art
market. We call it the “volatility of predictability”. In other words, a high
σ(t) means that is more difficult to predict an artwork’s price. A low σ(t)
corresponds to a more precise estimation of a painting’s value. Predictability
of prices is vital for auction houses and their clients, especially when guaran-
tees are involved. From Figure 3, we observe that this uncertainty steadily
decreased from January 2005 to October 2008. Then, it increased again, or
at least stabilized according to the lower confidence interval. It is interesting
that the trough of the volatility function occurs at the end of 2008, at about
the same time as the peak of the financial crisis with the collapse of Lehman
Brothers (September 2008). It also coincides with the drop of the art price
index, see Figure 5. This suggests that the precision of the art index has in-
creased during the crisis of 2008/09. An explanation could be the asymmetry
of art sales: while there is no upper bound, there is very often a lower bound
through a reserve price below which sales are not allowed. Thus, in boom
periods there may be a large dispersion due to extreme prices, while in crisis
periods, dispersion is smaller since masterpieces are sold at lower values.

The β(t) parameters stand for the difference between the returns of a
painting cleansed of all its characteristics at a time t, and the average return
of this painting through time. This must be compared with the time dummies
methodology, where the parameters represent the returns with respect to a
given period. We propose a continuous version of Duan (1983)’s and Jones
and Zanola (2011)’s smearing estimate. In this framework, a price index
whose base value at time t = 1 is equal to 100 is given by:

Price Index(t) = 100eβ(t)−β(1) ×
w−1

t

∑N
i=1K( ti−t

h
) exp(ûi)

w−1
1

∑N
i=1K( ti−1

h
) exp(ûi)

, (19)

where wt =
∑N

i=1K( ti−t
h
). Note that for the degenerate case K( ti−t

h
) = di,t

we obtain Jones and Zanola (2011) discrete smearing factor. The price index
constructed in this way is plotted in Figure 5.

In addition to a daily resolution of time parameters and a higher precision
than OLS, we empirically observe that the semi-parametric regression is also
less sensitive to lack of data in certain time clusters: as seen in Figure 1,
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Figure 5: Price index resulting from equation (19): Price Index(t) =
100eβ(t)−β(1) ×S where S is a smearing factor and β(t) originates from equa-
tion (5) and is estimated by maximum likelihood (with local non parametric
correction), as shown in equation (13).

the OLS estimation suggests a 87% drop in price in the summer of 2006 and
another crash in the summer of 2007. Such impressive drops in prices do not
appear in the continuous index in Figure 5. More generally, there is to our
knowledge no economic rationale, nor empirical evidence to support the idea
that the general level of prices collapsed during the summers of 2006 and
2007. We believe this drop in price shown by the OLS estimation is due to
a bias caused by the absence of important sales during summer. Such local
flaws are naturally smoothed away by the semi-parametric regression.

3.2 Volatility of index returns

As far as the Blue Chips Index is concerned, it seems an improved methodol-
ogy based on local maximum likelihood estimation yields more robust results
than the traditional OLS methodology. Furthermore, the new regression form
presented in equation (5) introduces the concept of volatility of predictabil-
ity, a measurement that proves useful to better apprehend the discrepancy
of valuation of artworks through time.

However, we are also interested in the volatility of the price of a basket of
paintings. A possible method to derive volatility of, for instance, quarterly
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returns when using prior OLS estimation is to consider that the estimated
β(t) in equation (1) parameters are the “true” observed returns, and compute
their volatility, as for any other good quoted in the stock market (see for
example Hodgson and Vorkink, 2004). If volatility is assumed constant, then
it could be estimated by the sample standard deviation of β̂(t), otherwise
using e.g. GARCH-type models fitted to the β̂(t) process.

Note, however, that the underlying object, β(t), is not a stochastic process
but rather a deterministic function. It is the expectation of the log-price of
a “neutral” painting at time t, and as such does not have a variance. Any
attempt to fit time series models designed for stochastic processes to the
estimates of β(t) is theoretically flawed. What we can do, however, is to
assess a degree of variability of this function. Rescaling time as τ = t/T
to map the sample space into the interval [0, 1], the total variation of β(t),
assuming that β(t) is differentiable, is given by

TV (β) =

∫ 1

0

|β′(τ)|dτ,

where β′(τ) = dβ(τ)/dτ . TV (β) is a measure of the overall variability of a
function on an interval. On a discretized scale, it could be calculated as the
sum of absolute returns, recalling from (19) that log returns over the interval
[t, t+ 1] can be expressed as β(t+ 1)− β(t).

Since TV (β) is linear in time, it can be further decomposed to obtain,
for example, total variations for each year. In our case, we obtain 12.67 %
for 2005, 27.90% for 2006, 10.75% for 2007, 59.05% for 2008, and 18.63% for
2009. One can also define |β′(t)| as the instantaneous variability of β(t), and
regard this instantaneous variability as the volatility of the art index, which
is time-varying.

Figure 6 plots the estimated instananeous volatility of art along with the
VIX index (an index of implied volatility of the S&P 500). Both indices
are annualized such that the scales are comparable. The overall level of art
and VIX volatilities is about the same, but the art index volatility shows
larger swings at the beginning of the sample. One directly observes that,
in addition to the change in regime of volatility of predictability as seen
previously, the art market suffered from a shock in volatility of prices, linked
to a severe drop in returns. This period coincides with the financial crisis
in 2008 and the peak in the VIX index. Although the two indices are not
directly comparable as the VIX concerns implied volatility whereas our index
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Figure 6: Historical volatility of the art market as compared to implied
volatility of S&P 500 options -VIX Index-

concerns instantaneous variability of the index, it seems that the VIX index
also suffered from a shock end of 2008, a timing corresponding to Lehman
Brothers’ bankruptcy.

On the other hand, the apparent high variability of art returns in 2006-
2007 is not accompanied by high levels of the VIX. It is our understanding
that this variability apparently independent from the stock market was trig-
gered by booming prices of post-war and contemporary art at the time. We
believe that the biggest increase in historical volatility of art prices may be
linked to the financial crisis, end of 2008. The surge in volatility had serious
impact on market participants: in its 2008 third quarter release, Sotheby’s af-
firmed “These third quarter figures reflect a significant level of losses on our
guarantee portfolio principally for fourth quarter sale events including this
week’s USD10 million Impressionist guarantee losses as well as our estimate
of USD17 million on probable guarantee losses in next week’s Contemporary
sales. We have reduced our guarantee position by 52% as compared to last
year and our net guarantee exposure is USD114 million. In this period of
considerable economic instability, we will dramatically reduce the guarantees
and other special concessions we grant to sellers [...]”.

Emitting guarantees is equivalent to shorting put options on art. Since
the evaluation of such options crucially depends on volatility measures as
discussed in this paper, our results may contribute to this new direction of
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research.

4 Conclusions and outlook

In this paper we have discussed the construction of volatility indices for
the art market. In a classical hedonic regression framework, we estimate
local parameters, in particular the scale, using a local likelihood approach,
which contrasts with the typical OLS estimation method. Our results for a
data set comprising blue chip auction data show that the scale parameter
is indeed time-varying, which means that the predictability of prices is low
when the scale is large, and vice versa. We find that during the financial
crisis in 2008/09, this volatility of predictability has been smaller than before,
meaning that during this period, price predictions were more precise.

Furthermore, we have considered volatility of the art price index as ex-
plained by the variability of the estimated index. We suggest a measure for
the degree of variability of the art index and show that for our data, it has
about the same magnitude as an implied volatility index on the S&P 500.
Art volatility increases similar to the stock index volatility during the finan-
cial crisis. Thus, unlike the volatility of predictability, it co-moves with the
stock market.

Several applications of these results are possible. For example, to evaluate
derivatives on art, such as options, one would have to consider volatility of
predictability if the underlying is a single painting, or rather volatility of the
art index if the underlying is a large basket or a collection of paintings. For
both cases, we have provided suggestions for the evaluation of volatility, but
a concise investigation of option pricing on the art market is delegated to
future research.
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Table 3: Description of data available in the database, per artist. Variables
with a “***” are variables whose explanatory power is significant in equation
(5) (see Table 1 for more details)
Variable Description Number of observations Proportion

Alexander.Calder *** Dummy variable: the artist is Alexander Calder (1) or not (0) 41 0.7%
Alexej.Jawlensky *** id. 159 2.8%
Alfred.Sisley id. 89 1.6%
Andy.Warhol *** id. 545 9.7%
Camille.Pissarro *** id. 110 2.0%
Childe.Hassam *** id. 52 0.9%
Claude.Monet id. 143 2.5%
Damien.Hirst *** id. 328 5.8%
Donald.Judd *** id. 8 0.1%
Edgar.Degas *** id. 29 0.5%
Edouard.Vuillard *** id. 111 2.0%
Edvard.Munch id. 36 0.6%
Egon.Schiele id. 17 0.3%
Emil.Nolde id. 40 0.7%
Ernst.Ludwig.Kirchner id. 32 0.6%
Georges.Braque *** id. 90 1.6%
Gerhard.Richter *** id. 295 5.3%
Henri.de.Toulouse.Lautrec *** id. 33 0.6%
Henri.Matisse *** id. 64 1.1%
Henry.Moore *** id. 4 0.1%
Jean.Michel.Basquiat *** id. 171 3.0%
Joan.Miro id. 86 1.5%
Kees.van.Dongen *** id. 167 3.0%
Lucio.Fontana id. 172 3.1%
Marc.Chagall id. 236 4.2%
Mark.Rothko *** id. 50 0.9%
Maurice.de.Vlaminck *** id. 325 5.8%
Max.Ernst *** id. 138 2.5%
Pablo.Picasso *** id. 222 4.0%
Paul.Gauguin id. 33 0.6%
Paul.Klee id. 29 0.5%
Pierre.Auguste.Renoir *** id. 363 6.5%
Raoul.Dufy *** id. 167 3.0%
Rene.Magritte id. 61 1.1%
Richard.Prince id. 107 1.9%
Sam.Francis *** id. 482 8.6%
Wassily.Kandinsky id. 43 0.8%
Willem.de.Kooning id. 117 2.1%
Yayoi.Kusama *** id. 225 4.0%
Zao.Wou.Ki id. 192 3.4%

A Description of data
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Table 4: Description of the qualitative data available in the database. Vari-
ables with a “***” are variables whose explanatory power is significant in
equation (5) (see Table 1 for more details)
Variable Description Num. of obs. Proportion

Dead *** Dummy variable: the artist is dead (1) or not (0) 4,465 79.6%
DaySales *** Dummy variable: the auction is a “Day Auction” (1) or not (0) 1,115 19.9%
Morning Dummy variable: the auction is a “Morning Auction” (1) or not (0) 389 6.9%
Evening Dummy variable:the auction is an “Evening Auction” (1) or not (0) 1,353 24.1%
Christies *** Dummy variable: the auction house is Christie’s (1) or not 2,198 39.2%
Artcurial id. 121 2.2%
Bonhams *** id. 30 0.5%
Dorotheum id. 17 0.3%
KettererKunst id. 32 0.6%
KollerAuktionen id. 29 0.5%
Tokyo id. 25 0.4%
Phillips id. 171 3.0%
PierreBerge id. 9 0.2%
SaintCyr id. 86 1.5%
Sothebys *** id. 2,246 40.0%
VillaGrisebach id. 56 1.0%
Nineteenth Dummy variable: the auction’s theme is based on 19th century art (1) or not (0) 65 1.2%
Collection *** Dummy variable: the auction’s theme is based on a collection (1) or not (0) 114 2.0%
Asian Dummy variable: the auction’s theme is based on Asian art (1) or not (0) 132 2.4%
Contemporary Dummy variable: the auction’s theme is based on contemporary art (1) or not (0) 2,226 39.7%
Impressionist *** Dummy variable: the auction’s theme is based on impressionist art (1) or not (0) 2,134 38.0%
Modern Dummy variable: the auction’s theme is based on modern art (1) or not (0) 2,602 46.4%
PostWar Dummy variable: the auction’s theme is based on post-war art (1) or not (0) 581 10.4%
Surreal Dummy variable: the auction’s theme is based on surrealist art (1) or not (0) 43 0.8%
London *** Dummy variable: the city where the sales occur is London (1) or not (0) 1,945 34.7%
HongKong *** id. 111 2.0%
Milan id. 63 1.1%
NewYork *** id. 2,196 39.1%
Paris *** id. 517 9.2%
Monday Dummy variable: the day of the auction is Monday (1) or not (0) 581 10.4%
Tuesday id. 1,241 22.1%
Wednesday id. 1,765 31.5%
Thursday id. 1,166 20.8%
Friday id. 470 8.4%
Saturday id. 200 3.6%
Sunday id. 189 3.4%
Untitled *** Dummy variable: the painting’s is untitled (1) or not (0) 586 10.4%
Landscape Dummy variable: the painting’s title makes reference to a landscape (1) or not (0) 726 12.9%
Portrait Dummy variable: the painting’s title makes reference to a portrait (1) or not (0) 233 4.2%
StillLife Dummy variable: the painting’s title makes reference to a still life (1) or not (0) 217 3.9%
Animal Dummy variable: the painting’s title makes reference to an animal (1) or not 117 2.1%
Woman *** Dummy variable: the painting’s title makes reference to women (a woman) (1) or not (0) 393 7.0%
Hammer *** Dummy variable: the price is a hammer price (1), or a premium price (0) 3,223 57.4%
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Table 5: Description of time dummy variables
Time dummy Description Num. of obs. Proportion

Y2005Q1 Dummy variable: the quarter of the sale is the first quarter of 2005 (1) or not (0) 150 2.7%
Y2005Q2 id. 420 7.5%
Y2005Q3 id. 42 0.7%
Y2005Q4 id. 320 5.7%
Y2006Q1 id. 175 3.1%
Y2006Q2 id. 519 9.2%
Y2006Q3 id. 25 0.4%
Y2006Q4 id. 396 7.1%
Y2007Q1 id. 234 4.2%
Y2007Q2 id. 539 9.6%
Y2007Q3 id. 38 0.7%
Y2007Q4 id. 463 8.3%
Y2008Q1 id. 248 4.4%
Y2008Q2 id. 426 7.6%
Y2008Q3 id. 229 4.1%
Y2008Q4 id. 274 4.9%
Y2009Q1 id. 141 2.5%
Y2009Q2 id. 348 6.2%
Y2009Q3 id. 35 0.6%
Y2009Q4 id. 313 5.6%
Y2010Q1 id. 151 2.7%
Y2010Q2 id. 126 2.2%

Table 6: Description of the quantitative data available in the database. Vari-
ables with a “***” are variables whose explanatory power is significant in
equation (5) (see Table 1 for more details)
Variables Description Average Standard Deviation Min Max

Height Height of the painting, in inches 28 21.12 1 195
Width *** Width of the painting, in inches 28 25.10 1.57 421
Surface *** The surface of the painting, in inches square
Lot Lot Number of the painting 320 321.15 1 7,299
ThemeWord *** Number of letters for the auction’s theme 34 11.51 7 103
WordTitle Number of letters for the painting’s title 20 13.19 2 225
AgePainted *** The age at which the artist painted the artwork 49 15.99 13 97
AgePainting The age of the artwork the day of its sale 59 38.44 1 159
Born The artist’s year of birth 1,898 36.73 1831 1,965
Price The price of the artwork, in USD 1,222,838 3,558,190.72 258 85,000,000
YearPainted The year the painting was made 1954.77 37.40 1854 2009
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Figure 7: QQ Plot of residuals of regression (1)
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