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Abstract

In this paper, we address the situation where we cannot differentiate wavelet-based
threshold estimators because their sets of well-estimated functions (maxisets) are not nested.
As a generic solution, we propose to proceed via a combination of these estimators in order
to achieve new estimators which perform better in the sense that the involved maxisets
contain the union of the previous ones. Throughout the paper we propose illuminating in-
terpretations of the maxiset results and provide conditions to ensure that this combination
generates larger maxisets. As an example, we propose to combine vertical- and horizontal-
block thresholding estimators that are already known to perform well. We discuss the limi-
tations of our method, and we confirm our theoretical results through numerical experiments.
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1 Introduction
The literature about wavelet-based nonparametric function estimation is very large. Many
thresholding rules/procedures have been proposed and compared from both a practical and
a theoretical point of view. In the last decade, a new theoretical way, dual to the minimax ap-
proach, has been proposed to assess and compare their theoretical performances. This approach
consists in determining the maxiset of a thresholding rule that is the largest function space where
the procedure reconstructs the target function at a given rate of convergence. As previously dis-
cussed in Cohen et al. [16], Kerkyacharian and Picard [21],[22], Autin [3], [6] and in Autin et al.
[8], [9], this approach can be successful in order to differentiate minimax-equivalent procedures
whenever their maxisets are nested. Without such embeddings, the comparison would be impos-
sible. Even if it has often been viewed as a problem, this just reveals the fact that the procedures
are well-suited to estimate different classes of functions. Hence, the best procedure within of a
family of thresholding rules - that is the one with the largest maxiset - does not always exist.

In this paper we address this problem of the existence of a best thresholding rule. We general-
ize the framework of the µ-thresholding rules introduced by Autin [6] to work with and claim
that: "if you cannot discriminate between thresholding rules then combine them". Indeed, we
prove that we can construct a new thresholding rule borrowing strength from other well chosen
ones (those with non nested maxisets) to yield better maxiset results and numerical performances.

Following the results of our numerical simulations given in detail in Section 6, the Figure 1 shows
an example of our method that combines two block thresholding rules: horizontal- and vertical-
block thresholding procedures that are, to the best of our knowledge, the ones with largest but
not nested maxisets encountered in the literature. We recall that estimators induced by these
rules are respectively the Blockshrink estimator studied by Cai [10] and Autin et al. [9] and the
Hard Tree estimator studied by Autin [6] and Autin et al. [8]. Our numerical results clearly illus-
trate the need to use the combination of the previous estimators (called the Block Tree estimator)
rather than the Blockshrink estimator or the Hard Tree estimator since it behaves well over all
the twelve functions considered here. More information about these numerical experiments can
be found in Section 6.

The rest of the paper is organized as follows: Section 2 and Section 3 describe our theoretical
model and the maxiset approach, then, in Section 4, we define and give the maxiset properties of
the thresholding rules. In Section 5 we describe our method to combine thresholding rules and
its limitation. Finally, Section 7 ends the paper with detailed proofs of our theoretical results.
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Figure 1: Quadratic risk of estimators Blockshrink, Hard Tree and their combination Block
Tree.

2 Background of study
Let us consider a compactly supported wavelet basis of L2([0, 1]) with V vanishing moments
(V ∈ N∗) which has been previously periodized

{
φ, ψjk, j ∈ N, k ∈ {0, . . . , 2j − 1}

}
. Examples

of such bases are given in Daubechies [17]. Any function f ∈ L2([0, 1]) can be written as follows:

f = αφ+
∞∑
j=0

2j−1∑
k=0

θjkψjk. (1)

The coefficient α and the components of θ = (θjk)j,k are respectively the scaling/wavelet co-
efficients of f . They correspond to the L2-scalar products between f and the scaling/wavelet
functions φ and ψjk.

We consider the sequential version of the Gaussian white noise model: we dispose of observa-
tions of the wavelet coefficients of the goal function f which are assumed to be realizations of
independent random variables:

α̂ = α+ εξ and θ̂ =
(
θ̂jk

)
j,k

= (θjk + εξjk)j,k , (2)

where ξ, (ξjk)j,k are i.i.d. N (0, 1), 0 < ε < 1/e is the noise level.
We focus on performances of KK-estimators which are wavelet estimators relying on a Keep-or-
Kill rule. Such a KK-estimator f̂ can be written as follows:

f̂ = α̂φ+
∑

(j,k)∈Kε

θ̂jkψjk, (3)

where Kε is a finite set of indices that may be random or deterministic.
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3 Maxiset approach
In order to assess the theoretical efficiency of estimators, Cohen et al. [16] suggested the maxiset
point of view. This new setting offers a complementary approach to the minimax one and was
successfully applied in order to differentiate between minimax-optimal estimators.

In the following, we consider families of threshold estimators f̂µ,m associated with a given thresh-
olding rule µ (see Definition 4.1) and indexed by some index set M of positive real numbers
m ∈M , which will be specified later. Generally speaking, providing maxiset performances of an
estimator f̂ means determining the largest functional space (maxiset) G over which the quadratic
risk of this estimator converges at a prespecified rate v, i.e.

sup
0<ε<1/e

v−1
ε E‖f̂ − f‖22 <∞ ⇐⇒ f ∈ G.

More specifically, in our context, we shall say that the functional space G
µ,M

is the maxiset of
the thresholding rule µ for the rate of convergence v and the L2-loss function if and only if

sup
m∈M

sup
0<ε<1/e

v−1
ε E‖f̂µ,m − f‖22 <∞ ⇐⇒ f ∈ G

µ,M
.

In other words, the space G
µ,M

can be viewed as the intersection of the maxisets of estimators
f̂µ,m (m ∈M).

Therefore, from the maxiset point of view, the larger the maxiset the better the rule. Obviously,
the size of the maxiset depends on the chosen rate; the slower the rate the larger the maxiset.
When comparing distinct rules of reconstruction, we say that one is better than the other if the
maxiset of the one contains the maxiset of the other, for the same given rate.

The first maxiset results were provided by Cohen et al. [16] and Kerkyacharian and Picard
[21], [22] who determined the maximal functional spaces for estimators based on Hard and Soft
thresholding rules, respectively. They also proved that estimators built from the local bandwith
selection rule of Lepski [23] were at least as efficient as the latter ones.

As discussed in Autin [3], thresholding rules with larger maxiset can be constructed from rules
that are not elitist - i.e., rules that do not only keep all the ’large’ empirical wavelet coefficients
but equally consider some well chosen small ones. As examples, we cite estimators that rely on
vertical-block thresholding rules (see Autin [5], Autin et al. [8])) or horizontal-block thresholding
rules (see, among others, Hall et al. [19], [20], Cai [10], [11] [12], [13], [14] and Autin et al. [9]).
When looking at these estimators, their maxisets are larger than those of estimators based on
an elitist rules, including Hard, Soft Thresholding estimators, and also many Bayes estimators
(see Autin et al. [4]).

Nevertheless the following open question arises from these previous works: in order to estimate
a signal what is the best choice among vertical- and horizontal-block thresholding rules?

As emphasized in the Introduction the maxisets of vertical- and horizontal-block thresholding
estimators are not embedded and thus these estimators can not be differentiated one from the
other. Indeed, as shown by the quadratic risks of the estimators in the Figure 1 for several test
functions, it seems to be difficult to identify a winning method. Hence, from both a theoretical
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and a practical point of view the answer to the question is not clear.

As a way out, in this paper we propose to combine existing thresholding rules so as to get a new
well-performing rule which reconstructs at least as many functions as the ones generated by the
vertical- and horizontal- block thresholding rules. To reach this goal we first introduce a large
family of wavelet estimators built from thresholding rules.

4 Maxiset properties of thresholding rules
From now on, let us introduce some notations.

• tε = ε
√

ln(ε−1) (0 < ε < 1/e),

• jλ is the integer such that 2−jλ ≤ λ2 < 21−jλ (λ > 0),

• θ = (θjk)j,k (resp. θ̂ = (θ̂jk)j,k) is the set of all wavelet coefficients (resp. all empirical
wavelet coefficients) of signal f .

4.1 Estimators built from thresholding rules
Let us now introduce a family of wavelet estimators built from thresholding rules. The following
definition is a slight generalisation of the one given by Autin [6] in that condition (2.3) therein
is not required here.

Definition 4.1. Let m > 0 and consider the sequential model (2). An estimator f̂µ,m is called
(µ,m)-thresholding estimator if, there exists a thresholding rule that is a sequence of positive
functions

(
µjk

(
m, tε, θ̂

))
j,k

that are monotonically decreasing with respect to m and such that

f̂µ,m = α̂φ+
∑

j∈N, j<jmtε

2j−1∑
k=0

θ̂jk1
{
µjk

(
m, tε, θ̂

)
> mtε

}
ψj,k.

As remarked in Autin et al. [6], any (µ,m)-thresholding estimator f̂µ,m is a limited estimator
in the sense that the reconstruction of f by such an estimator does not use empirical wavelet
coefficients θ̂jk with j ≥ jmte .

Some examples of µ-thresholding rules and of the (µ,m)-thresholding estimators (m > 0) asso-
ciated with are the following:

• The Hard Thresholding rule µ
H

: µ
H

jk

(
m, tε, θ̂

)
:=
∣∣∣θ̂jk∣∣∣.

The (µ
H

,m)-thresholding estimator relies on the basic rule to keep in the signal reconstruction
only empirical wavelet coefficients larger than the threshold value mtε in absolute value. The
other ones are killed.

• The Hard Tree Thresholding rule µ
T

: µ
T

jk

(
m, tε, θ̂

)
:= max(j′,k′)∈Tj,k(mtε)

∣∣∣θ̂j′k′ ∣∣∣.
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The (µ
T

,m)-thresholding estimator was already studied by Autin [5] and Autin et al. [8]. It
relies on the rule to keep empirical wavelet coefficients with level strictly smaller than jmtε ,
larger in absolute value than the threshold mtε and with their ancestors in the dyadic-tree
rooted at (j0, k0) := (0, 0). Here Tj,k(mtε) corresponds to the dyadic-tree rooted à (j, k) and
being reduced to indices with level strictly smaller than jmtε . This estimator is tree structured
(i.e. the empirical wavelet coefficients that have been kept for the signal reconstruction satisfy
the hereditary constraint of Engel [18]). They can be viewed as both a hybrid wavelet version
of Lepski’s kernel method (see Autin [5]) and a vertical-block thresholding method (see Autin et
al. [8]).

• The BlockShrink rule µ
B

: µ
B

jk

(
m, tε, θ̂

)
:=

 ∑
k′∈Pj,k(ε)

θ̂2jk′

 1
2

.

The (µ
B

,m)-thresholding estimator was studied by Cai [10] and Autin et al. [9]. It relies on
the rule to keep empirical wavelet coefficients if the l2-norm of the empirical wavelet coefficients
with index k′ belonging to its block Pj,k(ε) is larger than the threshold value mtε. Pj,k(ε) are
non-overlapped blocks with common size dln(ε−1)e = d− ln(F−1(tε))e, where F−1 is the inverse
function of F : ε −→ F (ε) := tε and dxe denotes the smallest integer bigger than or equal to x.
A precise description is given in Cai [10] and in Autin et al. [9].

More generally, for wise choices of µ, the resulting estimators show good theoretical and practical
performances. In particular we recall in the next section that the sets of functions they are able
to well estimate are quite large for ’classical’ minimax rates (see Cohen et al. [16], Autin [3] and
[6]).

4.2 Maxiset results
To begin, let us define the functional spaces that shall appear in our future maxiset results.

Definition 4.2. Let 0 < u < V . A function f ∈ L2([0, 1]) belongs to the Besov space Bu2,∞ if
and only if:

sup
J≥0

22Ju
∑
j≥J

2j−1∑
k=0

θ2jk <∞.

Following Autin [3], for any chosen rate v, Besov spaces Bu2,∞ usually appear when studying the
maxisets of wavelet estimators that kill any empirical wavelet coefficient with a level larger than
or equal to a maximum resolution level jε = O

(
ln(v−1

ε )
)

(0 < ε < 1/e).

Definition 4.3. Let m′ ≥ 1, 0 < r < 2 and a thresholding rule µ be given. A function f ∈
L2([0, 1]) belongs to the space Wµ,m′(r) if and only if:

sup
m≥m′

sup
0<λ< 1

e

(mλ)r−2
∑
j∈N

2j−1∑
k=0

θ2jk1 {µjk (m,λ, θ) ≤ mλ} <∞.

The spaces Wµ,m′(r) contain functions for which we can control the energy of the coefficients
that do not survive the µ-thresholding rule.
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Definition 4.4. A thresholding rule µ is said to satisfy the U -property if and only if, for any
(j, k), any (m, ε) and any sequence of real numbers θ,

µjk (m, tε, θ) only depends on parameters mtε and θ, (4)

In the sequel, we use µ̃jk (mtε, θ) := µjk (m, tε, θ) to denote a thresholding rule µ satisfying the
U -property.

Proposition 4.1. Consider a thresholding rule µ satisfying the U -property. Then, for any
0 < r < 2 and any m′ ≥ 1

Wµ,m′(r) = Wµ(r),

where Wµ(r) is the set of functions f ∈ L2([0, 1]) such that

sup
λ>0

λr−2
∑
j∈N

2j−1∑
k=0

θ2jk1 {µ̃jk (λ, θ) ≤ λ} <∞.

Remark 4.1. a) The proof of the previous proposition is obvious by considering the required
change of variables.
b) Notice that both µ

H

and µ
T

satisfy the U -property whereas µ
B

does not. For the latter case,
various values of m′ generate distinct functional spacesWµB ,m′(r). Indeed, notice thatWµB ,m′(r)
can be rewritten as the space of functions f such that

sup
m≥m′

sup
0<λ<m

e

λr−2
∑
j∈N

2j−1∑
k=0

θ2jk1


 ∑
k′∈Pj,k(F−1( λm ))

θ2jk′


1
2

≤ λ

 <∞.

The aim of the following paragraph is to characterize the maxisets associated with thresholding
rules (see also Autin [6]). As usual in the maxiset setting, we shall suppose that a Large Devia-
tion property, namely LD-property, will hold to derive our results.

Definition 4.5. We say that a thresholding rule µ satisfies the LD-property if and only if for
any given ν > 0, there exists m

µ,ν
≥ 1 such that for any m ≥ m

µ,ν
and any sequence of real

numbers θ and Gaussian random variables θ̂ connected to θ via model (2),

sup
0<ε<1/e

ε−ν P
(
|µjk(m, tε, θ̂)− µjk(m, tε, θ)| > m

µ,ν
tε

)
≤ 1

2
. (5)

Remark 4.2. Notice that for the examples of thresholding rules we gave, the LD-property (5)
is satisfied for:

• µH when choosing m
µH,ν

=
√

2ν + 4 ln(2),

• µT when choosing m
µT ,ν

=
√

2(ν + 2 + 2 ln(2)) (due to the concentration inequality for
standard Gaussian variables),
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• µB, when choosing m
µB,ν

such that m2
µB,ν
−2 ln(m

µB,ν
) = 2ν+1 (obtained from inequality

(9.9) given in Cai [11]).

Definition 4.6. We say that a thresholding rule µ satisfies the Sparsity-property if and only
there exists C

µ
> 0 such that for any 0 < ε < 1/e, any m > 0 and any sequence of real numbers

θ

∑
j<jmtε

2j−1∑
k=0

1{µjk(m, tε, θ) >
mtε
2
}

≤ Cµ ln(ε−1)
∑
n∈N

(m2ntε)−2
∑
j∈N

2j−1∑
k=0

θ2jk1{µjk(m2n, tε, θ) ≤ m2ntε}. (6)

Notice that rules µ
H

, µ
T

and µ
B

satisfy the Sparsity-property (see also Autin [6]). Moreover,
from Definition 4.3, the following lemma holds:

Lemma 4.1. Let s > 0 and m′ ≥ 1. Consider a thresholding rule µ that satisfies the Sparsity-
property. Then,

f ∈Wµ,m′

(
2

1+2s

)
⇓

sup
m≥m′

sup
0<ε<1/e

(mtε)
2

1+2s
(
ln(ε−1)

)−1 ∑
j<jmtε

2j−1∑
k=0

1
{
µjk(m, tε, θ) >

m

2
tε

}
<∞,

where θ = (θjk)j,k is defined as in equation (1).

When thinking of practical purposes, the choice of m is crucial. To avoid the gap between theo-
retical and practical settings, we provide our results for a large range of values m.

Theorem 4.1. Let s > 0. Consider a thresholding rule µ such that the LD-property and the
Sparsity-property hold. Then, for any m′ ≥ m

µ,4 , we have the following equivalence:

∀m ≥ 2m′, sup
0<ε<1/e

(mtε)
− 4s

1+2s E‖f̂µ,m − f‖22 <∞ ⇐⇒ f ∈ B
s

1+2s
2,∞ ∩Wµ,m′

(
2

1 + 2s

)
.

There is a natural and interesting interpretation of this theorem. The Sparsity-property ensures
that the functions to be estimated have a sufficient degree of sparsity to be able to control
the variance of our thresholding rules at the level required by the prespecified rate. In such a
situation, Theorem 4.1 shows us that one should enlarge as much as possible the space Wµ,m′ .
To do so, the thresholding rules keep as much as possible well-chosen coefficients, in other words,
they attempt to reduce as much as possible the estimation bias. This situation describes a wide
range of thresholding rules, among them, we are naturally interested in those which at least
outperform (in the maxiset sense) the Hard thresholding one: they are called Cautious rules and
are defined as follows:
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Definition 4.7. We say that a thresholding rule µ is cautious if and only if, for any (j, k) and
any sequence of real numbers θ, the following property holds:

|θjk| ≥ mtε =⇒ µjk(m, tε, θ) ≥ mtε, for any 0 < ε < 1/e.

Rules µ
H

, µ
T

, µ
B

are clearly cautious. From Definition 4.3 and Proposition 4.1, one gets:

Proposition 4.2. Let µ be a cautious rule. Then, for any m′ ≥ 1 and any 0 < r < 2,

Wµ,m′ (r) ⊇WµH (r) .

As a direct consequence of Theorem 4.1 and Proposition 4.2, we get the following corollary.

Corollary 4.1. Let µ be a cautious rule such that the LD-property and the Sparsity-property
hold. Consider m′ ≥ m

µ,4 . Then, the set of functions well estimated by (µ,m)-thresholding
estimators (m ≥ 2m′) are quite large. Indeed, for any s > 0

f ∈ B
s

1+2s
2,∞ ∩WµH

(
2

1 + 2s

)
=⇒ sup

m≥2m′
sup

0<ε<1/e

(mtε)
− 4s

1+2s E‖f̂µ,m − f‖22 <∞.

Remark 4.3. We recall that the set B
s

1+2s
2,∞ ∩WµH

(
2

1+2s

)
can be considered as a large functional

space since it contains the space Bs2,∞ (see among others Autin [3]).

5 Combining thresholding rules to get larger maxisets
We show here how to construct more powerful thresholding procedures in the maxiset sense by
combining many thresholding rules with possibly non nested maxisets, provided that the LD-
property and the Sparsity-property are satisfied. We then show the limitation of that method of
combination by constructing an upper bound, that is the largest maxiset that could possibly be
attained by estimators built from our procedure. Finally we apply it to the introductory example
concerning the Blockshrink and Hard Tree estimators.

Let us begin with the following lemma.

Lemma 5.1. Let µ(1) and µ(2) be two thresholding rules which satisfy the LD-property. Consider,
for any m > 0,

f̂µ(3),m = α̂φ+
jmtε−1∑
j=0

2j−1∑
k=0

θ̂jk1
{
µ

(3)
j,k(m, tε, θ̂) > mtε)

}
ψj,k

= α̂φ+
jmtε−1∑
j=0

2j−1∑
k=0

θ̂jk1
{

max
(
µ

(1)
j,k(m, tε, θ̂), µ

(2)
j,k(m, tε, θ̂)

)
> mtε)

}
ψj,k

Then µ(3) is a rule satisfying the LD-property, with m
µ(3),ν

= max(m
µ(1),ν+1

,m
µ(2),ν+1

), for any
ν > 0.

This Lemma reflects the key point of our method to get estimators with larger maxisets. Indeed
the following theorem holds:
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Theorem 5.1. Let s > 0 and µ(1) and µ(2) be two thresholding rules which satisfy the LD-
property and the Sparsity-property. Consider estimators f̂µ(3),m (m > 0) defined as in the
previous lemma. If µ(3) satisfies the Sparsity-property too, then for any m′ ≥ m

µ(3),4

a) ∀m ≥ 2m′, sup
0<ε<1/e

(mtε)
− 4s

1+2s E‖f̂µ,m − f‖22 <∞

m
f ∈ B

s
1+2s
2,∞ ∩Wµ(3),m′

(
2

1+2s

)
,

b) Wµ(3),m′

(
2

1+2s

)
⊃Wµ(1),m′

(
2

1+2s

)
∪Wµ(2),m′

(
2

1+2s

)
.

In the previous theorem, the equivalence given in a) means that considering the maximum of two
thresholding rules generates a new thresholding rule for which maxiset have been determined,
provided that the LD-property and the Sparsity-property are satisfied. The embedding property
b) is quite interesting since it proves that from two chosen thresholding rules µ(1) and µ(2) with
possibly non nested maxisets and satisfying the LD-property and the Sparsity-property, we are
able to construct a new rule µ(3) which is at least as efficient as the two previous ones in the
maxiset sense, provided that µ(3) satisfies the Sparsity-property.

5.1 Limitation of the method
In this paragraph, we point out the limitation of our method for enlarging maxisets. We deduce
this limitation from the obvious fact that if at least one of the thresholding rules is cautious,
then its combination with other rules following Lemma 5.1 is cautious too. We give this result
in the Theorem 5.2 but we need first to define a new important functional space:

Definition 5.1. Let m′ ≥ 1 and 0 < r < 2, a function f belongs to the space W ∗m′(r) if and only
if:

sup
m≥2m′

sup
0<λ< 2m

e

m−2λr
[
− ln

(
F−1

(
λ

2m

))]−1 ∑
j≤jλ+1

2j−1∑
k=0

1{|θjk| > λ} <∞.

Theorem 5.2. (Limitation of the method for enlarging maxisets). Let s > 0 and µ be a cautious
thresholding rule satisfying the LD-property. Then, for any m′ ≥ m

µ,4

∀m ≥ 2m′, sup
0<ε<1/e

(mtε)
− 4s

1+2s E‖f̂µ,m − f‖22 <∞ =⇒ f ∈ B
s

1+2s
2,∞ ∩W ∗m′

(
2

1 + 2s

)
.

As a conclusion, we proved first, that larger maxisets can be obtained by combining existing
thresholding rules that satisfy both the LD- and the Sparsity-properties. Second, there exists a
well defined limitation to this method, meaning that thresholding rules emerging from our proce-
dure fail whenever we are dealing with functions that cannot be estimated with the prespecified
rate by any cautious rule. It remains an open question to determine if the largest maxiset at-
tainable by combining thresholding rules using our method is as large as the functional space
given in Theorem 5.2.
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5.2 Example: Combining Blocks thresholding rules
Here we propose to provide an example of our method. The largest maxisets of thresholding rules
which have been determined up to now are those of µ

T

and µ
B

and are known to be not embedded.

As previously precised, these two thresholding rules satisfy the LD-property and the Sparsity-
property. When combining these two rules, we get the following rule, called Block Tree rule,

µBTjk

(
m, tε, θ̂

)
:= max

 max
(j′,k′)∈Tj,k(mtε)

∣∣∣θ̂j′k′ ∣∣∣ ,
 ∑
k′∈Pj,k(ε)

θ̂2jk′

 1
2
 ,

that clearly satisfies the Sparsity-property. From Theorem 5.1, we get:

Corollary 5.1. Let s > 0 and m′ ≥ 4.1 ≥ max(m
µT ,5

,m
µB,5

). Then

∀m ≥ 2m′, sup
0<ε<1/e

(mtε)
− 4s

1+2s E‖f̂µBT ,m − f‖22 <∞ ⇐⇒ f ∈ B
s

1+2s
2,∞ ∩WµBT ,m′

(
2

1 + 2s

)
.

6 Numerical experiments
We propose to illustrate our theoretical results with numerical experiments. It is well known that
the sequence model given by the equation (2) and the following nonparametric regression model
are equivalent with the calibration ε = σ√

N
. Let us introduce the notations of the nonparametric

model we are dealing with:

Yi = f (i/N) + σζi, 1 ≤ i ≤ N, ζi are i.i.d. N (0, 1) . (7)

We generate the data sets from a large panel of functions often used in wavelet estimation
studies (see Antoniadis et al. [2]), the number of observations N = 2048, the Signal to Noise
Ratio, defined as the logarithmic decibel scale of the ratio of the standard deviation of the
function values to the standard deviation of the noise, is set to 10. We use the Daubechies least
asymmetric wavelets with 8 vanishing moments. We use the universal threshold value σ̂

√
2 ln(N)

for the Hard Tree estimator f̂HT and σ̂
√

5 ln(N) for the Blockshrink estimator f̂B as suggested
in Cai [10]. We adopt the standard approach to estimate σ by computing the Median Absolute
Deviation (MAD) over the thresholded wavelet coefficients at the finest wavelet scale J − 1 (see
e.g., Vidakovic [26]).
The Integrated Squared Error of the estimator f̂ at the m-th Monte Carlo replication (1 ≤ m ≤
M) (ISE(m)

(
f̂
)
) is computed as follows:

ISE(m)
(
f̂
)

=
1
N

N∑
i=1

(
f̂ (m)

(
i

N

)
− f

(
i

N

))2

. (8)

The Mean ISE (MISE) is computed over M = 2000 Monte Carlo replications:

MISE
(
f̂
)

=
1
M

M∑
m=1

ISE(m)
(
f̂
)
.

We use the connections between keep-or-kill estimation and hypothesis testing (see Abramovich
et al.[1]) in order to report in Table 1 the number of false positives/negatives (i.e., type I/II
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errors). This is obtained by comparing the set of indices of wavelet coefficients kept by each
estimator with the set of indices kept by the keep-or-kill Oracle estimator

f̂O = α̂φ+
∑

(j,k)∈SO
θ̂jkψjk, (9)

where SO =
{

(j, k) ; j ∈ N, j < j
λ σ√

N

,p
; 0 ≤ k < 2j ; |θjk| > σ√

N

}
.

When comparing the MISE results of the Blockshrink and of the Hard Tree estimators in Ta-
ble 1 we understand that in practical situations we would not be able to decide which one to use.
Indeed, according to the test function, it could be either the Blockshrink or the Hard Tree that
performs the best. When not optimal, their MISE can be larger up to 70 (resp. 115) percent
compared to the other method. That is a potential huge loss for a practitioner that does not
choose the method adapted to the target function we want to reconstruct. This observation is
exactly what the maxiset approach suggests when the maxiset of these two methods are non
nested. When looking at the results of the Block Tree estimator f̂HBT , it provides almost always
the lowest MISE. If this is not the case, the deviation w.r.t the MISE of the Blockshrink or of
the Hard Tree does not pass over a reasonable 8 percent. There is no doubt that the Block Tree
estimator is to be preferred over the two others. Table 1 shows the impressive synergy when
combining methods to increase the true discoveries at a comparatively low price in terms of false
positives yielding these good performances of the Block Tree estimator.

Remark 6.1. When comparing the behaviors of Blockshrink and Hard Tree estimators, they
are quite sensitive to the choice of the wavelet family and regularity. Nevertheless, whatever the
setting Block Tree estimator remains the estimator to be preferred.
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f̂B f̂HT f̂BHT f̂O f̂B f̂HT f̂BHT f̂O

Function: Step Function: Doppler
MISE 8.21 7.23 5.89 2.56 1.78 2.28 1.66 1.02
False positives 23.3 0.9 24.0 0.0 15.0 8.0 18.5 0
False negatives 15.2 22.1 10.9 0.0 14.6 20.9 13.2 0
Size 58.1 28.8 63.1 50.0 62.4 49.2 67.3 62

Function: Wave Function: Angles
MISE 1.23 2.65 1.23 0.75 1.35 1.81 1.33 0.76
False positives 5.0 4.7 9.6 0.0 2.3 0.7 2.9 0.0
False negatives 9.3 20.5 4.9 0.0 8.9 13.9 8.3 0.0
Size 49.7 38.2 58.7 53.0 28.4 21.8 29.6 35.0

Function: Blip Function: Parabolas
MISE 2.37 1.92 1.73 0.78 1.88 1.82 1.63 0.83
False positives 18.5 1.0 19.4 0.0 10.9 1.0 11.9 0.0
False negatives 10.3 13.0 7.7 0.0 4.8 7.3 4.3 0.0
Size 45.1 24.9 48.6 37.0 30.1 17.8 31.6 24.0

Function: Blocks Function: time.shift.sine
MISE 4.40 4.06 3.17 1.44 0.78 1.31 0.84 0.57
False positives 40.2 0.5 40.6 0.0 5.8 1.1 6.8 0.0
False negatives 57.7 80.8 48.7 0.0 1.3 5.5 1.2 0.0
Size 134.6 71.7 143.9 152.0 29.5 20.6 30.6 25.0

Function: Bumps Function: Spikes
MISE 1.49 1.48 1.15 0.57 0.80 0.85 0.65 0.35
False positives 77.5 2.2 77.7 0.0 26.4 1.5 26.8 0.0
False negatives 40.0 73.0 33.9 0.0 11.8 21.6 10.2 0.0
Size 206.5 98.2 212.8 169.0 81.6 47.0 83.7 66.0

Function: Heavisine Function: Corner
MISE 2.54 1.58 1.58 0.79 0.46 0.67 0.47 0.25
False positives 4.4 1.0 5.4 0.0 2.1 1.1 3.1 0.0
False negatives 16.3 15.6 13.0 0.0 4.1 7.4 3.6 0.0
Size 17.1 14.4 21.4 28.0 20.0 15.7 21.5 22.0

Table 1: MISE (10−4), number of false positives/negatives and average size of the number of non zero
empirical wavelet coefficients in the estimator.
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7 Appendix
This section aims at proving the results provided in our study. In the sequel C denotes a generic
constant which does not depend on ε and that may be different from one line to the other.

7.1 Proof of Lemma 4.3
Proof. Fix s > 0, m ≥ m′ ≥ 1 and 0 < ε < 1/e. Let µ be a thresholding rule that satisfies the
Sparsity-property and consider f ∈Wµ,m′

(
2

1+2s

)
.

Because of the Sparsity-property,

∑
j<jmtε

2j−1∑
k=0

1{µjk(m, tε, θ) >
mtε
2
}

≤ C
µ

ln(ε−1)
∑
n∈N

(m2ntε)−2
∑
j∈N

2j−1∑
k=0

θ2jk1{µjk(m2n, tε, θ) ≤ m2ntε}

≤ C ln(ε−1)
∑
n∈N

(m2ntε)−2(m2ntε)2−
2

1+2s

≤ C ln(ε−1)(mtε)−
2

1+2s .

So

sup
m≥m′

sup
0<ε<1/e

(mtε)
2

1+2s
(
ln(ε−1)

)−1 ∑
j<jmtε

2j−1∑
k=0

1
{
µjk(m, tε, θ) >

m

2
tε

}
<∞.

7.2 Proof of Theorem 4.1
Proof. (=⇒) Let a thresholding rule µ satisfy the LD- and the Sparsity- properties and m′ ≥
m
µ,4 . Suppose that there exists C > 0 such that E‖f̂µ,m − f‖22 ≤ C (mtε)

4s
1+2s , for any m ≥ 2m′

and any 0 < ε < 1/e.

Let m ≥ 2m′. Then, ∑
j≥jmtε

2j−1∑
k=0

θ2jk ≤ E‖f̂µ,m − f‖22

≤ C (mtε)
4s

1+2s

≤ C 2−
2s

1+2s jmtε .

Using the continuity of tε in ε, we deduce that f ∈ B
s

1+2s
2,∞ . Moreover,

(
mtε
2

)− 4s
1+2s ∑

j∈N

2j−1∑
k=0

θ2jk1
{
µjk

(m
2
, tε, θ

)
≤ m

2
tε

}
= A1 +A2 +A3,
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with,

A1 =
(
mtε
2

)− 4s
1+2s

E

 ∑
j<jmtε

2j−1∑
k=0

θ2jk1
{
µjk

(m
2
, tε, θ

)
≤ m

2
tε

}
1
{
µjk(m, tε, θ̂) ≤ mtε

}
≤

(
mtε
2

)− 4s
1+2s

E

 ∑
j<jmtε

2j−1∑
k=0

θ2jk1
{
µjk(m, tε, θ̂) ≤ mtε

}
≤

(
mtε
2

)− 4s
1+2s

E‖f̂µ,m − f‖22

≤ C,

A2 =

(
mtε
2

)− 4s
1+2s

E

 ∑
j<jmtε

2j−1∑
k=0

θ2jk1

{
µjk

(m
2
, tε, θ

)
≤ m

2
tε

}
1

{
µjk(m, tε, θ̂) > mtε

}
≤

(
mtε
2

)− 4s
1+2s

E

 ∑
j<jmtε

2j−1∑
k=0

θ2jk1

{
|µjk(m, tε, θ̂)− µjk(m, tε, θ)| >

m

2
tε

}
=

(
mtε
2

)− 4s
1+2s ∑

j<jmtε

2j−1∑
k=0

θ2jkP
(
|µjk(m, tε, θ̂)− µjk(m, tε, θ)| >

m

2
tε
)

≤ C (mtε)
− 4s

1+2s ε4

≤ C.

The last inequalities use the decay property of functions µjk with respect to the first variable,
the LD-property and the fact that m ≥ 2m

µ,4 .

Now
A3 =

(
mtε
2

)− 4s
1+2s ∑

j≥jmtε

2j−1∑
k=0

θ2jk1
{
µjk

(m
2
, tε, θ

)
≤ m

2
tε

}

≤
(
mtε
2

)− 4s
1+2s ∑

j≥jmtε

2j−1∑
k=0

θ2jk

≤ C (mtε)
− 4s

1+2s 2−
2s

1+2s jmtε

≤ C.

The last inequality holds since we have already proved that f ∈ B
s

1+2s
2,∞ . When combining

the bounds of A1, A2 and A3 and when using the continuity on tε in ε, one deduces that
f ∈Wµ,m′( 2

1+2s ).

(⇐=) Suppose that f ∈ B
s

1+2s
2,∞ ∩Wµ,m′( 2

1+2s ) with m′ ≥ mµ,4 . For any any m ≥ 2m′ and any
0 < ε < 1/e, the quadratic risk of the estimator f̂µ,m can be decomposed as follows:
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E‖f̂µ,m − f‖22 = E

 ∑
j<jmtε

2j−1∑
k=0

θ2jk1
{
µjk

(
m, tε, θ̂

)
≤ mtε

}
+E

 ∑
j<jmtε

2j−1∑
k=0

(θ̂jk − θjk)21
{
µjk

(
m, tε, θ̂

)
> mtε

}
+
∑

j≥jmtε

2j−1∑
k=0

θ2jk + ε2

= A4 +A5 +A6.

Since f ∈ B
s

1+2s
2,∞ ∩Wµ,m′( 2

1+2s ) and due to the LD-property

A4 = E

 ∑
j<jmtε

2j−1∑
k=0

θ2jk1
{
µjk

(
m, tε, θ̂

)
≤ mtε

}
≤

∑
j<jmtε

2j−1∑
k=0

θ2jk1
{
µjk (2m, tε, θ) ≤ 2mtε

}

+
∑

j<jmtε

2j−1∑
k=0

θ2jkP
(
|µjk(m, tε, θ̂)− µjk(m, tε, θ)| > mtε

)
≤ C

[
(mtε)

4s
1+2s + ε4

]
≤ C (mtε)

4s
1+2s .

Using the Cauchy-Schwarz inequality, the LD-property and Lemma 4.3,

A5 =
∑

j<jmtε

2j−1∑
k=0

E
[
(θ̂jk − θjk)21

{
µjk

(
m, tε, θ̂

)
> mtε

}]

≤
∑

j<jmtε

2j−1∑
k=0

E
[
(θ̂jk − θjk)21

{
µjk (m, tε, θ) >

m

2
tε

}]

+ C ε2
∑

j<jmtε

2j−1∑
k=0

P
1
2

(
|µjk(m, tε, θ̂)− µjk(m, tε, θ)| >

m

2
tε

)
≤ C

(
(mtε)

4s
1+2s + ε2

)
≤ C (mtε)

4s
1+2s .

Since f ∈ B
s

1+2s
2,∞

A6 = ε2 +
∑

j≥jmtε

2j−1∑
k=0

θ2jk

≤ ε2 + C 2−
2s

1+2s jmtε

≤ C (mtε)
4s

1+2s .
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When combining the bounds of A4, A5 and A6 and using the continuity of tε in ε one deduces
that

sup
0<ε< 1

e

(mtε)−
4s

1+2sE‖f̂µ,m − f‖22 <∞.

This ends the proof.

7.3 Proof of Lemma 5.1
Proof. It is obvious that µ(3) is a thresholding rule that generates (µ(3),m)-thresholding es-
timators. Suppose that µ(1) and µ(2) satisfy the LD-property and consider for any ν > 0,
m
µ(3),ν

= max(m
µ(1),ν+1

,m
µ(2),ν+1

). Then, for any 0 < ε < 1/e and any m ≥ m
µ(3),ν

P
(
|µ(3)
jk (m, tε, θ̂)− µ(3)

jk (m, tε, θ)| > m
µ(3),ν

tε

)
≤ P

(
|µ(1)
jk (m, tε, θ̂)− µ(1)

jk (m, tε, θ)| > m
µ(3),ν

tε

)
+ P

(
|µ(2)
jk (m, tε, θ̂)− µ(2)

jk (m, tε, θ)| > m
µ(3),ν

tε

)
≤ P

(
|µ(1)
jk (m, tε, θ̂)− µ(1)

jk (m, tε, θ)| > m
µ(1),ν+1

tε

)
+ P

(
|µ(2)
jk (m, tε, θ̂)− µ(2)

jk (m, tε, θ)| > m
µ(2),ν+1

tε

)
≤ εν+1

≤ εν

2
.

Hence µ(3) satisfies the LD-property too.

7.4 Proof of Theorem 5.1
Proof. a) is a direct consequence of Lemma 5.1 and Theorem 4.1.
b) becomes obvious when looking at the definition of spaces Wµ,m′(r) (with 0 < r < 2). Indeed,
for any m ≥ m′, any 0 < ε < 1/e and any sequence of real numbers θ,

µ
(3)
j,k(m, tε, θ) = max

(
µ

(1)
j,k(m, tε, θ), µ

(2)
j,k(m, tε, θ)

)
≥ µ(i)

j,k(m, tε, θ), for i ∈ {1, 2}.

7.5 Proof of Theorem 5.2
Proof. Consider a cautious rule µ that satisfies the LD-property. Assume that there exists C > 0
such that, for any 0 < ε < 1/e, any m′ ≥ m

µ,4 and any m ≥ 2m′

E‖f̂µ,m − f‖22 ≤ C (mtε)
4s

1+2s .

Consider m′ ≥ m
µ,4 . Then, ∑

j≥j2m′tε

2j−1∑
k=0

θ2jk ≤ E‖f̂µ,2m′ − f‖22

≤ C (2m′tε)
4s

1+2s

≤ C 2−
2js

1+2s .

Using the continuity of tε in ε, one gets f ∈ B
s

1+2s
2,∞ .
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Let us now prove that f necessarily belongs to W ∗m′(
2

1+2s ), i.e.

sup
m≥2m′

sup
0<λ< 2m

e

m−2λr
[
− ln

(
F−1

(
λ

2m

))]−1 ∑
j≤jλ+1

2j−1∑
k=0

1{|θjk| > λ} <∞.

When considering the change of variables tε = λ(2m)−1, (m ≥ 2m′, 0 < λ < 2m
e ) one aims at

proving that, for any m ≥ 2m′:

sup
0<ε< 1

e

ε2 (mtε)
− 4s

1+2s
∑

j<jmtε

2j−1∑
k=0

1{|θjk| > 2mtε} <∞.

Since µ is a cautious rule, for any m ≥ 2m′ and 0 < ε < 1
e ,

ε2
∑

j<jmtε

2j−1∑
k=0

1{|θjk| > 2mtε} ≤ ε2
∑

j<jmtε

2j−1∑
k=0

1{µjk(m, tε, θ) > 2mtε}

≤ E

 ∑
j<jmtε

2j−1∑
k=0

(θ̂jk − θjk)21{µjk(m, tε, θ) > 2mtε}


= B1 +B2,

with

B1 = E

 ∑
j<jmtε

2j−1∑
k=0

(θ̂jk − θjk)21{µjk(m, tε, θ) > 2mtε and µjk(m, tε, θ̂) > mtε}


≤ E

 ∑
j<jmtε

2j−1∑
k=0

(θ̂jk − θjk)21{µjk(m, tε, θ̂) > mtε}


≤ E‖f̂µ,m − f‖22
≤ C (mtε)

4s
1+2s ,

and, because of the LD-property and the Cauchy-Schwarz inequality

B2 = E

 ∑
j<jmtε

2j−1∑
k=0

(θ̂jk − θjk)21{µjk(m, tε, θ) > 2mtε and µjk(m, tε, θ̂) ≤ mtε}


≤ C ε2

∑
j<jmtε

2j−1∑
k=0

P
1
2

(
|µjk(m, tε, θ̂)− µjk(m, tε, θ)| > mtε}

)
≤ C ε2

≤ C (mtε)
4s

1+2s .

The last inequality is obtained because of m ≥ m
µ,4 .

Combining B1 and B2 and still using the continuity of tε in ε, one gets f ∈ W ∗m′( 2
1+2s ). This

ends the proof.
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