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Abstract

In this paper we consider (possibly misspecified) linear quantile regression models, and study a

measure for the quality-of-fit of these models, (a version of which has been) previously proposed

by Koenker and Machado (1999). The measure is based on an adaptation to quantile regression

of the famous coefficient of determination originally proposed for mean regression, and compares a

‘reduced’ model to a ‘full’ model, both of which can be misspecified. We propose an estimator of

this measure, and prove its asymptotic distribution both in the non-degenerate and the degenerate

case. The finite sample performance of the estimator is studied through a number of simulation

experiments. The proposed measure is also applied to a data set on body fat measures.
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1 Introduction

Quantile regression has emerged as an attractive alternative to the classical mean regression approach

based on the quadratic loss function. Since it was introduced by Koenker and Bassett (1978) as a

robust (to outliers) and flexible (to error distribution) linear regression method, quantile regression

has received considerable interest in both theoretical and applied statistics (see Koenker (2005) and

references therein). As this method has widened its applications to many domains like economics,

biology, ecology, and finance, the development of an effective assessment measure of goodness-of-fit

for quantile regression models becomes very attractive for practitioners. In the context of fixed design

median regression, Mckean and Sievers (1987) proposed a least absolute coefficient of determination

that aims at measuring the prediction quality of covariates in a linear model. Later Koenker and

Machado (1999) extended its definition to any quantile linear regression model. The proposed measure

is motivated by the familiar R2 coefficient of determination for linear mean regression, which is given

by 1 − SSE/SST , with SSE being the usual sum of squares of residuals and SST being the total

sum of squares. In a similar way, for a fixed quantile level q ∈ (0, 1), we can define a qth quantile

based coefficient of determination by using the check loss function given by ρq(u) = 2u(q − I(u < 0))

instead of the squared loss. To be more precise, let Y be a one-dimensional dependent variable and

X = (X⊤
0 ,X

⊤
1 )

⊤ be a random covariate vector of dimension d0 + d1, with d0, d1 ≥ 1. The first (and

only the first) element of X0 is 1. Define

ζ(q) = 1−
E[ρq(Y −X⊤β∗

q )]

E[ρq(Y −X⊤
0
β∗
0,q)]

, (1.1)

where β∗
0,q and β∗

q are pseudo true parameters in the sense that they are assumed to be the unique

minimizers of E[ρq(Y −X⊤
0 b0)] and E[ρq(Y −X⊤b)] with respect to b0 and b, respectively. Equiv-

alently, we can say that they are the best approximations to the true regression function that can be

found within the two given families of linear models. None of the two linear models is supposed to be

correct, they are both (possibly) subject to model misspecification.

In terms of the check loss distance, E[ρq(Y −X⊤β∗
q )] measures the amount of variation of Y that

cannot be explained through a ‘full’ but possibly incorrect linear model in X, and E[ρq(Y −X⊤
0 β

∗
0,q)]

is the variation of Y that cannot be explained through the reduced linear model. So, ζ(q) is nothing

but the missed fraction of variation in terms of the check loss when one uses the reduced qth quantile

linear model instead of the full one. If d0 = 1, then β∗
0,q becomes ξq = argminb E[ρq(Y − b)], which is
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the marginal qth quantile of Y , and then ζ(q) coincides with

R(q) = 1−
E[ρq(Y −X⊤β∗

q )]

E[ρq(Y − ξq)]
. (1.2)

This is the quantile analogue of the well known Pearson’s correlation ratio η2 = 1−E(Y−X⊤β∗)2/E(Y−
E(Y ))2, i.e. the ‘theoretical’ R2 for the linear mean regression model E(Y |X) = X⊤β∗.

Hereafter, for simplicity and when no confusion is possible, we will suppress the subscript q in all

our notations, so we will write ρ, β∗, β∗
0 and ξ instead of ρq, β

∗
q , β

∗
0,q and ξq. From now on, we will

use the notation ζ(q) only when d0 > 1. Like η2, R(q) lies in [0, 1]. R(q) = 0 corresponds to the case

when X⊤β∗ = ξ with probability one, i.e. all components of β∗ vanish except the first one, which

coincides with ξ. In that case, no variability is captured by X via a linear qth quantile model. As

for ζ(q), we observe that 0 ≤ ζ(q) ≤ R(q). ζ(q) = 0 is equivalent to saying that β∗ = (β∗
0,0), i.e. no

information is lost when considering only the restricted linear model, while, when E[ρ(Y −X⊤β∗)] > 0,

the equality ζ(q) = R(q) occurs if and only if X⊤
0 β

∗
0 = ξ with probability 1. This is the case when

the reduced linear approximation fails to capture any variability in Y that could be captured if we

use the ‘full’ linear model. To summarize, R(q) quantifies the total gain of considering a linear model

of X to fit the quantile of Y ; the bigger the value of R(q), the better is the qth quantile linear fit. In

contrast to R(q), ζ(q) quantifies the relative loss in the explained variation that can be attributed to

the lack-of-fit of the reduced qth quantile linear model compared to the full one; the smaller the value

of ζ(q), the better is the restricted qth quantile linear fit. This quantity can be used to compare two

nested linear quantile models whether the corresponding true conditional quantile functions are linear

or not. Unlike R2 or any other measure based on the L2 loss function, by varying q we get a more

complete picture of the quality of different linear approximations both in the center and the tails.

Also, when the underlying distribution is asymmetric or in the presence of outliers, R(0.5) should be

used as a robust alternative to R2. Similarly, ζ(0.5) can be used to robustly reduce the dimensionality

of X by keeping the significant components.

In this work our objective is to estimate and make inference about ζ(q) and R(q) in the random

design setting. In the literature, to the best of our knowledge, only the problem of estimating con-

sistently R(0.5) has been studied for fixed design median linear regression; see Mckean and Sievers

(1987). In Section 2, we present asymptotic results about the proposed measures. In Section 3, we

describe statistical inference based on them. We show an additional asymptotic result when ζ(q) = 0

in Section 4. In Section 5, we present some Monte Carlo evidence of the developed theory, whereas
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the analysis of data on body fat measures is given in Section 6. All the theoretical proofs are deferred

to the Appendix.

2 Main results

Consider i.i.d. random vectors (Yi,X
⊤
i ), i = 1, . . . , n, where Yi is a random scalar andXi = (X⊤

0,i,X
⊤
1,i)

⊤

is a random vector in R
d, d = d0+d1. The first element in X0,i is one for all i = 1, . . . , n and (Yi,X

⊤
i )

is continuously distributed. Clearly, to consistently estimate ζ(q), see (1.1), we need consistent esti-

mators of β∗ and β∗
0 under the misspecified setting. For that and in order to obtain an asymptotic

linear representation of our estimator, see Theorem 2.2 below, we need to introduce some notations

and make some assumptions.

Define

β̂q ≡ β̂ = argmin
b∈B

n
∑

i=1

ρ(Yi −X⊤
i b),

and ε∗q ≡ ε∗ = Y − X⊤β∗. Similarly, we define β̂0,q ≡ β̂0 and ε∗0,q ≡ ε∗0. Note that ε∗ = ε∗0 when

ζ(q) = 0.

Assumption A1: β∗ (β∗
0) is an interior point of B (B0), a compact subset of Rd (Rd0).

Assumption A2: (X, ε∗) satisfies the following:

A2.1 For all x, fε∗|X(0|x) > 0, where fε∗|X(t|x) is the conditional density of ε∗ given X = x.

A2.2 fε∗|X(t|x) is Lipschitz continuous, i.e. for all x, |fε∗|X(t1|x)− fε∗|X(t2|x)| ≤ L|t1 − t2| for some

0 < L < ∞, and there exists a constant M > 0 such that fε∗|X(t|x) ≤ M for all t, x.

A2.3 Q := E[2fε∗|X(0|X)XX⊤] and V := E[ϕ(ε∗)2XX⊤] are positive definite, where ϕq(u) ≡ ϕ(u) =

2q − 2I(u < 0).

A2.4 The marginal density fε∗(t) of ε
∗ is bounded in some neighborhood E of 0.

Assumption A3: (X0, ε
∗
0) satisfies Assumption A2, withX and ε∗ replaced throughout byX0 and ε∗0 .

These conditions are needed to get Bahadur-type representations of β̂ and β̂0 as given by the

following lemma, whose proof can be found in Kim and White (2003). We use throughout the notation

‖X‖ = (X⊤X)1/2 for the Euclidean norm of X.

4



Lemma 2.1 Suppose that A1 and A2 hold. If E(‖X‖3) < ∞, then,

β̂ − β∗ =
1

n
Q−1

n
∑

i=1

Xiϕ(ε
∗
i ) + op(n

−1/2).

Suppose that A1 and A3 hold. If E(‖X0‖3) < ∞, then,

β̂0 − β∗
0 =

1

n
Q0

−1

n
∑

i=1

X0,iϕ(ε
∗
0,i) + op(n

−1/2),

where Q0 = E[2fε∗
0
|X0

(0|X0)X0X
⊤
0 ].

Now that we have introduced all the necessary ingredients we move on to our main parameter of

interest. An obvious estimator of ζ(q), is given by

ζ̂(q) = 1−
∑n

i=1
ρ(Yi −X⊤

i β̂)
∑n

i=1
ρ(Yi −X⊤

0,iβ̂0)
. (2.1)

The following theorem gives the asymptotic linear representation of our estimator.

Theorem 2.2 Suppose that A1-A3 hold, and that there exists a M > 0 such that P (‖X‖ ≤ M) = 1.

Then,
√
n(ζ̂(q)− ζ(q)) =

1√
n
(1− ζ(q))

n
∑

i=1

(ei − ui) + op(1),

where

ei =
ρ(ε∗0,i)− Eρ(ε∗0)

Eρ(ε∗
0
)

and ui =
ρ(ε∗i )− Eρ(ε∗)

Eρ(ε∗)
.

The proof of this theorem is given in the Appendix. Theorem 2.2 implies the consistency of

ζ̂(q). It also implies that n1/2(ζ̂(q) − ζ(q)) is asymptotically normal with mean zero and variance

σ2
q ≡ σ2 = (1− ζ(q))2Var(e− u).

The boundedness of X assumed in Theorem 2.2 is stronger than the condition E(‖X‖3) < ∞ in

Kim and White (2003) and is used here to simplify the derivation of the stochastic expansion of both

the denominator and numerator while avoiding the well known problems in the tails. We can relax

this assumption by incorporating into the estimator a smooth weight function w(·), which reduces

the inherent errors when the density fX(·) approaches zero. In fact, when X is not bounded, as a

parameter of interest, it is more appropriate to consider

ζw(q) = 1− E
[

ρ(Y −X⊤β∗
w)w(X)

]/

E
[

ρ(Y −X⊤
0 β

∗
w,0)w(X)

]

,

where β∗
w = argminb∈B E

[

ρ(Y −X⊤b)w(X)
]

and β∗
w,0 = argminb0∈B0

E
[

ρ(Y −X⊤
0 b0)w(X)

]

.Here,

w(·) is a known bounded function, which has a compact support D contained in the support of
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the density of X so that only the set {x : w(x) 6= 0} matters. For example, one may consider

w(x) = I{‖x‖ ≤ M}, where M is any sufficiently large number. An estimator of ζw(q) can be defined

as follows:

ζ̂w(q) = 1−
∑n

i=1
ρ(Yi −X⊤

i β̂w)w(Xi)
∑n

i=1
ρ(Yi −X⊤

0,i β̂w,0)w(Xi)
,

where β̂w = argminb∈B
∑n

i=1
ρ(Yi −X⊤

i b)w(Xi) and β̂w,0 = argminb0∈B0

∑n
i=1

ρ(Yi −X⊤
0,ib0)w(Xi).

ζw(q) has the same meaning as its unweighted version ζ(q) and using technical arguments very similar

to those given in the Appendix, it can be shown that ζ̂w(q) has also the same asymptotic representation

as ζ̂(q), see Theorem 2.2, with ε∗w := (Y −X⊤β∗
w)w(X) and ε∗w,0 := (Y −X⊤

0 β
∗
w,0)w(X), instead of ε∗

and ε∗0, respectively.

It is also clear that a similar approach can be used to estimate and make inference about R(q);

see (1.2). The following asymptotic result for R̂(q) is a simple corollary of Theorem 2.2, so its proof

is omitted.

Theorem 2.3 Suppose that A1-A2 hold. Suppose also that (i) there exists a M > 0 such that

P (‖X‖ ≤ M) = 1; and (ii) the distribution function of Y , FY (·), has bounded second derivative

in a neighborhood of ξ, and fY (ξ) > 0, where fY (·) is the marginal density function of Y . Then,

√
n(R̂(q)−R(q)) =

1√
n
(1−R(q))

n
∑

i=1

(ei − ui) + op(1),

where

ei =
ρ(Yi − ξ)− Eρ(Y − ξ)

Eρ(Y − ξ)
and ui =

ρ(Yi −X⊤
i β

∗)− Eρ(Y −X⊤β∗)
Eρ(Y −X⊤β∗)

.

3 Inference for ζ(q)

To use the asymptotic normality results shown in the previous section, one needs a consistent estimator

for the asymptotic variance σ2 = (1 − ζ(q))2Var(e − u). When ζ(q) = 0 or 1, this variance vanishes

and our result becomes ζ̂(q) = ζ(q) + op(n
−1/2). Since ζ(q) = 0 corresponds to the interesting case

where the covariate X1 can be removed from the linear model with no loss of information, such a case

will be investigated in more detail in Section 4. For now we consider the case when ζ(q) ∈ (0, 1). Put

ε̂i = Yi −X⊤
i β̂ and ε̂0,i = Yi −X⊤

0,iβ̂0, and let

êi =
ρ(ε̂0,i)− n−1

∑

i ρ(ε̂0,i)

n−1
∑

i ρ(ε̂0,i)
and ûi =

ρ(ε̂i)− n−1
∑

i ρ(ε̂i)

n−1
∑

i ρ(ε̂i)
.

One can easily check that êi = ei + op(1) and ûi = ui + op(1). So, as an estimator of σ2, we propose

σ̂2 = 1

n

∑

i(êi − ûi − ê− û)2, where ê− û = n−1
∑

i(êi − ûi). An asymptotically valid confidence
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interval of ζ(q) of level 1 − α is given by ζ̂(q) ± zα/2
σ̂√
n

, where zα is the upper α quantile of the

standard normal distribution.

Although this confidence interval gives us valuable information about ζ(q), it cannot be used to

check the hypothesis

H0 : ζ(q) = 0 versus H1 : ζ(q) > 0. (3.1)

The reason is that one needs the distribution of ζ̂(q) under the null hypothesis. This will be discussed

in Section 4. Instead, we can consider the following hypothesis

H0,π : ζ(q) ≥ π versus H1,π : ζ(q) < π, (3.2)

where π ∈ (0, 1) is a small constant that can be considered by the analyst as a tolerable missed fraction

of variation. In the literature, (3.2) is known as a neighborhood hypothesis or ‘precise’ hypothesis; see

Hodges and Lehmann (1954). Note that (3.2) is designed to provide evidence in favor of the reduced

model while it cannot be confirmed in the testing framework of (3.1) even if the p-value associated

with (3.1) is large. For a detailed discussion about many aspects of neighborhood hypothesis testing

we refer to Dette and Munk (2003). Testing (3.2) can be done directly using Theorem 3.2. In fact,

since the limit of the upper confidence interval of ζ(q) is given by ζ̂+(q) = ζ̂(q) + zα
σ̂√
n
and since,

under H0,π, P (ζ(q) ≤ ζ̂+(q)) → 1 − α, one should accept H1,π and so validate the reduced model

whenever ζ̂+(q) < π.

4 The case when ζ(q) = 0

In this section we investigate the behavior of ζ̂(q) when ζ(q) = 0. To simplify the analysis we consider

the homogeneous linear model given by

Yi = X⊤
i β + εi = X⊤

0,iβ0 +X⊤
1,iβ1 + εi, (4.1)

where the errors εi are supposed to be independent of Xi = (X⊤
0,i,X

⊤
1,i)

⊤ and the qth quantile of εi is 0.

Note that (4.1) is equivalent to saying thatX⊤
i β is the true conditional quantile function of Yi givenXi,

and β is now the true parameter that we assume to be an interior point of B, a compact subset of Rd,

d = d0 + d1. These assumptions facilitate the technical development related to an uniform quadratic

approximation, see Lemma 4.1 below, needed to derive the asymptotic distribution. Under model (4.1),

ζ(q) = 0 is equivalent to β1 = 0. In such a case n−1
∑n

i=1
ρ(Yi −X⊤

0,iβ̂0) and n−1
∑n

i=1
ρ(Yi −X⊤

i β̂)
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have the same first order linear approximation, namely n−1
∑n

i=1
ρ(Yi − X⊤

0,iβ0) + op(n
−1/2). So to

obtain the asymptotic distribution of ζ̂(q) we need to inspect higher order terms in the asymptotic

expansions. To this end, we introduce the following lemma (where fε denotes the density of ε).

Lemma 4.1 Let Xin = Xi/
√
n. If A2 holds with ε instead of ε∗ and if fε(0) > 0 and there exists a

M > 0 such that P (‖X‖ ≤ M) = 1, then for any constant C < ∞,

sup
‖δ‖≤C

∣

∣

∣

∣

∣

n
∑

i=1

(

ρ(εi −X⊤
inδ)− ρ(εi) +X⊤

inδϕ(εi)
)

− fε(0)δ
⊤E(XX⊤)δ

∣

∣

∣

∣

∣

→ 0 in probability.

as n → ∞.

This is an adaptation of Lemma 2.2 in Rao and Zhao (1992) to the random design setting. Thanks

to this lemma, we obtain the asymptotic distribution of ζ̂(q) in the degenerate case. The proofs of

both results can be found in the Appendix.

Theorem 4.2 Under the conditions of Lemma 4.1, if ζ(q) = 0, then,

nζ̂(q)
d→ q(1− q)

fε(0)λ
χ2
d1 ,

where λ = Eρ(ε) and ε = Y −X⊤β = Y −X⊤
0 β0.

In other words ζ̂(q) follows a scaled chi-square distribution with d1 degrees of freedom. The scaling

factor q(1− q)/(fε(0)λ) can be estimated by plugging-in appropriate estimators of fε(0) and λ; see

for example Li and Zou (1994). Clearly one can use this result to construct an asymptotically valid

test statistic for (3.1).

5 Numerical Studies

In this section we will present the results of four Monte Carlo experiments, to check whether the

asymptotic theory developed in the previous sections provides good approximations for small samples.

In all four examples, we use a truncated normal distribution TN(µ,Σ,a,b) for the distribution of the

covariate vector, i.e. its density is given by

f(x,µ,Σ,a,b) =
exp

{

−1

2
(x− µ)⊤Σ−1(x− µ)

}

∫

b

a
exp

{

−1

2
(x− µ)⊤Σ−1(x− µ)

}

dx
.

Example 1. Consider the model

Yi = 0.5 +X1i − 2X2i + 3X3i + σεi, i = 1, . . . , n, (5.1)
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where the Xi = (X1i, X2i, X3i)
⊤’s are i.i.d. and generated from a truncated multivariate normal

distribution with

µ =















0

0

0















,Σ =















1 0.5 0.25

0.5 1 0.5

0.25 0.5 1















,a =















−5

−5

−5















and b =















5

5

5















,

the εi’s are i.i.d. and generated from a standard normal, and εi and Xi are independent. The value of

σ is given by 1, 3 or 5. Figure 1 shows the boxplot and quantile-quantile (Q-Q) plot of R̂(0.5) (with

reference to the normal distribution) based on 1000 random samples of size 200 when σ = 1. The Q-Q

plot in Figure 1 indicates that R̂(0.5) asymptotically follows a normal distribution. Moreover, the

p-value of the Kolmogorov-Smirnov (KS) test for the distribution of R̂(0.5) is 0.193, which supports

our asymptotic theory. Though not reported here, for other values of q we get similar findings. To

validate our asymptotic theory in another point of view, we calculate the empirical coverage probabil-

ities of confidence intervals for R(0.5) and the results for different values of σ are reported in Table 1.

The significance level (α) is 0.05. To construct confidence intervals, the asymptotic variance estimator

given in Section 3 is used. From Table 1, we can clearly see that the empirical coverage probabilities

are getting close to the nominal value as the sample size increases regardless of the value of σ.

Example 2. Consider the model

Yi =

(

1

2
+Xi +

1

4
X2

i

)

εi, i = 1, . . . , n, (5.2)

where theXi’s are i.i.d. and have a truncated normal distribution with µ = 3, σ = 1, a = −2 and b = 8,

and the εi’s are independent zero-mean normal random variables with variance 1/100. We assume

again that εi and Xi are independent. Letting QY (q|X) denote the qth quantile of the distribution of

Y given X, (5.2) may be expressed in the following way:

QY (q|X) =

(

1

2
+X +

1

4
X2

)

Φ−1(q),

where 0 < q < 1 and Φ−1(q) is the standard Gaussian quantile function. Hence, by taking Xi =

(Xi, X
2
i )

⊤, (5.2) can be regarded as a linear quantile regression model. Note that in this example

the covariate vector X cannot account for any portion of the variation of Y in the mean regression

framework, as the population version of R2 equals zero. But for quantiles other than the median

there is a clear benefit from the parametric form of the conditional quantile specification as can be
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seen in the R(q)-function in Figure 2. Only when q = 0.5, as in the case of mean regression, there

is no benefit to consider X in the estimation of the conditional median of Y . As for the conditional

median of Y , R(0.5) = 0 and R̂(0.5) is not asymptotically normal because its asymptotic variance is

zero. Figure 3 shows the Q-Q plots and p-values of the KS test for the distribution of R̂(0.5) (upper

panels, degenerate case) and R̂(0.2) (lower panels, non-degenerate case) with reference to the normal

distribution based on 1000 random samples of different sample sizes (n = 100, 500 and 2000). From

Figure 3 we observe that the distribution of R̂(0.2) converges to a normal distribution as the sample

size increases, while that of R̂(0.5) stays severely skewed to the right regardless of how large the sample

is. This observation coincides with our asymptotic theory.

Example 3. Consider the model

Yi = 0.5 +X1i − 2X2i + εi, i = 1, . . . , n, (5.3)

where Xi = (X1i, X2i, X3i) and εi are the same as in Example 1, and where εi is independent of Xi.

Recall that when εi is standard normal,

fǫ(0) =
1√
2π

and λ = Eρ(ε) =

√
2√
π
.

Since β3 = 0, we know from Theorem 4.2 that nζ̂(0.5) follows a scaled chi-square distribution (π/4)χ2
1.

Figure 4 shows the Q-Q plot of nζ̂(0.5) with respect to (π/4)χ2
1. The ζ̂(0.5)’s are calculated using 500

data sets of size n = 500 and n = 1000. The quantile range is from 0.01 to 0.99 by steps of 0.01. From

Figure 4 we see that the two distributions almost coincide when n = 1000 and differ only slightly for

high quantiles when n = 500.

Example 4. Consider the true model

Yi = 0.5 +X1i − 2X2i + 3X3i + ν(1− cos(πX1i/2)) + σεi, i = 1, . . . , n, (5.4)

where the Xi’s are i.i.d. and generated from a truncated multivariate normal distribution with

µ =







0.5

0.5

0.5






,Σ =







1 0.5 0.25

0.5 1 0.5

0.25 0.5 1






,a =







0

0

0






and b =







1

1

1






,

and the εi’s are independent standard normal variables, that are independent of the Xi’s. The value

of σ is given by 0.4 or 0.8 and the value of ν is given by 0 or 2. Suppose that we only consider the

10



linear quantile regression model for the analysis. When ν = 0, there is no misspecification in the full

model. In order to measure each covariate’s importance in the linear model, we define

ζ̂X1
(q) = 1−

∑n
i=1

ρ(Yi −X⊤
i β̂)

∑n
i=1

ρ(Yi −X⊤
0,iβ̂0)

,

where X0,i = (1, X2i, X3i) and β̂0 = argminb0

∑n
i=1

ρ(Yi − X⊤
0,ib0), and we define ζ̂X2

(q), ζ̂X3
(q),

ζX1
(q), ζX2

(q) and ζX3
(q) in a similar manner. If ζXk

(q) is small, it means the the introduction of Xk

into the model leads to little additional increase in explanatory power under the linearity restriction.

Therefore, ζXk
(q) can be seen as the importance of Xk under the restriction of the linear model.

Table 2 shows the values of ζX1
(q), ζX2

(q) and ζX3
(q) for various settings. We observe that when no

misspecification is present (ν = 0), the relative importance of each covariate based on ζXk
(q) depends

on the magnitude of its linear coefficient in the full model. But when the functional form of the

covariate X1 is misspecified (ν > 0), the situation is different. Some portion of the nonlinear structure

of X1 can be explained by the linear component, but the amount depends on the structure of the

nonlinear part. In our example, the nonlinear component is strictly increasing, and therefore that

portion is quite large. Consequently, the relative importance of the covariates is not given by the

magnitude of the linear coefficients, as is shown in Table 2. When ν = 3, the proposed measure shows

that X1 becomes the most important covariate under the restriction of the linear model. Figure 5

shows the boxplots of ζ̂Xk
(0.5), k = 1, 2, 3, when ν = 0 (without misspecification) and ν = 3 (with

misspecification) based on 500 datasets of size 200. Clearly, we see that the values of the ζ̂Xk
(q)’s

confirm our previous findings and intuition based on the ζ̂Xk
(q)’s.

6 Real Data Analysis

In this section, we illustrate the developed theory by using data on body fat measures (Penrose et al.,

1985). The data set consists of the body fat percentage and various body circumference measurements

for 252 men who are above age 20. We exclude one observation that appears to deviate remarkably

from the other observations. Note that the body fat percentage can be determined by measuring the

body average density, which requires the difference between the body weight measured in the air and

during water submersion. Since this process can be cumbersome, it is sometimes convenient to build

an equation to predict the percentage of body fat from body circumference measurements. This is

also useful for individual health management.

For men two well known predictive factors (explanatory variables) for body fat percentage are

11



abdominal circumference and body mass index. The body mass index is an individual’s body weight

(in kilogram) divided by the square of his or her height (in meter). Figure 6 shows scatter plots of

abdomen circumference and body mass index versus body fat percentage, along with three conditional

quantile lines (q = 0.2, 0.5 and 0.8). As is shown in Figure 6, there is a clear linear relationship between

each of the predictive factors and body fat percentage. But we observe that for similar values of a

predictive factor the body fat percentages can be fairly different. This indicates that if we want to

manage body fat accurately based on either of the two predictive factors, we should have interest not

only in the conditional mean of body fat percentage but also in the (high) conditional quantiles of it.

This observation leads us to compare the goodness-of-fit of these two factors for predicting body fat

in quantile regression. Table 3 shows the 95%-confidence intervals for R(q) for each of the two factors

and for different values of q. Across all the quantile levels considered, the goodness-of-fit of abdomen

size is higher than that of body mass index. It implies that abdomen size is more helpful to predict

the conditional quantile of body fat percentage as well as the mean conditional body fat. Recently,

Coutinho et al. (2011) claimed that abdomen size is a more informative factor than body mass index

for measuring the risk of coronary artery disease of an individual. Since the accumulation of excessive

body fat is one of the crucial factors that cause coronary artery diseases, their recent report can be

understood within the context of the results of our analysis. But from the fact that two confidence

intervals of the goodness-of-fit measure overlap more for high conditional quantiles (q = 0.8 and 0.9),

we can conclude that the difference between the goodness-of-fit of the two factors becomes a little

bit less significant for high conditional quantiles than for the conditional median, if we take sampling

variation into consideration. Our asymptotic theory enables us to consider sampling variation for

comparison of goodness-of-fit and so helps us to perform more delicate analysis.

In this data set on body fat measures, we have possibly many other covariates which might be

helpful for prediction of the quantile of body fat. But most of them have negligible effects. Recently,

Capizzi et al. (2011) claimed that wrist circumference may identify children with overweight at risk

for heart disease, the cause of which is mainly excess body fat. So we try to check whether wrist

circumference is a factor worthy of consideration together with abdominal circumference and compare

two nested linear models. One of them is the linear model containing only abdominal circumference,

and the other linear model contains both covariates. In this case, the value of ζ̂(q) across all q-levels is

around 0.06, which suggests that wrist circumference does not need to be added to the model. Since

Capizzi et al. (2011) focused in their study on children with overweight, their conclusions are not in

12



disagreement with ours, since in our data set all men are above age 20. Additionally, we verify the

explanatory power of wrist circumference. Table 4 shows the limit of the upper confidence interval

for R(q) at significance level α = 0.05 for various values of q. Since all values are below 0.11, we see

that wrist circumference may (in the best case) have a small effect on the quantile of body fat, but it

is certainly less predictive than abdomen size or body mass index.

7 Conclusion

In this paper we have considered the problem of measuring the adequacy of a linear fit in quantile

regression, when misspecification (both in the full and the reduced model) is possibly present. We

have studied two coefficients, ζ(q) and R(q), (a version of) which have been previously proposed by

Koenker and Machado (1999), and which are both inspired by the so-called coefficient of determination,

introduced long ago in the context of mean regression. The proposed estimators of both quantities

have been studied from a theoretical point of view, as well as through simulations and via the analysis

of data on body fat indicators.

It would be interesting to extend the results of this paper to nonlinear quantile regression. However,

so far the asymptotic theory for parameter estimators under a misspecified nonlinear quantile model

with random design, has not been developed yet, and so this needs to be considered first.

Another possible future research project consists of extending the present paper to the case where

the response is subject to random right censoring (more complicated types of incomplete data can

be considered in a later stage). So far, in the case of censored data, no quantile-analogue of the R2-

coefficient has been proposed in the literature. So, the first step will be to develop such a coefficient for

censored data. Since censored data are often skewed (to the right), the development of a quantile-based

coefficient for assessing model adequacy seems a very promising and useful project for practitioners.

Appendix

Theorem 2.2 can be easily proved using the fact that âb̂−1 = ab−1 + b̂−1[â− a− (b̂− b)ab−1] and the

following expansions:

1

n

n
∑

i=1

ρ(Yi −X⊤
i β̂) =

1

n

n
∑

i=1

ρ(Yi −X⊤
i β

∗) + op(n
−1/2), (7.1)

1

n

n
∑

i=1

ρ(Yi −X⊤
0,iβ̂0) =

1

n

n
∑

i=1

ρ(Yi −X⊤
0,iβ

∗
0) + op(n

−1/2). (7.2)
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Since both (7.1) and (7.2) can be proven using the same arguments, we only provide the proof for

(7.1), which is given in the following lemma.

Lemma 7.1 Suppose that A1-A2 hold, and that there exists a M > 0 such that P (‖X‖ ≤ M) = 1.

Then, (7.1) holds true.

Proof. Let d̂(Xi) = (β̂ − β∗)⊤Xi and consider the following decomposition of ρ(·):

1

n

n
∑

i=1

ρ(Yi − β̂⊤Xi)−
1

n

n
∑

i=1

ρ(Yi − β∗⊤Xi)

= − 1

n

n
∑

i=1

(β̂ − β∗)⊤Xi ϕ(ε
∗
i )

− 2

n

n
∑

i=1

(ε∗i − d̂(Xi))×
{

I(d̂(Xi) > ε∗i > 0)− I(d̂(Xi) < ε∗i < 0)
}

≡ A+B (say).

From Lemma 2.1, we have that

A = −(β̂ − β∗)⊤
1

n

n
∑

i=1

Xiϕ(ε
∗
i ) = op(n

−1/2).

As for the term B, note that

|B| ≤ 2

n

n
∑

i=1

(|d̂(Xi)|+ |ε∗i |)I
{

|ε∗i | < |d̂(Xi)|
}

≤ 4

n

n
∑

i=1

|d̂(Xi)| I
{

|ε∗i | < |d̂(Xi)|
}

≤ 4max
j

|d̂(Xj)|
1

n

n
∑

i=1

I
{

|ε∗i | < max
j

|d̂(Xj)|
}

.

Using the Glivenko-Cantelli Theorem,

|B| ≤ 4max
j

|d̂(Xj)|
{

P

(

|ε∗| < max
j

|d̂(Xj)|
)

+ op(1)

}

= 4max
j

|d̂(Xj)|
{

Fε∗

(

max
j

|d̂(Xj)|
)

− Fε∗

(

−max
j

|d̂(Xj)|
)}

+ 4max
j

|d̂(Xj)| × op(1)

≤ 8 sup
e∈E

fε∗(e)

(

max
j

|d̂(Xj)|
)2

+ 4max
j

|d̂(Xj)| × op(1),

where Fε∗ is the distribution function of ε∗, and fε∗ its density function. Finally, from the fact that

the Xi’s are bounded and using Lemma 2.1 we get that maxj |d̂(Xj)| = Op(n
−1/2), which proves that

B = op(n
−1/2). �
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Proof of Lemma 4.1. Let

fn(γ) =

n
∑

i=1

(

ρ(εi −X⊤
inγ)− ρ(εi) +X⊤

inγϕ(εi)
)

.

Recall from the proof of Lemma 3.3 in He and Shi (1994) that for any real number a, there exists a

real ra such that

Eε[ρ(ε+ a)− ρ(ε)] = fε(0)a
2 +

a2

2
ra, (7.3)

where ra → 0 as |a| → 0. Hence, there exists riγ , i = 1, . . . , n, such that

Efn(γ) =

n
∑

i=1

EX

{

Eε[ρ(εi −X⊤
inγ)− ρ(εi)]

}

=

n
∑

i=1

EX

{

fε(0)(X
⊤
inγ)

2 +
1

2
(X⊤

inγ)
2riγ

}

,

and, for any ǫ > 0, there exists δ > 0 such that |X⊤
inγ| ≤ δ implies |riγ | ≤ ǫ. Since ‖Xin‖ → 0 by the

boundedness of X, we have

Efn(γ) =
n
∑

i=1

EX

{

fε(0)(X
⊤
inγ)

2
}

(1 + o(1)) = fε(0)γ
⊤E(XX⊤)γ(1 + o(1)).

By Schwarz’s inequality,

Varfn(δ) ≤
n
∑

i=1

EX,ε

{(

∫ −X
⊤
in
δ

0

[ϕ(εi + u)− ϕ(εi)]du
)2}

≤
n
∑

i=1

EX

{

‖X⊤
inδ‖

∣

∣

∣

∫ −X
⊤
in
δ

0

Eε[ϕ(εi + u)− ϕ(εi)]
2du

∣

∣

∣

}

≤
n
∑

i=1

EX

{

δ⊤XinX
⊤
inδ

}

× o(1) ≤ δ⊤E(XX⊤)δ × o(1) → 0, as n → ∞.

Since fn(δ) is convex in δ, Lemma 4.1 follows from Lemma 2.1 in Rao and Zhao (1992). �

Proof of Theorem 4.2. For the proof, we adopt the following notations.

Σ = E(XX⊤), T = (Id0×d0 ,Od0×d1)
⊤, P = T{T⊤ΣT}−1T⊤,

S = (Σ−1 −P)1/2 = (s1 · · · sd)⊤ ,

where I is an identity matrix, O is a zero matrix and sk is the kth row of S. Let β̃ = (β̂⊤
0 ,0

⊤)⊤ be

the minimizer of
∑n

i=1
ρ(Yi −X⊤

i β) with the constraint β1 = 0. Following the steps in the proof of
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Theorem 1 in Kim and White (2003), we have

β̃ − β =
1

2fε(0)

1

n

n
∑

i=1

PXiϕ(εi) + op(n
−1/2), (7.4)

β̂ − β =
1

2fε(0)

1

n

n
∑

i=1

Σ−1Xiϕ(εi) + op(n
−1/2), (7.5)

β̂ − β̃ =
1

2fε(0)

1

n

n
∑

i=1

{Σ−1 −P}Xiϕ(εi) + op(n
−1/2), (7.6)

where β = (β⊤
0 ,0

⊤)⊤. Observe that

(

Σ−1 −P
)⊤

Σ
(

Σ−1 −P
)

= Σ−1 −P (7.7)

(

Σ−1 −P
)⊤

Σ P = O (7.8)

Lemma 4.1 implies that

n
∑

i=1

ρ(Yi −X⊤
i β̃)−

n
∑

i=1

ρ(Yi −X⊤
i β̂)

=
n
∑

i=1

ρ(εi −X⊤
i (β̃ − β))−

n
∑

i=1

ρ(εi −X⊤
i (β̂ − β))

=
n
∑

i=1

X⊤
i (β̂ − β)ϕ(εi)−

n
∑

i=1

X⊤
i (β̃ − β)ϕ(εi)

+nfε(0)(β̃ − β)⊤Σ(β̃ − β)− nfε(0)(β̂ − β)⊤Σ(β̂ − β) + op(1),

where εi = Yi −X⊤
i β = Yi −X⊤

0,iβ0. Since (β̂ − β̃)⊤Σ(β̃ − β) = op(n
−1) by (7.4),(7.6) and (7.8), we

have

n
∑

i=1

ρ(Yi −X⊤
i β̃)−

n
∑

i=1

ρ(Yi −X⊤
i β̂)

=
n
∑

i=1

X⊤
i (β̂ − β̃)ϕ(εi)− nfε(0)(β̂ − β̃)⊤Σ(β̂ − β̃) + op(1) (7.9)

Applying (7.6) and (7.7) to Equation (7.9), we obtain

n
∑

i=1

ρ(Yi −X⊤
i β̃)−

n
∑

i=1

ρ(Yi −X⊤
i β̂)

=
q(1− q)

fε(0)

∥

∥

∥

∥

∥

1√
n

n
∑

i=1

SXi
ϕ(εi)

√

4q(1− q)

∥

∥

∥

∥

∥

2

+ op(1) (7.10)

Before deriving the asymptotic distribution of (7.10), we first show that rank(S) = d1. Since

rank(S) = rank(S2), it is enough to show that rank(S2) ≤ d1 and rank(S2) ≥ d1. The first inequality
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follows by applying Sylvester’s rank inequality in Kaw (2011) to (7.8). The second inequality holds

because ed0+1, · · · , ed are the eigenvectors of ΣS2 with common eigenvalue 1 and Σ−1 is invertible,

where e1, . . . , ed are the standard basis for Rd.

Since rank(S) = d1, we can choose a linearly independent subset of d1 vectors from s1, . . . , sd.

Applying the Gram-Schmidt process to such vectors with the inner product < a,b >= a⊤Σb leads

us to obtain u1, . . . ,ud1 such that for 1 ≤ l,m ≤ d1,

u⊤
l Σum = 0 for l 6= m and u⊤

l Σul = 1; (7.11)

sk ∈ Span(u1, . . . ,ud1) for k = 1, . . . , d, (7.12)

where Span(u1, . . . ,ud1) is the vector space spanned by u1, . . . ,ud1 . Furthermore, it can be shown

that for such u1, . . . ,ud1 there exists a d× d1 matrix C such that









s⊤1
...

s⊤d









= S = C









u⊤
1

...

u⊤
d1









≡ CU and C⊤C = Id1×d1 . (7.13)

From (7.13), we have

1√
n

n
∑

i=1

SXi
ϕ(εi)

√

4q(1− q)
= C

1√
n

n
∑

i=1

UXi
ϕ(εi)

√

4q(1− q)
≡ Cρn

Using the fact that Xi and εi are independent and (7.11), it is evident that the distribution of ρn

converges to a standard multivariate normal distribution of dimension d1 = d − d0. Since C⊤C =

Id1×d1 , we obtain that
∑n

i=1
ρ(Yi−X⊤

i β̃)−
∑n

i=1
ρ(Yi−X⊤

i β̂) converges to q(1− q)χ2
d1
/fε(0) as n → ∞.

Finally, by the law of large numbers and the decomposition

1

n

n
∑

i=1

ρ(Yi −X⊤
i β̃) =

1

n

n
∑

i=1

ρ(Yi −X⊤
i β) + op(n

−1/2),

we obtain the asymptotic distribution of ζ̂(q). �

References

Capizzi, M., G. Leto, A. Petrone, S. Zampetti, R. E. Papa, M. Osimani, M. Spoletini, A. Lenzi,

J. Osborn, M. Mastantuono, A. Vania, and R. Buzzetti (2011). Wrist circumference is a clinical

marker of insulin resistance in overweight and obese children and adolescents. Circulation (published

online before print).

17
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σ = 1 (R(0.5) = 0.657) σ = 3 (R(0.5) = 0.262) σ = 5 (R(0.5) = 0.124)

n = 50 0.922 0.916 0.925

n = 100 0.929 0.936 0.939

n = 200 0.945 0.947 0.941

n = 400 0.946 0.952 0.944

Table 1: Empirical coverage probabilities of 95% confidence intervals for R(0.5) from 1000 random

samples of size n = 50, 100, 200 and 400.
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Figure 1: The boxplot and Q-Q plot of R̂(0.5).

ζX1
(q) ζX2

(q) ζX3
(q)

ν = 0 q = 0.5 σ = 0.4 0.188 0.437 0.593

σ = 0.8 0.057 0.186 0.324

q = 0.2 σ = 0.4 0.184 0.420 0.572

σ = 0.8 0.057 0.182 0.315

ν = 2 q = 0.5 σ = 0.4 0.664 0.397 0.558

σ = 0.8 0.441 0.179 0.316

q = 0.2 σ = 0.4 0.609 0.386 0.541

σ = 0.8 0.392 0.173 0.305

Table 2: The values of ζX1
(q), ζX2

(q) and ζX3
(q) for various settings.
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Figure 2: The R(q) function and the scatterplot of one random sample of size 100 with the true

conditional quantile functions for q ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.
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Figure 3: Q-Q plots and p-values of the KS test for the distribution of R̂(0.5) (upper panels, degenerate

case) and R̂(0.2) (lower panels, non-degenerate case) based on 1000 random samples of different sample

sizes (n = 100, 500 and 2000, from left to right). For each Q-Q plot the number between parentheses

is the p-value of the corresponding KS-test.
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Figure 4: Q-Q plots of nζ̂(0.5) with respect to (π/4)χ2
1 when n = 500 (left panel) and n = 1000 (right

panel). The solid line is the bisector.

Abdomen circumference Body mass index

lower limit estimate upper limit lower limit estimate upper limit

q = 0.5 0.3779 0.4406 0.5033 0.2740 0.3436 0.4131

q = 0.6 0.3733 0.4368 0.5002 0.2692 0.3396 0.4101

q = 0.7 0.3665 0.4337 0.5008 0.2627 0.3363 0.4098

q = 0.8 0.3537 0.4236 0.4936 0.2595 0.3383 0.4170

q = 0.9 0.3670 0.4405 0.5139 0.2661 0.3539 0.4418

Table 3: 95%-confidence intervals for R(q) for two factors and different values of q.

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

upper limit(q) 0.100 0.083 0.094 0.097 0.102 0.102 0.104 0.095 0.108

Table 4: The limit of the upper confidence interval for R(q) at significance level α = 0.05 for the

model containing wrist circumference as only factor.
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Figure 5: Boxplots of ζ̂Xk
(0.5), k = 1, 2, 3, when ν = 0 (left three panels) and ν = 3 (right three

panels) based on 500 datasets of size 200. The horizontal dotted line in each box plot represents the

corresponding true value.
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Figure 6: Scatter plots of abdomen circumference and body mass index versus body fat percentage,

along with three conditional quantile lines (q = 0.2 – lower dashed, 0.5 – solid, and 0.8 – upper

dashed).
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