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Abstract

Consider the semiparametric transformation model Λθo(Y ) = m(X) + ε, where θo is an unknown

finite dimensional parameter, the functions Λθo and m are smooth, ε is independent of X, and E(ε) = 0.

We propose a kernel-type estimator of the density of the error ε, and prove its asymptotic normality. The

estimated errors, which lie at the basis of this estimator, are obtained from a profile likelihood estimator

of θo and a nonparametric kernel estimator of m. The practical performance of the proposed density

estimator is evaluated in a simulation study.
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Belgique’, granted by the ‘Académie universitaire Louvain’.
‡I. Van Keilegom acknowledges financial support from IAP research network P6/03 of the Belgian Government (Belgian

Science Policy), from the European Research Council under the European Community’s Seventh Framework Programme

(FP7/2007-2013) / ERC Grant agreement No. 203650, and from the contract ‘Projet d’Actions de Recherche Concertées’
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be independent replicates of the random vector (X,Y ), where Y is a univariate

dependent variable and X is a one-dimensional covariate. We assume that Y and X are related via the

semiparametric transformation model

Λθo(Y ) = m(X) + ε, (1.1)

where ε is independent of X and has mean zero. We assume that {Λθ : θ ∈ Θ} (with Θ ⊂ Rp compact) is

a parametric family of strictly increasing functions defined on an unbounded subset D in R, while m is the

unknown regression function, belonging to an infinite dimensional parameter set M. We assume that M is

a space of functions endowed with the norm ‖ · ‖M = ‖ · ‖∞. We denote θo ∈ Θ and m ∈ M for the true

unknown finite and infinite dimensional parameters. Define the regression function

mθ(x) = E[Λθ(Y )|X = x],

for each θ ∈ Θ, and let εθ = ε(θ) = Λθ(Y )−mθ(X).

In this paper, we are interested in the estimation of the probability density function (p.d.f.) fε of the

residual term ε = Λθo(Y ) −m(X). To this end, we first obtain the estimators θ̂ and m̂θ of the parameter

θo and the function mθ, and second, form the semiparametric regression residuals ε̂i(θ̂) = Λθ̂(Yi)− m̂θ̂(Xi).

To estimate θo we use a profile likelihood (PL) approach, developed in Linton, Sperlich and Van Keilegom

(2008), whereas m̂θ is estimated by means of a Nadaraya-Watson-type estimator (Nadaraya, 1964, Watson,

1964). To our knowledge, the estimation of the density of ε in model (1.1) has not yet been investigated in

the statistical literature. This estimation may be very useful in various regression problems. Indeed, taking

transformations of the data may induce normality and error variance homogeneity in the transformed model.

So the estimation of the error density in the transformed model may be used for testing these hypotheses.

Taking transformations of the data has been an important part of statistical practice for many years.

A major contribution to this methodology was made by Box and Cox (1964), who proposed a parametric

power family of transformations that includes the logarithm and the identity. They suggested that the power

transformation, when applied to the dependent variable in a linear regression model, might induce normality

and homoscedasticity. Lots of effort has been devoted to the investigation of the Box-Cox transformation

since its introduction. See, for example, Amemiya (1985), Horowitz (1998), Chen, Lockhart and Stephens

(2002), Shin (2008), and Fitzenberger, Wilke and Zhang (2010). Other dependent variable transformations

have been suggested, for example, the Zellner and Revankar (1969) transform and the Bickel and Doksum
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(1981) transform. The transformation methodology has been quite successful and a large literature exists on

this topic for parametric models. See Carroll and Ruppert (1988) and Sakia (1992) and references therein.

The estimation of (functionals of) the error distribution and density under simplified versions of model

(1.1) has received considerable attention in the statistical literature in recent years. Consider e.g. model

(1.1) but with Λθo ≡ id, i.e. the response is not transformed. Under this model, Escanciano and Jacho-

Chavez (2010) considered the estimation of the (marginal) density of the response Y via the estimation

of the error density. Akritas and Van Keilegom (2001) estimated the cumulative distribution function of

the regression error in a heteroscedastic model with univariate covariates. The estimator they proposed is

based on nonparametrically estimated regression residuals. The weak convergence of their estimator was

proved. The results obtained by Akritas and Van Keilegom (2001) have been generalized by Neumeyer

and Van Keilegom (2010) to the case of multivariate covariates. Müller, Schick and Wefelmeyer (2004)

investigated linear functionals of the error distribution in nonparametric regression. Cheng (2005) established

the asymptotic normality of an estimator of the error density based on estimated residuals. The estimator

he proposed is constructed by splitting the sample into two parts: the first part is used for the estimation of

the residuals, while the second part of the sample is used for the construction of the error density estimator.

Efromovich (2005) proposed an adaptive estimator of the error density, based on a density estimator proposed

by Pinsker (1980). Finally, Samb (2010) also considered the estimation of the error density, but his approach

is more closely related to the one in Akritas and Van Keilegom (2001).

In order to achieve the objective of this paper, namely the estimation of the error density under model

(1.1), we first need to estimate the transformation parameter θo. To this end, we make use of the results in

Linton, Sperlich and Van Keilegom (2008). In the latter paper, the authors first discuss the nonparametric

identification of model (1.1), and second, estimate the transformation parameter θo under the considered

model. For the estimation of this parameter, they propose two approaches. The first approach uses a

semiparametric profile likelihood (PL) estimator, while the second is based on a ‘mean squared distance

from independence-estimator (MD) using the estimated distributions of X, ε and (X, ε). Linton, Sperlich

and Van Keilegom (2008) derived the asymptotic distributions of their estimators under certain regularity

conditions, and proved that both estimators of θo are root-n consistent. The authors also showed that, in

practice, the performance of the PL method is better than that of the MD approach. For this reason, the

PL method will be considered in this paper for the estimation of θo.

The rest of the paper is organized as follows. Section 2 presents our estimator of the error density and

groups some notations and technical assumptions. Section 3 describes the asymptotic results of the paper.
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A simulation study is given in Section 4, while Section 5 is devoted to some general conclusions. Finally, the

proofs of the asymptotic results are collected in Section 6.

2 Definitions and assumptions

2.1 Construction of the estimators

The approach proposed here for the estimation of fε is based on a two-steps procedure. In a first step, we

estimate the finite dimensional parameter θo. This parameter is estimated by the profile likelihood (PL)

method, developed in Linton, Sperlich and Van Keilegom (2008). The basic idea of this method is to replace

all unknown expressions in the likelihood function by their nonparametric kernel estimates. Under model

(1.1), we have

P (Y ≤ y|X) = P (Λθo(Y ) ≤ Λθo(y)|X) = P (εθo ≤ Λθo(y)−mθo(X)|X) = Fε (Λθo(y)−mθo(X)) .

Here, Fε(t) = P(ε ≤ t), and so

fY |X(y|x) = fε (Λθo(y)−mθo(x)) Λ
′
θo(y),

where fε and fY |X are the densities of ε, and of Y given X, respectively. Then, the log likelihood function is

n∑

i=1

{log fεθ (Λθ(Yi)−mθ(Xi)) + log Λ′
θ(Yi)} , θ ∈ Θ,

where fεθ is the density function of εθ. Now, let

m̂θ(x) =

∑n
j=1 Λθ(Yj)K1

(
Xj−x

h

)

∑n
j=1 K1

(
Xj−x

h

) (2.1)

be the Nadaraya-Watson estimator of mθ(x), and let

f̂εθ (t) =
1

ng

n∑

i=1

K2

(
ε̂i(θ)− t

g

)
. (2.2)

where ε̂i(θ) = Λθ(Yi)−m̂θ(Xi). Here, K1 and K2 are kernel functions and h and g are bandwidth sequences.

Then, the PL estimator of θo is defined by

θ̂ = argmax
θ∈Θ

n∑

i=1

[
log f̂εθ (Λθ(Yi)− m̂θ(Xi)) + log Λ′

θ(Yi)
]
. (2.3)

Recall that m̂θ(Xi) converges to mθ(Xi) at a slower rate for those Xi which are close to the boundary of

the support X of the covariate X. That is why we assume implicitly that the proposed estimator (2.3) of θo
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trims the observations Xi outside a subset X0 of X . Note that we keep the root-n consistency of θ̂ proved

in Linton, Sperlich and Van Keilegom (2008) by trimming the covariates outside X0. But in this case, the

resulting asymptotic variance is different to the one obtained in the latter paper.

In a second step, we use the above estimator θ̂ to build the estimated residuals ε̂i(θ̂) = Λθ̂(Yi) − m̂θ̂(Xi).

Then, our proposed estimator f̂ε̂(t) of fε(t) is defined by

f̂ε̂(t) =
1

nb

n∑

i=1

K3

(
ε̂i(θ̂)− t

b

)
, (2.4)

where K3 is a kernel function and b is a bandwidth sequence, not necessarily the same as the kernel K2 and

the bandwidth g used in (2.2). Observe that this estimator is a feasible estimator in the sense that it does

not depend on any unknown quantity, as is desirable in practice. This contrasts with the unfeasible ideal

kernel estimator

f̃ε(t) =
1

nb

n∑

i=1

K3

(
εi − t

b

)
, (2.5)

which depends in particular on the unknown regression errors εi = εi(θo) = Λθo(Yi)−m(Xi). It is however

intuitively clear that f̂ε̂(t) and f̃ε(t) will be very close for n large enough, as will be illustrated by the results

given in Section 3.

2.2 Notations

When there is no ambiguity, we use ε and m to indicate εθo and mθo . Moreover, N (θo) represents a

neighborhood of θo. For the kernel Kj (j = 1, 2, 3), let µ(Kj) =
∫
v2Kj(v)dv and let K

(p)
j be the pth

derivative of Kj . For any function ϕθ(y), denote ϕ̇θ(y) = ∂ϕθ(y)/∂θ = (∂ϕθ(y)/∂θ1, . . . , ∂ϕθ(y)/∂θp)
t and

ϕ′
θ(y) = ∂ϕθ(y)/∂y. Also, let ‖A‖ = (AtA)1/2 be the Euclidean norm of any vector A.

For any functions m̃, r, f , ϕ and q, and any θ ∈ Θ, let s = (m̃, r, f, ϕ, q), sθ = (mθ, ṁθ, fεθ , f
′
εθ
, ḟεθ ),

εi(θ, m̃) = Λθ(Yi)− m̃(Xi), and define

Gn(θ, s) = n−1
n∑

i=1

{
1

f{εi(θ, m̃)}
[
ϕ{εi(θ, m̃)}{Λ̇θ(Yi)− r(Xi)}+ q{εi(θ, m̃)}

]
+

Λ̇′
θ(Yi)

Λ′
θ(Yi)

}
,

G(θ, s) = E[Gn(θ, s)] and G(θo, sθo) = ∂
∂θG(θ, sθ)

y
θ=θo

.

2.3 Technical assumptions

The assumptions we need for the asymptotic results are listed below for convenient reference.
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(A1) The function Kj (j = 1, 2, 3) is symmetric, has compact support,
∫
vkKj(v)dv = 0 for k = 1, . . . , qj −1

and
∫
vqjKj(v)dv 6= 0 for some qj ≥ 4, Kj is twice continuously differentiable, and

∫
K

(1)
3 (v)dv = 0.

(A2) The bandwidth sequences h, g and b satisfy nh2q1 = o(1), ng2q2 = o(1) (where q1 and q2 are defined

in (A1)), (nb5)−1 = O(1), nb3h2(log h−1)−2 → ∞ and ng6(log g−1)−2 → ∞.

(A3) (i) The support X of the covariate X is a compact subset of R, and X0 is a subset with non empty

interior, whose closure is in the interior of X .

(ii) The density fX is bounded away from zero and infinity on X , and has continuous second order partial

derivatives on X .

(A4) The function mθ(x) is twice continuously differentiable with respect to θ on X × N (θ0), and the

functions mθ(x) and ṁθ(x) are q1 times continuously differentiable with respect to x on X × N (θ0). All

these derivatives are bounded, uniformly in (x, θ) ∈ X ×N (θo).

(A5) The error ε = Λθo(Y )−m(X) has finite fourth moment and is independent of X.

(A6) The distribution Fεθ (t) is q3 + 1 (respectively three) times continuously differentiable with respect to

t (respectively θ), and

sup
θ,t

∥∥∥∥∥
∂k+`

∂tk∂θ`11 . . . ∂θ
`p
p

Fεθ (t)

∥∥∥∥∥ < ∞

for all k and ` such that 0 ≤ k + ` ≤ 2, where ` = `1 + . . .+ `p and θ = (θ1, . . . , θp)
t.

(A7) The transformation Λθ(y) is three times continuously differentiable with respect to both θ and y, and

there exists a α > 0 such that

E

[
sup

θ′:‖θ′−θ‖≤α

∥∥∥∥∥
∂k+`

∂yk∂θ`11 . . . ∂θ
`p
p

Λθ′(Y )

∥∥∥∥∥

]
< ∞

for all θ ∈ Θ, and for all k and ` such that 0 ≤ k + ` ≤ 3, where ` = `1 + . . . + `p and θ = (θ1, . . . , θp)
t.

Moreover, supx∈X E[Λ̇4
θo
(Y )|X = x] < ∞.

(A8) For all η > 0, there exists ε(η) > 0 such that

inf
‖θ−θo‖>η

‖G(θ, sθ)‖ ≥ ε(η) > 0.

Moreover, the matrix G(θo, sθo) is non-singular.

(A9) (i) E(Λθo(Y )) = 1, Λθo(0) = 0 and the set {x ∈ X0 : m′(x) 6= 0} has nonempty interior.
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(ii) Assume that φ(x, t) = Λ̇θo(Λ
−1
θo

(m(x) + t))fε(t) is continuously differentiable with respect to t for all x

and that

sup
s:|t−s|≤δ

E
∣∣∣∣
∂φ

∂s
(X, s)

∣∣∣∣ < ∞. (2.6)

for all t ∈ R and for some δ > 0.

Assumptions (A1), part of (A2), (A3)(ii), (A4) and (A6), (A7) and (A8) are used by Linton, Sperlich

and Van Keilegom (2008) to show that the PL estimator θ̂ of θo is root n-consistent. The differentiability of

Kj up to second order imposed in assumption (A1) is used to expand the two-steps kernel estimator f̂ε̂(t)

in (2.4) around the unfeasible one f̃ε(t). Assumptions (A3)(ii) and (A4) impose that all the functions to

be estimated have bounded derivatives. The last assumption in (A2) is useful for obtaining the uniform

convergence of the Nadaraya-Watson estimator of mθo in (2.1) (see for instance Einmahl and Mason, 2005).

This assumption is also needed in the study of the difference between the feasible estimator f̂ε̂(t) and

the unfeasible estimator f̃ε(t). Finally, (A9)(i) is needed for identifying the model (see Vanhems and Van

Keilegom (2011)).

3 Asymptotic results

In this section we are interested in the asymptotic behavior of the estimator f̂ε̂(t). To this end, we first

investigate its asymptotic representation, which will be needed to show its asymptotic normality.

Theorem 3.1. Assume (A1)-(A9). Then,

f̂ε̂(t)− fε(t) =
1

nb

n∑

i=1

K3

(
εi − t

b

)
− fε(t) +Rn(t),

where Rn(t) = oP
(
(nb)−1/2

)
for all t ∈ R.

This result is important, since it shows that, provided the bias term is negligible, the estimation of θo

and m(·) has asymptotically no effect on the behavior of the estimator f̂ε̂(t). Therefore, this estimator is

asymptotically equivalent to the unfeasible estimator f̃ε(t), based on the unknown true errors ε1, . . . , εn.

Our next result gives the asymptotic normality of the estimator f̂ε̂(t).

Theorem 3.2. Assume (A1)-(A9). In addition, assume that nb2q3+1 = O(1). Then,

√
nb

(
f̂ε̂(t)− fε(t)

)
d→ N

(
0, fε(t)

∫
K2

3 (v)dv

)
,
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where

fε(t) = fε(t) +
bq3

q3!
f (q3)
ε (t)

∫
vq3K3(v)dv.

The proofs of Theorems 3.1 and 3.2 are given in Section 6.

4 Simulations

In this section, we investigate the performance of our method for different models and different sample sizes.

Consider

Λθo(Y ) = b0 + b1X
2 + b2 sin(πX) + σeε, (4.1)

where Λθ is the Manly (1976) transformation

Λθ(y) =





eθy−1
θ , θ 6= 0,

y, θ = 0,

θo ∈ [−0.5, 1.5], X is uniformly distributed on the interval [−0.5, 0.5], and ε is independent of X and has a

standard normal distribution but restricted to the interval [−3, 3]. We study three different model settings.

For each of them, b0 = 3σe + b2. The other parameters are chosen as follows:

Model 1: b1 = 5, b2 = 2, σe = 1.5;

Model 2: b1 = 3.5, b2 = 1.5, σe = 1;

Model 3: b1 = 2.5, b2 = 1, σe = 0.5.

The parameters and the error distribution have been chosen in such a way that the transformation

Λθo(Y ) is positive, to avoid problems when generating the variable Y . Our simulations are done for θo = 0,

0.5 or 1. The estimator of θo is chosen from a grid on the interval [−0.5, 1.5] with step size 0.0625. We used

the kernel K(x) = 15
16

(
1− x2

)2
1 (|x| ≤ 1) for both the regression function and the density estimators. The

results are based on 100 random samples of size n = 50 or n = 100, and we worked with the bandwidths

h = 0.3×n−1/5 and b = g = rn, where rn = 1.06× std(ε̂)×n−1/5, which is Silverman’s (1986) rule of thumb

bandwidth for univariate density estimation. Here std(ε̂) is the average of the standard deviations of ε̂ over

the 100 samples.

Table 1 shows the values of the mean, standard deviation and mean squared error of θ̂ for the considered

models, sample sizes and values of θo. We observe that the results for the different models are quite similar,

and as expected, the results are better for n = 100 than for n = 50.
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Table 2 shows the mean squared error (MSE) of the estimator f̂ε̃(t) of the standardized (pseudo-

estimated) error ε̃ = (Λθ̂(Y ) − m̂θ̂(X))/σe, for sample sizes n = 50 and n = 100 and for t = −1, 0 and

1. Results for f̂ε̂(t) have also been obtained, but are not reported here. Indeed, Figure 1, displaying f̂ε̃(t),

shows that, even though residuals are standardized for each simulation (with known σe), better behavior

is observed for models with smaller σe. Moreover, we observe that for θo = 0 there is very little difference

between the curve of f̂ε̃ and the one of the standard normal density. On the other hand for θo = 0.5 and

θo = 1, we notice an important difference between the two curves under Model 1 and 2, but the difference is

less important under Model 3.

n θo mean(θ̂) std(θ̂) MSE(θ̂)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

50 0 0.0063 0.0065 0.0071 0.0116 0.0161 0.0239 0.0064 0.0124 0.0277

0.5 0.3787 0.3754 0.3907 0.0417 0.0438 0.0486 0.0783 0.0867 0.1140

1 0.8197 0.8449 0.8658 0.0792 0.0796 0.0798 0.3506 0.3492 0.3409

100 0 0.0055 0.0148 0.0170 0.0057 0.0078 0.0116 0.0032 0.0059 0.0132

0.5 0.4596 0.4621 0.4728 0.0246 0.254 0.0270 0.0634 0.0676 0.0752

1 0.9196 0.9545 0.9749 0.0401 0.0437 0.0438 0.2092 0.1999 0.1637

Table 1: Approximation of the mean, the standard deviation and the mean squared error of θ̂ for the three

regression models. All numbers are calculated based on 100 random samples.

5 Conclusions

In this paper we have studied the estimation of the density of the error in a semiparametric transformation

model. The regression function in this model is unspecified (except for some smoothness assumptions),

whereas the transformation (of the dependent variable in the model) is supposed to belong to a parametric

family of monotone transformations. The proposed estimator is a kernel-type estimator, and we have shown

its asymptotic normality. The finite sample performance of the estimator is illustrated by means of a

simulation study.

It would be interesting to explore various possible applications of the results in this paper. For example,

one could use the results on the estimation of the error density to test hypotheses concerning e.g. the normality
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of the errors, the homoscedasticity of the error variance, or the linearity of the regression function, all of

which are important features in the context of transformation models.

6 Proofs

Proof of Theorem 3.1. Write

f̂ε̂(t)− fε(t) = [f̂ε(t)− fε(t)] + [f̂ε̂(t)− f̂ε(t)],

where

f̂ε(t) =
1

nb

n∑

i=1

K3

(
ε̂i − t

b

)

and ε̂i = Λθo(Yi)− m̂θo(Xi), i = 1, . . . , n. In a completely similar way as was done for Lemma A.1 in Linton,

Sperlich and Van Keilegom (2008), it can be shown that

f̂ε(t)− fε(t) =
1

nb

n∑

i=1

K3

(
εi − t

b

)
− fε(t) + oP((nb)

−1/2) (6.1)

for all t ∈ R. Note that the remainder term in Lemma A.1 in the above paper equals a sum of i.i.d. terms of

mean zero, plus a oP(n−1/2) term. Hence, the remainder term in that paper is OP(n−1/2), whereas we write

oP((nb)−1/2) in (6.1). Therefore, the result of the theorem follows if we prove that f̂ε̂(t)−f̂ε(t) = oP((nb)−1/2).

To this end, write

f̂ε̂(t)− f̂ε(t)

=
1

nb2

n∑

i=1

(ε̂i(θ̂)− ε̂i(θo))K
(1)
3

(
ε̂i(θo)− t

b

)

+
1

2nb3

n∑

i=1

(ε̂i(θ̂)− ε̂i(θo))
2K

(2)
3

(
ε̂i(θo) + β(ε̂i(θ̂)− ε̂i(θo))− t

b

)
,

for some β ∈ (0, 1). In what follows, we will show that each of the terms above is oP((nb)−1/2). First consider

the last term of (6.2). Since Λθ(y) and m̂θ(x) are both twice continuously differentiable with respect to θ,

the second order Taylor expansion gives, for some θ1 between θo and θ̂ (to simplify the notations, we assume

here that p = dim(θ) = 1),

ε̂i(θ̂)− ε̂i(θo)

= Λθ̂(Yi)− Λθo(Yi)−
(
m̂θ̂(Xi)− m̂θo(Xi)

)

= (θ̂ − θo)(Λ̇θo(Yi)− ˙̂mθo(Xi)) +
1

2
(θ̂ − θo)

2(Λ̈θ1(Yi)− ¨̂mθ1(Xi)).
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Therefore, since θ̂ − θo = oP((nb)−1/2) by Theorem 4.1 in Linton, Sperlich and Van Keilegom (2008) (as

before, we work with a slower rate than what is shown in the latter paper, since this leads to weaker conditions

on the bandwidths), assumptions (A2) and (A7) imply that

1

nb3

n∑

i=1

(ε̂i(θ̂)− ε̂i(θo))
2K

(2)
3

(
ε̂i(θo) + β(ε̂i(θ̂)− ε̂i(θo))− t

b

)
= OP

(
(nb3)−1

)
,

which is oP((nb)−1/2), since (nb5)−1 = O(1) under (A2). For the first term of (6.2), the decomposition of

ε̂i(θ̂)− ε̂i(θo) given above yields

1

nb2

n∑

i=1

(ε̂i(θ̂)− ε̂i(θo))K
(1)
3

(
ε̂i(θo)− t

b

)

=
(θ̂ − θo)

nb2

n∑

i=1

(Λ̇θo(Yi)− ˙̂mθo(Xi))K
(1)
3

(
ε̂i(θo)− t

b

)
+ oP((nb)

−1/2)

=
(θ̂ − θo)

nb2

n∑

i=1

(Λ̇θo(Yi)− ṁθo(Xi))K
(1)
3

(
εi − t

b

)
+ oP((nb)

−1/2), (6.2)

where the last equality follows from a Taylor expansion applied to K
(1)
3 , the fact that

˙̂mθo(x)− ṁθo(x) = OP((nh)
−1/2(log h−1)1/2),

uniformly in x ∈ X0 by Lemma 6.1, and the fact that nhb3(log h−1)−1 → ∞ under (A2). Further, write

E

[
n∑

i=1

(Λ̇θo(Yi)− ṁθo(Xi))K
(1)
3

(
εi − t

b

)]

=

n∑

i=1

E
[
Λ̇θo(Yi)K

(1)
3

(
εi − t

b

)]
−

n∑

i=1

E [ṁθo(Xi)]E
[
K

(1)
3

(
εi − t

b

)]

= An −Bn.

We will only show that the first term above is O(nb2) for any t ∈ R. The proof for the other term is similar.

Let ϕ(x, t) = Λ̇θo(Λ
−1
θo

(m(x)+t)) and set φ(x, t) = ϕ(x, t)fε(t). Then, applying a Taylor expansion to φ(x, ·),
it follows that (for some β ∈ (0, 1))

An =

n∑

i=1

E
[
Λ̇θo

(
Λ−1
θo

(m(Xi) + εi)
)
K

(1)
3

(
εi − t

b

)]

= n

∫ ∫
φ(x, e)K

(1)
3

(
e− t

b

)
fX(x)dxde

= nb

∫ ∫
φ(x, t+ bv)K

(1)
3 (v)fX(x)dxdv

= nb

∫ ∫ [
φ(x, t) + bv

∂φ

∂t
(x, t+ βbv)

]
K

(1)
3 (v)fX(x)dxdv

= nb2
∫ ∫

v
∂φ

∂t
(x, t+ βbv)K

(1)
3 (v)fX(x)dxdv,

11



since
∫
K

(1)
3 (v)dv = 0, and this is bounded by Knb2 sups:|t−s|≤δ E|∂φ∂s (X, s)| = O(nb2) by assumption

(A9)(ii). Hence, Tchebychev’s inequality ensures that

(θ̂ − θo)

b2

n∑

i=1

(Λ̇θo(Yi)− ṁθo(Xi))K
(1)
3

(
εi − t

b

)

=
(θ̂ − θo)

nb2
OP(nb

2 + (nb)1/2) = oP((nb)
−1/2),

since nb3/2 → ∞ by (A2). Substituting this in (6.2), yields

1

nb2

n∑

i=1

(ε̂i(θ̂)− ε̂i(θo))K
(1)
3

(
ε̂i(θo)− t

b

)
= oP((nb)

−1/2),

for any t ∈ R. This completes the proof. 2

Proof of Theorem 3.2. It follows from Theorem 3.1 that

f̂ε̂(t)− fε(t) = [f̃ε(t)− Ef̃ε(t)] + [Ef̃ε(t)− fε(t)] + oP((nb)
−1/2). (6.3)

The first term on the right hand side of (6.3) is treated by Lyapounov’s Central Limit Theorem (LCT) for

triangular arrays (see e.g. Billingsley 1968, Theorem 7.3). To this end, let

f̃in(t) =
1

b
K3

(
εi − t

b

)
.

Then, under (A1), (A2) and (A5) it can be easily shown that

∑n
i=1 E

∣∣∣f̃in(t)− Ef̃in(t)
∣∣∣
3

(∑n
i=1 Varf̃in(t)

)3/2
≤

Cnb−2fε(t)

∫
|K3(v)|3 dv + o

(
nb−2

)

(
nb−1fε(t)

∫
K2

3 (v)dv + o
(
nb−1

))3/2
= O((nb)−1/2) = o(1),

for some C > 0. Hence, the LCT ensures that

f̃ε(t)− Ef̃ε(t)√
Varf̃ε(t)

=
f̃ε(t)− Ef̃ε(t)√

Varf̃1n(t)
n

d→ N (0, 1) .

This gives

√
nb

(
f̃ε(t)− Ef̃ε(t)

)
d→ N

(
0, fε(t)

∫
K2

3 (v)dv

)
. (6.4)

For the second term of (6.3), straightforward calculations show that

Ef̃ε(t)− fε(t) =
bq3

q3!
f (q3)
ε (t)

∫
vq3K3(v)dv + o(bq3).

Combining this with (6.4) and (6.3), we obtain the desired result. 2
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Lemma 6.1. Assume (A1)-(A5) and (A7). Then,

sup
x∈X0

|m̂θo(x)−mθo(x)| = OP((nh)
−1/2(log h−1)1/2),

sup
x∈X0

| ˙̂mθo(x)− ṁθo(x)| = OP((nh)
−1/2(log h−1)1/2).

Proof. We will only show the proof for ˙̂mθo(x)− ṁθo(x), the proof for m̂θo(x)−mθo(x) being very similar.

Let cn = (nh)−1/2(log h−1)1/2, and define

˙̂rθo(x) =
1

nh

n∑

j=1

Λ̇θo(Yj)K1

(
Xj − x

h

)
, ṙθo(x) = E[ ˙̂rθo(x)], fX(x) = E[f̂X(x)],

where f̂X(x) = (nh)−1
∑n

j=1 K1(
Xj−x

h ). Then,

sup
x∈X0

| ˙̂mθo(x)− ṁθo(x)| ≤ sup
x∈X0

∣∣∣∣ ˙̂mθo(x)−
ṙθo(x)

fX(x)

∣∣∣∣+ sup
x∈X0

1

fX(x)

∣∣ṙθo(x)− fX(x)ṁθo(x)
∣∣ . (6.5)

Since E[Λ̇4
θo
(Y )|X = x] < ∞ uniformly in x ∈ X by assumption (A7), a similar proof as was given for

Theorem 2 in Einmahl and Mason (2005) ensures that

sup
x∈X0

∣∣∣∣ ˙̂mθo(x)−
ṙθo(x)

fX(x)

∣∣∣∣ = OP (cn) .

Consider now the second term of (6.5). Since E[ε̇(θo)|X] = 0, where ε̇(θo) =
d
dθ (Λθ(Y ) −mθ(X))|θ=θo , we

have

ṙθo(x) = h−1E
[
{ṁθo(X) + ε̇(θo)}K1

(
X − x

h

)]

= h−1E
[
ṁθo(X)K1

(
X − x

h

)]

=

∫
ṁθo(x+ hv)K1(v)fX(x+ hv)dv,

from which it follows that

ṙθo(x)− fX(x)ṁθo(x) =

∫
[ṁθo(x+ hv)− ṁθo(x)]K1(v)fX(x+ hv)dv.

Hence, a Taylor expansion applied to ṁθo(·) yields

sup
x∈X0

∣∣ṙθo(x)− fX(x)ṁθo(x)
∣∣ = O(hq1) = O (cn) ,

since nh2q1+1(log h−1)−1 = O(1) by (A2). This proves that the second term of (6.5) is O(cn), since it can

be easily shown that fX(x) is bounded away from 0 and infinity, uniformly in x ∈ X0, using (A3)(ii). 2
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n θo t Mean Squared Error of f̂ε̃(t)

Model 1 Model 2 Model 3

50 0 -1 0.0026 0.0025 0.0019

0 0.0040 0.0037 0.0028

1 0.0026 0.0023 0.0017

0.5 -1 0.0063 0.0048 0.0025

0 0.0527 0.0372 0.0147

1 0.0062 0.0046 0.0020

1 -1 0.0078 0.0048 0.0024

0 0.0564 0.0314 0.0133

1 0.0049 0.0030 0.0019

100 0 -1 0.0012 0.0011 0.0008

0 0.0039 0.0035 0.0026

1 0.0017 0.0015 0.0012

0.5 -1 0.0015 0.0014 0.0011

0 0.0075 0.0057 0.0031

1 0.0021 0.0018 0.0012

1 -1 0.0024 0.0018 0.0012

0 0.0110 0.0052 0.0270

1 0.0019 0.0016 0.0012

Table 2: Mean squared error of f̂ε̃(t) for three regression models. All numbers are calculated based on 100

random samples.
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Figure 1: Curves of the pointwise average of f̂ε̃ over 100 random samples of size n = 100 (solid curve) and of

the standard normal density (dashed curve) for θo = 0 (first row), θo = 0.5 (second row) and θo = 1 (third

row).

17




