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Abstract

In regression experiments, to learn about the strength of the relationship between a covariate

vector and a dependent variable, we propose a “coefficient of determination” based on the quantiles.

Such a coefficient is a “local” measure in the sense that the strength is measured at a pre-specified

quantile level. Once estimated, it can be used, for example, to measure the relative importance of

a subset of covariates in the quantile regression context. Related to this coefficient, we also propose

a new “local” lack-of-fit measure of a given parametric model. We provide some asymptotic results

of the proposed measures and carry out a Monte Carlo simulation study to illustrate their use and

performance in practice.
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1 Introduction

Given a random variable Y , the response, and a random vector X = (X1, . . . , Xd)
⊤ with d ≥ 1, the

covariates, the amount of variability in Y that can be explained by X, via an (unknown) link function,

is a fundamental question in statistics. Typically, the link is given as the conditional mean function

m(X) = E(Y |X) but it may be any function of interest like the conditional median or, more generally,

a conditional quantile function. When the mean regression function m is of interest, Doksum and

Samarov (1995) proposed to use

η2 =
Var(m(X))

Var(Y )
= 1− E|Y −m(X)|2

E|Y − E(Y )|2

as a measure of the explanatory power of X. This is nothing but a nonparametric version of the well

known coefficient of determination R2, which is largely used within the linear regression framework as

an assess of the prediction power of a given linear model. While η2 can address the question “is X (or a

subset of it) important to understand the variation in Y ?”, it cannot answer some important questions

like “does X exert any significant effect on the tail levels of Y ?” or “is the effect of X as important

on the tail levels of Y as on its central level?”. To study such a question one should renounce the

mean and adopt a function that gives a more comprehensive picture of the effect of X on Y like the

conditional quantile. As we will show, by using the latter we are able to figure out the exact effect

of X at a specific quantile level q of Y . To be clear, let us first consider the case of the median, i.e.

q = 1/2. An L1 natural analogue of η2 is given by 1− E|Y −m0.5(X)|/E|Y − ξ0.5|, where m0.5 is the

conditional median of Y given X and ξ0.5 is the marginal median of Y . An obvious generalization of

such a measure is given by

R1(q) = 1− E [ρ(Y −m(X))]

E [ρ(Y − ξq)]
,

where, for a fixed 0 < q < 1, m(X) ≡ mq(X) = argminθ E[ρq(Y − θ)|X] is the (unique) conditional

qth quantile of Y given X, ρ ≡ ρq(y) = (2q − 1)y + |y| is the well known check function and ξq =

argminθ E[ρq(Y − θ)] is the (unique) qth marginal quantile of Y . Unlike η2 which only assesses the

mean power of X, R1(q) enables us to get a more complete picture of the strength of X by varying q.

A nice practical illustration of the importance of considering different values of q when studying the

association between X and Y can be found in Koenker and Machado (1999), who cited an empirical

study from Chamberlain (1994) on the U.S. labor union wage premium. Surprisingly, the R1(q) has

never been studied in the literature neither from a theoretical nor from a practical viewpoint. The

only exception that we have found is the work of Mckean and Sievers (1987), who proposed R1(1/2)
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as a robust alternative to R2 in the case of a parametric linear model. Assuming a fixed design, they

suggested a parametric version of the estimator of R1(1/2) and studied its consistency. This motivates

us to consider R1(q) in a more general context, where (1) no parametric restriction is made on the

form of m, (2) X is allowed to be a random vector of any given dimension d ≥ 1 and (3) the quantile

level q can be any value within (0, 1). Under relatively weak assumptions, we propose a consistent

estimator of R1(q), for which we obtain a Bahadur representation that allows us to prove its asymptotic

normality. Note that by allowing m to be a constant it can be seen that 0 ≤ R1(q) ≤ 1. R1(q) = 0

corresponds to the case when m(X) = ξq with probability one, i.e. no variability is captured by X,

while R1(q) = 1 corresponds to the case when m(X) = Y with probability one, i.e. all the variability

in Y at its qth quantile level is captured by X via the quantile function m. In other words, R1(q)

exactly quantifies the relative gain of introducing the covariate X in estimating the qth quantile of Y .

It can be used to robustly reduce the dimensionality of X by keeping only the significant components

of it or to discriminate between different combinations of fixed number of covariates with the objective

of selecting the best combination with the highest explanatory power.

Another related and important problem of common interest is to assess the discrepancy of a given

parametric model, say m(θ,X), for estimating a certain conditional quantile of Y . The objective is

to measure the inevitable loss of information that can be attributed to (and only to) the parametric

restriction. From similar motivations as for R1(q), we can define

Φ(q) = 1− E[ρ(Y −m(X))]

E[ρ(Y −m(θ∗, X))]
,

where θ∗ ≡ θ∗(q) is a “pseudo-true” parameter, i.e. an argument that minimizes E[ρ(Y −m(θ,X))]

with respect to all θ in a set Θ, or equivalently m(θ∗, ·) is the best approximation to the true regression

function m that can be found within the parametric family {m(θ, ·)}θ∈Θ. The numerator of Φ(q), i.e.

E[ρ(Y −m(θ∗, X))]−E[ρ(Y −m(X))], is a nonnegative scalar that represents the amount of unexplained

“variation”, as measured by the “distance” ρ, due to the fact that one uses the parametric model

m(θ∗, ·) instead of the true quantile regression curve m. Thus, it follows that Φ(q) is the fraction of

the parametric residual variation that can be completely attributed to the lack of fit of the parametric

quantile functionm(θ, ·). In the following, Φ(q) will be shortly called the q-inadequacy index ofm(θ, ·).

Like R1(q), the q-inadequacy index is a local measure. By local we mean that it quantifies the quality

(or to be more correct the poorness) of m(θ, ·) for a given fixed quantile level q. Allowing m(θ, ·)

to be constant, one can easily check that 0 ≤ Φ(q) ≤ R1(q) ≤ 1. Unlike R1(q), the case Φ(q) = 0

corresponds now to the best case in which m(θ∗, X) coincides almost surely with the true q-quantile
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curve m(X). The case Φ(q) = R1(q) represents the worst case when the parametric model fails to

capture any variation in the data that could have been captured if m(X) was used. In such case

m(θ∗, X) = ξq, with probability one. In the mean regression framework, this type of inadequacy index

was already proposed in El Ghouch et al. (2010). They derived the Bahadur-type representation

of their inadequacy index, denoted ζ2, under some weak assumptions. Unlike Φ(q), ζ2 is a global

inadequacy measure over the entire conditional distribution of Y . Our q-inadequacy index Φ(q) may

be used as a robust decision rule to find the best approximation among several candidate parametric

models when a fixed set of covariates is given. Furthermore, our index has the advantage of finding

an appropriate model corresponding to a given quantile level q (different values of q might correspond

to different models). We select the model with the smallest value of Φ(q) as an appropriate model.

The paper is organized as follows. First, we propose estimators for R1(q) and Φ(q) in Section 2.

The asymptotic properties of the proposed estimators are established in Section 3. Regarding Φ(q),

due to some technical limitations, the asymptotic properties are only proved when the parametric

model m(θ, ·) is linear. In Section 4, we will illustrate how our measures can be applied using some

examples and simulations. Some general conclusions are given in Section 5, while the proofs and

assumptions of the asymptotic results are deferred to Section 6.

2 Estimation

We assume that {(Yi, Xi)}, 1 ≤ i ≤ n are independent and identically distributed, with Xi =

(X1i, . . . , Xdi)
⊤ being a random vector of d ≥ 1 elements and Yi being a random variable. The true

qth quantile function m(x) is assumed to be differentiable up to order p+1. This allows us to use the

multivariate pth order local polynomial approximation

m(z) ≈
∑

0≤|r|≤p

1

r!
Drm(x)(z − x)r,

where for any r = (r1, . . . , rd), |r| =
∑d

i=1 ri, r! = r1!× · · · × rd!,

Drm(x) =
∂|r|m(x)

∂xr11 · · · ∂xrdd
, xr = xr11 × · · · × xrdd , and

∑
0≤|r|≤p

=

p∑
j=0

j∑
r1=0

· · ·
j∑

rd=0

|r|=j

.
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2.1 Estimation of R1(q) and Φ(q)

To estimate R1(q) without making any parametric restriction onm we need a nonparametric estimator.

For its many well known useful properties, we adopt here the local polynomial approach. Let K(u)

be a density function on Rd and h ≡ hn a bandwidth parameter. Let β̂r, 0 ≤ |r| ≤ p be the minimizer,

with respect to βr of
n∑

i=1

Kh(Xi − x)ρ

Yi;
∑

0≤|r|≤p

βr(Xi − x)r

 , (2.1)

where Kh(u) = K(u/h). The pth local polynomial estimator of m(x) is m̂(x) := β̂0(x). Based on this,

we propose

R̂1(q) ≡ R̂1
w(q) = 1−

∑n
i=1 ρ(Yi − m̂(Xi))w(X i)∑n

i=1 ρ(Yi − ξ̂q)w(X i)
, (2.2)

as a nonparametric estimator of

R1(q) ≡ R1
w(q) = 1− E [ρ(Y −m(X))w(X)]

E [ρ(Y − ξq)w(X)]
.

In the expressions above we incorporate the nonnegative weight function w(·) which is a usual strategy

in kernel smoothing that aims to avoid highly uncertain estimation in regions with sparse or noisy

data. Here, ξ̂q = argminθ n
−1

∑n
i=1 ρ(Yi − θ) is the qth sample quantile of Y .

Now, we turn to the q-inadequacy index. First, we define a population version of the q-inadequacy

index incorporated with the weight function as follows:

Φ(q) ≡ Φw(q) = 1− E[ρ(Y −m(X))w(X)]

E[ρ(Y −m(θ∗, X))w(X)]
,

where θ∗ ≡ θ∗w = argminθ∈Θ E[ρ(Y −m(θ,X))w(X)]. Note that in contrast to the Introduction, we

are using a pseudo true parameter θ∗w, which depends on the weight function. Even though it is not

as natural as the one in the Introduction, we prefer this definition for technical reasons (related to the

asymptotic theory of the estimator of Φ(q)). To estimate Φ(q), in addition to m̂, we need an estimator

for θ∗ ≡ θ∗w, which can be defined as

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

ρ(Yi −m(θ,Xi))w(X i),

where the parameter space Θ is a compact subset of Rl. We propose to estimate Φ(q) by

Φ̂(q) ≡ Φ̂w(q) = 1−
∑n

i=1 ρ(Yi − m̂(X i))w(Xi)∑n
i=1 ρ(Yi −m(θ̂, Xi))w(Xi)

. (2.3)

Note that we make again use of the weight function w. This is not necessary for the parametric part

of Φ(q), i.e. the denominator, but should be used in the numerator.
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2.2 Bandwidth selection

A lot of research has been carried out to address the problem of data-driven bandwidth selection for

nonparametric curve estimation, but much less is done related to bandwidth selection for integral

functions. Intuitively, we can consider that an optimal bandwidth to estimate R1(q) is given by the

minimizer of E
[
d(R̂1(q), R1(q))

]
. Here, d(x, y) is a given distance like the L1 or the L2 distance.

Even though we can easily obtain an asymptotic approximation of this quantity from Theorem 3.4

below, such an expression depends on the unknown quantities ξq, m and R1(q), etc. and consequently

the bandwidth choice based on it turns out to be practically infeasible, because it needs many pilot

estimates based on initial bandwidths or on approximate parametric models. Instead, we simply utilize

the cross-validation bandwidth h for curve estimation. Doksum and Samarov (1995) and Tong and

Yao (2000) also considered this cross-validation as one of the practicable options for the bandwidth

choice of the estimation of their proposed integral functionals when they faced the same difficulties as

ours. Following their approach, we consider the bandwidth h which minimizes the criterion

CV (h) =
n∑

i=1

ρ(Yi − m̂−i(Xi;h))w(Xi)

where m̂−i(·;h) is the leave-one-out estimator for the conditional quantile function m(·), evaluated

with the bandwidth h. Note that different from their criterion, which considered the case of the mean

regression, the square function is replaced by the check function for quantile estimation. Furthermore,

we incorporate the weight function into our cross-validation criterion.

3 Asymptotic Properties

To derive asymptotic properties of R̂1(q) and Φ̂(q), we need two building blocks. One is the Bahadur

representation of ξ̂q and m̂(·). The other is the asymptotic normality of the estimator θ̂ of the

parametric quantile regression model m(θ,X) under misspecification. These building blocks enable

us to derive the Bahadur representation of R̂1(q) and Φ̂(q), which implies consistency and asymptotic

normality. For convenience, we relegate all the assumptions for the asymptotic properties to Section

6.
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3.1 Notations

In order to state the uniform Bahadur representation for local polynomial estimates of the condi-

tional quantile function m(X), we need to develop some notations. Let Ni =
(
i+d−1
d−1

)
be the num-

ber of distinct d-tuples r with |r| = i. Arrange these Ni d-tuples as a sequence in lexicograph-

ical order (with the highest priority to the last position so that (0, . . . , 0, i) is the first element

in the sequence and (i, 0, . . . , 0) the last element). Let τi denote the 1-to-1 mapping, defined by

τi(1) = (0, . . . , 0, i), . . . , τi(Ni) = (i, 0, . . . , 0). For each i = 1, . . . , p, define a Ni × 1 vector µi(x)

with its kth element given by xτi(k) and write µ(x) = (1, µ1(x)
⊤, . . . , µp(x)

⊤)⊤, which is a column

vector of length N =
∑p

i=0Ni. Similarly define vectors βp(x) and β through the same lexicographical

arrangement of Drm(x) and βr in (2.1) for 0 ≤ |r| ≤ p. Then (2.1) can be rewritten as

n∑
i=1

Kh(Xi − x)ρ(Yi − µ(Xi − x)⊤β). (3.1)

Suppose the minimizer of (3.1) is denoted as β̂n(x). Let β̂p(x) = Wpβ̂n(x), where Wp is a diagonal

matrix with diagonal entries equal to the lexicographical arrangement of r!, 0 ≤ |r| ≤ p.

Let φ(t) = 2qI{t ≥ 0} + (2q − 2)I{t < 0} be the piecewise derivative of the check function ρ(t).

Define G(t, x) = E{φ(Y − t)|X = x} and g(x) = (∂/∂t)G(t, x). Then, g(x) = −2fε|X(0|x), where

fε|X(·|x) is the conditional density of ε = Y −m(X) given X = x. Let νi =
∫
K(u)uidu. For f(·), the

probability density function of X, define νni(x) =
∫
K(u)uig(x + hu)f(x + hu)du. For 0 ≤ j, k ≤ p,

let Sj,k and Sn,j,k(x) be two Nj ×Nk matrices with their (l,m) elements respectively given by

[Sj,k]l,m = ντj(l)+τk(m), [Sn,j,k(x)]l,m = νn,τj(l)+τk(m)(x).

From this, we can define the N ×N matrices Sp and Sn,p(x) by

Sp =



S0,0 S0,1 · · · S0,p

S1,0 S1,1 · · · S1,p

...
. . .

...

Sp,0 Sp,1 · · · Sp,p


, Sn,p(x) =



Sn,0,0(x) Sn,0,1(x) · · · Sn,0,p(x)

Sn,1,0(x) Sn,1,1(x) · · · Sn,1,p(x)

...
. . .

...

Sn,p,0(x) Sn,p,1(x) · · · Sn,p,p(x)


.

For |Sp| ̸= 0, define

β∗
n(x) = − 1

nhd
WpS

−1
n,p(x)H

−1
n

n∑
i=1

Kh(Xi − x)φ(Yi, µ(Xi − x)⊤W−1
p βp(x))µ(Xi − x),
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where Hn is a diagonal matrix with diagonal entries h|r|, 0 ≤ |r| ≤ p in the aforementioned lexico-

graphical order. Note that β∗
n(x) is the leading term in the Bahadur representation of β̂p(x)−βp(x) as

it can be found in Kong et al. (2010). We would like to point out that the definition of β∗
n(x) in Kong

et al. (2010) is not correct and µ(Xi − x)⊤βp(x) should in fact be replaced by µ(Xi − x)⊤W−1
p βp(x)

in their definition.

3.2 Bahadur representation of the functions involving ξ̂q and m̂(·)

Lemma 3.1 Suppose that (A4),(A5) and (A9) hold. Then,

1

n

n∑
i=1

ρ(Yi − ξ̂q)w(Xi)− E[ρ(Y − ξq)w(X)]

=
1

n

n∑
i=1

ρ(Yi − ξq)w(Xi)− E[ρ(Y − ξq)w(X)] + op(n
−1/2).

The proof is similar to the proof of Lemma 3.3 below (using the Bahadur representation for ξ̂q instead

of the one for m̂(·)), and is therefore omitted. To derive the Bahadur representation of R̂1(q), we need

to investigate the asymptotic behavior of
∑n

i=1 ρ(Yi − m̂(Xi))w(X i). To this purpose, we need the

Bahadur representation of m̂(·) given in Lemma 3.2.

Lemma 3.2 Let e1 be a N × 1 vector with its first element given by 1 and all others 0. Suppose

(A1)-(A9) hold and h ≍ n−κ with κ > 1/(2p+ 2 + d). Then with probability one we have,

m̂(x)−m(x) = −e⊤1
H−1

n

nhd
S−1
np (x)

n∑
i=1

Kh(Xi − x)φ(εi)µ(X i − x) +Rn,

where Rn = op((nh
d)−1/2) uniformly in x ∈ D and D is the compact support of the weight function

w(·).

Lemma 3.2 can be proved by using Corollary 3.3, 5.8 and 5.10 in Kong et al. (2010) and the fact that

supx∈D |Eβ∗
n(x)| = O(hp+1) almost surely, which is obtained by the similar arguments as Propostion

4 in Masry (1996). The condition κ > 1/(2p+ 2 + d) implies that h decreases to zero faster than the

optimal order for curve estimation. In order to obtain
√
n-convergence of R̂1(q), undersmoothing is

used, which is common when estimating some unknown parameter resulting from a sample average of

some nonparametric estimator. A similiar approach can be found in Van Keilegom and Wang (2010)

and Doksum and Samarov (1995).
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Lemma 3.3 Suppose that (A1)-(A9) hold, p > d/2−1 and h ≍ n−κ with 1/(2p+2+d) < κ < 1/(2d).

Then, we have

1

n

n∑
i=1

ρ(Yi − m̂(Xi))w(Xi)− E[ρ(Y −m(X))w(X)]

=
1

n

n∑
i=1

ρ(Yi −m(Xi))w(Xi)− E[ρ(Y −m(X))w(X)] + op(n
−1/2).

The proof of Lemma 3.3 is given in Section 6.

3.3 Bahadur representation of R̂1(q)

We can now establish the following Bahadur representation of R̂1(q) from the expansions in Lemma

3.1 and Lemma 3.3 and the fact that â/b̂ = a/b+ b̂−1
[
â− a− (b̂− b)(a/b)

]
.

Theorem 3.4 Suppose that (A1)-(A9) hold, p > d/2−1 and h ≍ n−κ with 1/(2p+2+d) < κ < 1/(2d).

Let R1(q) = 1− E[ρ(Y −m(X))w(X)]/E[ρ(Y − ξq)w(X)]. Then, we have

√
n(R̂1(q)−R1(q)) =

1√
n
(1−R1(q))

n∑
i=1

(ei − ui) + op(1),

where

ei =
ρ(Yi − ξq)w(X i)− E[ρ(Y − ξq)w(X)]

E[ρ(Y − ξq)w(X)]
and ui =

ρ(Yi −m(Xi))w(X i)− E[ρ(Y −m(X))w(X)]

E[ρ(Y −m(X))w(X)]
.

Theorem 3.4 implies that n1/2(R̂1(q)−R1(q)) is asymptotically normal with mean zero and variance

σ2 ≡ (1 − R1(q))
2Var(e1 − u1). When R1(q) = 0 or 1, this variance is zero and our result implies

degenerate normality. We should investigate in that case the next term in the expansion to obtain

a meaningful distributional convergence result. Note that to guarantee the optimal root-n rate of

convergence for R̂1(q), the condition p > d/2 − 1 is needed. It implies that the order of the local

approximation should increase as the dimension of X increases. Similar restrictions in nonparametric

estimation can be found in e.g. Linton (1995), Powell and Stoker (1996) and El Ghouch et al. (2010).

3.4 Bahadur representation of Φ̂(q)

For some technical reasons, we will restrict our attention to linear models as a candidate parametric

family for Φ. In fact, Lemma 3.5 below has only been proved in the literature for linear models,

and its extension to nonlinear models is beyond the scope of this paper. First, we will state the
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asymptotic normality result of the parameter estimator of the linear quantile regression model un-

der misspecification, which is a little bit modified to accommodate the weight function w(·) in the

estimation.

Lemma 3.5 (Modification of Theorem 1 in Kim and White (2003)) Suppose that (A4) and (B1)-(B4)

hold. θ∗ is a “pseudo-true” parameter from Assumption (B1), Xe = (1, X⊤)⊤ and fε∗|Xe
(·|xe) is the

conditional density of ε∗ = Y − θ∗⊤Xe given Xe = xe. Let θ̂ = (θ̂0, θ̂
⊤
1 ) be defined as

θ̂ = argmin
θ=(θ0,θ⊤1 )∈Θ

1

n

n∑
i=1

ρ(Yi − θ0 − θ⊤1 Xi)w(Xi).

Then,
√
n(θ̂ − θ∗) =

√
n((θ̂0, θ̂

⊤
1 )− (θ∗0, θ

∗
1
⊤))

d−→ N(0, C),

where C = Q−1V Q−1 and

Q = E
[
2fε∗|Xe

(0|Xe)XeX
⊤
e w(Xe)

]
, V = E

[
φ(ε∗)2XeX

⊤
e w(Xe)

2
]
.

The proof of Lemma 3.5 is nothing but a slight modification of that of Theorem 1 in Kim and White

(2003), and so it is omitted.

Theorem 3.6 Suppose that (A1)-(A9) and (B1)-(B4) hold, p > d/2 − 1 and h ≍ n−κ with 1/(2p +

2+d) < κ < 1/(2d). Let Φ(q) = 1−E[ρ(Y −m(X))w(X)]/E[ρ(Y − θ∗0 − θ∗1
⊤X)w(X)]. Then, we have

√
n(Φ̂(q)− Φ(q)) =

1√
n
(1− Φ(q))

n∑
i=1

[
ρ(Yi − θ∗0 − θ∗1

⊤X i)w(Xi)− E[ρ(Y − θ∗0 − θ∗1
⊤X)w(X)]

E[ρ(Y − θ∗0 − θ∗1
⊤X)w(X)]

−ρ(Yi −m(Xi))w(X i)− E[ρ(Y −m(X))w(X)]

E[ρ(Y −m(X))w(X)]

]
+ op(1).

The proof of Theorem 3.6 is given in Section 6. As in Theorem 3.4, Theorem 3.6 implies that Φ̂(q)

converges to a zero mean normal distribution as n → ∞.

4 Simulation Results

We illustrate our proposed estimators through four examples below. A Gaussian kernel has been used

throughout. For a multivariate kernel, we simply use the product kernel and we let all components of

each bandwidth vector be equal.
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Example 1. Consider the model

Yi = m1(Xi) + λm2(Xi) + τεi = 6 + 2Xi + λ sin(|3πXi + π|) + τεi,

where {Xi} and {εi} are two independent random series, the Xi’s are independent with common dis-

tribution U [−ϵ, 1+ ϵ] and the εi’s are independent and standard normal. We set w(x) = I(0 ≤ x ≤ 1)

and ϵ was chosen so that w(x) corresponds to 95% of the inner sample range of the data. We are

interested in measuring the contribution of the covariate X and the discrepancy of the linear model

m(θ, x) = θ0+θ1x for estimating a specific quantile of Y . For this purpose, we vary the values of λ and

τ . Table 1 displays the values of τ and λ used to generate the data together with the corresponding

values of R1(0.5) and Φ(0.5). As shown in Table 1, if we increase τ , then the influence of ε on the

quantile of Y increases and X becomes more and more irrelevant (R1(q) ↘ 0). On the other hand,

when λ = 0, the linear model m(θ, x) is correct so Φ(q) = 0, but as λ increases, m(θ, x) becomes more

and more inadequate (Φ(q) ↗ 1). Table 2 shows biases and standard deviations of R̂1(0.5) and Φ̂(0.5),

multiplied by 100, based on local linear estimators of m(·) in Monte Carlo trials with 100 replications

and sample size n = 100, 200 and 400. From Table 2, we can see that biases and standard deviations

decrease as n increases. We also have done the same simulations for different values of q and have

calculated confidence intervals for R1(q) and Φ(q), but the results are not presented here for the sake

of brevity. We observed that the increase of sample size improves bias and standard deviations for

different values of q as when q = 0.5. To construct confidence intervals, we utilize the obtained asymp-

totic normality, see Theorem 3.4 and 3.6. We used a “naive” estimator of the asymptotic variance

based on the plug-in principle (without modifying the bandwidth parameter). We observed that the

empirical coverage probabilities approximate the nominal coverage confidence levels as n increases.

But the observed coverage probabilities were not good especially when d = 3. One of the possible

reasons for this phenomenon is that our bandwidth choice is not optimal for the estimation of R1(q)

and Φ(q) and also for the asymptotic variances of them. Moreover, as was pointed out in Doksum

and Samarov (1995), the asymptotic theory tends to underestimate the actual variability.

Example 2. (Relative importance of subsets of the candidate covariates) Consider the

model

Yi = 3X1i + 0.3X2i + 0.2 exp(X3i) + (0.4− 0.3X2i)εi,

where {X i = (X1i, X2i, X3i)} and {εi} are independent, and the εi’s are independent and standard

normal. The components of Xi are U [−ϵ, 1 + ϵ], independent of each other and ϵ is chosen so that
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the weight function w(x) =
∏3

j=1 I(0 ≤ xj ≤ 1) corresponds to 95% of the inner sample range of the

data.

Table 3 shows R1(q)(q = 0.1, . . . , 0.5) and η2 values for all the subsets of X1, X2 and X3. From the

values of η2, we can see that in mean regression both X2 and X3 are insignificant covariates with no

difference between them. However, from the values of R1(q) for different q we can see that in quantile

regression X2, which is related not only to the drift term but also to the diffusion term of the model,

has a larger effect on high conditional quantiles of Y than X3. This fact becomes more clear when we

compare the relative importance between the subsets (X1, X2) and (X1, X3). The comparison suggests

that if we would like to reduce the number of covariates, we can choose either (X1, X2) or (X1, X3)

in the median or mean regression case, while we should choose (X1, X2) instead of (X1, X3) when we

want to estimate high conditional quantiles of Y . We simulated 100 random samples of size 200 to

investigate how well the estimator R̂1(q) reflects this property of the true value R1(q). We have used

local linear estimators. Table 4 shows medians, biases and standard deviations of R̂1(0.5) and R̂1(0.2)

especially for the subsets which contain X1. From the results in Table 4, we can see that the estimator

can guide us to preferring X2 over X3 for the estimation of high conditional quantiles. Moreover, we

observe that the number of cases where R̂1(X1, X2) is larger than R̂1(X1, X3) is 90 out of 100 when

q = 0.2, while when q = 0.5 the number of such cases is only 37. The same lesson can be learned from

Figure 1, which shows boxplot summaries of R̂1(0.5) and R̂1(0.2) of the subsets (X1, X2) and (X1, X3).

Example 3. (Discrepancy of linear models) Consider the model

Yi = 3X1i + exp(X2i) + (0.9− 0.3 exp(X2i))εi.

All other ingredients of this model are the same as for the model in Example 2, except that ϵ is

chosen so that the weight function w(x) =
∏2

j=1 I(0 ≤ xj ≤ 1) corresponds to 95% of the inner

sample range of the data. We consider four surrogate parametric linear models for the given model,

Yi = θ0 + θ1X
′
1i + θ2X

′
2i + ε′i, and a different pair (X ′

1, X
′
2) is given to each linear model according

to Table 5. All surrogate linear models have a certain degree of discrepancy except Model S1. Table

6 shows true values, medians, biases and standard deviations of Φ̂(0.5) and Φ̂(0.2) for four surrogate

linear models based on local linear estimators of m(·) in Monte Carlo trials with 100 replications and

sample size n = 200. First, from the values of Φ given in Table 6, we can derive the discrepancy

order among the four models: S1 < S2 < S3 < S4. Second, Table 6 and Figure 2 show that our

proposed estimator Φ̂(q) can detect the discrepancy order based on the sample in a reasonable sense.
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For example, out of 100 repetitions, our estimator can find the exact discrepancy order among the

four models 93 times.

Example 4. (The necessity of the requirement p > d/2 − 1) To guarantee the optimal con-

vergence rate of R̂1(q) and Φ̂(q), the condition p > d/2 − 1 is needed. We revisited the model in

Example 2 to provide an illustration for the requirement p > d/2 − 1. Since d = 3 in the model, we

should use a local linear smoother (p = 1) or a higher-order local smoother (p ≥ 2). To illustrate the

necessity of the requirement, we calculated the estimators R̂1(X1, X2) and R̂1(X1, X3) when q = 0.2,

based on the local constant fit and the local linear fit of m(·) in Monte Carlo trials with 100 repli-

cations and sample size n = 200. Figures 3 and 4 show boxplot summaries of the selected subsets

[(X1, X2, X3), (X1, X2), (X1, X3)]. We can see that the estimators based on the local linear fit clearly

outperform those based on the local constant fit especially in terms of bias. If we compare the scatter

plot of R̂1(X1, X2) and R̂1(X1, X3) for those two estimators when q = 0.2 and q = 0.5 (Figure 5), we

can also see that the estimators based on the local linear fit clearly show the preference of X2 over X3

for the estimation of high conditional quantiles of Y , while those based on the local constant fit do

not. But note that the superiority of the estimator based on the local linear fit can only be observed

if enough data are available. For applications with high dimensional X-vectors, locally high order

fits involve estimating many local parameters and require a reasonably large bandwidth in order to

include sufficiently many data points. So under the deficiency of data points, the locally low order fit

with a smaller bandwidth will provide competitive performance.

5 Conclusions and Remarks

In this work we have investigated two local indices: the qth explanatory power R1(q) of a given

covariate and the qth inadequacy index Φ(q) of a given quantile parametric (linear) model. In the

following we summarize some key points.

• Using the local polynomial approximation method we were able to construct nonparametric

estimators that are
√
n−consistent and asymptotically normal. To get free of the curse of

dimensionality we assumed that the true regression function m is sufficiently smooth in the

sense that the order of the local approximation p needed in the Taylor approximation is larger

then d/2 − 1, with d being the dimension of the covariate vector. However, from a practical

point of view, we have observed that increasing d, inevitably deteriorates the performance of our
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estimators for a fixed finite simple size. For this reason and in order to virtually increase the local

sample size we used a Gaussian kernel (which has unbounded support) in all our simulations.

This reduces significantly the mean squared error compared to the case when we use a bounded

kernel, e.g. the Epanechnikov kernel; we don’t show the results here for the sake of brevity.

• Like for any nonparametric estimator, the bandwidth parameter is crucial here and critically

affects the rate of convergence. Globally, the theoretical asymptotic results match well the

simulation results although the practical data-driven bandwidth that we used is surely not the

optimal one. The problem of selecting a good bandwidth needs to be investigated more both

theoretically and practically.

• To construct confidence intervals for R1(q) and Φ(q), we utilized the obtained asymptotic nor-

mality, see Theorem 3.4 and 3.6. To this end we used a “naive” estimator of the asymptotic

variance based on the plug-in principle without modifying the bandwidth parameter. But the

empirical coverage probabilities were not good especially when d = 3. One of the possible rea-

sons for this phenomenon is that our bandwidth choice is not optimal for the estimation of R1(q)

and Φ(q) and also for the asymptotic variances of them.

• To use the qth inadequacy index with a nonlinear model, the theory for a parametric estimation

of a misspecified nonlinear quantile function under random design needs to be developed.

6 Assumptions and Proofs

6.1 Assumptions for the Bahadur representation of R̂1(q)

Let V be an open convex set in Rd.

(A1) All partial derivatives of m(x) up to order p+1 exist and are continuous for all x ∈ V , and there

exists a constant C > 0 such that |Drm(x)| ≤ C for all x ∈ V and |r| = p+ 1.

(A2) The marginal density of ε = Y −m(X) is bounded and E{φ(ε)|X} = 0.

(A3) For all e in a neighborhood of zero, the conditional density fε|X(e|x) of ε = Y − m(X) given

X = x satisfies

|fε|X(e|x1)− fε|X(e|x2)| ≤ Ke∥x1 − x2∥,
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where Ke is a positive constant depending on e. Further, the conditional density is positive for

e = 0 for all values of x ∈ V , and its first partial derivative w.r.t e, D1fε|X(e|x) is bounded for

all x ∈ V and e in a neighborhood of zero.

(A4) The weight function w(x) is continuous, and its support D ⊂ V is compact and has nonempty

interior.

(A5) K(·) has a compact support, say [−1, 1]
⊗

d and |Hj(u) − Hj(v)| ≤ C∥u − v∥ for all j with

0 ≤ |j| ≤ 2p+ 1, where Hj(u) = ujK(u).

(A6) The marginal density f(x) of X is positive and bounded with bounded first order derivatives on

V .

(A7) nhd+2(p+1)/ log n = O(1) as h → 0.

(A8) The conditional density fX|Y of X given Y exists and is bounded.

(A9) The distribution function of Y, FY (·) has bounded second derivative in a neighborhood of ξq

and fY (ξq) > 0 where fY is the marginal density function of Y .

The assumptions given here are basically a simplified adaptation of those in Kong et al. (2010) to

the case of i.i.d quantile regression except (A3), (A4) and (A9), which are assumed for the Bahadur

representation of the functions involving ξ̂q and m̂(·) in Subsection 3.2. (A3) is similar to Condition

3 in Chaudhuri et al. (1997), which estimated a parameter using the local polynomial estimate of the

conditional quantile function as in our paper. (A9) is for the Bahadur representation of the sample

quantile ξ̂q. For more details, we refer to Kiefer (1967).

6.2 Assumptions for the Bahadur represenatation of Φ̂(q)

The assumptions given below are the same as in Kim and White (2003), except the slight modifications

for the weight function w(·).

(B1) (Orthogonality condition) There exists a vector θ∗ = (θ∗0, θ
∗
1
⊤) such that

E[Xeφ(Y − θ∗⊤Xe)w(Xe)] = 0,

and θ∗ = (θ∗0, θ
∗
1
⊤) is an interior point of Θ, where Θ is a compact set of Rd+1 andXe = (1, X⊤)⊤.

(B2) E[∥Xe∥3w(Xe)] < ∞ and E[∥Xe∥2w(Xe)
2] < ∞.
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(B3) For all xe ∈ D , fε∗|Xe
(·|xe) is positive at zero, bounded and Lipschitz continuous where

fε∗|Xe
(·|xe) is the conditional density of ε∗ = Y −θ∗⊤Xe given Xe = xe. Moreover, the marginal

density of ε∗ is bounded.

(B4) Q = E
[
2fε∗|Xe

(0|Xe)XeX
⊤
e w(Xe)

]
and V = E

[
φ(ε∗)2XeX

⊤
e w(Xe)

2
]
are positive definite.

6.3 Proof of Lemma 3.3

Recall that for any x, y,

ρ(x− y)− ρ(x) = (−y)φ(x) + 2(y − x)[I(y > x > 0)− I(y < x < 0)].

Let d̂(Xi) = m̂(X i)−m(X i). Then, we have

1

n

n∑
i=1

w(X i)ρ(Yi − m̂(X i))

=
1

n

n∑
i=1

w(X i)ρ(Yi −m(X i))−
1

n

n∑
i=1

w(X i)(m̂(X i)−m(Xi))φ(εi)

− 2

n

n∑
i=1

w(Xi)(Yi − m̂(Xi))×
{
I(d̂(Xi) > εi > 0)− I(d̂(Xi) < εi < 0)

}
=

1

n

n∑
i=1

w(X i)ρ(Yi −m(X i)) +A+B (say).

From this decomposition, it follows that it is enough to show that both A and B are of order op(n
−1/2).

First, we will show that A = op(n
−1/2). Using Lemma 3.2,

1

n

n∑
i=1

w(Xi)(m̂(Xi)−m(Xi))φ(εi)

= − 1

n

n∑
i=1

w(Xi)φ(εi)e
⊤
1

H−1
n

nhd
S−1
np (X i)

n∑
j=1

Kh(Xj −Xi)φ(εj)µ(Xj −X i)

+
1

n

n∑
i=1

w(Xi)φ(εi)× op(1)

= − 1

n2

n∑
i=1

n∑
j=1

w(Xi)e
⊤
1 S

−1
np (Xi)

Kh(Xj −Xi)

hd
H−1

n µ(Xj −Xi)φ(εi)φ(εj) + op(n
−1/2)

≡ −Vn + op(n
−1/2).

For the second equality, we used the fact that E[w(X)φ(ε)] = 0. Consider Un which is a U -statistic

with kernel depending on n:

Un =
1(
n
2

) ∑
1≤i<j≤n

ξn(Zi, Zj)
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with

Zi = (Xi, εi), ξn(Zi, Zj) = ηn(Zi, Zj) + ηn(Zj , Zi)

ηn(z1, z2) = w(x1)e
⊤
1 S

−1
np (x1)

Kh(x2 − x1)

hd
H−1

n µ(x2 − x1)φ(ε1)φ(ε2),

where zk = (xk, εk), k = 1, 2. Applying the fact that the smallest eigenvalue of Snp(x) is bounded

away from zero, as n → ∞, uniformly over x ∈ D and 0 < φ2(·) ≤ max{(2q)2, (2q−2)2}, we have that∣∣∣∣Vn −
(
n− 1

2n

)
Un

∣∣∣∣ =
∣∣∣∣∣ 1n2

n∑
i=1

w(X i)e
⊤
1 S

−1
np (Xi)

K(0)

hd
φ2(εi)

∣∣∣∣∣ ≤ C/(nhd).

If h ≍ n−κ with 1/(2p+ 2 + d) < κ < 1/(2d), then we have, uniformly in x ∈ D,

Vn −
(
n− 1

2n

)
Un = op(n

−1/2).

Finally, we will show that

Un = op(n
−1/2).

Note that

E[ξn(Zi, Zj)] = E[ηn(Zi, Zj)] = E[ξn(Zi, Zj)|Zi] = E[ηn(Zi, Zj)|Zi] = 0.

Conditioning on (X1, X2), we have

E[ξ2n(Z1, Z2)] ≤ 4E[η2n(Z1, Z2)]

= 4E
[
w2(X1)φ(ε1)

2φ(ε2)
2(e⊤1 S

−1
np (X1)H

−1
n µ(X2 −X1))

2(Kh(X2 −X1)/h
d)2

]
= 64q(1− q)E

[
w2(X1)(e

⊤
1 S

−1
np (X1)H

−1
n µ(X2 −X1))

2(Kh(X2 −X1)/h
d)2

]
.

Applying the fact that the smallest eigenvalue of Snp(x) is bounded away from zero, as n → ∞,

uniformly over x ∈ D, and that each component of H−1
n µ(X2 − X1)Kh(X2 − X1) is bounded by

maxx∈D w(x) < ∞, we get E[ξ2n(Z1, Z2)] = O(1/hd) = o(n). If we denote Pn as the projection of Un,

Powell’s projection theorem for U -statistics [see, Lemma A.3 in Ahn and Powell (1993) or Lemma 3.1

in Powell et al. (1989)] now gives

Un = Pn + op(n
−1/2) = op(n

−1/2),

because Pn = 0. Now we will prove that B = op(n
−1/2).
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Let I(w) = {i : Xi ∈ D, i = 1, . . . , n}. Then,

|B| ≤ 2

n

n∑
i=1

w(X i)(|d̂(X i)|+ |εi|)I(|εi| < |d̂(X i)|)

≤ 4

n

n∑
i=1

w(X i)|d̂(Xi)| I(|εi| < |d̂(X i)|)

≤ 4 max
i∈I(w)

|d̂(Xi)|
1

n

n∑
i=1

w(Xi)I(|εi| < |d̂(Xi)|)

≤ 4 max
i∈I(w)

|d̂(Xi)| max
x∈D

w(x)
1

n

n∑
i=1

I(|εi| < max
j∈I(w)

|d̂(Xj)|).

From the fact that

sup
a∈R

∣∣∣∣∣ 1n
n∑

i=1

I(|εi| < a)− P (|ε| < a)

∣∣∣∣∣ = Op(n
−1/2),

it follows that

|B| ≤ 4 max
i∈I(w)

|d̂(X i)|max
x∈D

w(x)

{
P

(
|ε| < max

j∈I(w)
|d̂(Xj)|

)
+Op(n

−1/2)

}
.

= 4 max
i∈I(w)

|d̂(X i)|max
x∈D

w(x)

{
Fε

(
max
i∈I(w)

|d̂(X i)|
)
− Fε

(
− max

i∈I(w)
|d̂(Xi)|

)}
+4 max

i∈I(w)
|d̂(Xi)|max

x∈D
w(x)×Op(n

−1/2).

By (A2), we have

|B| ≤ C max
i∈I(w)

|d̂(Xi)| max
i∈I(w)

|d̂(X i)|+ 4 max
i∈I(w)

|d̂(Xi)|max
x∈D

w(x)×Op(n
−1/2).

If p+ 1 > d/2 and h ≍ n−κ with 1/(2p+ 2 + d) < κ < 1/(2d), then,

max
i∈I(w)

|d̂(Xi)| = op(n
−1/4).

Hence, B = op(n
−1/2).

6.4 Proof of Theorem 3.6

The proof is similar to the proof of Theorem 3.4. The only major difference is that we need to show

that
1

n

n∑
i=1

w(Xi)ρ(Yi − θ̂0 − θ̂⊤1 X i) =
1

n

n∑
i=1

w(Xi)ρ(Yi − θ∗0 − θ∗1
⊤X i) + op(n

−1/2).
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Let d̂(Xi) = (θ̂0− θ∗0)+ (θ̂1− θ∗1)
⊤X i and ε∗i = Yi− θ∗0 − θ∗1

⊤Xi. Consider the following decomposition

of ρ(·):

1

n

n∑
i=1

w(Xi)ρ(Yi − θ̂0 − θ̂⊤1 X i)−
1

n

n∑
i=1

w(X i)ρ(Yi − θ∗0 − θ∗1
⊤X i)

= − 1

n

n∑
i=1

w(X i)((θ̂0 − θ∗0) + (θ̂1 − θ∗1)
⊤Xi)φ(ε

∗
i )

− 2

n

n∑
i=1

w(X i)(ε
∗
i − d̂(Xi))×

{
I(d̂(Xi) > ε∗i > 0)− I(d̂(Xi) < ε∗i < 0)

}
= C +D (say).

First, we will show that C = op(n
−1/2).

C = −(θ̂0 − θ∗0, (θ̂1 − θ∗1)
⊤)

1

n

n∑
i=1

Xeiw(Xei)φ(ε
∗
i ).

Since E[Xeφ(ε∗)w(Xe)] = 0 (orthogonality condition),

1

n

n∑
i=1

Xeiw(Xei)φ(ε
∗
i ) = Op(n

−1/2). (6.1)

Hence, (6.1) combined with Lemma 3.5 produces the desired result. Similar to the term B, we can

show that the term D is op(n
−1/2). Let I(w) = {i : X i ∈ D, i = 1, . . . , n where Xei = (1, Xi)}.

Then,

|D| ≤ 2

n

n∑
i=1

w(X i)(|d̂(X i)|+ |ε∗i |)I(|ε∗i | < |d̂(Xi)|)

≤ 4

n

n∑
i=1

w(X i)|d̂(Xi)| I(|ε∗i | < |d̂(Xi)|)

≤ 4 max
i∈I(w)

|d̂(Xi)|max
x∈D

w(x)
1

n

n∑
i=1

I(|ε∗i | < max
i∈I(w)

|d̂(Xi)|).

By the classical Donsker theorem,

|D| ≤ 4 max
i∈I(w)

|d̂(Xi)|max
x∈D

w(x){P (|ε∗| < max
i∈I(w)

|d̂(X i)|) +Op(n
−1/2)}.

Since D is bounded, maxi∈I(w) |d̂(Xi)| = Op(n
−1/2) from Lemma 3.5. This result and the boundedness

of the marginal density of ε∗ proves that D = op(n
−1/2).
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R1 Φ

@
@
@
@@

τ

λ
0.00 0.80 1.50 2.50 0.00 0.80 1.50 2.50

0.10 84.20 87.96 92.00 94.77 0.00 82.77 90.74 94.43

0.30 56.10 65.90 76.57 84.44 0.00 53.17 73.01 83.42

0.50 36.07 48.16 62.45 74.62 0.00 33.31 57.38 73.02

Table 1: R1(0.5) and Φ(0.5), multiplied by 100, when w(x) = I(0 ≤ x ≤ 1).

R1 Φ

n λ 0.00 0.80 1.50 2.50 0.00 0.80 1.50 2.50

τ = 0.1 100 Bias 0.76 1.55 1.25 0.88 2.51 2.30 1.33 0.96

STDV 1.86 1.71 0.99 0.62 4.46 1.95 1.08 0.66

200 Bias 0.32 0.96 0.76 0.55 1.66 1.01 0.67 0.46

STDV 0.97 1.00 0.67 0.44 2.85 1.41 0.89 0.56

400 Bias 0.12 0.58 0.48 0.39 0.90 0.79 0.54 0.39

STDV 0.76 0.81 0.53 0.38 2.06 0.98 0.54 0.37

τ = 0.3 100 Bias 1.91 2.83 2.16 1.83 2.70 3.13 2.29 1.63

STDV 4.13 4.00 2.76 1.86 7.06 5.62 3.43 2.23

200 Bias 0.77 1.65 1.25 0.95 1.75 1.91 1.49 1.13

STDV 2.95 2.72 1.79 1.16 3.07 4.14 2.36 1.44

400 Bias 0.29 0.61 0.55 0.50 0.91 1.13 0.88 0.71

STDV 2.01 2.00 1.35 0.93 2.09 2.48 1.47 0.93

τ = 0.5 100 Bias 2.50 3.58 3.08 2.48 3.32 5.15 3.75 2.94

STDV 6.02 5.56 4.25 2.93 5.36 6.70 4.99 3.17

200 Bias 1.31 2.37 2.40 1.75 1.54 2.23 1.76 1.26

STDV 4.38 3.50 2.55 1.92 2.43 4.26 2.85 2.05

400 Bias 0.41 1.29 1.21 0.84 0.90 1.52 1.33 0.93

STDV 2.61 2.49 2.00 1.44 2.09 2.98 2.04 1.38

Table 2: Biases and standard deviations of R̂1(0.5) and Φ̂(0.5), multiplied by 100, based on the local

linear estimators of m(·) in Monte Carlo trials with 100 replications and sample size n = 100, 200 and

400.
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X1 X2 X3 X1, X2 X2, X3 X1, X3 X1, X2, X3

R1(0.5) 70.91 0.79 0.86 72.35 1.13 72.90 74.54

R1(0.4) 69.98 0.94 0.92 72.20 1.31 71.79 74.35

R1(0.3) 68.41 0.96 0.89 71.60 1.40 70.00 73.75

R1(0.2) 65.80 1.10 1.01 70.43 1.72 67.24 72.61

R1(0.1) 61.40 1.69 1.28 68.37 2.55 62.74 70.64

η2 89.50 0.86 1.11 90.45 1.97 90.69 91.64

Table 3: R1(q)(q = 0.1, . . . , 0.5) and η2 values, multiplied by 100, for all the subsets of X1, X2 and

X3.

X1 X1, X2 X1, X3 X1, X2, X3

Median 0.7145 0.7310 0.7343 0.7581

R̂1(0.5) Bias 0.0043 0.0088 0.0078 0.0141

STDV 0.0224 0.0201 0.0196 0.0222

Median 0.6711 0.7115 0.6826 0.7371

R̂1(0.2) Bias 0.0138 0.0078 0.0144 0.0136

STDV 0.0343 0.0263 0.0328 0.0259

Table 4: Medians, biases and standard deviations of R̂1(0.5) and R̂1(0.2) for the subsets which contain

X1 based on the local linear estimators of m(·) in Monte Carlo trials with 100 replications and sample

size n = 200.

Model S1 S2 S3 S4

(X ′
1, X

′
2) X1, exp(X2) X1,

√
|X2| X2

1 , X2 X1, sin(πX2)

Table 5: Specifications of the covariates of four parametric linear models.
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Figure 1: Boxplots of R̂1(0.5) (left two panels) and R̂1(0.2) (right two panels) for the subsets (X1, X2)

and (X1, X3). The horizontal solid line in each plot represents the corresponding true value.

S1 S2 S3 S4

True value 0.0000 0.0851 0.1561 0.4026

Median 0.0138 0.1003 0.1746 0.4145

Φ̂(0.5) Bias 0.0228 0.0205 0.0197 0.0113

STDV 0.0342 0.0437 0.0433 0.0409

True value 0.0000 0.1047 0.1691 0.4242

Median 0.0187 0.1247 0.1892 0.4403

Φ̂(0.2) Bias 0.0321 0.0303 0.0295 0.0197

STDV 0.0475 0.0575 0.0617 0.0430

Table 6: True values, medians, biases and standard deviations of Φ̂(0.5) and Φ̂(0.2) for four surrogate

linear models based on the local linear estimators of m(·) in Monte Carlo trials with 100 replications

and sample size n = 200.
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Figure 2: Boxplots of Φ̂(0.2) for the four surrogate parametric models. The horizontal solid line in

each plot represents the corresponding true value.
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Figure 3: Boxplots of R̂1(0.2) for the selected models using the local constant fit (p = 0). The

horizontal solid line in each plot represents the corresponding true value.
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Figure 4: Boxplots of R̂1(0.2) for the selected models using the local linear fit (p = 1). The horizontal

solid line in each plot represents the corresponding true value.
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q=0.5(local linear)
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q=0.2(local linear)

Figure 5: Scatter plot of R̂1(X1, X2) versus R̂1(X1, X3) using the local constant (upper panel) and

local linear (lower panel) fit when q = 0.5 (left) and 0.2 (right). The solid line in each plot represents

the bisector.

26




