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Abstract

Consider semi-competing risks data (two times to concurrent events are studied
but only one of them is right-censored by the other one) where the link between
the times Y and C to non-terminal and terminal events respectively, is modeled
by a family of Archimedean copulas. Moreover, both Y and C are submitted to
an independent right censoring variable D. A new methodology based on a max-
imum likelihood approach is developed to estimate the parameter of the copula
and the resulting survival function of Y. The main advantage of this procedure is
that it extends to multidimensional parameters copulas. We perform simulations to
study the behavior of our proposed estimation procedure and its impact on other
related estimators and we apply our method to real data coming from a study on
the Hodgkin disease.
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and Institute of statistics, biostatistics and actuarial sciences, Université catholique de Louvain, E-mail:
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1 Introduction

A patient under medical follow-up can experience a terminal event (e.g. death) and/or a

non-terminal event (e.g. occurence of some toxicity, recurrence of the disease). The time

Y to the non-terminal event can be right-censored by the time C to the terminal event

but not vice-versa. Furthermore, the random variable D denoting the time to the end of

the study or the lost to follow-up also acts as a time to a terminal event since both Y

and C are censored as soon as they are larger than D. In a modeling perspective, it is

realistic to assume that D is independent of both Y and C but dependency between Y

and C cannot be ignored in many cases. A convenient way to take it into account is to

specify a parametric family of copulas for the joint law of Y and C.

The survival functions of C and D can be consistently estimated by Kaplan-Meier es-

timators, but estimating both the copula parameter and the survival function of Y seems

more problematic. Fine & al. (2001) proposed a copula model fitting procedure assuming

the parametric Clayton family of copulas. Their method consists in plugging an estimate

θ̂Fine of the unknown parameter θ of the copula into a θ-dependent estimate of the survival

function S(·) of Y . This has been criticized by Jiang & al. (2005) who proposed another

Clayton copula based estimator of S(·) having better theoretical properties and seemingly

reaching better performance in practice. Lakhal (2006) and Lakhal & al. (2008) gener-

alized θ̂Fine to one-dimensional parametric families of Archimedean copulas and proposed

a more attractive θ-dependent estimator Ŝθ(·) of S(·), defined similarly to the Rivest and

Wells (2001) estimator in the simpler context of censored data. This estimator Ŝθ(·) has

been studied in detail by Laurent (2011). Recently, Xu & al. (2010) developed another

modeling aproach for this kind of data but not allowing to estimate S(·).
Our purpose is to propose a new estimating procedure for both S(·) and the cop-

ula parameter, allowing for multidimensional parameter families of copulas. In the one-

parameter case, it can be compared to results obtained by the Lakhal & al. (2008)

method. The need of multidimensional parameters copulas is especially important in this

context since possibly complex dependency structures (already difficult to capture with

one-dimensional parameter copulas and complete data) between Y and C can still be less

easily detected due the ”hiding” effects of the censoring mechanisms.

This paper is organized as follows. In the next section, we define our model and we

prove its identifiability in the one-dimensional case. The estimation method is explained

in Section 3. We study the performance of the resulting estimators by means of simula-

tions in Section 4, and we apply our method to the Hodgkin disease data in Section 5.

Finally, Section 6 gives some final recommendations for the application of the proposed

methodology in practice and the Appendix contains some technical details.
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2 Model

The model is defined as follows. For a given individual, let Y be the time to the event

of interest (e.g., time until the first relapse of a certain disease), C the censoring time of

the first type (e.g., the time until death), and D the censoring time of the second type

(e.g., the time until lost to follow-up). We assume that D is independent of (Y, C), the

marginal distributions of Y , C and D are unknown, and the survival copula for (Y, C)

belongs to a parametric family {Cθ : θ ∈ Θ} of copulas, where Θ ⊂ Rd, d ≥ 1. We denote

the unknown true parameter by θ0 and the marginal survival functions of Y , C and D by

S(·) = 1− F (·), G1(·) and G2(·) respectively.

The observable random variables are n independent replications (Ti, Zi, ∆1i, ∆2i), i =

1, . . . , n, of (T, Z, ∆1, ∆2), where T = min(Y,C, D), Z = min(C, D) and the indicator

variables ∆1 and ∆2 are defined by{
∆1 = 1lY ≤C,Y ≤D (no censoring)

∆2 = 1lC≤D (first type censoring before second type censoring).

Note that {∆1 = 1, ∆2 = 1} corresponds to the event for which we observe both Y and

C. Moreover, we observe both Y and min(C, D) when ∆1 = 1, and only min(C, D) when

∆1 = 0. Finally, note that T = min(Y,C) corresponds to ∆3 = 1, where

∆3 = 1lmin(Y,C)≤D = min(1, ∆1 + ∆2).

In the data example coming from a study on the Hodgkin disease (see Section 5 for

more details), Y is the time to first relapse, C is the time to death and D is the time to

lost to follow-up. Hence, it would be unrealistic to assume that Y and C are independent,

whereas it is reasonable to assume no relation between (Y,C) and D. Hence, the above

model can be reasonable for these data, but the main difficulty lies in the choice of the

family of copulas {Cθ}. Of course the random variable Y is hypothetical since it has no

physical interpretation for an individual who died before experiencing relapse. We refer to

Prentice & al (1978) for a long discussion about latent failure times in survival modeling.

Our estimation method presented in the next section only concerns the case when

{Cθ} is a family of (strict) Archimedean copulas. A copula C is said to be (strictly)

Archimedean when

C(u, v) = ϕ−1(ϕ(u) + ϕ(v))

for all 0 ≤ u, v ≤ 1, where the (strict) generator ϕ : (0, 1] → IR+ is a decreasing convex

function satisfying ϕ(1) = 0 and ϕ(0+) = +∞. In particular ϕ(·) = − log(·) corresponds

to the independence case. Choosing a parametric family {ϕθ : θ ∈ Θ} of such generators

yields a parametric family {Cθ : θ ∈ Θ} of Archimedean copulas by defining Cθ with ϕθ.

We will use the following common families of Archimedean copulas :
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• the one-parameter Clayton family given by ϕθ(x) = x−θ−1
θ

with parameter θ ≥ 0

and the particular case ϕ0(x) = − log(x),

• the one-parameter Frank family given by ϕθ(x) = − log[ exp(−θx)−1
exp(−θ)−1

] with parameter

θ ∈ R and the particular case ϕ0(x) = − log(x),

• the one-parameter Gumbel family given by ϕθ(x) = (− log x)θ with parameter θ ≥ 1,

• the interior power Frank family (hereafter named the two-parameter Frank family)

with two-dimensional parameter θ = (α, β), given by ϕθ(x) = ϕα(xβ) with α ∈ R
and β > 1, where ϕα is the generator of the Frank family.

The Kendall rank correlation coefficient τ of the Archimedean copula with generator

ϕ is given by τ = 1+4
∫ 1

0
ϕ(x)
ϕ′(x)

dx, where ϕ′(x) denotes the derivative of ϕ(x) with respect

to x. Its range is [0, 1[ for the Clayton and Gumbel families and ]−1, 1[ for the Frank and

the two-parameter Frank families. For the one-parameter families, there is a one-to-one

correspondence between the parameter θ and the Kendall’s tau on the ranges of θ and

τ specified above, whereas there is an infinity of values of α and β corresponding to a

unique value of τ for the two-parameter Frank family (see Figure 1).
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Figure 1: Kendall’s tau of the two-parameter Frank family. Each curve corresponds to a

value of the Kendall’s tau, axes correspond to α and β.

The proof of the following theorem about the identifiability of the model can be found

in the Appendix. Assumptions on the copula family are fulfilled for the Clayton, Gumbel

and Frank families.

Theorem 2.1. Assume that S, G1 and G2 are absolutely continuous and that {Cθ : θ ∈ Θ}
is a one-parameter family of Archimedean copulas such that ϕ′

θ1
/ϕ′

θ2
is strictly monotone

whenever θ1 6= θ2. Then the model is identifiable; more precisely, if (T, Z, ∆1, ∆2) has
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the same distribution as (T ′, Z ′, ∆′
1, ∆

′
2), then the corresponding underlying parameters

(θ, S, G1, G2) and (θ′, S ′, G′
1, G

′
2) defining the distributions of (Y,C, D) and (Y ′, C ′, D′)

are equal.

3 Estimation

In this section, we propose appropriate estimators for the unknown parameters of the

model θ0, S(·), G1(·) and G2(·). Note that since we observe Z = min(C, D) and ∆2 =

I(C ≤ D), and we assume that C and D are independent, we can use Kaplan-Meier esti-

mators Ĝ1(·) and Ĝ2(·) of G1(·) and G2(·). The other part of the procedure (estimation

of θ0 and S(·)) is then presented as follows. In a first step, the estimator Ŝθ(·) of S(·) as

a function of θ is displayed and discussed. Next, an existing estimator θ̂1 of θ0 is given

and finally, a new estimator θ̂2 of θ0 is developed. The practical behavior of θ̂1 and θ̂2 as

well as Ŝ1(·) = Ŝθ̂1
(·) and Ŝ2(·) = Ŝθ̂2

(·) are studied in Section 4.

Remark 3.1 Asymptotic properties of our estimators can be established by applying

theorems for semi-parametric estimation of Chen, Linton and Van Keilegom (2003). Since

the proofs are rather long and technical and in order to primarily focus on the practical

behavior of our estimators, these asymptotic properties will be developed in a technical

report.

3.1 Estimating S when θ is know

We introduce the θ-dependent estimator Ŝθ(·) of S(·) as in Lakhal & al. (2008) and

Laurent (2011) :

Ŝθ(t) = ϕ−1
θ

[
−

∑
Ti≤t,∆1i=1

{
ϕθ

(
Γ̂(Ti−)

)
− ϕθ

(
Γ̂(Ti)

)}]
, (1)

where Γ̂ is the Kaplan-Meier estimator of the survival function Γ(t) = P(min(Y,C) > t)

of min(Y, C), which is available from the observations (Ti, ∆3i), i = 1, . . . , n.

The estimator Ŝθ(·) is a direct extension of the Rivest & Wells (2001) estimator to

our context of right-censored semi-competing risks (the only difference is that Γ̂(·) is the

Kaplan-Meier estimator of Γ(·) and not the empirical survival function of Y ∧C). Laurent

(2011) studied its asymptotic behaviour when assuming an arbitrary continuous distri-

bution for (Y, C). The assumptions on ϕθ(·) given by Laurent (2011) are fulfilled for the

Clayton, the Frank, and the two-parameter Frank families, but not for the Gumbel fam-
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ily. However simulations show that inference seems to also be valid for the Gumbel family.

Remark 3.2 Laurent (2011) indicated a possible way to include covariates in the model

and the inference procedure when θ is known: similarly to Braekers & Veraverbeke (2005)

in the context of censored data, he proposes to include covariates Xi, i = 1, . . . , n, Xi ∈
IRp, p ≥ 1, in the estimation of the survival function Γ of min(Y,C). Then, Ŝθ(·|X = x)

could be defined similarly to (1) by replacing Γ̂(·) by Γ̂(·|X = x), an estimator of Γ(·|X =

x) = P (min(Y,C) > ·|X = x). For example, when p = 1, the estimate Γ̂(·|X = x) can be

obtained nonparametrically by Beran (1981) who defines (in the case of no ties) :

Γ̂(y|x) =
∏

Ti≤y,∆3i=1

{
1− Wi(x, an)∑n

j=1 I(Tj ≥ Ti)Wj(x, an)

}
, (2)

where

Wi(x, an) =
K

(
x−Xi

an

)
∑n

j=1 K
(

x−Xj

an

) ,

K is a kernel function and {an} a bandwidth sequence. Obviously, they are different

possible ways to take covariates into account. For example, Peng and Fine (2007) and

Ding & al. (2009) postulated separate marginal regression models for both Y and C.

Another direction for further research in this context is to consider estimation of the

copula parameter for each value of the covariate (local copula).

3.2 Estimating θ0 : existing methodology

When considering a one-parameter family, Lakhal & al. (2008) proposed an estimator θ̂1

of the copula parameter θ0 defined as the solution of ĝn(θ) = 0 where the function ĝn(·)
is derived as follows.

Consider an independent copy (Y ′, C ′, D′) of (Y,C, D) and the corresponding four-

tuple (T ′, Z ′, ∆′
1, ∆

′
2). The two four-tuples (T, Z, ∆1, ∆2) and (T ′, Z ′, ∆′

1, ∆
′
2) represent

the observable data for two individuals. Let Ỹ = min(Y, Y ′), C̃ = min(C, C ′), D̃ =

min(D, D′), T̃ = min(T, T ′) and Z̃ = min(Z,Z ′). Then the event A := {Ỹ ≤ C̃ ≤ D̃} is

observable, and the event B :=
{
(Y − Y ′)(C −C ′) > 0

}
is observable on A, i.e., B ∩A is

observable.

Lakhal & al. (2008) introduced the conditional Kendall’s tau τa := 2P[B | A]− 1. As

noted by Oakes (1989),

P[B | Ỹ = y, C̃ = c] = χθ

(
H(y, c)

)
,
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where H(y, c) := P(Y > y, C > c) is the joint survival function of (Y,C),

χθ(v) =
−vϕ′′

θ(v)

−vϕ′′
θ(v) + ϕ′

θ(v)

and ϕ′′
θ(v) denotes the second derivative of ϕθ(v) with respect to v. Hence,

P[B | A] = E
[
χθ

(
H(Ỹ , C̃)

) ∣∣ A
]
.

Since Ỹ = T̃ and C̃ = Z̃ on the event A, we get that

gn(θ) =

(
n

2

)−1 ∑
i<j

1lAij

(
1lBij

− χθ

(
H(T̃ij, Z̃ij)

))
,

with n independent observable four-tuples (Ti, Zi, ∆1i, ∆2i), is a U-statistic having a null

expectation, where Aij, Bij, T̃ij and Z̃ij are constructed similarly to A, B, T̃ and Z̃ with

the two observable four-tuples (Ti, Zi, ∆1i, ∆2i) and (Tj, Zj, ∆1j, ∆2j). The joint survival

function H of (Y,C) can be estimated in the upper wedge {0 ≤ s ≤ t} by the Lin & Ying

(1993) estimator

Ĥ(s, t) =
Ĵ(s, t)

Ĝ2(t)
, (3)

where Ĵ(s, t) is the empirical joint survival function of (T, Z). Therefore the above U-

statistic gn(θ) can be approximated by

ĝn(θ) =

(
n

2

)−1 ∑
i<j

(
1lBij

− χθ

(
Ĥ(Ỹij, C̃ij)

))
1lAij

. (4)

The Lakhal & al. (2008) estimator θ̂1 is then defined by ĝn(θ̂1) = 0.

Remark 3.3 Lakhal & al. (2008) propose to use the following variant of (4):

ĝn(θ) =

(
n

2

)−1 ∑
i<j

w(Ỹij, C̃ij)
(
1lBij

− χθ

(
Ĥ(Ỹij, C̃ij)

))
1lAij

where w(·, ·) is some random weight function converging to a deterministic function. In

our numerical studies (see Section 4), we always use the function ĝn given by (4), i.e.,

with weight function w(·, ·) ≡ 1. We also used another weight function w(·, ·) suggested

by Lakhal & al. (2008) but it did not yield any impact on our conclusions. Results cor-

responding to this weight function will be therefore omitted in Section 4.
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3.3 Estimating θ0 : likelihood based methodology

Now we describe our likelihood method to estimate θ0. In a first step, we calculate the

likelihood function of the unknown copula parameter θ which will be estimated in a second

step.

Denote by t, z, δ1 and δ2 the possible realizations of T , Z, ∆1 and ∆2 respectively.

We below derive the likelihood of θ given (t, z, δ1, δ2) by considering the four possible

situations for the values of δ1 and δ2. For each case we write a Radon-Nikodým derivative

of the distribution of (T, Z) on the event {∆1 = δ1, ∆2 = δ2}. The symbol “∝” means

that the two members on the left and right hand sides of this symbol are proportional

functions (of θ), and we denote by f (ij) the partial (i, j)-th derivative of any bivariate

function f .

• (type A) If δ1 = δ2 = 0 (hence t = z): on the event {∆1 = 0, ∆2 = 0}, T = Z = D

and

P(D ∈ dz, ∆1 = 0, ∆2 = 0) = P(D ∈ dz, Y > D, C > D)

= P(D ∈ dz)P(Y > z, C > z) ∝ Cθ (S(z), G1(z)) dz.

• (type B) If δ1 = 0 and δ2 = 1 (hence t = z): on the event {∆1 = 0, ∆2 = 1},
T = Z = C and

P(C ∈ dz, ∆1 = 0, ∆2 = 1) = P(C ∈ dz, Y > C, C ≤ D)

= P(D ≥ z)P(C ∈ dz, Y > z) ∝ C(01)
θ (S(z), G1(z)) dz.

• (type C) If δ1 = 1 and δ2 = 0: on the event {∆1 = 1, ∆2 = 0}, T = Y, Z = D and

P(Y ∈ dt,D ∈ dz, ∆1 = 1, ∆2 = 0) = P(Y ∈ dt,D ∈ dz, C > D, Y ≤ D)

= P(D ∈ dz)P(Y ∈ dt, C > z)

∝ C(10)
θ (S(t), G1(z)) dt dz.

• (type D) If δ1 = δ2 = 1: on the event {∆1 = 1, ∆2 = 1}, T = Y, Z = C and

P(Y ∈ dt, C ∈ dz, ∆1 = 1, ∆2 = 1) = P(Y ∈ dt, C ∈ dz, Y ≤ C, C ≤ D)

= P(D ≥ z)P(Y ∈ dt, C ∈ dz)

∝ C(11)
θ (S(t), G1(z)) dt dz.

8



Finally the likelihood L of θ given a single observation (t, z, δ1, δ2) is given by

L(θ; S, G1 | t, z, δ1, δ2) ∝ C(δ1δ2)
θ (S(t), G1(z))

= [ϕ′
θ

(
S(t)

)
]δ1 [ϕ′

θ

(
G1(z)

)
]δ2(ϕ−1

θ )
(δ1+δ2)

(
ϕθ

(
S(t)

)
+ ϕθ

(
G1(z)

))
,

(5)

where (ϕ−1
θ )(i)(x) denotes the i−th derivative of ϕ−1

θ (x) with respect to x. Note that this

likelihood function depends on (θ and) S(t) and G1(z) but not on G2(z).

Next, we define θ̂2 as the root of the profile derivative log-likelihood, i.e., the solution

θ of the equation
n∑

i=1

∂ log L

∂θ

(
θ; Ŝθ, Ĝ1

∣∣∣Ti, Zi, ∆1i, ∆2i

)
= 0, (6)

where 0 is the d-dimensional vector of zeros. Actually we cannot exactly use equation

(6), since the member on the left hand side in (6) is possibly infinite or non-definite when

Ŝθ(Ti), Ĝ1(Zi) ∈ {0, 1} for some i. To alleviate this problem, we define θ̂2 as the root of

n∑
i=1

1lŜθ(Ti)∈]0,1[,Ĝ1(Zi)∈]0,1[

∂ log L

∂θ

(
θ; Ŝθ, Ĝ1

∣∣∣Ti, Zi, ∆1i, ∆2i

)
= 0. (7)

3.4 Goodness-of-fit measure

Since there is no natural reason to a priori select a copula family, it is important to use a

goodness-of-fit statistic. Following Lakhal (2006), we will use the statistic Q̂θ̂ (for θ̂ = θ̂1

or θ̂2), where

Q̂θ :=
1∑n

i=1 1l{Ti=Yi,Zi=Ci
}

n∑
i=1

1l{Ti=Yi,Zi=Ci}

(
Ĥ(Ti, Zi)− Cθ

(
Ŝθ(Ti), Ĝ1(Zi)

))2

.

The quantity Q̂θ̂ is a measure of the difference between the nonparametric estimate Ĥ(s, t)

of the joint survival function of (Y,C) given by (3) and the semi-parametric estimate

Cθ̂

(
Ŝθ̂(·), Ĝ1(·)

)
. Then, the smaller the value of Q̂θ̂, the best the fit to the data.
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4 Simulations

Now, we study the practical behavior of our procedure via simulations. Our purpose is to

compare both estimators θ̂1 and θ̂2 but also the performances of related estimators based

on them and useful in many applications. In this respect, beyond the survival function,

other quantities like estimators of P(C > y | Y ∧ C > x) or P(C > y | Y = x, C > x)

are investigated in some cases. As mentioned before, the parameter θ of the considered

families {Cθ : θ ∈ Θ} of Archimedean copulas can be multidimensional. However, (4)

only enables to obtain a one-dimensional parameter estimator. Subsection 4.1 is therefore

devoted to the comparison of θ̂1 and θ̂2 in the one-dimensional case while Subsection 4.2

is dealing with the analysis of our methodology in the two-dimensional case. All the

simulations below are based on 1000 samples of size n = 100 or 200.

4.1 One parameter

First, we simulate a Frank copula for H(·, ·) with parameter corresponding to a Kendall’s

tau equal to either 0, 1/3 or 1/2. We use the R package copula to generate couples

(Ui, Vi), i = 1, . . . , n, from the copula. We then invert the survival functions of Y and

C to obtain Yi = S−1(Ui) and Ci = G−1
1 (Vi). The random variable Y always has an

exponential distribution with parameter 1, and C has an exponential distribution with a

parameter such that p := P (Y > C) is equal to either 0.25, 0.5 or 0.75. The censoring

random variable D has a uniform distribution on [0, a] with a chosen in order that P (C >

D) = 20%. Each time a Kaplan-Meier estimator has to be used at a point on the right of

the largest data point, it is defined by its value at this largest data point.

Table 1 that corresponds to Table 1 in Lakhal & al. (2008) summarizes the obtained

results. Globally, results are similar for both methods with a slight advantage for Lakhal

& al. (2008). However, we generated data with the same characteristics as above but

with a Clayton copula. In this case, the results seem to be inverted as it is illustrated in

Table 2. On one side, using a likelihood procedure enables to fully introduce parametric

information provided by Cδ1δ2
θ (·, ·) and Ŝθ(·) while on the other side adjusting a parametric

function to a nonparametric conditional Kendall’s tau leads to solve a simpler equation.

Note that in the Clayton copula case, the function χθ(v) is simply given by (θ+1)/(θ+2)

making equation (4) equivalent to the computation of a simple nonparametric conditional

Kendall’s tau, an operation using therefore a ”minimal amount of information”.

Tables 3 and 4 summarize the effects of the estimating procedures for θ on the esti-

mation of S(·). Other simulations (with other copulas) led to similar results. Globally,

the root of the average over the 1000 runs of the squared errors of both Ŝ1(x) and Ŝ2(x)

at different values of x (denoted R̂MSE(Ŝk(x)), k = 1, 2, in Tables 3 and 4) seems to
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reflect a slightly better behavior for the method based on the likelihood approach. More

precisely, in many situations, this effect seems to be obtained via a better behavior of Ŝ2(·)
the rights tails. Note that the root of the average over the 1000 runs of the integrated

squared errors of Ŝk(·), k = 1, 2, describes the behavior of the estimators in a more global

way since it only consists of a number. However, it is not reported here since its value

depends on the way which the possibly inconsistent parts of Ŝk(·), k = 1, 2, are dealt with.

If these parts are simply not considered in the corresponding integrals (for each sample,

integration is truncated at the largest data point of the sample on which Kaplan-Meier

estimator Γ̂(·) is constructed), the slightly better behavior of Ŝ2(·) is also observed.

Remark 4.1 Both Lakhal & al. (2008) and our estimation procedures for S(·) are only

valid for strict Archimedean copulas. That is the reason why the case τ = 0 is not reported

in Table 2 (contrary to Table 1). Indeed, the Frank copula is strict for any τ ∈] − 1, 1[

while the Clayton copula is strict only for τ ∈ [0, 1[, a range corresponding to values of θ

larger or equal to 0. As a consequence, since in the Clayton case, each sample will deliver

an estimator for θ larger or equal to 0, the resulting non negative values of τ̂ will not be

representative of the quality of the estimation procedure (positive bias always induced).

Finally, note that the Clayton copula can also be defined for θ ∈]−1, +∞[ but it is not

strict anymore in the sense that for negative values of θ, ϕθ(0) = −1/θ. In this case, some

terms of the log-likelihood function can be maximized by negative values of θ that make

them tend to +∞. Avoiding that problem should be reached by defining a new restricted

(profile derivative) log-likelihood function that prevents that behavior.

11



(a) Likelihood

n τ p Ê(τ̂) R̂MSE(τ̂)

100 0 0.25 −0.006 0.080

0.5 0.003 0.102

0.75 0.027 0.161

1/3 0.25 0.331 0.075

0.5 0.344 0.095

0.75 0.367 0.140

1/2 0.25 0.499 0.060

0.5 0.512 0.076

0.75 0.541 0.117

200 0 0.25 −0.003 0.057

0.5 0.003 0.070

0.75 0.013 0.107

1/3 0.25 0.332 0.049

0.5 0.341 0.062

0.75 0.358 0.092

1/2 0.25 0.500 0.040

0.5 0.508 0.050

0.75 0.527 0.075

(b) Lakhal

n τ p Ê(τ̂) R̂MSE(τ̂)

100 0 0.25 −0.001 0.077

0.5 −0.003 0.096

0.75 −0.006 0.143

1/3 0.25 0.327 0.073

0.5 0.327 0.090

0.75 0.322 0.124

1/2 0.25 0.493 0.061

0.5 0.491 0.075

0.75 0.491 0.103

200 0 0.25 0.001 0.056

0.5 0.000 0.068

0.75 −0.002 0.101

1/3 0.25 0.330 0.049

0.5 0.332 0.060

0.75 0.333 0.083

1/2 0.25 0.497 0.040

0.5 0.498 0.049

0.75 0.499 0.068

Table 1: Results obtained for the Frank copula corresponding to the above setting. Ê(τ̂)

corresponds to the average of the Kendall’s tau over the 1000 runs and R̂MSE(τ̂) is the

root of the average over these runs of the squared errors of the Kendall’s tau. Results for

our (Lakhal & al. (2008)) procedure are displayed on the left (right) part of the table.

(a) Likelihood

n τ p Ê(τ̂) R̂MSE(τ̂)

100 1/3 0.5 0.336 0.083

200 1/3 0.5 0.338 0.058

100 1/2 0.5 0.501 0.071

200 1/2 0.5 0.501 0.049

(b) Lakhal

n τ p Ê(τ̂) R̂MSE(τ̂)

100 1/3 0.5 0.329 0.094

200 1/3 0.5 0.336 0.064

100 1/2 0.5 0.496 0.078

200 1/2 0.5 0.498 0.054

Table 2: Results obtained for the Clayton copula corresponding to the above setting.
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(a) Likelihood

S(x) 90 70 50 30 10

Ê
(
Ŝ2(x)

)
90.11 69.92 49.84 30.31 11.13

b̂ias
(
Ŝ2(x)

)
0.11 -0.08 -0.16 0.31 1.13

2.5% 83.38 58.75 37.26 18.44 2.77

97.5% 95.71 80.11 63.68 44.19 24.15

R̂MSE
(
Ŝ2(x)

)
3.23 5.64 6.87 6.66 5.58

(b) Lakhal

S(x) 90 70 50 30 10

Ê
(
Ŝ1(x)

)
90.12 70.05 50.06 30.51 11.26

b̂ias
(
Ŝ1(x)

)
0.12 0.05 0.06 0.51 1.26

2.5% 83.33 59.04 37.72 18.54 2.80

97.5% 95.72 80.30 63.27 44.14 24.23

R̂MSE
(
Ŝ1(x)

)
3.23 5.57 6.78 6.78 5.72

Table 3: Results obtained for the estimation of S(·) at different quantiles of S(·) (in %).

The second, third and sixth lines of each table above correspond to the estimated mean,

bias and root mean squared error of the estimated survival functions of Y at the different

considered quantiles while the percentiles 2.5% and 97.5% of the obtained values of Ŝ1(·)
and Ŝ2(·) are displayed on the fourth and fifth lines. The used copula is the Clayton’s

one with n = 100.

(a) Likelihood

S(x) 90 70 50 30 10

Ê
(
Ŝ2(x)

)
90.00 69.94 49.96 29.99 10.44

b̂ias
(
Ŝ2(x)

)
-0.00 -0.06 -0.04 -0.01 0.44

2.5% 85.44 62.56 40.90 21.90 4.26

97.5% 93.92 77.33 58.87 39.19 18.00

R̂MSE
(
Ŝ2(x)

)
2.23 3.80 4.65 4.48 3.55

(b) Lakhal

S(x) 90 70 50 30 10

Ê
(
Ŝ1(x)

)
90.01 70.01 50.07 30.10 10.51

b̂ias
(
Ŝ1(x)

)
0.01 0.01 0.07 0.10 0.51

2.5% 85.42 62.82 41.35 22.05 4.34

97.5% 93.92 77.16 58.71 39.51 17.71

R̂MSE
(
Ŝ1(x)

)
2.23 3.76 4.55 4.54 3.65

Table 4: Same results as in Table 3 but with n = 200.
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4.2 Two parameters

As already said, a great interest of our methodology is that it can be applied to copulas

with multidimensional parameters. To our knowledge, no other existing procedure makes

it possible in this context. Since it is not obvious to a priori choose a parametric form

of copula that correctly describes a data set, a practical way to capture characteristics of

the dependency between two variables is to make the corresponding copula model more

flexible by increasing the number of its parameters.

We simulate for n = 200 a two-parameter Frank copula for H(·, ·) with parameters

α = 8 and β ≈ 3.695 in order to have τ = 0.5. We used Algorithm 1 in Nelsen (2005)

to generate couples (Ui, Vi), i = 1, . . . , n, from the copula by numerically inverting the

function K(x) = x− ϕθ(x)/ϕ′
θ(x). The survival functions S(·) and G1(·) are exponential

with parameters 1 and such that p = 0.5 respectively. The censoring random variable

D has a uniform distribution on [0, a] with a chosen in order that P (C > D) = 20%.

Each time a Kaplan-Meier estimator has to be used at a point on the right of the largest

data point, it is defined by its value at this largest data point. In order to illustrate

the interest of modeling with multidimensional parameters copulas and to compare our

procedure with Lakhal & al. (2008) on a robustness point of view, we fit different copulas

to the data (two-parameter Frank, Frank, Clayton and Gumbel copulas).

Table 5 shows results for the Kendall’s tau while Table 6 shows the impact of this

estimation on the survival functions Ŝ2(·) and Ŝ1(·). As expected, the results obtained

by the likelihood method with the two-parameter Frank copula are the best ones every-

where. Estimators of θ for the Frank, Clayton and Gumbel copulas does not necessarily

correspond to the Kendall’s tau assumed here anymore. Indeed, the link between θ and

τ is valid if the assumed copula is true. Therefore, the obtained Ê[τ̂ ] in Table 5 does not

necessarily need to correspond to 0.5. However, a distinction can be made between both

procedures. Even though the assumed copula is false, Lakhal & al. (2008) consists in

fitting a function of θ to a nonparametric conditional Kendall’s tau; that suggests that

this methodology will be more likely to obtain an estimator of θ that is linked to τ under

the assumed false copula. This is not the case in the likelihood approach, the goal of

which is to find the estimator of θ that correctly adjusts the assumed copula to the data.

Therefore, although Ê[τ̂ ] seems to be further from 0.5 for the likelihood method, that has

no negative impact on Ŝ2(·); on the contrary, it seems to lead in many cases to slightly

better global behavior (also observed on the estimated integrated mean squared error, see

previous subsection) than Lakhal & al. (2008). As in the previous subsection, this nice

behavior is also observed in the right tails of the distributions, especially for the Clayton

copula in Table 6. Finally, results about the Gumbel copula are also interesting. These

are the best ones after the two-parameter Frank copula and results for both methods are
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very close. Indeed, it is easy to check that in our case, the Gumbel copula is the one that

can be made the closest to the considered two-parameter Frank copula.

Copula Likelihood Lakhal

two-parameter Frank 0.508

(0.057)

Frank 0.514 0.531

(0.058) (0.065)

Clayton 0.324 0.574

(0.186) (0.094)

Gumbel 0.530 0.508

(0.056) (0.059)

Table 5: Ê[τ̂ ] and R̂MSE(τ̂) (between parentheses) for data generated with the two-

parameter Frank copula and to which different copulas are fitted.

two-parameter Frank Frank Clayton Gumbel

S(x) Likelihood Likelihood Lakhal Likelihood Lakhal Likelihood Lakhal

90 90.0 92.2 92.2 93.1 92.6 90.5 90.6

(2.4) (3.1) (3.0) (3.6) (3.3) (2.2) (2.3)

70 70.1 73.6 73.3 78.0 74.9 72.4 72.7

(3.4) (5.5) (5.3) (8.7) (6.4) (4.3) (4.6)

50 50.0 49.6 49.2 56.1 48.9 50.5 51.1

(4.1) (4.6) (4.6) (7.9) (5.3) (4.3) (4.6)

30 30.0 25.2 24.8 27.4 20.3 26.2 26.7

(4.4) (6.2) (6.5) (5.8) (10.5) (5.7) (5.5)

10 10.1 6.7 6.5 4.5 3.0 6.0 6.3

(5.2) (4.9) (5.0) (6.3) (7.3) (5.4) (5.3)

Table 6: Ê[Ŝk(x)] (in %) and R̂MSE(Ŝk(x)) (between parentheses), k = 1, 2, for the

above two-parameter Frank copula model and different fitted copulas.

Based on the data generated by the above copula model, we finally study the impact of

the estimation of θ on other quantities depending on the assumed copula at different levels.

Lakhal & al. (2008) proposed to estimate the conditional probability G1|Y ∧C(y|x) =
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P(C > y | Y ∧ C > x) in a nonparametric way by

ĜNP
1|Y ∧C(y|x) = P̂(C > y | Y ∧ C > x) =

Ĥ(x, y)

Ĥ(x, x)
,

where Ĥ(·, ·) is the nonparametric estimator given by (3), and in a semi-parametric way

by

Ĝ1
1|Y ∧C(y|x) = P̂(C > y | Y ∧ C > x) =

Cθ̂(Ŝ1(x), Ĝ1(y))

Cθ̂(Ŝ1(x), Ĝ1(x))
. (8)

Another quantity introducing derivatives of the copulas is G1|Y,C(y|x) = P(C > y | Y =

x, C > x) that can be estimated by

Ĝ1
1|Y,C(y|x) = P̂(C > y | Y = x, C > x) =

C(10)

θ̂
(Ŝ1(x), Ĝ1(y))

C(10)

θ̂
(Ŝ1(x), Ĝ1(x))

. (9)

Obviously, Ŝ1(x) can be replaced by Ŝ2(x) in the above expressions to obtain the equivalent

estimators (denoted Ĝ2
1|Y ∧C(y|x) and Ĝ2

1|Y,C(y|x)) using our methodology.

Table 7 shows results for the estimated conditional survival function y 7→ Ĝk
1|Y ∧C(y|x),

k = 1, 2, where x is the median of Y whereas for the same value of x, Table 8 shows results

for the estimated conditional survival function y 7→ Ĝk
1|Y,C(y|x), k = 1, 2. These last two

estimators of conditional survival functions are highly based on the two following copula

characteristics: the parameric form of the copula and the value of its parameters. On

one side, when the assumed parametric form is true, the results clearly stay excellent (see

the first columns of Tables 7 and 8 for the two-parameter Frank copula) whereas when

a Frank, a Clayton or a Gumbel copula is used, the results fastly deteriorate. A simple

comparison with a nonparametric estimation (second column of Table 7) still exhibits

this feature: an estimation obtained without any parametric assumption leads to very

better results (especially in bias) than an estimation obtained with a false parametric

form for the copula. On the other side, here again, quantities (8) and (9) highly depend

on the semi-parametric bivariate survival function of (Y, C) (or its derivatives). As a

consequence, a methodology that proposes to estimate θ by optimizing these quantities

(through a maximum likelihood approach) with respect to the data seems to be better

than a methodology that mainly obtains an estimator of θ via the computation of a

conditional Kendall’s tau. This effect is still more important in Table 8 in the case where

copula derivatives are used. As already noticed, it is not observed in the case of the

Gumbel copula which is the closest to the two-parameter Frank copula.
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two-parameter Frank Frank Clayton Gumbel

G1|Y ∧C(y|x) Lik. ĜNP
1|Y ∧C(y|x) Lik. Lak. Lik. Lak. Lik. Lak.

90 90.1 89.9 92.0 92.1 91.3 93.2 91.4 91.2

(3.1) (3.9) (3.3) (3.3) (3.0) (4.0) (3.0) (3.0)

70 69.9 69.8 74.3 74.5 73.9 77.1 73.3 73.0

(5.4) (6.1) (6.5) (6.7) (6.1) (8.7) (5.9) (5.8)

50 50.3 50.1 55.1 55.2 55.9 58.2 54.4 54.1

(6.1) (6.9) (8.0) (8.1) (8.3) (10.4) (7.4) (7.3)

30 29.9 29.7 33.6 33.7 35.3 35.7 33.4 33.3

(5.6) (6.3) (7.1) (7.2) (8.1) (8.7) (6.9) (6.8)

10 10.1 9.87 11.6 11.6 12.7 12.2 11.7 11.7

(4.5) (5.2) (5.4) (5.4) (6.2) (5.9) (5.4) (5.4)

Table 7: Ê[ĜNP
1|Y ∧C(y|x)], Ê[Ĝk

1|Y ∧C(y|x)] (in %), R̂MSE(ĜNP
1|Y ∧C(y|x)) and

R̂MSE(Ĝk
1|Y ∧C(y|x)) (between parentheses), k = 1, 2, for the above two-parameter

Frank copula model and different fitted copulas. Lak. (respectively Lik.) stands for the

estimators based on the Lakhal & al. (2008) (respectively our) procedure to estimate θ.

two-parameter Frank Frank Clayton Gumbel

G1|Y,C(y|x) Likelihood Likelihood Lakhal Likelihood Lakhal Likelihood Lakhal

90 89.7 86.0 85.7 88.0 83.2 87.1 87.4

(4.0) (6.6) (6.9) (4.8) (9.4) (5.5) (5.3)

70 68.9 58.0 56.9 62.9 48.5 61.0 61.9

(6.5) (14.5) (15.5) (10.1) (23.9) (11.5) (10.8)

50 49.0 33.9 32.6 38.5 20.2 37.2 38.4

(7.1) (17.9) (19.0) (14.0) (31.0) (14.7) (13.7)

30 29.0 15.5 14.6 16.6 4.3 17.2 18.3

(5.9) (15.3) (16.2) (14.6) (26.0) (13.8) (12.9)

10 9.7 4.0 3.7 2.7 0.2 3.9 4.3

(4.1) (6.4) (6.7) (7.6) (9.8) (6.5) (6.2)

Table 8: Ê[Ĝk
1|Y,C(y|x)] (in %) and R̂MSE(Ĝk

1|Y,C(y|x)) (between parentheses), k = 1, 2,

for the above two-parameter Frank copula model and different fitted copulas.

5 Application to the Hodgkin disease

In this section, we apply our method to the Hodgkin disease data. We analyse data from

865 early stage Hodgkin lymphoma treated patients at the Princess Margaret Hospital

(Toronto, Canada) between 1968 and 1986 (Pintilie, 2006). In this non-randomized cohort

of patients, 249 were treated with chemotherapy (CMT) while 616 were treated with

radiatio therapy (RT), and we do not know anything about the way the two groups have
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been formed. There are:

• 146 (≈ 59%) patients and 293 (≈ 48%) patients in the CMT group and the RT

group respectively who are censored due to lost to follow-up before occurence of any

event (“type A”);

• 42 (≈ 17%) patients and 96 (≈ 16%) patients in the CMT group and the RT group

respectively who die without relapse (“type B”);

• 12 (≈ 5%) patients and 96 (≈ 16%) patients in the CMT group and the RT group

respectively who are censored due to lost to follow-up between occurence of relapse

and death (“type C”);

• 49 (≈ 20%) patients and 131 (≈ 21%) patients in the CMT group and the RT group

respectively who experience both relapse and death (“type D”).

Figure 2 displays the Kaplan-Meier estimates Ĝ1(·) and Ĝ2(·) of the respective survival

functions of C (time to death) and D (time to lost to follow-up). They appear to be rather

similar showing a similar risk of death in the two treatment groups.

Tables 9 and 10 display the estimated copula parameters with different choices of

copula for (Y,C), the corresponding estimations of the Kendall’s tau, and the value of the

goodness-of-fit statistic introduced in Section 3.4. We see that the estimation of τ strongly

differs according to the choice of the copula family, but each choice yields a larger τ̂ in

the CMT group. We will not display all the estimated survival functions corresponding

to each copula family but we checked that, contrary to τ̂ , they appear very close to each

other using either the Lakhal & al. (2008) method or our likelihood-based method. As

expected, the two-parameter Frank family yields the smaller goodness-of-fit statistic, and

throughout the sequel we pursue the analysis with this copula family only.

Figure 3 shows the contour plots of the Lakhal & al. (2008) function ĝn(θ) along with

the estimates α̂ and β̂ obtained with the likelihood method. It is interesting to note that

ĝn(α̂, β̂) is not far away from 0. This figure illustrates the drawback of the Lakhal & al.

(2008) method: following this method we could only say that the estimate of (α, β) is

on the zero-level curve. Note also that the values of (α, β) on this curve correspond to

clearly different values of τ (compare with figure 1).

Table 11 shows the bootstrap percentile confidence intervals based on 500 bootstrap

samples (each bootstrap sample consists of n four-tuples (T ∗
i , Z∗

i , ∆
∗
1i, ∆

∗
2i), i = 1, . . . , n,

randomly taken with replacement from an original sample of size n). Since the sample

size in the RT group is 616 (in comparison with 249 in the CMT group), the confidence

intervals in the RT group are expected to be very shorter than in the CMT group. This

is not the case for the confidence interval of β. In fact, small values of |α̂| are obtained in
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the RT group ([2.46; 4.65] in the RT group against [6.46; 10.86] in the CMT group) and

as it can be seen in Figure 1, τ is not very sensitive to fluctuations of β for small values

of |α|. This naturally suggests a larger variability of β̂.

The estimate of the survival function S(·) of the time to relapse along with its point by

point percentile bootstrap confidence interval is displayed on figure 4 for each treatment

group. The risk of relapse appears to be lower in the CMT group. On the other hand,

Figure 5 displays the estimate of the conditional survival function P(C > · | C > x, Y = x)

of the time to death given that death has not occured at time x yet and a relapse occured

at time x (x = 4). Here again, pointwise percentile bootstrap confidence intervals are

added.

The conditional risk of death appears to be higher in the CMT group. This estimate

highly depends on the copula parametric shape and the value of its parameter. However,

as seen in Section 4, since the flexible two-parameter Frank copula is assumed and its

parameter is estimated with our likelihood procedure, a higher level of robustness of the

results can be expected in both treatment groups.

From these results, it would be difficult to decide which treatment is the best one: the

risk of death appears to be similar in both groups, the risk of relapse appears to be lower

in the CMT group, but the risk of death appears to be higher in the CMT group for the

individuals who experienced a relapse. These results should however be interpreted with

care as we are comparing non-randomized groups of patients.
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(a) CMT

Copula Estimated parameter τ̂ GoF statistic (×104)

Clayton θ̂ ≈ 8.15 0.803 10.1

Frank θ̂ ≈ 12.42 0.721 8.3

Gumbel θ̂ ≈ 2.44 0.590 5.8

two-parameter Frank α̂ ≈ 8.03 and β̂ ≈ 5.71 0.412 5.1

(b) RT

Copula Estimated parameter τ̂ GoF statistic (×104)

Clayton θ̂ ≈ 1.79 0.472 5.7

Frank θ̂ ≈ 3.87 0.379 4.5

Gumbel θ̂ ≈ 1.52 0.340 2.2

two-parameter Frank α̂ ≈ 3.33 and β̂ ≈ 7.09 0.218 1.6

Table 9: Estimated parameters and Kendall’s tau obtained by the likelihood method in

both the CMT and RT groups. The values of the goodness-of-fit statistic are multiplied

by 104.

(a) CMT

Copula Estimated parameter τ̂ GoF statistic (×104)

Clayton θ̂ ≈ 9.62 0.828 8.7

Frank θ̂ ≈ 12.47 0.721 8.3

Gumbel θ̂ ≈ 2.38 0.580 6.1

(b) RT

Copula Estimated parameter τ̂ GoF statistic (×104)

Clayton θ̂ ≈ 2.28 0.533 5.6

Frank θ̂ ≈ 4.13 0.398 4.6

Gumbel θ̂ ≈ 1.48 0.325 2.1

Table 10: Estimated parameters and Kendall’s tau obtained by the Lakhal & al. (2008)

method in both the CMT and RT groups. The values of the goodness-of-fit statistic are

multiplied by 104.

6 Conclusion

In this paper, a new method is proposed to estimate the parameters of a copula when

considering semi-competing risks data. One of the concurrent events is censored by the
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(a) CMT

2.5% 97.5%

θ 6.46 10.86

β 2.98 9.05

τ 0.30 0.59

(b) RT

2.5% 97.5%

θ 2.46 4.65

β 3.73 13.25

τ 0.15 0.30

Table 11: Bootstrap confidence intervals for both components of θ and the Kendall’s tau

of the two-parameter Frank copula in both the CMT and RT groups.

time
0 4 8 12 16 20 24 28 32 36

0%
20

%
40

%
60

%
80

%
10

0%

time
0 4 8 12 16 20 24 28 32 36

0%
20

%
40

%
60

%
80

%
10

0%

Figure 2: Left: Kaplan-Meier Ĝ1(·) for treatment CMT (solid) and RT (dashed). Right:

Kaplan-Meier Ĝ2(·) for treatment CMT (solid) and RT (dashed).

other one but not vice versa. Their dependency is modeled by an Archimedean copula and

they are both submitted to independent right censoring. The new methodology provides

a maximum likelihood estimator that behaves well in many practical situations when it is

inserted in related survival functions. From the achieved analysis, we can conclude that

the methodology should be used in the following situations.

1. The most interesting case is when the dependency between Y and C is too complex

(or not sufficiently observable -see also point 2. below-) to be modeled by a copula

with a one-dimensional parameter. The only methodology that allows for multidi-

mensional parameter copulas in this modeling context is the one proposed in this

paper.

2. When the objective is to estimate survival functions of the type studied in this

paper (highly depending on the assumed copula) and when the assumed copula is

far from the model that generated the data (this case can occur when a copula is

badly chosen due in particular to the censoring mechanisms that ”hide” complex
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Figure 3: Contour plots of the Lakhal & al. (2008) function ĝn and the corresponding

solution obtained by the likelihood method for both the CMT and RT groups.
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Figure 4: Ŝ2(·) and pointwise 95% bootstrap confidence bands. Left: CMT group. Right:

RT group.

structures of dependency), our likelihood approach enables to make the copula as

close as possible to the true model.

3. When the semi-parametric conditional Kendall’s tau (in Lakhal & al. (2008)) is

estimated without using any estimator of the bivariate survival function of (Y,C),

the new methodology seems to provide better results (typically in the case of the

strict Clayton copula).

4. At a lower level, the results obtained in the right tails of the survival function of Y
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Figure 5: y 7→ P̂(C > · | C > 4, Y = 4) and pointwise 95% bootstrap confidence bands..

Left: CMT group. Right: RT group.

seem to be better when the new methodology is used.
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Appendix

Proof of Theorem 2.1.

Theorem 2.1 will be proved with the help of the following proposition. The first

assertion was noted by Rivest & Wells (2001) and the second one is a copy of proposition

2 in Rivest & Wells (2001).

Proposition A.1. Let U and V be two positive random variables each having an ab-

solutely continuous distribution. Define the integrated hazard rate Λ of U subject to be

censored by V by

Λ(dt) =
P(U ∈ dt, U ≤ V )

P(U ∧ V ≥ t)
.

Given an Archimedean generator ϕ, define the function Hϕ by

ϕ
(
Hϕ(t)

)
= −

∫ t

0

Γ(s)ϕ′(Γ(s)
)
dΛ(s) for every t ≥ 0,

where Γ(s) = P(U ∧ V ≥ s). Then,

(i) Hϕ(·) is the survival function of U if the bivariate survival function of (U, V ) is the

Archimedean copula with generator ϕ;

(ii) Hϕ2(t) < Hϕ1(t) for every t > 0 whenever ϕ1(·) and ϕ2(·) are two Archimedean

generators such that ϕ′
1(·)/ϕ′

2(·) is strictly increasing on (0, 1).

Let Y , C, D be random variables such that D is independent of (Y,C) and the copula

describing the dependency between Y and C is Cθ. We denote by S(·), G1(·) and G2(·)
the survival functions of Y , C and D respectively. We construct the observable four-

tuple O = (T, Z, ∆1, ∆2) from Y , C and D. We have to prove that the distribution of O

completely determines S(·), G1(·), G2(·) and θ.

Firstly, since Z = C ∧D and D is independent of C, we know by Berman (1963) that

G1 and G2 are determined by the law of (Z, ∆2). Consequently, the survival function Γ of

Y ∧C is determined by the law of O beacuse of Γ(t) = P(Y > t, C > t) =
P(T > t, Z > t)

G2(t)
.

Now, introduce the integrated hazard rate Λ of C subject to be censored by Y ∧D:

Λ(dt) =
P(C ∈ dt, C ≤ Y ∧D)

P(C ∧ Y ∧D ≥ t)
=

P(T ∈ dt, ∆1 = 0, ∆2 = 1)

P(T ≥ t)
,

which is determined by the law of O. Moreover, Λ is also the integrated hazard rate

of C subject to be censored by Y , because of the independence between D and (Y,C).

Therefore θ is uniquely determined by the law of O using proposition A.1 and the fact

that G1, Γ and Λ are determined by the law of O. Finally, S is uniquely determined by

the law of O since ϕθ

(
S(t)

)
+ ϕθ

(
G1(t)

)
= ϕθ

(
Γ(t)

)
.
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