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ABSTRACT

We study the asymptotic properties of the Bernstein estimator for unbounded density copula

functions. We show that the estimator converges to infinity at the corner. We establish its relative

convergence when the copula is unbounded and we provide the uniform strong consistency of the

estimator on every compact in the interior region. We also check the finite simple performance of the

estimator via an extensive simulation study and we compare it with other well known nonparametric

methods. Finally, we consider an empirical application where the asymmetric dependence between

international equity markets (US, Canada, UK, and France) is re-examined.
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1 Introduction

The copula function has the advantage to model completely the dependence among variables. In

fact, any continuous joint distribution function can be controlled by the marginal distributions,

which give the information on each component, and a unique copula that captures the dependence

between components. This gives rise to a flexible two step modelling approach where in the first

step one models the marginal distributions and in the second one characterizes the dependence

using a copula function. In finance, for example, copulas are a powerful tool for modelling depen-

dence between risky assets, and are applicable in multi-asset pricing, credit portfolio modelling,

risk management, etc. The aim of the present paper is to investigate the properties of the non-

parametric Bernstein estimator of the copula density. Although many common families of copula

are unbounded (e.g. Clayton, Gumbel, Gaussian and Student), the properties of the Bernstein

estimator have been studied only under the boundedness condition of the copula density at the

corners. Hence, we examine the asymptotic properties of the Bernstein estimator for unbounded

density copula functions.

Several approaches have been proposed to estimate the copula functions. First, a parametric

approach that imposes a specific model for the copula that is known up to some parameters. The

latter can be estimated using the maximum likelihood method. This approach is widely used in

practice because of its simplicity; see Joe (1997) and Nelsen (2006) for textbook details. The

second possibility is a semiparametric approach that assumes a parametric model for the copula

and a nonparametric model for the marginal distributions. Liebscher (2005) proposes to estimate

the density function based on semiparametric copulas and on the standard kernel estimator for the

marginal densities, which solves the curse of dimensionality problem but not the boundary problem.

Bouezmarni and Rombouts (2008) estimate the multivariate density function using semiparamet-

ric copula and asymmetric kernels for the marginal densities, which allows them to address the

boundary and the curse of dimensionality problems simultaneously. In a recent paper, Kim et al.

(2007) compare semiparametric and parametric methods for estimating copulas. The third way of

estimating copulas is based on a fully nonparametric approach. The advantage of this approach

is its flexibility to adapt to any kind of dependence structure. An important contribution is De-

heuvels (1979) who suggests the multivariate empirical distribution to estimate the copula function.

Gijbels and Mielniczuk (1990) estimate a bivariate copula using smoothing kernel methods. They

also suggest the reflection method in order to solve the well known boundary bias problem of the

kernel methods. Chen and Huang (2007) propose a bivariate estimator based on the local linear

estimator, which is consistent everywhere in the support of the copula function, and Rödel (1987)

uses the orthogonal series method.
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Motivated by Weierstrass theorem, Bernstein polynomials are considered by Lorentz (1953)

who proves that any continuous function can be approximated by Bernstein polynomials. For

density functions, estimation using the Bernstein polynomial is suggested by Vitale (1975) and

with a slight modification by Grawronski and Stadtmüller (1981). Tenbusch (1994) investigates

the Bernstein estimator for bivariate density functions and Bouezmarni and Rolin (2007) prove

the consistency of Bernstein estimator for unbounded probability density functions. Kakizawa

(2004) and Kakizawa (2006) consider the Bernstein polynomial to estimate density and spectral

density functions, respectively. Tenbusch (1997) and Brown and Chen (1999) propose estimators

of the regression functions based on the Bernstein polynomial. In the Bayesian context, Bernstein

polynomials are explored by Petrone (1999a), Petrone (1999b), Petrone and Wasserman (2002),

and Ghosal (2001). The copula Bernstein estimator was first studied by Sancetta and Satchell

(2004) for independent and identically distributed (i.i.d.) data and by Bouezmarni et al. (2010) for

dependent data.

In this paper, we focus our attention on the behavior of the Bernstein copula estimator at

the boundary regions. In finance, for example, having a good estimator of the copula density at

the boundary region is essential for obtaining a valid risk evaluation (risk management). Without

assuming any unnecessarily assumption like the existence of the first derivative, we are able to

prove that the Bernstein estimator converges to infinity at the corner when the density copula is

unbounded. To show the performance of the Bernstein density copula, we establish the relative

weak and strong convergence at the boundary region. The uniform strong consistency on each

compact in the interior region is also provided. Further, we ran a simulation study to investigate

the finite sample properties of the Bernstein estimator for the copula density. The results show

that this estimator has a quite good “performance” compared to many other well known estimators

like Local linear estimator, Mirror-reflection estimator, Beta kernel estimator, and the Transforma-

tion estimator using multiplicative Epanechnikov kernel and Gaussian transformation. Since the

Bernstein estimator depends on a bandwidth parameter, we also investigate the least square cross

validation method to select the optimal bandwidth. Finally, we consider an empirical application

where the asymmetric dependence between international equity markets (US, Canada, UK, and

France) is re-examined. We find that the Bernstein estimator is a good estimator at the extremes.

The results show that this estimator is able to capture the well known asymmetric dependence

phenomena that is observed in the international equity markets.

This paper is organized as follows. The Bernstein copula estimator is introduced in Section

2. Section 3 provides the asymptotic properties of the Bernstein copula density estimator at the

corners. In Section 4, we provide simulation results that show the performance of the Bernstein

estimator compared with the other existing nonparametric estimators of copula density. In Section
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5, we investigate the least square cross validation method to select the optimal bandwidth. Section

6 presents an empirical illustration using financial data and Section 7 concludes.

2 Bernstein copula estimator

Let X ≡ (X1, ..., Xd)
> be a random vector in Rd with distribution function F and density function

f from which an i.i.d sample of length n, say
{
Xi ≡ (Xi1, ..., Xid)

> , i = 1, .., n
}

, is observed.

According to Sklar (1959), the distribution function of X can be expressed via a copula:

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (1)

where Fj , for j = 1, . . . , d, is the marginal distribution function of random variable Xj , and C is

a copula function that captures the dependence structure in the vector X. If we derive (1) with

respect to (x1, ..., xd), we obtain the density function of X that can be expressed as follows:

f(x1, ..., xd) =

 d∏
j=1

fj(xj)

× c (F1(x1), ..., Fd(xd)) ,

where fj , for j = 1, . . . , d, is the marginal density of random variable Xj and c is the copula

density. Hence, the estimation of the joint density function can be done by estimating the univariate

marginal densities and the copula density function.

For simplicity of exposition we take d = 2. However, the results in this paper can be generalized

for any other dimension d. Sancetta and Satchell (2004) proposed an empirical Bernstein estimator

of copula function which is defined as follows:

Ĉ(u,w) =
k∑

υ1=0

k∑
υ2=0

Cn

(v1
k
,
v2
k

)
pυ1,k(u)pυ2,k(w), for (u,w) ∈ [0, 1]2 , (2)

where k ≡ kn is an integer that depends on the sample size n and plays the role of a bandwidth

parameter, Cn is the empirical copula function of the vector X, and pυj ,k(sj), for j = 1, 2, is the

binomial distribution function:

pυj ,k(sj) =

(
k
υj

)
s
υj
j (1− sj)k−υj .

In this paper, our interest lies in the estimation of the copula density function using Bernstein

polynomials. Indeed, if we derive (2) with respect to (u,w) we obtain the following Bernstein

density copula:

ĉ(u,w) =
1

n

n∑
i=1

Kk,Si(u,w), (3)

4



where Si = (Fn1(Xi1), Fn2(Xi2)) , with Fnj(.) is the empirical distribution function of Xij ,

Kk,Si(u,w) = k2
k−1∑
υ1=0

k−1∑
υ2=0

ASi,υpυ1,k−1(u)pυ2,k−1(w),

and

ASi,υ = 1{Si∈Bυ}, with Bυ =

]
υ1
k
,
υ1 + 1

k

]
×
]
υ2
k
,
υ2 + 1

k

]
.

Hereafter, we will denote pυj ,k−1(sj) by pυj (sj) and the double sums
k−1∑
υ1=0

k−1∑
υ2=0

by
∑

υ. Finally,

observe that the Bernstein estimator for the density copula function is simple to implement, non-

negative, and integrates to one.

3 Main results

We study the asymptotic properties of the Bernstein estimator for unbounded copula densities.

Recall that for i.i.d data and when the copula density has a finite first derivative everywhere on its

support, Sancetta and Satchell (2004) derive upper bounds of the bias and variance of the Bernstein

copula estimator and show the pointwise convergence of the estimator in term of mean squared error.

Further, Bouezmarni et al. (2010) provide asymptotic properties of the Bernstein copula density

for dependent data and derive the asymptotic bias, asymptotic variance, and show the uniform

strong convergence of the Bernstein density copula when the underlying density is continuous on

its support. They also establish the asymptotic normality of the estimator. However, although

many common families of copula are unbounded at the corners (Clayton, Gumbel, Gaussian and

Student copulas), the derivation of the previous results requires the boundedness of the density

copula. Hence, in this section we show that the Bernstein estimator is still a consistent estimator

even for unbounded copula densities. The following proposition establishes the uniform weak and

strong consistency of the Bernstein copula density estimator on any compact I in the interior region

without imposing boundedness condition of the copula at the corners.

Proposition 1. Let c (.) be a continuous copula density function on (0, 1)2. Let I be a compact set

in (0, 1)2, and ĉ (.) the Bernstein copula density estimator. We have,

(i) If kn →∞ and nk−4n →∞, then

sup
(u,w)∈I

|ĉ(u,w)− c(u,w)| P−→ 0, as n→∞,

(ii) If k →∞ and nk−4

log(n) →∞, then

sup
(u,w)∈I

|ĉ(u,w)− c(u,w)| a.s−→ 0, as n→∞.
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Proof of Proposition 1 We start with part (i). We can show that the bias term E(ĉ(u,w)) −
c(u,w) converges uniformly to zero if the bandwidth parameter k tends to infinity. Thus, for

(u,w) ∈ I, we have

|E(ĉ(u,w))− c(u,w)| =

∣∣∣∣∣k2∑
υ

∫ v1+1
k

v1
k

∫ v2+1
k

v2
k

{c(t1, t2)− c(u,w)} dt1dt2pv1,k(u)pv2,k(w)

∣∣∣∣∣
=

∣∣∣∣∣k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

{c(t1, t2)− c(u,w)}dt1dt2

)∣∣∣∣∣
≤ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u,w)| dt1dt2

)
,

where ξ1 and ξ2 are two independent Binomial random variables with corresponding parameters

(k, u) and (k,w), respectively. Let δ be a positive real number such that δ < min(u, 1−u,w, 1−w),

and denote by A ≡
{
| ξ1k − u| ≤ δ, |

ξ2
k − w| ≤ δ

}
, then we have

|E(ĉ(u,w))− c(u,w)| ≤ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u,w)|1A dt1dt2

)

+ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u,w)|1Ac dt1dt2

)
= I1 + I2,

where Ac is the complementary event of A. Observe that Ac contains 8 events, where for each

there exists at least j ∈ {1, 2} such that
ξj
k − uj ≥ δ or

ξj
k − uj ≤ −δ, (u1, u2) = (u,w). Thus, using

Lemma 2.1 of Bouezmarni and Rolin (2007), we obtain

I2 ≤ 8(k2 + ||c||I) exp(−2kδ2).

Consequently, because of the uniform continuity of the copula density on I, it is straightforward to

show that I1 = o(1) uniformly. Hence, supI |IE(ĉ(u,w))− c(u,w)| → 0, when k →∞.

Next, we show that supI |ĉ(u,w)− E(ĉ(u,w))| converges to zero. Indeed, we have

|ĉ(u,w)− E(ĉ(u,w))| =

∣∣∣∣∣k2∑
υ

{Cn(Bv)− C(Bv)} pv1,k(u)pv2,k(w)

∣∣∣∣∣
≤ 4k2 sup

(t1,t2)∈[0,1]2
|Cn(t1, t2)− C(t1, t2)| ,

where

C(Bv) = C

(
v1 + 1

k
,
v2 + 1

k

)
− C

(
v1
k
,
v2 + 1

k

)
− C

(
v1 + 1

k
,
v2
k

)
+ C

(v1
k
,
v2
k

)
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is the copula function which is evaluated at the set Bv and Cn(Bv) is its empirical version. Thus,

from Kiefer (1961) and for ε > 0, we obtain

P

(
sup

(u,w)∈I
|ĉ(u,w)− E(ĉ(u,w))| > ε

)
≤ P

(
sup
t1,t2

√
n |Cn(t1, t2)− C(t1, t2)| ≥

1

4
εn1/2k−2

)
≤ C exp

(
−(2− ε∗) 1

16
ε2nk−4

)
.

Hence, for any ε∗ > 0 we conclude the proof of part (i).

Now, let’s prove part (ii) of Proposition 1. Observe that from part (i), we have

sup
I
|E(ĉ(u,w))− c(u,w)| → 0, when k →∞.

Further, from part (i), we can see that

∑
n≥1

P

(
sup

(u,w)∈I
|ĉ(u,w)− E(ĉ(u,w))| > ε

)
≤ C

∑
n≥1

exp

(
−(2− ε∗) 1

16
ε2nk−4

)
.

Hence, we conclude the proof of Proposition 1 by considering ε = εn = αk2
(
log(n)
n

)1/2
, for α <

4√
2−ε∗ , and using Borel-Cantelli lemma.

The next proposition shows that the Bernstein copula density estimator converges to infinity

when the density is unbounded at the corners. It also provides the relative convergence of the

estimator at the corners. Without loss of generality, the following results are derived when the

density is unbounded at (0, 0).

Proposition 2. Let c (.) be a copula density function that is unbounded at (0, 0). Let ĉ (.) be the

Bernstein copula density estimator. Then, under the conditions of part (ii) of Proposition 1, we

have

ĉ(0, 0)
a.s−→∞, as n→∞.

Further, we have

|ĉ(u,w)− c(u,w)|
c(u,w)

a.s.−→ 0, as n→∞, and (u,w)→ (0, 0).

Proof of Proposition 2 We first show that ĉ(0, 0) converges to infinity. From the proof of

Proposition 1, we have |ĉ(0, 0)−E(ĉ(0, 0))| a.s.−→ 0. Thus, it remains to show that E(ĉ(0, 0)) converges

to infinity when the bandwidth parameter k tends to infinity. Observe that for C > 0, there exists
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δ1 > 0 and δ2 > 0 such that c(u, v) > C, for u < δ1 and v < δ2. For n sufficiently large and for kn

tends to infinity, we have min(δ1, δ2) >
1
k . Hence,

E(ĉ(0, 0)) = k2
∫ 1

k

0

∫ 1
k

0
c(t1, t2)dt1dt2 > C, for n sufficiently large.

We now show the relative convergence of the Bernstein estimator in the boundary region of un-

bounded density copula functions. We follow similar arguments to the those in the proof of Propo-

sition 1 and we obtain

E(ĉ(u,w))− c(u,w)|
c(u, v)

≤ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u,w)|
c(u,w)

1A dt1dt2

)

+k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u,w)|
c(u,w)

1Ac dt1dt2

)
= I1 + I2.

Using Lemma 2.1 of Bouezmarni and Rolin (2007), we have

I2 ≤ 8

(
k2

c(u,w)
+ 1

)
exp(−2kδ2).

Further, because of the continuity of the copula density on (0, 1)2, it is straightforward to show

that I1 = o(1) uniformly. Hence, |IE(ĉ(u,w))−c(u,w)|
c(u,w) → 0, when k →∞. We also have that

|ĉ(u,w)− E(ĉ(u,w))|
c(u,w)

≤ k2

c(u,w)

∑
υ

|Cn(Bv)− C(Bv)| pv1,k(u)pv2,k(w)

≤ 4
k2

c(u,w)
sup

(t1,t2)∈[0,1]2
|Cn(t1, t2)− C(t1, t2)| .

Hence, from Kiefer (1961) and for ε > 0, we obtain

P

(
|ĉ(u,w)− E(ĉ(u,w))|

c(u,w)
> ε

)
≤ P

(
sup
(t1,t2)

√
n |Cn(t1, t2)− c(t1, t2)| ≥

1

4
εn1/2k−2c(u,w)

)

≤ C exp

(
−(2− ε∗) 1

16
ε2nk−4c2(u,w)

)
.

This concludes the proof of Proposition 2.

4 Monte Carlo Simulations

In this section, we run Monte Carlo simulations to evaluate the performance of Bernstein estimator

of copula density in the interior region and at the corners. We compare the finite sample properties
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of the Bernstein estimator [hereafter BR] with those of: (1) Local linear estimator with multi-

plicative Epanechnikov kernel [hereafter LL]; (2) Mirror-reflection estimator with multiplicative

Epanechnikov kernel [hereafter MR]; (3) Beta kernel estimator [hereafter BT]; and (4) Transfor-

mation estimator using multiplicative Epanechnikov kernel and Gaussian transformation [hereafter

TR]. We choose the estimators that are known to have somewhat a quite good behavior at the

borders. For more details about the LL estimator and the MR, BT and TR estimators, the reader

can consult Chen and Huang (2007) and Charpentier et al. (2006), respectively.

We consider several data generating processes (DGPs) for the copula density c (u,w) . We choose

our DGPs to illustrate performance in different contexts that one can encounter in practice. Thus,

we simulate our bivariate data
{

(Xi1, Xi2)
>
}n
i=1

using a uniform distribution Unif [0, 1]2 and under

one of the following copula densities: (1) Normal copula [hereafter c(n)]; (2) Student copula [here-

after c(t)]; (3) Clayton copula [hereafter c(cl)]; (4) Gumbel copula [hereafter c(g)]; and (5) Frank

copula [hereafter c(f)]. Those copulas are extremely useful to model the dependence between stock

and bond returns. They all, except Frank copula, become unbounded at (0, 0) or/and at (1, 1) with

strong dependent data. Here we consider two different degrees of dependence that are measured by

the Kendall rank correlation coefficient: τ = 0.25 (weak dependence) and 0.75 (strong dependence).

Like the BR estimator, BT, LL, TR and MR estimators depend on a bandwidth parameter h. In

the simulations and for each of the previous estimators, we use an optimal fixed bandwidth obtained

by a grid search over the set {0.01, 0.04, . . . , 0.97} for h and over the set {3, 6, . . . , 54, 65, 75, . . . , 205}
for k the bandwidth parameter needed to calculate the BR estimator. This allows us to compare

all the estimators under their quasi optimal settings. In the next section, we discuss the problem of

bandwidth selection for the Bernstein estimator. Finally, to keep the computing time reasonable,

we consider small and moderate sample sizes: n = 50 and n = 150 and we perform N = 1000

simulations to evaluate the performance of the estimators using two distance measures. The first

one is the Integrated Mean Squared Error (IMSE) given by:

IMSE = IBias2 + IVar

≈ 1

I

I∑
i=1

 1

N

N∑
j=1

ĉj(si)− c(si)

2
+

1

I

I∑
i=1

 1

N

N∑
j=1

ĉj(si)− 1

N

∑
j

ĉj(si)

22

, I = 2500,

where si = (ui, wi) ∈ {(0.01, 0.01), (0.01, 0.03), . . . , (0.99, 0.99)}, and ĉj(s), for j = 1, . . . , N , is the

estimator of the copula density that corresponds to the j-th replication. Observe that IMSE ≈
1
N

∑
j ISE(ĉj), where ISE(ĉ) = 1

I

∑
i(ĉ(si)−c(si))2 is the approximated Integrated Squared Error

(ISE). To assess the uncertainty in the IMSE measure, we also report the Square root of the Inte-
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grated Squared Error (SISE), which is defined by the square root of 1
N

∑
j

(
ISE(ĉj)− 1

N

∑
j ISE(ĉj)

)2
.

The second measure that we consider is given by the Integrated Median Absolute Relative Error

(IMdAE) approximated by:

IMdAE(si) ≈
1

I

∑
i

MdAE(si),

where MdAE(s) is the empirical median of the sequence
{∣∣∣ ĉj(s)−c(s)c(s)

∣∣∣}N
j=1

.

Table 1 reports the IMSE for the BR estimator using an optimal bandwidth kopt which is ob-

tained by a grid search over one of the following sets: (1) {(ui, wi) = (0.01, 0.01), (0.01, 0.03), . . . , (0.99, 0.99)}
[hereafter set ALL]; (2) elements of the set ALL that satisfy

√
u2i + w2

i < 0.56, i.e. the 25% extreme

left points [hereafter set V0]; (3) elements of the set ALL that satisfy
√
u2i + w2

i > 0.98, i.e. the

25% extreme right points [hereafter set V1]; and (4) the interior of the set ALL, i.e. ALLr{V0,V1}
[hereafter INT]. As expected, we see that the IMSE decreases with the sample size n and increases

with the Kendall’s rank correlation τ . In other words, we find that the strength of the dependence

between X1 and X2 makes its estimation difficult. We get similar results when we use the LL,

BT, MR, and TR estimators. These results are available from the author upon request. However,

except for the Clayton copula density and for τ = 0.75, we obtain relatively small integrated mean

squared error. We also find that the performance of the BR estimator depends on the target region.

In the interior region the estimator behaves clearly better than at the borders. Further, generally

the optimal bandwidth kopt increases with n and τ, as predicted by the theory. Interestingly, we see

that kopt also depends on the target region. This indicates that in general we should use a larger

value of k near the extreme points where the value of the copula function become very large. Thus,

in practice an adaptive bandwidth should be used in order to get a better approximation. One

such an adaptation could be the method of “shrinking” of the bandwidth at the borders. This will

be investigated in a future research project.

Tables 2 and 3 compare the performance of the previous estimators of copula densities over the

set ALL and for n = 50 and n = 150, respectively. To facilitate such a comparison, we provide

measures of relative performance of the Bernstein estimator with respect to each of the other

estimators, E = LL, MR, BT, TR. These measures are given by the ratios REIMSE = IMSE(E)
IMSE(BR)

and REIMdAE = IMdAE(E)
IMdAE(BR) . We also compute and report the ratio of the integrated variance

(IVAR) to IMSE ( IV ARIMSE ) and compute the standard deviation of the integrated squared error for

each estimator. Note that the values reported in tables 2 and 3 are expressed as percentages. From

these, we see that for weakly dependent data (τ = 0.25), the BR and LL estimators are quite

comparable and give the best results in terms of IMSE and IMdAE. The BR estimator performs

better than the rest of the estimators for three of the five copulas that we studied here (Clayton,

Gumbel and Student copulas). Looking at the ratio IV AR
IMSE and at the standard deviation of the
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integrated squared error (SISE), we see clearly that the BR estimator has the advantage to be

less variable than the LL estimator. We also see that the Transformation estimator (TR) gives

the worse result with a very high variance and a large IMSE. However, the opposite happens for

strongly dependent data (τ = 0.75). In the latter case the TR method become the best since it

behaves better for three of the five copulas considered here (Clayton, Gumbel and Student copulas).

The performance measure IMdAE indicates that the BR estimator still behaves reasonably well.

The only case where the BR estimator is beaten by the TR estimator is when we consider the

Clayton copula with τ = 0.75. This can be attributed to the fact that the used bandwidth is too

large for the points in the interior domain [see Table 1].

5 Bandwidth Selection

Here, we investigate the performance of the Bernstein estimator when an automatic data-driven

bandwidth is used. We use the least-squared cross-validation (LSCV) method which selects a

bandwidth k̂ that minimizes the following function:

LSCV (k) =

∫ 1

0
ĉ2(u,w)dudw − 2n−1

n∑
i=1

ĉ(−i)(X1,i, X2,i),

where ĉ(−i)(·, ·), for i = 1, . . . , n, is the Bernstein copula estimator calculated using a bandwidth k

and all the data except the observation (X1,i, X2,i). Observe that:

E (LSCV (k)) = E
(∫ 1

0
(ĉ(u,w)− c(u,w))2dudw

)
−
∫ 1

0
c2(u,w)dudw.

Thus, the bandwidth k̂ minimizes an unbiased estimator of the expected integrated squared error.

We can also show that∫ 1

0
ĉ2(u,w)dudw = n−2

∑
i

∑
j

B̃(bX1,ikc, bX1,jkc)B̃(bX2,ikc, bX2,jkc),

where b·c denotes the floor function and

B̃(a, b) =
B(a+ b+ 1, 2k − a− b− 1, )

B(a+ 1, k − a)B(b+ 1, k − b)
,

where B(a, b) is the usual Beta function, i.e. B(a, b) =
∫ 1
0 t

a−1(1 − t)b−1dt. The above formula

facilitates the calculation of the LSCV function, which reduces the simulation running time.

We now repeat the simulation study described in section 4 using the data-driven bandwidth

k̂ instead of the optimal bandwidth kopt. Figure 1 shows a box-plot of 1000 observations of the

ratio
ISE(ĉj,k̂j

)−IMSE(kopt)

IMSE(kopt)
. The latter should fluctuates around zero if the data-driven bandwidth

k̂ and the optimal bandwidth kopt lead approximately to the same integrated squared error (ISE).
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Although our results show that this is not the case for all considered scenarios, the integrated

squared error (ISE) obtained using k̂ remains reasonably small and typically does not exceed

2 ∗ IMSE(kopt). The results for n = 50 are not very satisfactory, probably because the sample

size is too small. However, these results improve when the sample size n increases, which seems to

indicate the consistency of the bandwidth selection method.

For weak dependent data (τ = 0.25), we see that the integrate mean squared error changes

a lot across the simulations, especially for Normal and Frank copulas. Moreover, for the latter

two cases, the bandwidth k̂ seems to lead to some bias approximations. Surprisingly, when the

dependence between X1 and X2 is strong (τ = 0.75), we find much better results in term of ISE,

even if the boundary problems are more severe in this case. An explanation can be obtained by

comparing k̂ to kopt. Thus, Figure 2 shows a box-plot of 1000 observations of the ratio
k̂j−kopt
kopt

,

where k̂j is the bandwidth that corresponds to the j-th replication selected using the least-squared

cross-validation (LSCV) method. This figure clearly shows that the LSCV method tend to choose

a large bandwidth k when τ is small, which leads to an over-smoothing. However, the opposite

happens when τ is large, but the under-smoothing is much less severe except for the Clayton copula

density. Consequently, we recommend to correct the LSCV bandwidth by taking into account the

degree of dependency in the data. This will be investigated and studied in a future work.

6 Empirical illustration

In this section, we re-examine the asymmetric dependence between international equity markets

using two nonparametric estimators of copula densities. Recent research have suggested an increase

in the correlation between international equity markets during volatile periods. This increase is

especially observed during market downturns. Ang and Bekaert (2002) use a two-regime switching

model and find evidence of one state with low returns and high correlation and volatilities, and a

second state with high returns and low correlation and volatilities. Longin and Solnik (2001), use

extreme value theory and develop a new concept named exceedance correlation, and find a high

correlation between large negative returns and zero correlation between large positive returns.

Rather than to use correlation coefficients, in this section we use copula densities which represent

a natural way to model the dependence between equity market returns. We focus on four equity

markets (US, Canada, UK, and France) and we use weekly observations that spans 19 years.

6.1 Data description

Our data consists of weekly observations on MSCI Equity Indices series for the US, Canada, the UK

and France. The sample runs from October 16th 1984 to December 21th 2004 for a total of 1054

observations. The returns are computed using the standard continuous compounding formula. All
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returns are derived on a weekly basis from daily prices expressed in US dollars. Summary statistics

for the US, Canada, the UK and France equity returns are presented in Table 4. These weekly

returns are displayed in Figure 3. The unconditional distributions of the US, Canada, the UK

and France equity weekly returns show the expected excess kurtosis and negative skewness. The

sample kurtosis is greater than the normal distribution value of three. The values of Jarque-Bera

test statistic show that these equity returns are not normally distributed. The time series plots

of returns show the familiar volatility clustering effect, along with some occasional large absolute

returns.

6.2 Results

To estimate the dependence between US, Canada, UK and France equity markets, we use the two

best estimators of the copula density that we have selected on the basis of simulation results of

Section (4). These estimators are the Bernstein estimator (BR) and the Local linear estimator

with multiplicative Epanechnikov kernel (LL). To assess the sensitivity of our estimation results,

we consider various values for the bandwidth parameter k. These values are k = 25, 50, 100 for the

BR estimator and k = 0.035, 0.1 and 0.5 for the LL estimator. The bandwidth of the BR estimator

plays the inverse role of the bandwidth of the LL estimator, that is a large value of BR’s bandwidth

reduces the bias but increases the variance.

The empirical results for the copula density estimation for the pairs US-Canada, US-UK and

US-France are presented in Figures 4 and 5. From these, we see that using a small bandwidth it over-

smooths the BR estimator, whereas a large bandwidth under-smooths the estimator. The opposite

happens with LL estimator: we over-smooth the estimation of the copula density when we choose a

large value of the bandwidth and we under-smooth the estimator when a small bandwidth is chosen.

Intermediate values like k = 50 for the BR estimator and k = 0.1 for the LL estimator, produce

more reasonable results. As expected, we find that the dependence between US and Canada, UK,

France equity markets is asymmetric. That is, the international equity market returns are more

dependent during the bear market than during the bull market. The latter result is confirmed by

comparing the values that takes the estimator of the density copula at the extremes (0,0) and (1,1);

with (0,0) corresponds to the bear market and (1,1) to the bull market. We find that at (0,0) the

estimator of the copula density takes a larger value than the one it takes at (1,1). The result is

quite stable when we use BR estimator, and it is more striking in the US-France case. Since a large

bandwidth tends to increase the bias in the LL estimator and to decrease its variance, we find that

using a large bandwidth for the LL estimator decreases the asymmetry in the estimated dependence

[see Figure 4]. Thus, the dependence between US and Canada, UK, France equity markets look

more symmetric. This is due to the high value of the bandwidth, so to the high-biased LL estimator.
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We also considered many other values for the bandwidth parameter k. The results are more or

less similar to the those presented in Figures 4 and 5. We also analyzed the dependence between

other pairs of countries (Canada-UK, Canada-France, UK-France) and the conclusions are also

similar to those obtained before. Thus, it seems that the Bernstein estimator is a good estimator

at the extremes. The empirical results show that this estimator is able to capture the well known

asymmetric dependence phenomena that is observed in the international equity markets.

7 Conclusion

In this paper, we examined the asymptotic properties of the Bernstein estimator (BR) for un-

bounded density copula functions. We showed that the BR estimator converges to infinity at the

corners. We established its relative convergence when the copula is unbounded. We also provided

its uniform strong consistency on every compact in the interior region. Furthermore, we studied the

finite simple performance of the estimator via an extensive simulation study and we compared with

other well known nonparametric estimators. Finally, we considered an empirical application where

we re-examined the asymmetric dependence between international equity markets US, Canada,

UK, and France. We compared the empirical results using the Bernstein estimator and the Local

linear estimator with multiplicative Epanechnikov kernel. We found that the Bernstein estimator

is a good estimator at the extremes. Our results showed that this estimator is able to capture the

well known asymmetric dependence phenomena observed in the international equity markets.
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Table 1: Integrated Mean Squared Error (IMSE) of the BR estimator in the unit square (ALL),
near 0 (V0), near 1 (V1) and in the interior set (INT ), under different families of copula and using
optimal bandwidth.

V0 V1 INT. ALL

n τ Cop. kopt IMSE kopt IMSE kopt IMSE kopt IMSE

50

c(cl) 9 0.597 3 0.071 6 0.056 6 0.216

c(f) 3 0.098 3 0.121 6 0.050 3 0.080

0,25 c(g) 3 0.084 6 0.534 3 0.043 6 0.185

c(n) 3 0.133 6 0.163 6 0.047 6 0.097

c(t) 9 0.656 9 0.725 6 0.072 9 0.385

c(cl) 195 33.348 9 0.453 27 0.201 105 9.402

c(f) 15 1.052 15 0.893 36 0.247 21 0.635

0,75 c(g) 21 1.353 75 11.249 27 0.190 45 3.431

c(n) 30 2.277 33 2.251 24 0.158 30 1.197

c(t) 75 8.567 75 8.455 30 0.239 75 4.364

150

c(cl) 21 0.365 9 0.057 9 0.027 12 0.139

c(f) 6 0.054 6 0.066 6 0.025 6 0.042

0,25 c(g) 9 0.063 21 0.343 9 0.025 9 0.128

c(n) 6 0.082 6 0.091 6 0.024 6 0.054

c(t) 24 0.430 24 0.470 9 0.040 21 0.256

c(cl) 195 28.236 15 0.240 48 0.108 195 7.542

c(f) 30 0.584 27 0.492 65 0.133 36 0.351

0,75 c(g) 39 0.762 95 8.669 45 0.105 95 2.480

c(n) 65 1.343 65 1.292 39 0.084 54 0.698

c(t) 75 6.812 75 6.789 54 0.133 75 3.415
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Table 2: The ratios RIMSE (%), RIMdAE (%) and IV AR/IMSE (%), and the SISE (%) of the
estimators BR, LL, MR, BT, and TR in the set ALL and for n = 50.

τ = 0.25 τ = 0.75

Copula Method REIMSE REIMdAE
IV AR
IMSE SISE REIMSE REIMdAE

IV AR
IMSE SISE

c(cl)

BR 100.0 100.0 29.6 5.5 100.0 100.0 20.2 244.8
LL 101.3 112.3 32.7 6.1 103.2 87.4 14.2 167.5
BT 104.5 110.6 29.9 5.6 103.6 2087.0 16.1 206.8
MR 114.8 120.1 20.0 5.6 116.8 87.4 8.1 74.1
TR 168.7 113.8 87.5 19.8 89.4 72.9 24.3 326.3

c(f)

BR 100.0 100.0 40.1 3.9 100.0 100.0 52.7 17.3
LL 95.2 100.0 91.0 6.1 112.3 107.3 63.3 34.4
BT 108.3 109.9 46.1 3.8 94.8 113.5 53.3 15.0
MR 110.1 111.8 44.2 4.9 92.8 106.6 47.0 18.0
TR 399.8 149.5 88.1 16.5 161.3 110.4 48.1 38.8

c(g)

BR 100.0 100.0 33.1 4.7 100.0 100.0 24.5 79.9
LL 100.0 108.4 36.1 5.5 107.0 119.2 27.8 75.0
BT 105.2 108.1 27.4 4.6 111.1 101.4 41.5 96.4
MR 114.1 124.4 22.4 4.8 116.1 120.1 13.6 31.0
TR 196.2 133.1 88.0 18.9 92.5 89.9 28.4 99.5

c(n)

BR 100.0 100.0 62.6 4.3 100.0 100.0 45.5 31.0
LL 89.9 100.0 73.6 5.3 116.8 121.3 43.8 46.2
BT 106.8 116.8 36.7 3.7 108.4 105.9 24.4 23.5
MR 114.0 125.4 32.5 4.5 124.4 122.8 24.7 19.7
TR 338.5 133.2 89.8 17.3 107.0 99.2 46.5 41.3

c(t)

BR 100.0 100.0 29.7 7.5 100.0 100.0 31.9 107.6
LL 111.7 112.5 33.1 10.4 108.2 120.4 31.7 88.1
BT 103.0 103.5 28.5 7.4 107.0 105.4 34.3 107.5
MR 115.8 124.3 22.2 7.1 122.3 123.8 16.5 44.6
TR 127.9 104.0 80.2 22.0 91.1 100.9 32.0 117.9
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Table 3: The ratios RIMSE (%), RIMdAE (%) and IV AR/IMSE (%), and the SISE (%) of the
estimators BR, LL, MR, BT, and TR in the set ALL and for n = 150.

τ = 0.25 τ = 0.75

Copula Method REIMSE REIMdAE
IV AR
IMSE SISE REIMSE REIMdAE

IV AR
IMSE SISE

c(cl)

BR 100,0 100.0 41.2 3.8 100.0 100.0 15.6 213.2
LL 104.8 103.9 39.5 4.0 109.3 80.0 9.5 147.0
BT 114.0 113.4 35.0 3.7 114.7 2865.0 6.0 128.4
MR 135.8 126.7 29.5 3.6 126.6 80.0 17.2 127.1
TR 108.4 115.6 69.7 6.3 79.0 60.5 31.9 317.2

c(f)

BR 100.0 100.0 48.0 1.9 100.0 100.0 58.0 8.5
LL 65.8 86.6 75.5 1.7 98.2 105.3 62.3 13.2
BT 116.7 112.1 55.9 2.0 110.2 105.8 27.0 6.5
MR 127.0 116.6 43.3 2.5 89.8 105.9 56.8 8.8
TR 306.7 147.7 70.8 5.6 166.2 110.8 51.4 18.5

c(g)

BR 100.0 100.0 38.2 3.0 100.0 100.0 24.1 66.3
LL 104.5 105.7 36.0 3.2 107.9 123.2 30.7 61.4
BT 111.8 111.4 27.0 2.9 108.0 108.5 19.6 58.6
MR 126.6 130.7 29.3 2.9 129.4 125.8 17.8 31.0
TR 117.7 130.1 70.5 5.7 84.1 93.4 39.4 91.7

c(n)

BR 100.0 100.0 56.1 2.1 100.0 100.0 53.0 20.3
LL 81.7 92.0 47.9 1.8 121.4 116.4 58.7 28.0
BT 122.3 122.3 41.7 2.2 118.8 108.6 63.4 22.0
MR 140.5 134.6 35.4 2.6 149.8 123.7 28.0 12.6
TR 243.9 134.1 74.4 5.9 104.6 94.4 53.6 23.9

c(t)

BR 100.0 100.0 43.5 5.8 100.0 100.0 13.3 65.4
LL 111.7 108.4 38.8 7.1 100.0 119.3 25.0 63.5
BT 110.5 110.4 37.8 5.5 104.0 102.2 15.0 64.4
MR 131.7 132.3 27.9 4.4 127.3 124.3 38.1 63.0
TR 88.7 110.7 58.3 7.6 77.2 100.9 40.2 104.8
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Table 4: Summary statistics for weekly stock returns

Returns Mean Median Max Min Std.Dev. Skewness Kurtosis JB
rUS 0.001889 0.0037 0.1261 −0.2805 0.023989 −1.683636 22.51981 17231.21
rCanada 0.001459 0.00325 0.1012 −0.2453 0.024768 −1.383057 13.79779 5456.367
rUK 0.001873 0.0023 0.1002 −0.2542 0.025856 −1.101227 12.62567 4282.064
rFrance 0.002434 0.0032 0.1403 −0.1509 0.029687 −0.348288 5.739768 350.9621

Correlations
US Canada UK

Canada 0.7133
UK 0.5520 0.5406
France 0.5315 0.5041 0.6363

Note: This table summarizes the weekly returns characteristics for the US, Canada, the UK and France

equity indices and the correlation between them. In this table JB represents the Jarque-Bera test statistic.

The sample covers the period from October 16th 1984 to December 21th 2004 for a total of 1054 observations.
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Figure 1: The ratio (ISE(k̂) − IMSE(kopt))/IMSE(kopt) of the BR estimator under weak and
strong dependence and different families of the copula, n = 150
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Figure 2: The ratio (k̂ − kopt)/kopt of the BR estimator under weak and strong dependence and
different families of the copula, n = 150
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(a) US (b) UK

(c) FRANCE (d) CANADA

Figure 3: These graphs represent weekly equity returns in the US, Canada, the UK, and France.
The sample covers the period from October 16th 1984 to December 21th 2004 for a total of 1054
observations.
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(a) BR, k = 100 (b) BR, k = 50 (c) BR, k = 25

(d) LL, h = 0.035 (e) LL, h = 0.1 (f) LL, h = 0.5

Figure 4: Bernstein (BR) and Local linear (LL) estimators of the copula density for the pair
US-Canada, using weekly equity returns and different bandwidth parameters.
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(a) BR, USA-UK, k = 50 (b) BR, USA-FR, k = 50

(c) LL, USA-UK, h = 0.1 (d) LL, USA-FR, h = 0.1

Figure 5: Bernstein (BR) and Local linear (LL) estimators of the copula density for the pairs
US-UK and US-France, using weekly equity returns for.
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