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Abstract

Our goal is to predict a scalar value or a group membership from the discretized observation of curves with sharp
local local features that might vary both vertically and horizontally. To this aim, we propose to combine the use
of the non parametric functional regression estimator developed by Ferraty and Vieu (2006) [1] with the Bagidis
semimetric developed by Timmermans and von Sachs (2010) [2]in view of efficiently measuring dissimilarities
between curves with sharp patterns. This association reveals powerful. Under quite general conditions, we obtain
the rate of convergence of the nonparametric regression estimator in this case, as a function of the parameters of
the Bagidis semimetric. We propose to optimize those parameters using across-validation procedure, and show the
optimality of the selected vector. This last result has a larger scope and concerns the optimization of any vector
parameter characterizing a semimetric used in this context. The performances of our methodology are assessed on
simulated and real data examples. Results are shown superior than those obtained using competing semimetrics as
soon as the variations of the significant sharp patterns in the curves have an horizontal component.

Keywords: functional data, nonparametric regression, semimetric, wavelet, misalignment, cross-validation

1. Introduction

Modern datasets often provide sets of points correspondingto discretized curves, typically time series or spectra.
In this framework, the suitable information unit is the underlying curve instead of the vectorial quantity encoding the
series - we refer to it as to afunctional data. Functional statistical methods aim at taking this featureinto account
when extracting the information content of a dataset (see Ramsay and Silverman [3, 4], Bosq [5], Ferraty and Vieu
[1], Ferraty and Romain [6], e.g.). Amongst them, nonparametric methods often rely on the availability of a suitable
metric or semimetric for measuring differences amongst the curves of the dataset.

In this framework, the Bagidis semimetric has been introduced in Timmermans and von Sachs [2] as a highly
adaptive wavelet-based tool for measuring dissimilarities between functional data. Its main originality is to be based
upon the expansion of each series of a dataset into adifferent wavelet basis, one that is particularly suited for its
hierarchical description. Measuring dissimilarities in such a way implies comparing not only the projections of the
series onto the bases, as usual, but also the bases themselves. Because of this specificity, the semimetric is named
Bagidis, which meansBAses GIving DIStances.As a consequence of this feature, the Bagidis semimetric has the
ability to capture the variations of patterns occurring in series along both the vertical and the horizontal axis. This
property makes the semimetric particularly powerful when dealing with curves that might be affected simultaneously
by horizontal shifts and vertical amplifications.
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Nonparametric functional data analysis techniques have been widely described in Ferraty and Vieu [1]. They
include a set of prediction techniques that do not require tomake an hypothesis on the form of the prediction operator -
only smoothness hypotheses are made - and are able to efficiently deal with functional data provided it is used together
with a semimetric able to extract the relevant features of the curves and satisfying some theoretical properties.

The purpose of the present study is to illustrate how we can advantageously make use of the Bagidis semimetric
in the context of nonparametric functional prediction whenthe curves we are predicting from are characterized by
some horizontally- and vertically-varying sharp local patterns. Our goal is also to show how this good behaviour is
theoretically supported. Simulated examples are shown as well as a real data example, with spectrometric H-NMR
data.

This paper is organized as follows. The statistical framework of our study is first described in Section 2: the
notion of functional models for prediction is introduced, before focusing on nonparametric functional prediction;
the Bagidis semimetric, which is the tool we propose to use in this setting, is then presented. Then, our two main
theoretical results are stated in Section 3. The first one gives the rate of convergence of a nonparametric functional
prediction using the Bagidis semimetric, as a function of its parametrization. A practical cross-validation approach
for optimizing the parametrization of Bagidis in this context is deduced therefrom and theoretically validated. This
second result has a more general scope as it theoretically supports for a cross-validated optimization of the parameters
of any projection-based semimetric. Finally, simulated and real data examples are investigated in Section 4, so as to
illustrate nonparametric prediction with Bagidis in action.

2. Statistical framework

This paper proposes to bring together two advanced statistical tools, in view of providing a new, efficient, way
to predict from curves with sharp local patterns. Those tools are, on the one hand, the non parametric functional
regression estimator provided by Ferraty and Vieu [1] for obtaining predictions from functional data and, on the other
hand, the Bagidis semimetric developed by Timmermans and von Sachs [2] for comparing curves with sharp local
patterns. As a support for our present work, those two tools are successively described in this Section, after a general
presentation of the stakes and challenges of functional prediction.

2.1. Functional models for prediction

The general goal of a regression model is to link two random variables; the first one is aresponse variableY
which we are interested to explain; the second one is anexplanatory variableχ which is believed to be able to inform
us about the response. Practically, this requires to estimate an unknown link operatorr, based on some known pairs
(χi ,Yi) - those pairs are called thetraining set- so as to be able to predictY for any newχ using this link.

About the response variable.Regarding the response variable, two cases are most commonly encountered:

• the responseY is a real measurementwhose we aim at predicting the conditional mean value for anygiven
value ofχ. In that case, the link functionr between the two variables is an operator defined as the conditional
expectation of the response variable, given the explanatory variable:

r(χ) = E(Y|χ),

which can be equivalently rewritten as
Y = r(χ) + ǫ,

whereǫ is an error term such thatE(ǫ|χ) = 0. This is called aregression model. For any given valueχ of χ, the
associated scalar valueY is thus estimated as

Ŷ = r̂(χ),

for an estimator ˆr of r.
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• the responseY is a class membershipthat we have to determine for any given value ofχ. This is called a
discrimination model. The link function we are looking at in that case is the probability of being member of a
given classg given a value ofχ:

rg(χ) = P(Y = g|χ) = E(1[Y=g] |χ),

for each class indexg ∈ {gi}i=1...G, with G the number of classes and1[Y=g] = 1 if Y = g and 0 otherwise. For
any given valueχ of χ, the associated class membershipY is thus estimated as

Ŷ = arg max
g∈{gi }i=1...G

(r̂g(χ)),

according to the Bayes rule, for an estimator ˆrg of rg, g ∈ {gi}i=1...G.

As we can see, both regression and discrimination problems imply the estimation of an operatorr or rg that is defined
as a conditional expectation. Consequently, the same statistical tools for its estimation may be involved in both cases.

About the explanatory variable.Classically, the explanatory variable has been a scalar or small-dimensional vector
variable, and ways to estimate the operatorr (or rg) in that case have been known for a long time. New challenges and
opportunities have appeared withfunctionalexplanatory variables taking their values in some functionspaceF - i.e.
explanatory variables being actually curves, typically spectra or functions of time. Of course, from a practical point
of view, a curve is necessarily observed as a discretized spectrum or a time series, that is to say a vector. Nevertheless,
the classical multivariate regression framework is often not convenient anymore. There are two reasons for that:

• The use of the complete information at hand.The knowledge that there is a dynamic process underlying the
sampled data is an information that could be exploited for anoptimal estimation of the prediction model.

• The “curse of dimensionality”. To render the functional nature of the explanatory variable, it is often use-
ful to make use of either a fine discretization, either a long period of data collection. As a consequence, the
vectors representing the curves are rather large, leading to the need of a very large set of observations to cor-
rectly estimate the prediction model. In the nonparametricframework, this “curse of dimensionality” has been
mathematically stated by Stone [7]:

Theorem. Consider a p times differentiable unknown regression function r of a N− dimensional variable, and
r̂ a nonparametric estimator of r based on a training set of size n. Then the optimal rate of convergence ofr̂ to
r is ( log n

n

) p
2p+N
. (2.1)

To the best of our knowledge, the only way to predict from a curve nonparametrically while avoiding this curse of
dimensionality consists in assuming that relevant information of reduced dimension can be extracted from the curves,
the price to pay associated with this assumption being foundin regularity assumptions on the regression operator. The
knowledge of the functional nature of the data might help to efficiently extract this reduced dimensional information.

About the estimation of the link operator r, in case of functional data. Several ways have been recently proposed to
take into account the functional nature of the explanatory variable in regression or discrimination problems. Works of
Ramsay and Silverman [4], as well as Crambes et al. [8], Ramsay and Dalzell [9] and Cai and Hall [10], for instance,
are devoted toparametricfunctional modelling and focus on linear models. Beside, other kinds of parametric or
semiparametric regression models have been considered in Sood et al. [11], Ait-Saidi et al. [12] and Aneiros-Pérez
and Vieu [13], for instance. On the other hand, researchers such as Ferraty and Vieu [1] explorenonparametric
functional prediction models - i.e. techniques allowing todispose of the need to make an hypothesis on the form
of the regression operator. Only smoothness hypotheses arerequired. Our work places itself in this nonparametric
context.
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2.2. Estimation in a nonparametric functional prediction model
Suppose we have got a set of curves{χi}i=1..N and associated scalar values{Yi}i=1..N, and we are looking for a

prediction model
r(χ) = E(Y|χ),

for which we do not assume a particular parametric form, but only some regularity conditions. One of the basic
assumptions underlying the concept of modelling is that similar values ofχ correspond to similar value ofY. We need
thus ways to quantify the similarity of the explanatory curves. Following Ferraty and Vieu [1], we will say thatd is a
semimetric on some spaceF as soon as

• ∀χ ∈ F , d(χ, χ) = 0,

• ∀χi , χ j , χk ∈ F , d(χi, χk) ≤ d(χi, χ j) + d(χ j , χk).

A semimetric is thus defined in the same way as a distance, except thatd(χi , χ j) = 0 ; χi = χ j , and distances are
particular cases of semimetrics. Semimetrics allow for measuring dissimilarities between curves through a reduced
number of components. A well-suited semimetric may thus be atool for extracting the relevant features of a set of
curves.

A semimetric-based Nadaraya-Watson regression estimator. Given this definition, Ferraty and Vieu [1] have proposed
an extended Nadaraya-Watson estimator, that is able to dealwith functional data provided we have a well-suited
semimetricd such that some theoretical properties are satisfied. This estimator has the form:

r̂(χ) =

∑n
i=1 YiK

(d(χ,χi)
h

)
∑n

i=1 K
(d(χ,χi )

h

) , for regression problems, (2.2)

and, as a particular case,

r̂g(χ) =

∑n
i=1 1[Yi=g]K

( d(χ,χi)
h

)
∑n

i=1 K
(d(χ,χi)

h

) , for classification problems, (2.3)

whereK is an asymmetric bounded kernel,n is the number of independent pairs (χi ,Yi) in the training set,d is a
semimetric andh is the bandwidth.

The choice of the semimetric.It is clear that the predictive qualities of the estimated regression or discrimination
model depends on the features extraction capacities of the chosen semimetricd. It also relies on the regularity of the
regression operatorr with respect tod. Definitely, it is clear that the choice of the semimetric is crucial and must be
related to the particular features on the functional dataset at hand. Commonly used families of semimetrics [1] are :

• The derivative-based family of semimetricsdderiv
q based on the derivatives of orderq of the curves :

dderiv
q (χi , χ) =

√∫
(χ̂(q)

i (t) − χ̂(q)(t))2dt, (2.4)

whereχ̂(q)
i (t), χ̂(q)(t) are the estimations of theqth derivative ofχi andχ , respectively, at abscissat, and where

the integral has to be numerically estimated by a sum. Estimating the derivatives usually rely on a smoothing
of the data. This family includes the Euclidean distanceL2 between the smoothed curves as a particular case,
with q = 0; it will be denoteddderiv

0 . A contrario, the classical vectorial euclideanL2 distance between the
unsmoothed observations will be shortly referred to asdL2 .

• The PCA-based family of semimetricsdPCA
q based on a certain numberq of principal components of the dataset:

dPCA
q (χi , χ) =

√√
q∑

k=1

(
∫

(χi(t) − χ(t))v̂k(t)dt)2, (2.5)

wherev̂k, k = 1..q is thekth estimated eigenfunction of the principal component analysis, and where the integral
has to be numerically estimated by a sum.
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• Thehshiftsemimetricdhshi f t that realigns curves before computingdderiv
0 distances between them.

Those semimetrics have been shown useful in various problems [1, 14, 15]. However, they happen to fail when dealing
with curves with sharp local features that might not be well aligned from one curve to another one, as discussed by
Timmermans and von Sachs [2]. Besides, the computation of those semimetrics relies on a smoothing of the data,
which is generally problematic for curves with abrupt patterns. This difficulty with curves with sharp patterns will
be illustrated in subsequent examples of regression problems, in Section 4. However, such curves with sharp patterns
happen to be dealt with in a large variety of scientific area (spectrometric curves, time series . . . ), so that it is worth
thinking of the use of another, better adapted, semimetric for those data.

2.3. Bagidis, a semimetric for comparing curves with sharp horizontally- and vertically-varying local features

The Bagidis semimetricdB
p has been introduced by Timmermans and von Sachs [2] so as to measure differences

between regularly discretized curves that are characterized by some sharp local features. It is a functional data-
driven and wavelet-based measure that is highly adaptive tothe curves being considered. It has been proved to be a
semimetric by Timmermans and von Sachs [2]. Key ideas are as follows.

Looking for a hierarchical description of the patterns of the series.We consider series observed on a regular grid
N[1;N] . When we evaluate dissimilarities between series visually, we intuitively investigate first the global shapes
of the series for estimating their resemblance, before refining the analysis by comparing the smaller features of the
series. In other words our comparison is based upon a hierarchical comprehension of the curves. This visual approach
inspired us to define our semimetric: we expand each series ina (different, series-adapted) basis that describes its
features hierarchically, in the sense that the first basis vectors carry the main features of the series while subsequent
basis vectors support less significant patterns; afterwards, we compare both the bases and the expansions of the series
onto those bases, rank by rank, according to the hierarchy.

Expanding each series of the dataset in theUnbalanced Haar Wavelet Basisthat is best suited for the hierarchical
description of its shape.The family ofUnbalanced Haar Wavelet Baseshas been introduced by Girardi and Sweldens
[16]. It consists in orthonormal bases that are made of one constant vector and a set of Haar-like (i.e.up-and-down
shaped) orthonormal wavelets whose discontinuity point (hereafter the breakpoint) between the positive and negative
parts is not necessarily located at the middle of its support. TheBottom Up Unbalanced Haar Wavelet Transform
(Buuhwt), an algorithm that was developed by Fryzlewicz [17], allows for selecting amongst this family of bases the
best basis for describing a given series hierarchically. Beside this hierarchical organization, the selected basis inherits
the good capacity of Haar wavelets to efficiently capture sharp patterns.

We denote the expansion of a seriesχi in that basis as

χi =

N−1∑

k=0

dk
i ψ

k
i , (2.6)

where the coefficientsdk
i (hereafter thedetail coefficients) are the projections of the seriesχi on the corresponding

basis vectorsψk
i and where the set of vectors{ψk

i }k=0...N−1 is the Unbalanced Haar wavelet basis that is best suited to
the seriesχi , as obtained using the Buuhwt algorithm. Besides, we denotebk

i , the breakpoint of the waveletψk
i , at

every rankk , 0.

Defining a semimetric by taking advantage of the hierarchy ofthose expansions .As shown by Fryzlewicz [17], the
ordered set of breakpoints{bk

i }k=1...N−1 determines the basis{ψk
i }k=0...N−1 uniquely. As a consequence, the set of points

{zk
i }k=1...N−1 = {(bk

i , d
k
i )}k=1...N−1 (2.7)

determines the shape of the seriesχi uniquely - i.e. it determines the series on the gridN[1;N] , except for a change
of the mean level of the series, that is encoded by the additional coefficientd0

i . It is the signature of the series in the
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breakpoints-detailsplane. Given that, and with the definitionb0
i = 0 for each curve, we define the Bagidis semimetric

as a 2-norm (weighted) distance in thebreakpoints-detailsplane:

dB
wk

(χ1, χ2) =
N−1∑

k=0

wk

∥∥∥zk
1 − zk

2

∥∥∥
2
=

N−1∑

k=0

wk

(∣∣∣bk
1 − bk

2

∣∣∣2 +
∣∣∣dk

1 − dk
2

∣∣∣2
)1/2

wherewk, k = 0 . . .N − 1, are well suited weights. As such, this semimetric takes advantage of the hierarchy of the
well adapted unbalanced Haar wavelet bases: breakpoints and details of similar rankk in the hierarchical description
of each series are compared to each other, and the resulting differences can be weighted according to that rank. As
the breakpoints point to level changes in the series, the term

∣∣∣bk
1 − bk

2

∣∣∣ can be interpreted as a measure of the difference
of location of the features, along the horizontal axis. Being a difference of the projections of the series onto wavelets
that encode level changes, the term

∣∣∣dk
1 − dk

2

∣∣∣ can be interpreted as a measure of the differences of the amplitudes of
the features, along the vertical axis. At rankk = 0,

∣∣∣b0
1 − b0

2

∣∣∣ vanishes and
∣∣∣d0

1 − d0
2

∣∣∣ measures the difference between
the means of the curves.

Investigating the balance between breakpoints and detailsdifferences.We introduce an extension of the Bagidis
semimetric as follows:

dB
wk,λ

(χ1, χ2) =
N−1∑

k=0

wk

(
λ
∣∣∣bk

1 − bk
2

∣∣∣2 + (1− λ)
∣∣∣dk

1 − dk
2

∣∣∣2
)1/2

(2.8)

with λ ∈ [0; 1] . This parameterλ actually defines a scaling in thebreakpoints-detailsplane, and hence in the original
units of the problem. Settingλ at its extreme values 0 or 1 allows to investigate the contributions of the breakpoints
differences and details differences separately. Moreover, the presence of this parameter allows the semimetric to be
robust with respect to scaling effects: ifλ is optimized according to a given criteria (such as the mean square error
of a prediction model), the relative dissimilarities between the series of a dataset will remain the same, whatever the
scales of measurements along the horizontal and vertical axes, so that the predictive qualities of the model will not be
affected by such a change in the units of measurements. This variant (2.8) of the Bagidis semimetric is the one that we
will use throughout this paper. For the sake of simplicity, we will simply denote it bydB.

Choosing the weights.In a prediction setting, weights should ideally be positiveat rankk if that rank carries infor-
mation for discriminating the series, and 0 otherwise. In such a way, the weights could act as a filter that extract the
part of the distances between the curves that carries relevant features. This paper will illustrate and validate that the
weights could easily be obtained, altogether with the balance parameter and the bandwidth, using a cross-validation
procedure across a set of possible values, in the framework of non parametric functional prediction.

3. The main results

This Section states the two main theoretical results of thispaper, that support for the use of Bagidis in nonparamet-
ric functional regression. First, we obtain the rate of convergence of the nonparametric regression estimator (2.2) used
with the Bagidis semimetric under suitable conditions. We see that this rateof convergence is related to the sparsity
of the weight function that parametrizes the Bagidis semimetric in equation (2.8). Consequently, we propose to use a
cross-validation procedure so as to optimize this weight function, as well as the balance parameterλ in equation (2.8)
and the bandwidthh in equation (2.2). Our second result is the asymptotic optimality of this method.

3.1. Rate of convergence of estimator(2.2)when used together withBagidis.

Our first result is the rate of pointwise convergence of the nonparametric functional regression estimator (2.2) (and
(2.3) as a particular case) used together with the Bagidis semimetric. Under quite general conditions, we show that we
can reach the rate of convergence

( log n
n

) β
2β+K
,
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with β being a Lipzschitz parameter quantifying the smoothness ofr, n the number of curves in the training set andK
the number of non-zero weightsw in the Bagidis semimetric (2.8). This rate of convergence is to be comparedwith
the rate of convergence (2.1) for a nonparametric multivariate regression directly based on aN-dimensional variable:

( log n
n

) p
2p+N
,

with p the order of differentiability ofr andN the length of the discretized curve. This indicates that we can reach a
quite good rate of convergence withK ≪ N, provided we can restrict ourselves to a sparse enough weight function
while satisfying regularity conditions onr. This may happen if the number of significant features in the curves of the
dataset is not too large.

Our result relies on the following set of assumptions and definitions.

About the random curveχ. The random curveχ is observed on a regular gridN[1;N] . It is defined as a function of the
breakpoints and details parameters (2.7) defining its Buuhwt expansion (2.6):

χ = χ(b, d), with (b, d) ∈ NN
[0;N] × R

N. (3.1)

Let us recall that the random signature (b, d) characterizes the random curveχ uniquely on the gridN[1;N] .

About the point of predictionχ. We denote by
χ = χ(b, d) (3.2)

the fixed curve for which we want to obtain a prediction. This curve is uniquely related to the fixed point (b, d) in
the breakpoint-detail plane.

About the responseY. We assume thatY is a scalar variable and that there existsσm(.) continuous atχ such that

∀m≥ 2, E(|Y|m|χ = χ) ≤ σm(χ). (3.3)

About the dataset.We assume to haven independent observations

(χi ,Yi)i=1...n (3.4)

of the random pair (χ,Y).

About theBagidis semimetric.We denote bydB the Bagidis semimetric (2.8) with given balance parameterλ and
weight functionw = {wk}k=0...N−1. We denote byK the set of indexes of non-zero components inw, and K the
cardinality of this set. We assume that the non-zero weightsare strictly positive:

∀k ∈ K , wk > 0. (3.5)

About the probability distribution ofχ. We denote byfKd|b(d) the conditional density function ofd given b = b,

restricted on the (bk, dk) such thatk ∈ K . We assume that, at the fixed point (b, d), fKd|b(d) is strictly positive and
continuous with respect todBagidis : for all ǫ positive, there existsδǫ positive such that

dB(χ(b, d), χ(b, d)) ≤ δǫ implies | fKd|b(d) − fKd|b(d)| ≤ ǫ. (3.6)

We also assume that the curvesχ(b, d) andχ(b, d) can have the same breakpoints for all ranksk ∈ K with a non-
vanishing probability:

P(∀k ∈ K , bk = bk) > 0. (3.7)

This is possible because the breakpoints take their values on a finite grid of values. According to Ferraty and Vieu [1],
we define the small ball probability ofχ aroundχ as

φd,χ(h) = P(χ ∈ Bd(χ, h)),

whereBd(χ, h) is the ball of radiush centered onχ and defined according to the semimetricd.We assume that

∀ǫ > 0, φdB,χ(ǫ) > 0 (3.8)
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About the regression operator.We assume that there existsβ positive such that

r ∈ LipF ,β ≡
{
f : F → R, ∃C ∈ R+0 , ∀χ

′ ∈ F , | f (χ) − f (χ′)| < C dB(χ, χ′)β
}

(3.9)

About the kernel.We assume thatK is a kernel function fromR toR
+ such that

∫
K = 1. We assume that there exists

positive constantsC andC′ such that

CφdB,χ(h) ≤ E

(
K
(dB(χ,χ)

h

))
≤ C′φdB,χ(h) (3.10)

About the bandwidth.The bandwidthh is chosen according to a positive sequencehn related ton in such a way that

lim n→∞hn = 0 and limn→∞
logn

nφdB,χ(hn)
= 0. (3.11)

About the type of convergence.Following Ferraty and Vieu [1], we consider almost completeconvergence. One says
that the stochastic sequence (Xn)n∈N converges almost completely to the real random variableX if and only if for all
ǫ positive, we have ∑

n∈N

P(|Xn − X| > ǫ) < ∞,

and we denote it by limn→∞Xn = X a.co.Moreover, one says that the rate of almost complete convergence of (Xn)n∈N

to X is un if and only if there existsǫ0 positive such that
∑

n∈N

P(|Xn − X| > ǫ0un) < ∞,

and we writeXn − X = Oa.co(un). A direct application of the Borel-Cantelli Lemma allows to prove that Ferraty and
Vieu [1] that almost complete convergence implies almost sure convergence and convergence in probability, and that

Xn − X = Oa.co(un) implies Xn − X = Oa.s.(un) andXn − X = Op(un).

We note that most of those conditions are very general and arenot specific to the use of (2.2) with Bagidis.
Only conditions (3.5), (3.6) and (3.7) are specific to the Bagidis semimetric and to the expansion of the curves in the
breakpoints-detailsplane. Given those assumptions, our result is stated as follows.

Theorem 1. Given assumptions(3.1) to (3.11), the functional kernel regression estimate(2.2)used together with the
Bagidis semimetric is such that

r̂(χ) − r(χ) = O(hβ) + Oa.co.



√
log n
n hK

 .

In particular, it can reach the rate of pointwise almost complete convergence

r̂(χ) − r(χ) = Oa.co.

(( log n
n

) β
2β+K

)
.

The proof of this Theorem is given in AppendixA. An idea is as follows.
It is shown in Ferraty and Vieu [1] that the rate of convergence of estimator (2.2) is linked with the semimetric

through the behaviour of the small ball probabilityφd,χ(h) about 0: the higherφd,χ(h), the faster the rate of convergence.
This functionφd,χ(h) measures the concentration of the functional variableχ, according to the topology defined by the
semimetric. Given this, our proof relies on two steps. First, we determine the behaviour of the small ball probability
around 0, for the Bagidis semimetric, as a function of the number of non-zero weights in its definition. We see that
there existsC > 0 such thatφdB,χ(h) ∼ C hK , whenh tends to zero. This means thatχ is fractal of orderK around
χ. Then, we make use of a result of Ferraty and Vieu [1] that givesthe rate of convergence of estimator (2.2) as a
function of the small ball probability of fractal random variables.

The key step in this proof is thus the study ofφdB,χ(h), the probability for a curveχ to be in a small ball of radiush
aroundχ, according to the semimetricdB. As soon as we consider curvesχ at distancesh smaller than the minimum
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of the weights fork ∈ K (which is strictly positive because of condition (3.5)), itis clear that their breakpointsbk

must be the same as the breakpointsbk of the curveχ at which we want to predict, for allk ∈ K . Indeed, if this were
not true, there would exist at least onek∗ ∈ K such that|bk∗ − bk∗ | ≥ 1, as the step of the grid is 1, so that the distance
between the curves would be strictly greater than

wk∗ |b
k∗ − bk∗ | ≥ wk∗ ≥ min

k∈K
wk,

which leads to a contradiction forh small enough. This is the reason for condition (3.7). It is also the reason why
our proof requires only the continuity of the conditional density functionf|b of (b, d) givenb at (b, d) (equation (3.6)).
Finally, the reason for the cardinalityK of K to appear in the behavior of the small ball probability and hence in the
rate of convergence is that the volume of a ball of radiush and dimensionK is proportional tohK .

In the second step of our analysis, we refer to Theorem 6.11 inFerraty and Vieu [1], that states that

r̂(χ) − r(χ) = O(hβ) + Oa.co.



√
log n

nφχ,d(h)

 . (3.12)

This Theorem relies on conditions (3.3), (3.8), (3.9), (3.10) and (3.11) As in the classical multivariate setting, the
first component on the right hand side of equation (3.12) is related to the bias of the estimate and depends only on
the smoothness of the operatorr. This component is controlled through condition (3.11,left). Similarly, the second
component on the right hand side of equation (3.12) is related to the variance of the estimate. It is controlled through
condition (3.11,right). In the case of a fractal type variable, withφdB,χ(h) ∼ C hK whenh tends to zero, this term
becomes

Oa.co.



√
log n
n hK

 ,

which proves the first part of Theorem 1. The second part of theTheorem is then proved by choosing the bandwidth
used in (3.12) as

h ∼ C

(
logn

n

) 1
2β+K

.

We note that condition (3.11,right) is automatically satisfied in that case.
We finally mention here two possible ways to generalize Theorem 1. First, we could combine our result about

the fractality of the random variableχ with results of Ferraty et al. [18], so as to obtain the rate ofuniform almost
complete convergence of the functional kernel regression estimate (2.2) used with the Bagidis semimetric. Second, we
could consider the use of the Bagidis semimetric in a more general nonparametric regression setting, with a functional
response variable, in the framework provided by Ferraty et al. [19].

3.2. Asymptotic optimality of a cross-validated choice of the parameters of the semimetric and the bandwidth

As a second result, we propose, and theoretically support, the selection of a relevant weight function by using a
leave-one-out cross-validation procedure, with a mean square error minimization criterion .

The cross-validated leave-one-out mean square error minimization criterion in nonparametric functional regression
We consider the estimator given by equation (2.2). The bandwidth h has to be specified in this expression. More-

over, in cased designates the Bagidis semimetric, it is parametrized by the balance parameterλ and the weight function
w. Consequently, ˆr relies on a vectorial parameterH = (h, λ, w) ∈ RN+2.We propose to chose this vectorial parame-
ter H amongst a setHn of possibilities by using a cross-validation procedure with a leave-one-out mean square error
(MSE) criterion.

This cross-validation based approach for optimizing ˆr generalizes the ideas of Rachdi and Vieu [20] and Ait-Saidi
et al. [12]. Rachdi and Vieu [20] use a leave-one-out cross-validated MSE minimizer for choosing the bandwidthh,
once a semimetric has been fully specified. They have shown the optimality of this procedure. For our purpose, not
only the bandwidth but also the parametersλ andw defining the semimetric within a given family of semimetricshave
to be optimized. A leave-one-out cross-validated selection of a parameter specifying a semimetric used within ˆr has
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been proved asymptotically optimal in the particular case of a single functional index model [12]. In what follows, we
generalize those results to families of semimetrics determined by a vectorial parameter. This more general framework
includes the optimization of ˆr used not only with the Bagidis semimetric, but also with any kind of projection-based
semimetric for which we aim at selecting the components (or the number of first components) upon which we project
the series for their comparison. Given the importance of theclass of projection-based semimetric (see Ferraty and
Vieu [1, Chapter 13]), the opportunity to derive such a general result is clear.

Notations and main ideas
We denote by ˆrH(χ) the regression operator estimator ˆr(χ) used with the fixed parameterH. For the sake of

simplicity, we denote

∆i(χ) = K
(d(χ, χi)

h

)
and KH(χ, χi) =

∆i(χ)

E

(
∆i(χ)

) ,

with d, a semimetric parametrized byH\h. Consequently, ˆrH(χ) is denoted by

r̂H(χ) =

1
n

n∑
i=1

YiKH(χ, χi)

1
n

n∑
i=1

KH(χ, χi)
. (3.13)

Our criterion for measuring the quality of ˆrH(χ) is the Mean Integrated Square Error (MISE) defined as follows:

MIS E(H) ≡ MIS E(r̂H , r) = E

( ∫
(r̂H(χ) − r(χ))2 W(χ) dPχ(χ)

)
, (3.14)

whereW(χ) is a non negative weight function andPχ is the probability distribution measure of the functional variable
χ.We defineHn , a set of possible values for the parameterH, with the cardinality ofHn increasing with the sample
size. We aim at selecting

H∗ = arg min
H∈Hn

MIS E(H).

HoweverH∗ cannot be obtained asr is unknown in expression (3.14). Consequently, we propose to estimateH∗ by
HCV, defined as follows:

HCV = arg min
H∈Hn

CV(H),

whereCV(H) is the leave-one-out cross-validated criterion defined by

CV(H) =
1
n

n∑

j=1

(Yj − r̂− j
H (χ j))2W(χ j),

with

r̂− j
H (χ) =

n∑
i=1,i, j

Yi KH(χ, χi)

n∑
i=1,i, j

KH(χ, χi)
.

r̂− j
H (χ j) is thus the prediction associated toχ j based upon the regression estimator (3.13) applied to our dataset whose

the pair (χ j,Yj) has been excluded, with the parameterH. CV(H) is thus an estimation ofMIS E(H) calculated over
the dataset.

The main result
The main result of this Section relies on the following conditions.
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About the dataset.We assume to haven independent observations

(χi ,Yi)i=1...n (3.15)

of the random variable (χ,Y).

About the kernel.The kernelK is bounded with compact support [0; 1], Lipszchitz onR
+, and we have that for all

j = 1, 2 . . . , there existC1 j ,C2 j > 0 such that for allH ∈ Hn, there exists 0< ΦH ≤ 1 so that

∀χ, χi ∈ W, C1, jΦH ≤ E

(
K j

(d(χ, χi)
h

))
≤ C2, jΦH . (3.16)

About the probability distribution ofχ. We have that

∃γ > 0, ∃C1 > 0 such that sup
H∈Hn

ΦH ≤ C1n−γ, (3.17)

and
∃δ > 0, ∃C2 > 0 such that inf

H∈Hn

nΦH ≥ C2nδ. (3.18)

About the weight function .The weight functionW(.) is non negative, of compact supportW ⊂ F , bounded by some
positive constantCW, and such that

0 <
∫

W(χ)dPχ(χ). (3.19)

The interior ofW is non-empty and we have, for allH ∈ Hn,

W ⊂

dn⋃

k=1

B(ck, rn), (3.20)

whereB(ck, rn) are balls ofF , of centerck and radiusrn = o
(

inf
H∈Hn

hΦH

)
, with dn ≤ Cnη, η > 0.

About the conditional distribution of the errors.The conditional mean of the errors is zero:

E(ǫ|χ) = 0. (3.21)

The conditional variance of the error is positive and there existsσ0 > 0 such that

E(ǫ2|χ) ≥ σ2
0. (3.22)

About the regression operator.The regression operatorr is bounded by some positive constantCr . We introduce the
following definitions of the bias and the integrated square bias:

B(χ) = E((Yi − r(χ))KH(χ, χi)|χ) and bH =

∫
B2(χ)W(χ)dPχ(χ).

There exists a positive constantCB such that for allH ∈ Hn,

∀χ, χ′ ∈ F such thatd(χ, χ′) ≤ h, we have|r(χ) − r(χ′)| ≤ CBb
1
2
H . (3.23)

This property is satisfied as soon as there exists constantsC, C′ > 0 such that∀χ, χ′ ∈ F such thatd(χ, χ′) ≤ h, there
existsβH ≥ 0 so that

|r(χ) − r(χ′)| ≤ C′hβH and
∫

B2(χ)W(χ)dPχ(χ) ≥ C′h2βH .
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About the set of parameters.The cardinality of the set of parametersHn is increasing at most algebraically fast:

∃α > 0, ∃C > 0 such that #Hn ≤ Cnα. (3.24)

About the conditional moments of Y.We assume thatY is such that

∀k = 1, 2, . . . ∃Ck > 0 such thatE(|Y|k|χ) ≤ Ck, (3.25)

and

∀χ, χi ∈ W, ∀k, l = 1, 2, . . . ∃Ckl > 0 such thatE
(
|Y|kK l(

d(χ, χi)
h

)
)
≤ CklΦH . (3.26)

This last property is valid as soon as conditions (3.16) and (3.25) are satisfied.

Theorem 2. Assuming conditions(3.15)to (3.26), we have

MIS E(HCV)
MIS E(H∗)

−→ 1 a.s.

This Theorem states the asymptotic optimality of the cross-validated choiceHCV amongst the setHN. It is proved
in AppendixA. An idea of the proof is as follows.

In a view to prove Theorem 2, we need to introduce the quantity

MIS E∗(H) =
∫

E

(
(r̂2H(χ) − r(χ)r̂1H(χ))2

)
W(χ)dPχ(χ) =

∫
E

(
(
1
n

n∑

i=1

δix)2
)
W(χ)dPχ(χ),

with

r̂1H(χ) =
1
n

n∑

i=1

KH(χ, χi), r̂2H(χ) =
1
n

n∑

i=1

Yi KH(χ, χi) andδiχ = (Yi − r(χ))KH(χ, χi).

Two results are then needed for this quantityMIS E∗(H) :

sup
H∈Hn

∣∣∣∣∣∣
MIS E(H) − MIS E∗(H)

MIS E∗(H)

∣∣∣∣∣∣ = oa.s.(1) (3.27)

MIS E∗(HCV)
MIS E∗(H∗)

−→ 1 a.s. (3.28)

The proof is then rather short: first, (3.27) is used to deal with MIS E∗(H) instead ofMIS E(H), then
∣∣∣∣ MIS E∗ (HCV)−MIS E∗ (HCV)

MIS E∗ (H∗)

∣∣∣∣
is bounded above by a sequence tending to zero when n tends to infinity, because of (3.28). The proof of (3.27) is the
purpose of Lemma 13. It requires that

∀H ∈ Hn, ∃C,C
′ > 0, such that

C
nΦH

+
n− 1

n
bH ≤ MIS E* (H).

This bound from below ofMIS E∗(H) is shown valid by Lemma 5. The proof of (3.28) is given by Lemma 14. This
Lemma relies on the following inequality:

∣∣∣∣∣∣
MIS E∗(HCV) − MIS E∗(H∗)

MIS E∗(H∗)

∣∣∣∣∣∣
(
1− Tα − Tβ − Tγ

)
≤

(
Tα + Tβ + Tγ

) 2
1− Tα

+ 2Tα,

with

Tα = sup
H∈Hn

∣∣∣∣
MIS E∗(H) − AS E(H)

MIS E∗(H)

∣∣∣∣, Tβ = sup
H∈Hn

∣∣∣∣
AS E(H) − ÃS E(H)

MIS E∗(H)

∣∣∣∣ andTγ = 2 sup
H∈Hn

∣∣∣∣
CT(H)

MIS E∗(H)

∣∣∣∣, (3.29)
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and the following definitions of the Average Square Error

AS E(H) =
1
n

n∑

i=1

(
r̂H(χi) − r(χi)

)2
W(χi),

of the Average Square Error of the leave-one-out predictor

ÃS E(H) =
1
n

n∑

j=1

(
r̂− j

H (χ j) − r(χ j)
)2

W(χ j),

and with the following definition ofCT(H):

CT(H) =
1
n

n∑

j=1

(
Yj − r(χ j)

) (
r̂− j

H (χ j) − r(χ j)
)
=

1
n

n∑

j=1

ǫ j ǫ̂
− j
j .

It is thus necessary to show thatTα, Tβ andTγ converge to zero almost surely whenn goes to infinity. Those terms
are dealt with separately through Lemmas 10, 11 and 12 respectively. Lemma 6 validates a condition that is needed
for the proofs of those three Lemmas. Lemmas 8 and 9 provide with decompositions that have a role in the proof of
Lemma 10. Those decompositions allow to highlight terms that have a form similar to the ones identified by Marron
and Hardle [21] for a similar problem in the multivariate setting. Those terms can be shown to converge to 0 in a way
similar to the one proposed by those authors, but with conditions adapted to our functional setting. The purpose of
Lemma 7 is to show that the conditions for our Theorem are enough to obtain conditions that play the same role as
the ones used by Marron and Hardle [21] in their proof.

Although our proofs follow similar ideas as the one given in Rachdi and Vieu [20] and Ait-Saidi et al. [12], some
major differences occur. As the parameterH that we cross-validate makes changes in the semimetric, it sounds not
natural to assume that the function ˆrH is always regular with respect to the semimetric. Opposite to Rachdi and Vieu
[20] and Ait-Saidi et al. [12], we can thus not make use of thiscondition anymore. This translates into the fact that
the Lipschitz parameterβH might be equal to zero in condition (3.23). As a consequence,the bias of the estimate
might not necessarily go to zero, for some choice of the parameters. This translates into the need to use a more precise
inferior bound

C
nΦH

+
n− 1

n
bH

for the MIS E∗(H) (Lemma 5), instead ofC
nΦH

in Rachdi and Vieu [20] and Ait-Saidi et al. [12]. In particular, the
proof of the convergence ofTγ in Lemma 12 require a much more careful treatment.

4. Applications and discussions

In this Section, we assess the performances of Bagidis in nonparametric functional prediction using estimator (2.2),
as compared with results relying upon the usual semimetricsdefined in Subsection 2.2. We also illustrate the efficiency
of the cross-validation procedure described in Subsection3.2 for selecting the weights of the Bagidis semimetric in
this context. Simulated and real data examples involving curves with sharp patterns are studied therefore.

We observe on simulated examples that Bagidis shows prediction performances highly superior to competitors as
soon as the model involves curves whose significant variations of sharp local patterns have an horizontal component.
In case the model involves a sharp pattern whose variation inamplitude is significant but which remains well-aligned
across the dataset, the Pca-based semimetric is best, but performances of Bagidis achieve nearly the same order of
magnitude when the noise on the curves is not too high. The cross-validated selection of the non-zero weights of
the Bagidis semimetric, and hence of the significant ranks in the Buuhwt expansion (2.6) of the curves, proves very
efficient on those examples, with very few selections of unsignificant ranks. This also holds when the significant
sharp pattern to capture is a secondary pattern and is thus not encoded in the first ranks of the Buuhwt expansion.
Such a cross-validated selection allows to further improvethe predicting performances of Bagidis as compared with a
non-optimized version of Bagidis and with competing semimetrics.
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A real data example involving H-NMR serum spectra is then studied. The goal is to discriminate healthy patients
from patients suffering from a given illness, according to the composition of their blood serum. Again, Bagidis proves
highly efficient for that purpose.

Those analyses are performed using the R software [22], and using the R implementation of estimators (2.2) and
(2.3), provided by Ferraty and Vieu [1], slightly adapted for their use together with the Bagidis semimetric.

4.1. A systematic simulated study of the prediction capacities of Bagidis for datasets of curves having horizontally
shifted and/or vertically amplified sharp patterns

We investigate the potential of using the Bagidis semimetric in regression by studying simulated datasets involving
curves having a single significant sharp pattern that is either horizontally shifted across the dataset, or vertically
amplified, or both simultaneously. The related responses inthose regression problems derive from the amplitude
and/or location of that sharp pattern. Those examples allow for diagnosing the ability of Bagidis to deal with different
kinds of differences amongst the curves of a dataset. We emphasize the fact that the method does not make use of the
prior information of the nature of the variation amongst thecurves. One of our goals in this work is precisely for our
method to automatically adapt to this nature, through an optimal choice of the balance parameterλ, of the weightsw,
and of the bandwidthh.

Definition of the simulated models.The models we study are as follows. First, we investigate howBagidis handles
horizontal shifts and vertical amplifications of patterns separately, through the analysis of curves generated from the
following models:

• Model 1: an up-and-down horizontally shifted pattern is related to its delay. The first example involves
series of length 21, being zero-valued except for the presence of anup-and-downpattern (10,−10) that is
horizontally shifted from one series to the next one. Each series is related to the delay at which theup-and-
downpattern occurs. This is illustrated at Figure 1(top, left).

• Model 2: an up-and-down vertically amplified pattern is related to its height. The second example involves
series of length 21 being zero-valued except for anup-and-downpattern located at abscissas (10, 11), that is
more or less amplified from one series to the next one, from amplitude 1 to amplitude 20. Each series is
associated with the height of theup-and-downpattern. This is illustrated at Figure 2(top, left).

We then study a model that combines horizontal shifts and vertical amplifications of sharp patterns:

• Model 3: an amplified and shiftedup-and-down pattern is related to a value depending on both its height
and delay. We consider series of length 21, being zero-valued except for the presence of anup-and-down
pattern (1,−1). That pattern appears after a certain delay and is affected by a certain multiplicative amplifi-
cation factor, both being randomly generated in 1. . .20. Sample curves generated according to this model are
illustrated in Figure 3 (top, left). The responses associated with those curves are the sum of the delay and the
amplitude.

The last model we consider involves two sharp patterns, the main one being non-informative, the secondary one being
the only one whose variation carries significant information:

• Model 4: an horizontally shifted secondaryup-and-down pattern is related to its delay. We consider
series of length 21, being zero-valued except for the presence of a mainup-and-downpattern (-20,20) located
at abscissas (10,11), as well as the presence of a secondaryup-and-downpattern (-10,10) that is horizontally
shifted along the series (it is thus possibly combined to themain pattern, for certain delays). Response values
are defined as the delay at which this secondary pattern occurs. This is illustrated at Figure 4 (top, left).

The simulated series we generate according to those four models are affected by a Gaussian noise with standard
deviationσχ, with σχ taking its values in (0.25, 0.5, 1, 2, 3) - depending on the simulation, and the responses are
affected by a Gaussian noise with standard deviationσY = 1. The related signal-to-noise ratio are provided in Table
1.
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σχ: 0.25 0.5 1 2 3
s
σχ

4 2 1 0.5 0.3
s̄d(χ)
σχ

for Model 1: shifted patterns 12.8 6.4 3.2 1.6 1.1
s̄d(χ)
σχ

for Model 2: amplified patterns 13.2 66.6 3.3 1.6 1.1
s̄d(χ)
σχ

for Model 3: randomly shifted and amplified patterns 13.2 66.6 3.3 1.6 1.1
s̄d(χ)
σχ

for Model 4: secondary shifted patterns 28 14 7 3.5 2.3

Table 1:Signal-to-noise ratio for the simulation study of Subsection 4.1. s
σχ

is the ratio of the smallest difference (vertically or horizontally)
between the model curvess and the standard deviation of the noise applied to the curvesσχ. It is the same for all models, ass is always fixed to

1. s̄d(χ)
σχ

is the ratio of the standard deviation of the model curves, averaged on a sample set of curves,s̄d(χ) and the standard deviation of the noise

applied to the curvesσχ. Although common, those valuess̄d(χ)
σχ

have to be taken with caution in our study, ass̄d(χ) includes thus variations of the
curves that are either significant or non-significant (Model4) and do not take horizontal shifts into account (Models 1, 3and 4) .

Description of the analysis.The following test is performed T times, for each model and each value ofσχ. We
generateM noisy pairs (χi ,Yi)i=1...M according to the chosen model, each model value of the delay and/or height
having the same probability to appear in the dataset. Then, we randomly selectn pairs out of thoseM, and use them
as a training set to calibrate the regression model. Using the model for predicting the responses associated with the
M −n remaining series and comparing it with their “true” simulated noisy response, we calculate the associated mean
square error of prediction (MSE).

The performances obtained using the Bagidis semimetric with estimator (2.2) on those problems are compared with
the one we obtain using the functional PCA-based semimetricdPCA

q with various number of principal components, the
derivative-based semimetricdderiv

q with various order of derivation (including no derivation)and thehshiftsemimetric
dhshi f t. The use of a vectorialL2-distancedL2 as a semimetric is also considered. Besides, ano effect prediction is
provided - i.e. a prediction by the mean of the response values of the training set, which acts as a benchmark for the
performances.

Our analysis actually proceeds into two steps.

• Step 1: Studying the performances of Bagidis in nonparametric functional regression as a function of
the balance parameterλ, with a prior, sub-optimal, choice of the weights and a cross-validated-choice
of the bandwidth h. In order to get a first insight into the behaviour of the Bagidis-based regression estimator
as a function ofλ, only an adaptation of the bandwidth is considered, and Bagidis is used with a prior weight
function defined as

w0 = 0; wk =
log(N + 1− k)

log(N + 1)
for k = 1 . . .N − 1, (4.1)

as proposed in Timmermans and von Sachs [2]. This allows to associate a large weight to the comparison of
features encoded at the first rank of the hierarchy, and a decreasing weight to the smaller features at the end of
the hierarchy, which is empirically what we expect for relatively sparse noisy curves. Values fromλ from 0 to
1 with a step of 0.1 are tested. The bandwidthh is optimized through a set of values defined as a sequence of
20 equispaced values from the quantile 0.05 to the quantile 0.5 of the observed distances between the curves,
which is the default behaviour of the R function provided by Ferraty and Vieu [1]. With this first step, we
investigate thus how those “sub-optimal” versions of the Bagidis semimetric behave compared with “classical”
semimetrics, depending on the value ofλ, which gives a first idea of the potential of our method. It also allows
to identify the best competitors of Bagidis in each setting.
This analysis is performed withT = 100 andM = 60, n = 45 for Model 1, Model 2 andModel 4. Because
of the more important complexity ofModel 3, a larger training set (M = 180, n = 160) is to be used if we
wish to achieve an explained percentage of the no-effect MSE that is about 90 forσχ = 0.25, as for the other
models. Smaller size of the training sets (e.g.M = 60, n = 45 as for the other models) leads to the same relative
performances of the semimetrics as those presented here-above, but with a systematically higher MSE.

• Step 2: Optimizing the weights, the balance parameter and the bandwidth in nonparametric regression
using a leave-one-out cross-validation procedure.As theoretically supported by Theorem 1, having a sparse
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weight function will significantly improve the rate of convergence the estimator, and hence the performance of
Bagidis compared to competitors. With this second step, we illustrate how we can further improve the predicting
performances of Bagidis on the above-defined models by optimizing the weightsw, the balance parameterλ as
well as the smoothing parameterh. Practically, this is done using a cross-validation procedure and aleave-one-
out mean square error criterion, as suggested by Theorem 2. The set of parametersH = (w, λ, h) over which
we optimize theleave-one-outMSE criterion is defined as follows: values ofλ are tested from 0 to 1 with a
step of 0.1; h is allowed for taking its values in a sequence of 20 equispaced values from the quantile 0.05 to
the quantile 0.5 of the observed distances between the curves; values of the weightswk are only allowed for
being 1 or 0 - i.e each rankk can beactivatedor unactivatedin the semimetric. However, not all the possible
combinations of weights are actually tested, as aforward selection approachis favoured in order to reduce the
optimization time [23]. This means we first compute theleave-one-outMSE on the training set for any possible
combination ofλ andh, for each of the possible single activated weights. The rankk∗ whose activation leads to
the smallerleave-one-outMSE is selected. If the best so-obtainedleave-one-outMSE is strictly smaller than a
“no effect” leave-one-outMSE, the weightwk∗ is set to 1. We then do the same for selecting another activated
rank in the weight function. This procedure is iterated while the resultingleave-one-outMSE decreases. The
best set of parametersHOpt = (wkOpt

, λOpt, hOpt) is thus selected as the minimizer of our criterion amongst the
tested sets of parameters. Note here that such aforward selection procedureis a very common approach for
selecting among a large set of parameters (see Guyon and Elisseeff [23], for instance). Once the optimal set of
parametersHOpt is selected, the mean square errors of prediction is evaluated on the validation set, using the
optimal so-parametrized predictor.
This analysis is performed withT = 30 andM andn defined as for Step 1.

Presentation and discussion of the results.Resulting distributions of the MSE obtained atStep 1for each of the tested
semimetrics are presented in Figures 1 to 4, for each model and each value ofσχ. When interpreting those results,
we have to keep in mind that the Bagidis results are sub-optimal here, as the parametrization of thesemimetric is not
optimized in this first analysis. Summary results extractedfrom those graphs about the MSE obtained using Bagidis

and using its best competitor semimetric are shown in Table 2. Resulting distribution of the MSE obtained atStep
2, when the parametrization of Bagidis is fully optimized using a cross-validation procedure, arethen summarized in
Table 3. MSE distributions obtained with the optimized Bagidis semimetric for each model are confronted with the best
competitor MSE distributions on the same model obtained by the analysis ofStep 1, this best competitor distribution
being either Bagidis with unoptimized weights and with the best expected value ofλ, or another semimetric -typically
the Pca.

Analysis of Model 1: Capturing the location of an horizontally shifted sharp pattern. A look at Figure 1
and Table 2 (row 1) tells us that, as expected, the Bagidis semimetric leads to excellent performances compared to
all competitors for dealing with theModel 1: shifted patterns, as soon asλ > 0 - i.e. as soon as the differences
between the breakpoints are taken into account in equation (2.8). We observe that the sensitivity to the choice of
the parameterλ increases withσχ, andλ = 1 is most systematically favored in this case. This is not surprising
as we know, by construction of the model, that only the breakpoints (solely captured withλ = 1) carry significant
information. Only in the least noisy caseσχ = 0.25,dderiv

0 performs better than Bagidis. In that case, the bandwidth is
actually selected so small that quasi-only similarly aligned curves define the predictor. On the contrary, Bagidis is able
to detect the closeness of neighbour shifted curves for building the predictor. This leads to the fact that Bagidis-based
model explains a significant part of the no-effect MSE, up toσχ = 3. The additionally explained percentage of the
no-effect MSE that is explained by Bagidis as compared with the best competitor reaches 39.75 whenσχ = 3. At that
level of noise, the percentage of explanation offered by the sub-optimal Bagidis-based model is more than twice better
than the one achieved by its best competitor. Further non illustrated studies show that this advantage of the Bagidis

semimetric remains up to a noise levelσχ = 6, where no model is able to do significantly better than the no-effect
MSE. Moreover, as could have been expected, increasingσY increases the MSE whatever the semimetric, but does
not affect their relative performances.
Optimizing the parameters of the Bagidis allows to further improve our prediction performances. As can be seen
from Table 3(row 1),a significant percentage (> 80%) of the no-effect MSE is now explained even in the most noisy
illustrated setting withσχ = 3. We observe a gain of 7 to 10 % of explanation ofY, as compared with the Bagidis
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Model 1: Shifted Patterns,σY = 1
No-effect Bagidis Competitor Comparison of performances

MSE Percentage of Percentage of Additionaly Ratio of
Best no-effect MSE Best no-effect MSE explained explained
λ Mean explained by selected Mean explained by percentage of percentages of

σχ selected MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 36.09 0.2 3.34 90.74 Deriv-0 2.14 94.06 -3.32 0.96
0.5 35.54 0.2 3.45 90.29 PCA-11 5.23 85.28 5.01 1.06

1 34.80 0.5 4.08 88.28 PCA-11 7.46 78.56 9.72 1.12
2 34.77 0.8 4.62 86.71 PCA-21 13.92 59.96 26.75 1.45
3 35.59 1 8.83 75.15 PCA-21 22.99 35.40 39.75 2.12

Model 2: Amplified Patterns,σY = 1
No-effect Bagidis Competitor Comparison of performances

MSE Percentage of Percentage of Additionaly Ratio of
Best no-effect MSE Best no-effect MSE explained explained
λ Mean explained by selected Mean explained by percentage of percentages of

σχ selected MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 36.96 0 1.46 96.04 PCA-11 1.41 96.18 -0.14 1.00
0.5 35.20 0 1.56 95.57 PCA-7 1.43 95.94 -0.37 1.00

1 36.26 0 2.77 92.36 PCA-5 1.98 94.54 -2.18 0.98
2 37.17 0 7.65 79.42 PCA-1 3.83 89.97 -10.55 0.88
3 35.86 0.1 11.18 68.82 PCA-1 5.57 84.47 -15.65 0.81

Model 3:Random Amplification and Location of the Patterns,σY = 1
No-effect Bagidis Competitor Comparison of performances

MSE Percentage of Percentage of Additionaly Ratio of
Best no-effect MSE Best no-effect MSE explained explained
λ Mean explained by selected Mean explained by percentage of percentages of

σχ selected MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 82.16 0.2 4.91 94.02 PCA-12 12.30 85.03 8.99 1.11
0.5 82.57 0.2 6.98 91.5 PCA-13 14.59 82.33 9.17 1.11

1 70.55 0.3 11.35 83.91 PCA-19 19.38 72.53 11.38 1.16
2 70.14 0.3 18.55 73.55 PCA-15 22.40 68.06 5.49 1.08
3 67.29 0.3 26.93 59.98 hshift 36.11 46.34 13.64 1.29

Model 4:Second Order Shifted Patterns,σY = 1
No-effect Bagidis Competitor Comparison of performances

MSE Percentage of Percentage of Additionaly Ratio of
Best no-effect MSE Best no-effect MSE explained explained
λ Mean explained by selected Mean explained by percentage of percentages of

σχ selected MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 35.65 0.6 7.04 80.25 Deriv-0 2.08 94.16 -13.91 0.85
0.5 35.13 0.6 7.118 79.56 Deriv-0 6.94 80.24 -0.68 0.99

1 34.29 0.6 6.91 79.85 PCA-11 8.86 74.16 5.69 1.08
2 35.54 0.9 8.55 79.94 PCA-21 12.49 64.85 11.09 1.17
3 36.04 0.9 12.36 65.70 PCA-21 23.63 34.43 31.27 1.91

Table 2: Summary analysis of the examples of Step 1 analysis in Subsection 4.1. The percentage of no-effect explained by the modelis
calculated as 100(1− Mean MSE

Mean no−effect MSE). The difference between this percentage for the Bagidis semimetric and for its best competitor is given as
the Additionaly explained percentage of no-effect MSE. This percentage is thus negative in case the competitor semimetric performs better than
Bagidis. The last column of the table is the ratio of the percentages of no-effect MSE explained using Bagidis and using its best competitor. Bagidis
is superior as soon as this ratio exceeds 1.
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Model 1: Shifted Patterns,σY = 1
Optimized Bagidis Competitor Comparison of performances

Mean Percentage of Percentage of Additionaly Ratio of
number of Most no-effect MSE Best no-effect MSE explained explained
activated activated Mean explained by selected Mean explained by percentage of percentages of

σχ weights weights MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 1.4 1 and 2 1.48 95.11 Bagidis-1 4.16 85.99 9.13 1.11
0.5 1.2 1 and 2 1.62 94.92 Bagidis-1 4.48 85.73 9.19 1.11

1 1.5 1 and 2 1.46 95.34 Bagidis-1 4.01 86.37 8.97 1.10
2 1.5 1 and 2 2.48 92.76 Bagidis-1 4.89 85.16 7.60 1.09
3 2.3 1 and 2 5.77 80.86 Bagidis-1 8.16 73.75 7.11 1.10

Model 2: Amplified Patterns,σY = 1
Optimized Bagidis Competitor Comparison of performances

Mean Percentage of Percentage of Additionaly Ratio of
number of Most no-effect MSE Best no-effect MSE explained explained
activated activated Mean explained by selected Mean explained by percentage of percentages of

σχ weights weights MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 4.6 2 and 3 1.47 95.44 pca-1 1.49 95.36 0.07 1.00
0.5 4.1 2 and 3 1.56 95.08 pca-1 1.46 95.41 -0.33 1.00

1 4.1 2 and 3 2.57 91.70 pca-1 1.92 93.65 -1.95 0.98
2 4.3 2 and 3 5.56 80.34 pca-1 3.65 87.11 -6.77 0.92
3 3.2 2 and 3 9.93 68.40 pca-1 5.82 81.68 -13.28 0.84

Model 3: Randomly Shifted and Amplified Patterns,σY = 1
Optimized Bagidis Competitor Comparison of performances

Mean Percentage of Percentage of Additionaly Ratio of
number of Most no-effect MSE Best no-effect MSE explained explained
activated activated Mean explained by selected Mean explained by percentage of percentages of

σχ weights weights MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 2.0 2 and 1 2.37 96.19 Bagidis-0.25 5.94 90.58 5.61 1.06
0.5 2.6 2 and 1 5.72 91.58 Bagidis-0.25 8.91 87.06 4.52 1.05

1 2.4 2 and 1 11.41 80.67 Bagidis-0.25 11.95 80.61 0.06 1.00
2 2.7 2 and 1 13.83 75.35 Bagidis-0.25 16.92 69.88 5.46 1.08
3 2.6 2 and 1 24.06 60.75 Bagidis-0.25 31.07 49.87 10.88 1.22

Model 4: Second order Shifted Patterns,σY = 1
Optimized Bagidis Competitor Comparison of performances

Mean Percentage of Percentage of Additionaly Ratio of
number of Most no-effect MSE Best no-effect MSE explained explained
activated activated Mean explained by selected Mean explained by percentage of percentages of

σχ weights weights MSE the model competitor MSE the model no-effect MSE no-effect MSE
0.25 1.5 4 2.60 90.27 Bagidis-1 11.01 66.68 25.45 1.38

Deriv-0 2.21 93.31 -1.18 0.99
0.5 1.5 4 and 5 3.18 92.13 Bagidis-1 10.51 67.85 22.42 1.33

Deriv-0 7.95 75.68 14.52 1.19
1 1.7 4 and 5 3.75 88.16 Bagidis-1 9.24 70.83 17.33 1.24

Deriv-0 17.87 43.59 44.57 2.02
2 2.7 4 and 5 6.83 78.57 Bagidis-1 9.48 70.25 8.32 1.12

Deriv-0 33.93 -6.46 78.57* *
3 3.0 4 and 5 13.34 58.30 Bagidis-1 13.28 58.49 -0.19 1.00

Deriv-0 35.34 -10.47 58.30* *

Table 3: Summary analysis of the examples of Step 2 analysis in Subsection 4.1. The percentage of no-effect explained by the modelis
calculated as 100(1− Mean MSE

Mean no−effect MSE). The difference between this percentage for the Bagidis semimetric and for its best competitor is given as
the Additionaly explained percentage of no-effect MSE. This percentage is thus negative in case the competitor semimetric performs better than
Bagidis. The last column of the table is the ratio of the percentages of no-effect MSE explained using Bagidis and using its best competitor. Bagidis
is superior as soon as this ratio exceeds 1. Values denoted by∗ in theComparison of performancesfor Model 4 appear when thepercentage of no
effect MSE explained using the competitor semimetricis observed negative, indicating the the no-effect prediction is better - i.e. that the semimetric
does not capture anything about the significant variations in the curves. In this case, theadditionaly explained percentage of no-effect MSEis the
actualpercentage of no-effect MSE explained byBagidis, and theRatio of explained percentagesis not computed.
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semimetric used with its prior weight function and the optimal valueλ = 1, that was noticed superior to all competitors
at Step 1for σχ > 0.25. Moreover, the Bagidis semimetric is now competitive as compared withdderiv

0 even in this
situation of small noiseσχ = 0.25. The number of selected weights remains small in all examples. Ranks 1 and/or
2, the ones that carry significant, redundant, information about the shifted pattern, are selected most of the time. On
average less than 2 non-zero weights are selected forσχ < 3, as expected. In conclusion, the Bagidis semimetric is
clearly better than competitor for capturing the shift of a sharp pattern, and its performances are further improved by
optimizing its parameters.

Analysis of Model 2: Capturing the amplification of well-aligned sharp pattern. Not surprisingly, theModel
2: amplified patterns is best tackled by the functional PCA-based semimetric, as can be seen from Figure 2 and Table
2 (row 2). Nevertheless, it is interesting to note that our sub-optimal Bagidis semimetric performs quite well too for
σχ < 2, with λ = 0 - i.e where only amplitude differences are taken into account. In those cases less than 2.18percent
of the no-effect MSE is additionally explained when using a Pca-based semimetric. The advantage of the Pca-based
semimetric becomes really significant afterwards. However, it is interesting to note that Bagidis still significantly
detects an effect of the amplification of the sharp pattern, up to a noise levelσχ = 5, what the derivative-based family
of semimetric cannot do. Again, increasingσY increases the MSE whatever the semimetric, but does not affect their
relative performances.
As indicated by Table 3(row 2), optimizing the parameters of the Bagidis does not significantly allow to further
improve our prediction performances. The number of selected weights is higher than 4 most of the time, indicating a
certain number of spurious rank selection. In summary, the PCA-based semimetric is best in case of well aligned sharp
patterns variations, but the Bagidis semimetric remains competitive if the noise on the curves isnot too important

Analysis of Model 3: Capturing the height and delay of a randomly amplified and shifted sharp pattern.
From Figure 3 and row 3 of Table 2, it is clear that even the sub-optimal form of Bagidis performs very well onModel
3: randomly amplified and shifted pattern, and significantly better than competitors in every illustrated case. For
upper values ofσχ (σχ > 4), no model is able to do significantly better than the no effect MSE. As expected, an
intermediate value ofλ seems to be the best choice as both differences in the localizations and in the amplitudes are
informative for the prediction.λ = 0.2 or λ = 0.3 seem to be favoured. This can be interpreted because 0.25 isthe
ratio of the squared range for the breakpoints over the square range of the details (the square has to be taken because
we usep = 2 in equation (2.8)). Again, further non illustrated studies show that increasingσY increases the MSE
whatever the semimetric, but does not affect their relative performances.
Optimizing the parameters of the Bagidis semimetric slightly improves our prediction performances, as compared with
Bagidis semimetric used with its prior weight function andλ = 0.25. This smaller amelioration, as compared with the
improvement achieved for Model 1, might be related to the fact that a larger training set is used here so that the noise
that affects the prediction due to the presence of unsignificant ranks in the prior weights function is better averaged to
zero. The difference is more marked for a high level of noiseσχ = 3, as seen from for Table 3(row 3). The number
of selected weights remains small whatever the noise level.Ranks 1 and 2, the ones that carry significant, redundant,
information about the shifted and amplified pattern, are essentially selected, and few spurious selections occur. In
average about 2 non-zero weights are selected, as expected.This third example shows that the Bagidis semimetric is
clearly superior to competitors and optimizing its parametrization might help to further improve its performances.

Analysis of Model 4: Capturing a secondary shifted sharp pattern. The definition ofModel 4: secondary
shifted pattern implies that the first ranks of the Bagidis semimetric should encode non significant information as
they essentially compare the largest uninformative main pattern, while ranks 4 and 5 should be relevant for predicting
the response. This last example aims at checking that this kind of behaviour is correctly handled by our optimization
procedure. Results obtained atStep 1 for this model can be found in Figure 4 and Table 2 (row 4). As for Model
1: shifted pattern, it shows that the sub-optimal non-optimized Bagidis semimetric has very good performances as
compared with competitors, as soon asλ > 0, with the bestλ significantly tending to 1 asσχincreases. Again, and for
the same reason as discussed forModel 1, dderiv

0 is best in case of a low level of noiseσχ = 0.25 and has equivalent
performances forσχ = 0.5. For higher noise levelsσχ > 0.5, the Bagidis semimetric, even with its sub-optimal
parametrization, performs clearly better that competitors. Further non illustrated studies show that this advantageof
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Figure 1: Analysis (Step 1) of the predictive performances of varioussemimetrics, on data generated according to Model 1: shifted pat-
terns. Top, left: Schematic illustration ofModel 1: shifted patterns. Top, right to bottom right:Boxplot representations of the observed MSE
distributions, for data generated according toModel 1, with σY = 1 andσχ = 0.25, 0.5, 1, 2, and 3 respectively (from left to right and top to
bottom).

20



Figure 2: Analysis (Step 1) of the predictive performances of varioussemimetrics, on data generated according to Model 2: amplified
patterns. Top, left: Schematic illustration ofModel 2: amplified patterns. Top, right to bottom right:Boxplot representations of the observed
MSE distributions, for data generated according toModel 2, with σY = 1 andσχ = 0.25, 0.5, 1, 2, and 3 respectively (from left to right and top
to bottom).
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Figure 3: Analysis (Step 1) of the predictive performances of varioussemimetrics, on data generated according to Model 3: randomly
shifted and amplified patterns. Top, left: Schematic illustration of sample curves generated fromModel 3: randomly shifted and amplified
patterns. Top, right to bottom right:Boxplot representations of the observed MSE distributions, for data generated according toModel 3, with
σY = 1 andσχ = 0.25, 0.5, 1, 2, and 3 respectively (from left to right and top to bottom).
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the Bagidis semimetric remains up to a noise levelσχ = 6, where no model is able to do significantly better than the
no-effect MSE.
Table 3 (row 4) shows that the cross-validated selection of the weights leads to a significant improvement of the
performances of Bagidis, at least forσχ < 3. This is probably due to the fact that the prior weight function was
not really adapted to this example, as it gave a higher weights to the first unsignificant ranks. On the contrary, the
optimization procedure efficiently selects ranks 4 and/or 5, the ones that carry significant information on the secondary
shifted pattern, with very few spurious selection so that the number of selected weights remain small in every case.
The advantage ofdderiv

0 for small values ofσχ disappears as soon as the selection procedure of the weightstakes place,
and results achieved with the optimized Bagidis semimetric are equivalent (σχ = 0.25) or highly better (σχ > 0.25)
than withdderiv

0 .
In summary, the Bagidis semimetric is highly efficient for predicting from curves with a secondary shifted sharp
pattern, and highly benefits from a cross-validated selection of the activated weights in this case. The significant ranks
are directly selected with very few spurious selection.

Conclusion of the simulated study. Those simulated examples illustrates the potential of using Bagidis for
nonparametric prediction of curves. Even used with its non-optimized prior weight function, performances of Bagidis
shows superior performances compared to classical semimetric as soon as variations of sharp local patterns in curves
have an horizontal component. Those performances may be further improved by a cross-validated selection of the
parameters of Bagidis. The mean number of activated weights is then always small. This means we reach quite good
rates of convergence in these examples. Moreover, the performances of Bagidis are equivalent to the ones of its best
competitor, the Pca-based semimetric, in case no horizontal variation of the significant pattern occur, provided that
the noise is not too high. It remains “acceptable” for highernoises, meaning that a prediction is still possible (which is
not the case for the derivative-based semimetric for instance). This means that Bagidis could be used quite confidently
on datasets with sharp patterns whose kind of variation might not be known in advance. A specificity of Bagidis is
indeed that the semimetric can adapt itself to the kind of variation to detect in the dataset, through the optimization of
the balance parameterλ.

4.2. Analysis of a real spectrometric dataset

This last Subsection presents a real data example of prediction from spectrometric curves (de Tullio, Frédérich and
Lambert, Université de Liège). We consider 193 H-NMR serum spectra of length 600, as illustrated in Figure 5, 94 of
which corresponding to patients suffering from a specific illness, the other ones corresponding to healthy patients. We
aim at predicting from the spectrum if a patient is healthy ornot. A training set of 150 spectra is randomly selected
and a functional nonparametric discrimination model is adjusted, with various semimetrics. In each case, the number
of misclassification observed on the remaining 43 spectra isrecorded.

In order to avoid a confusion of the features in such long series, we make use of the Bagidis semimetric together
with a sliding window of length 30 ( as suggested in[2]). Thisallows for comparing the variations of one or few given
peak(s) at a time. A specific R function for using estimator (2.3) in a discrimination setting has been provided by
Ferraty and Vieu [1]. However, it makes use of a slightly different version of the non parametric estimator (2.3): a
local bandwidth is used, which is defined through a number of nearest neighbour that have to be included in the support
of the kernel function. Consequently, our good properties stated in Section 3 are not strictly proved in this case of a
k-NN based estimator. However, we believe that the good convergence properties of the kernel-basedleave-one-out
MSE minimizer might be extended to a K-nn-basedleave-one-outMSE minimizer, by generalizing our proofs to this
case using similar arguments as those found in Burba et al. [24].

Our test for the prediction of the health status from the spectra is repeated 80 times, with different randomly
selected training sets, using the sub-optimal Bagidis semimetric with its prior weight function, withλ = 0.5 and with
a cross-validated bandwidthh, and with the competitor semimetrics identified in Subsection 2.2 and a cross-validated
bandwidth. Results are summarized in Table 4.2, for Bagidis and its best competitor, being a PCA-based semimetric
with at least 6 components. We observe that the non-optimized Bagidis obtainsno error 10% more often than the
PCA-based semimetric. Afterwards, we optimize the weightsand theλ parameter of the Bagidis semimetric using a
cross-validation procedure within the training set, and the resulting model is tested on the remaining 43 series. This
test is repeated 18 times on different randomly selected training sets, and no prediction error occurs. At each repetition,
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Figure 4:Analysis (Step 1) of the predictive performances of varioussemimetrics, on data generated according to Model 4: secondorder
shifted patterns. Top, left: Schematic illustration ofModel 4: second order shifted patterns.Top, right to bottom right:Boxplot representations
of the observed MSE distributions, for data generated according toModel 4, with σY = 1 andσχ = 0.25, 0.5, 1, 2, and 3 respectively (from left
to right and top to bottom).
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Figure 5:An H-NMR serum spectra for a ill patient.

Occurrences of 0 error Occurrences of 1 error

out of 43 predictions out of 43 predictions

Pca-based semimetric 40 times out of 80 40 times out of 80

with q ≥ 6 50% 50%

Non-optimized Bagidis semimetric 48 times out of 80 32 times out of 80

with prior weights andλ = 0.5 60% 40%

Optimized Bagidis semimetric 18 times out of 18 0 times out of 18

(1 non zero weight is selected) 100% 0%

Table 4:Summary results for the prediction of the health status fromthe spectra.Training sets of 150 curves are randomly selected. Predictions
are obtained for the 43 remaining spectra and compared with the true health status of those 43 patients. The number of prediction errors is computed.
The process is repeated several times for different randomly selected training sets.

only 1 non-zero weight is selected. We observe no predictionerror in every case, indicating a risk of misclassification
that is probably smaller than 0.05. This indicates a very good capacity of discriminating the serum spectra from ill
and healthy patients.

Conclusion

The key idea of this paper is to combine the nonparametric functional framework provided by Ferraty and Vieu
[1] with the highly adaptive Bagidis semimetric [2], from predicting from curves with sharp patterns. This association
proves highly pertinent. Applications on simulated data have shown in a systematic way the ability of Bagidis to
take into account both horizontal and vertical variations of the patterns, as well as its flexibility in the use of this
information. Predictions using Bagidis appear to be clearly better than predictions using competing semimetrics, as
soon as the variations of the significant sharp patterns havean horizontal component. Those performances concerns
both high and relatively low signal-to-noise ratio, which makes the method really attractive. The method also proves
really powerful for prediction based on H-NMR spectra, issued from biomedical research.

A theoretical support for those very good observed performances has also been provided in this paper. It was
shown that a really competitive rate of convergence of the prediction estimator can be achieved, provided that the mul-
tidimensional parametrization of the Bagidis semimetric is sparse enough. It is also shown that this multidimensional
parametrization can be chosen using a cross-validation procedure, with a mean-square-error minimization criterion.
This method is proved to be asymptotically optimal, and is shown highly efficient on the proposed data analyses exam-
ples. The related theoretical results also support for a cross-validated choice of the multidimensional parametrization
of others semimetrics, which opens a large scope of perspectives when using projection-based semimetrics in non
parametric functional prediction, for instance.

Given all those elements, we think that the Bagidis semimetric really worth to have a place amongst the semi-
metrics used in nonparametric functional data analysis. Its automatic adaptivity to the nature of the variations of the
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patterns in the curves, its ability to deal with horizontal shifts and its capacity to detect the signal in even quite noisy
data make it a competitive tool for predicting from curves with sharp patterns.
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AppendixA. Proofs

In what follows, we denote byC,C′ positive constants, whose value might change from one line to another.

AppendixA.1. Proof of Theorem 1

Proof of Theorem 1 is a direct consequence of Lemma 3 and Lemma4 above.

Lemma 3. Assume conditions(3.1), (3.5), (3.6) and (3.7) to be satisfied. Then, the random variableχ defined by
(b, d) ∈ N[0;N−1] × R

N is fractal of order K with respect to theBagidis semimetric at pointχ ≡ (b, d). This means that
the small ball probability functionφdB,χ(.) = P(χ ∈ BdB(χ, .)) of χ aboutχ is such that there exists a positive constant
C such that

φdB,χ(h) ∼ C hK , whenh tends to 0.

Proof. We have

φdB,χ(h) = P(dB(χ, χ) ≤ h) (A.1)

= P(dB(χ, χ) ≤ h ∩ ∀k ∈ K , bk = bk) + P(dB(χ, χ) ≤ h ∩ ∃k ∈ K , bk
, bk)

If ∃k ∈ K , bk
, bk, it implies that∃ k ∈ K such that|bk − bk| ≥ 1, where 1 is the step of the gridN[0;N−1] on which the

curve is observed. In such a case, we have

dB(χ, χ) =
∑

k∈K

wk


λ
∣∣∣bk − bk

∣∣∣p + (1− λ)
∣∣∣dk − dk

∣∣∣p
︸               ︷︷               ︸

≥0



1/p

≥
∑

k∈K

wkλ
1/p

∣∣∣bk − bk
∣∣∣

≥ λ1/pmin
k∈K

(wk).

Consequently, the right hand side term of equation (A.1) hasprobability zero forh < λ1/pmin
k∈K

(wk). Thus, whenh

tends to zero, we have

φd,χ(h) = P(
∑

∀k∈K

wk(1− λ)
1/p|dk − dk|

︸                           ︷︷                           ︸
≤ h

≡‖d−d‖λ,w

∩ ∀k ∈ K , bk = bk) (A.2)

= P(∀k ∈ K , bk = bk)︸                   ︷︷                   ︸ .
>0

P(‖ d − d ‖λ,w≤ h |∀k ∈ K , bk = bk)
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By definition, the last term of this expression is

P(‖d − d‖λ,w ≤ h|∀k ∈ K , bk = bk) =
∫

B(d,h)λ,w

f|b(b, s) ds.

Then, by the continuity condition of the conditional density, we have∀ǫ > 0,∀h < min(δǫ ,min(wk)),

∣∣∣∣∣∣

∣∣∣∣∣∣
∫

B(d,h)λ,w
fKd|b(s) ds−

∫
B(d,h)λ,w

fKd|b(d) ds

∣∣∣∣∣∣

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∣∣∣∣∣∣
∫

B(d,h)λ,w

{
fKd|b(s) − fKd|b(d)

}
ds

∣∣∣∣∣∣

∣∣∣∣∣∣

≤
∫

B(d,h)λ,w
sups t.q.‖s−d‖λ,w≤δǫ

∣∣∣∣ fKd|b(s) − fKd|b(d)
∣∣∣∣ds

≤
∫

B(d,h)λ,w
ǫ ds

= ǫ.

∫

B(d,h)λ,w

ds

︸       ︷︷       ︸
Vλ,w(N;h)

whereB(d, h)λ,w is theN-dimensional ball of radiush, centered ond, at the sense of norm‖.‖λ,w andVλ,w(N; h) is the
volume of this ball. Hence, we have

∀ǫ > 0,∀h < min(δǫ ,min(wk)),

∣∣∣∣∣∣∣∣∣∣∣∣∣

∫

B(d,h)λ,w

fKd|b(s) ds

︸                ︷︷                ︸
P(‖d−d‖λ,w≤h|b=b)

− f|b(b, d).
∫

B(d,h)λ,w

ds

︸       ︷︷       ︸
≡Vλ,w(N;h)

∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ǫVλ,w(N; h).

As Vλ,w(N; h) fKd|b(d) > 0, this means

∀ǫ > 0,∀h < min(δǫ ,min(wk)), ‖
P(‖d − d‖λ,w ≤ h|b = b)

Vλ,w(N; h) fKd|b(d)
− 1‖ ≤

ǫ

f|b(b, d)
≤ C,

with C > 0. Consequently, and becauseVλ,w(N; h) ∼ C′.hK with C′ > 0, we have

P(‖d − d‖λ,w ≤ h|∀k ∈ K , bk = bk) = Vλ,w(N; h)︸      ︷︷      ︸
∼C′ .hK

fKd|b(d)
︸︷︷︸
>0

∼ C′′.hK whenh tends to 0,

with C′′ > 0. Going back to equality (A.2), it results in

φdB,χ(h) = P(dB(χ, χ) ≤ h) = P(∀k ∈ K bk = bk)︸                  ︷︷                  ︸
>0

P(‖d − d‖λ,w ≤ h|∀k ∈ K bk = bk)︸                                      ︷︷                                      ︸
∼C′′ .hK

∼ C′′.hK ,

for h small enough.

Lemma 4. Assuming that there exists a finite constant C> 0 such that

φd,χ(ǫ) ∼ Cǫτ asǫ → 0,

and under the conditions(3.9), (3.8), (3.11), (3.10)and (3.3), the functional kernel regression estimate can reach the
rate of convergence:

r̂(χ) − r(χ) = Oa.co.

(
(
logn

n
)
β

2β+τ

)

27



Proof. This is proved in [1].

The proof of Theorem 1 is a direct consequence of Lemmas 3 and 4, for the semimetricd = dB.

AppendixA.2. Proof of Theorem 2

In order to prove Theorem 2, we consider the following Lemmas.

Lemma 5. Under conditions of Theorem 2, we have

∃C,C′ > 0, such that
C

nΦH
+

n− 1
n

bH ≤ MIS E* (H).

Proof. We start with the following decomposition ofMIS E∗(H), that holds because of condition (3.15):

MIS E∗(H) =

∫
E((

1
n

n∑

i=1

δiχ)2) W(χ)dPχ(χ) (A.3)

=

∫
E(

1
n2

n∑

i=1

δ2iχ) W(χ)dPχ(χ) +
∫

1
n2

n∑

i, j=1
i, j

E(δiχδ jχ|χ) W(χ)dPχ(χ)

=
1
n

∫
E(δ2iχ) W(χ)dPχ(χ) +

n− 1
n

∫
E

2(δiχ|χ) W(χ)dPχ(χ)

= R3(H) +
n− 1

n
bH ,

with

R3(H) =
1
n

∫
E(δ2iχ) W(χ)dPχ(χ). (A.4)

It remains to boundR3(H) from below. We consider

E(δ2ix) = E

(
(Yi − r(χi) + r(χi) − r(χ)KH(χ, χi))

2
)

= E

(
(ǫi KH(χ, χi) + (r(χi) − r(χ))KH(χ, χi))2

)

= E

(
ǫK2

H(χ, χi)
)
+ E

(
(r(χi) − r(χ))2K2

H(χ, χi)
)
+ 2E

(
ǫi(r(χi) − r(χ))KH(χ, χi)

)
.

The last term of this equation is null, because of condition (3.21), and the second term is positive. Thus, using
conditions (3.22) and (3.16), we have

E(δ2iχ) ≥ E(ǫ2i K2
H(χ, χi)) = E

(
E(ǫ2i |χi)E(K2

H(χ, χi)|χi)
)

≥ σ2
0E

( K2
(

d(χ,χi )
h

)

E2
(
K
(

d(χ,χi)
h

)) )
)

≥
σ2

0

E2
(
K
(

d(χ,χi )
h

))E
(
K
(d(χ, χi)

h

))

≥ C′
σ2

0

ΦH
,

for a certainC′ > 0 . Then, Lemma 5 follows from

R3(H) ≥
1
n

∫
C′
σ2

0

ΦH
W(χ)dPx ≥

C
nΦH
,

where the last inequality holds because of condition (3.19).
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Lemma 6. Under conditions of Theorem 2, we have\

sup
H∈Hn
χ⊂W

∣∣∣∣r̂1H(χ) − 1
∣∣∣∣ −→ 0 a.s.

and
sup

H∈Hn
χ⊂W

∣∣∣∣r̂− j
1H(χ) − 1

∣∣∣∣ −→ 0 a.s.

Proof. We denote bycχ center that is the closest toχ in condition (3.20). Using condition (3.20), we observe that
∀ǫ > 0,

P
(

sup
H∈Hn
χ⊂W

|r̂1H(χ) − 1| > ǫ
)
≤ P

(
sup

H∈Hn
χ⊂W

|r̂1H(χ) − r̂1H(cχ)| >
ǫ

2

)
+ ♯Hndn sup

H∈Hn
χ⊂W

1≤k≤dn

(
P(|(r̂1H(ck) − 1| >

ǫ

2
)
)
. (A.5)

We first consider the first term on the right side of the inequality. We have

|r̂1H(χ) − r̂1H(cχ)| (A.6)

=

∣∣∣∣∣∣

n∑
i=1
∆i(χ)

nE
(
∆i(χ)

) −

n∑
i=1
∆i(cχ)

nE
(
∆i(cχ)

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑
i=1
∆i(χ)E

(
∆i(cχ)

)
−

n∑
i=1
∆i(cχ)E

(
∆i(χ)

)

nE
(
∆i(χ)

)
E

(
∆i(cχ)

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑
i=1

((
∆i(χ) − ∆i(cχ)

)
E

(
∆i(cχ)

)
+ ∆i(cχ)

(
E

(
∆i(cχ)

)
− E

(
∆i(χ)

)))

nE(∆i(χ))E(∆i(cχ))

∣∣∣∣∣∣.

Then, because the kernel is Lipschitz onR
+ by condition (3.16), we know that

∣∣∣∣∣∣∆i(χ) −
n∑

i=1

∆i(cχ)

∣∣∣∣∣∣ ≤ C
d(χ, cχ)

h
≤ C

rn

h
,

and ∣∣∣∣∣∣E
(
∆i(cχ) − ∆i(χ)

)∣∣∣∣∣∣ ≤ E

(∣∣∣∣∆i(cχ) − ∆i(χ)
∣∣∣∣1d(χi ,χ)≤h∪d(χi ,cχ)≤h

)
≤ C

rn

h
ΦH

Thus, equation (A.6) gives

sup
H∈Hn
χ⊂W

|r̂1H(χ) − r̂1H(cχ)| ≤ C
rn

inf
H∈Hn
χ⊂W

nΦH
,

which tends to 0 because of condition (3.18), so that

P( sup
H∈Hn
χ⊂W

|r̂1H(χ) − r̂1H(cχ)| >
ǫ

2
) = 0 (A.7)

for n large enough. We now consider the second term on the right side of inequality (A.5). We have

r̂1H(ck) − 1 =
1
n

n∑

j=1

(KH(ck, χ j) − 1) =
1

nE
(
∆ j(ck)

)
∑

j=1

U j ,
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with
U j = ∆ j(ck) − E

(
∆ j(ck)

)
.

We would like to make use of a Bernstein inequality (see Van der Vaart and Wellner [25, Lemma 2.2.11], for instance),
for the U j . By construction, we haveE(U j) = 0, and|U j | is bounded, as the kernel is bounded. Moreover, using
condition (3.16) and the fact thatΦH ≤ 1,

E

((
∆ j(ck) − E

(
∆ j(ck)

))2
)
= E

(
∆2

j (ck)
)
− E2

(
∆ j(ck)

)
≤ C2,2ΦH +C2

2,1Φ
2
H ≤ CΦH .

Finally , asU j is bounded and form≥ 2, we have

E(|U j |
m) = E(|U j |

2|U j |
m−2) ≤ E(|U j |

2Cm−2) ≤ CΦH ≤
m!
2

C′ΦH .

This tells us that we are in the conditions of the Bernstein inequality, withM = 1, vi = C′ΦH andv =
∑n

i=1 C′ΦH =

nC′ΦH This ensures that, for allǫ positive,

P(|(r̂1H(ck) − 1| > ǫ) = P

(∣∣∣∣∣∣
1

nE

(
∆ j(ck)

)
n∑

j=1

U j

∣∣∣∣∣∣ > ǫ
)

= P

(∣∣∣∣∣∣
n∑

j=1

U j

∣∣∣∣∣∣ > ǫnE
(
∆ j(ck)

))
≤ P

(∣∣∣∣
n∑

j=1

U j

∣∣∣∣ > ǫnC1,1ΦH

)

≤ 2 exp

(
−

(ǫnC1ΦH)2

2(nC′ΦH + ǫnC1ΦH)

)
≤ 2 exp

(
−

1
2

ǫ2C2
1,1nΦH

C′ + ǫC1,1

)

= 2 exp(−CǫnΦH)

where condition (3.16) is used. From this expression and from equations (A.5) and (A.7), and by using conditions
(3.18), (3.20) and(3.24), it follows that∀ǫ > 0,

0 ≤

∞∑

n=1

P
(

sup
H∈Hn
χ⊂W

|r̂1H(χ) − 1| > ǫ
)

≤

∞∑

n=1

P
(

sup
H∈Hn
χ⊂W

|r̂1H(χ) − r̂1H(cχ)| >
ǫ

2

)
+

∞∑

n=1

♯Hndn

∞∑

n=1

sup
H∈Hn
χ⊂W

1≤k≤dn

P(|r̂1H(ck) − 1| >
ǫ

2
)

≤

∞∑

n=1

P
(
C

rn

inf
H∈Hn
χ⊂W

nΦH
>
ǫ

2

)
+

∞∑

n=1

nα+η sup
H∈Hn
χ⊂W

1≤k≤dn

2 exp(−CǫnΦH)

≤ C +
∞∑

n=1

nα+η2 exp(−Cǫ inf
H∈Hn
χ⊂W

1≤k≤dn

(nΦH))

≤ C +
∞∑

n=1

nα+η2 exp(−C′nδ) ≤ C′′ (A.8)

This ensures the uniform almost complete convergence of ˆr1H(χ) to 1, itself implying the required almost sure con-
vergence. The convergence to 1 of ˆr− j

1H(χ) is shown using very similar ideas. In that case, (A.5) is replaced by

P
(

sup
H∈Hn
j=1...n
χ⊂W

|r̂− j
1H(χ) − 1| > ǫ

)
≤ P

(
sup
H∈Hn
j=1...n
χ⊂W

|r̂− j
1H(χ) − r̂− j

1H(cχ)| >
ǫ

2

)
+ ♯Hndnn sup

H∈Hn
j=1...n
χ⊂W

1≤k≤dn

(
P(|(r̂− j

1H(ck) − 1| >
ǫ

2
)
)
. (A.9)
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Lemma 7. We consider the quantitŷgH(χ) = r̂2H(χ)− r̂(χ)r̂1H(χ), and we note that B(x) = E(ĝH(χ)).Under conditions
of Theorem 2, we have

1. The estimator̂gH(χ) has the form of a delta sequence:

ĝH(χ) =
1
n

n∑

i=1

δiχ, (A.10)

with δiχ = (Yi − r(χ))KH(χ, χi).
2. For k = 1, 2, . . . there is a constant Ck so that for any m= 2 . . .2k, we have

∣∣∣∣∣∣

∫
. . .

∫ 
m∏

i,i′=1

δ
αi′ i
i′i




m∏

i=1

W(χi)βi

 dPχ(χ1)dPχ(χm)

∣∣∣∣∣∣ ≤ Ck

(
1
ΦH

)k−m
2

, (A.11)

whereαi′ i = 0 . . .k are subject to
m∑

i,i′=1

αi′ i = k, (A.12)

and the restriction that

for each i= 1, . . . ,m, there is an i′ , i so that eitherαi′ i or αii ′ is non zero, (A.13)

and whereβi = 0, 1, with βi = 1 any time anαi′ i ≥ 1, and with W(χi)βi taken to be1 when W(χi) = βi = 0.
3. The quantityδ̃i j =

∫
δ jχδiχW(χ)dP(χ) is such that for k= 1, 2, . . . there is a constant Ck so that for any

m= 2 . . .2k, we have

|

∫
. . .

∫ 
m∏

i,i′=1

δ̃αi′ i
i′ i

 dPχ(χ1)dPχ(χm)| ≤ Ck

(
1
ΦH

)k−m
2

, (A.14)

whereαi′ i = 0 . . .k are subject to
m∑

i,i′=1

αi′ i = k, (A.15)

and the restriction that

for each i= 1 . . .m, there is an i′ , i so that eitherαii ′ or αii ′ is non zero. (A.16)

4. There exists a constant C> 0 such that
∫ ∫

δ̃i j dPχ(χi)dPχ(χ j) ≤ C. (A.17)

5. There exists a constant C′ > 0 such that ∫
δ̃χχdPχ(χ) ≥

C
ΦH
. (A.18)

6. There existsξ > 0 so that for k= 1, 2, . . . there is a constant Ck > 0 such that
∫

B(χ)2kW(χ)dPχ(χ) ≤ CkbH . (A.19)

Proof. The proof of (A.10) is trivial by definition of ˆgH(χ). The proof of (A.11) is as follows. Because of condition
(3.16), we have

m∏

i,i′=1

E
αi′ i

(
K
(d(χ, χi)

h

))
= E

∑
αi′ i

(
K
(d(χ, χi)

h

))
= E

k

(
K
(d(χ, χi)

h

))
≥ Ck

1,1Φ
k
H .
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Then, using successively, the definition ofKH(χ, χi) in δiχ, the fact thatr is bounded, the fact thatW is bounded, the
Newton binome, condition (3.25), and condition (3.16), we have

∣∣∣∣∣∣E(


m∏

i,i′=1

δ
αi′ i
i′i




m∏

i=1

W(χi)βi

)
∣∣∣∣∣∣

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E



m∏

i,i′=1

(
(Yi′ − r(χi))K

(d(χi , χi′ )
h

))αi′ i




m∏

i=1

W(χi)βi





∣∣∣∣∣∣

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E



m∏

i,i′=1

(
(|Yi′ | +Cr )K

(d(χi , χi′ )
h

))αi′ i




m∏

i=1

W(χi)βi





∣∣∣∣∣∣

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E


E


m∏

i,i′=1

(
(|Yi′ | +Cr )K

(d(χi, χi′ )
h

))αi′ i




m∏

i=1

W(χi)βi

 |χ1 . . . χm





∣∣∣∣∣∣

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E
CW

m∏

i,i′=1

E

(
(|Yi′ | +Cr )αi′ i

∣∣∣∣χ1 . . . χm

)
Kαi′ i

(d(χi , χi′ )
h

)


∣∣∣∣∣∣ (A.20)

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E
CW

m∏

i,i′=1

2αi′ i
(
E

(
|Yi′ |

αi′ i

∣∣∣∣χ1 . . . χm

)
+Cr

αi′ i
)
Kαi′ i

(d(χi , χi′ )
h

)


∣∣∣∣∣∣ (A.21)

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E
CW

m∏

i,i′=1

sup
s∈1,2,...k

(
2s(Cs

k +Cs
r )

)
Kαi′ i

(d(χi , χi′)
h

)


∣∣∣∣∣∣ (A.22)

≤
1

Ck
1,1Φ

k
H

∣∣∣∣∣∣E
CW

m∏

i,i′=1

C′kKαi′ i
(d(χi, χi′ )

h

)


∣∣∣∣∣∣ (A.23)

=
C′′k
Φk

H

∣∣∣∣∣∣E


m∏

i,i′=1

K
(d(χi , χi′)

h

)αi′ i



∣∣∣∣∣∣ ≤ C′′kΦ
−k+m

2
H . (A.24)

The last inequality comes from condition (3.16) and from thefact that it is always possible to find floor(m+1
2 ) pairs

(i l , j l) such that for alll = 1 . . .floor(m+1
2 ),i l , j l andi l or j l is unique among the set of pairs (i l , j l)l=1...floor(m+1

2 ). There
are thus at leastm2 pairsi, i′ such thatαi′ i is non zero. As a consequence, (A.24) is valid and it proves statement (A.11)
. The proof of statement (A.14) follows nearly the same steps, and we have

∣∣∣∣∣∣E
( 

m∏

i,i′=1

δ̃
αi′ i
i′ i


)∣∣∣∣∣∣ ≤

1

C2k
1,2Φ

2k
H

∣∣∣∣∣∣E
( m∏

i,i′=1

( ∫
K
(d(χi , χ)

h

)
K
(d(χi′ , χ)

h

)
dPχ(χ)

)αi′ i
)∣∣∣∣∣∣.

Again, we know that there exists at leastm
2 pairsi, i′ such thatαi′ i is non zero andi or i′ is unique. For those pairs, we

use Holder’s inequality and condition (3.16) to see that

E

(( ∫
K
(d(χi , χ)

h

)
K
(d(χi′ , χ)

h

)
dPχ(χ)

)αi′ i
∣∣∣∣χi , χi′ , i , i′

)
≤ CΦαi′ i

H .

As the kernel is bounded, this integral is bounded for all other pairs. Thus, we have

∣∣∣∣∣∣E
( m∏

i,i′=1

δ̃
αi′ i
i′i

)∣∣∣∣∣∣ ≤
1

C2k
1,2Φ

2k
H

CΦH
k+m/2 = (

1
ΦH

)(k−m
2 ),

which proves statement (A.14). We now consider statement (A.17). Using the Theorem of Fubini to permute the
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integrals, we have

∣∣∣∣
∫ ∫ ∫

δ jχδiχW(χ)dPχ(χ)dPχ(χi)dPχ(χ j)
∣∣∣∣ =

∣∣∣∣
∫ ∫

δ jχdPχ(χ j)
∫
δiχdPχ(χi )W(χ)dPχ(χ)

∣∣∣∣

= E(E(δ jχ)E(δiχ)W(χ)).

Then, using condition (3.25) and the fact thatr is bounded, we have forj = i, i′,

E(|δ jχ|) ≤ E

(∣∣∣∣∣∣(Yj − r(χ))
K
(

d(χ,χ j )
h

)

E

(
K
(

d(χ,χ j )
h

))
∣∣∣∣∣∣

)

≤ E

(
E(|Yj |χ j)

K
(

d(χ,χ j )
h

)

E

(
K
(d(χ,χ j )

h

))
)
+ E

(
Cr

K
(

d(χ,χ j )
h

)

E

(
K
( d(χ,χ j )

h

))
)

≤ (C1 +Cr )E

( K
(

d(χ,χ j )
h

)

E

(
K
( d(χ,χ j )

h

))
)
= C1 +Cr .

Combining this result and the fact thatW is bounded, we have

E

(
E(|δ jχ|)E(|δiχ|)W(χ)

)
≤ C,

which proves statement (A.17). In a view to prove statement (A.18), we note that

(Yi − r(χ))2 = ((Yi − r(χi) + r(χi) − r(χ))2 = (ǫi + r(χi) − r(χ))2 = ǫ2i + 2ǫi(r(χi) − r(χ)) + (r(χi) − r(χ))2,

and
E((Yi − r(χ))2|χi) ≥ E(ǫ2i |χi)

because of condition (3.21). Then, using conditions (3.22)and (3.16) successively, we have
∫
δ̃ii dPχ(χi) =

∫ ∫
δiχδiχW(χ)dPχ(χ)dPχ(i)

≥ CE

(
(Yi − r(χ))2

K2
(

d(χ,χ j )
h

)

E2
(
K
(d(χ,χ j )

h

))
)

≥ CE

(
E(ǫ2i |χi)

K2
(d(χ,χ j )

h

)

E2
(
K
(d(χ,χ j )

h

))
)

≥ Cσ2
0E

( K2
( d(χ,χ j )

h

)

E2
(
K( d(χ,χ j )

h

))
)
≥

C
ΦH
.

Finally, statement (A.19) is shown true by takingCk = C2k−2.

Lemma 8. Under conditions of Theorem 2, we have

sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − IS E∗(H)

MIS E∗(H)

∣∣∣∣∣ −→ 0 a.s,

with

IS E∗(H) =
1
n2

∫ n∑

j,k=1

δ jxδkxW(χ)dPχ(χ). (A.25)
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Proof. The proof relies on the following decomposition:

IS E∗(H) = R1(H) + R2(H) + R3(H) + 2(1−
1
n

)S(H) + bH(1−
1
n

),

with R3(H) defined by (A.4) and

R1(H) =
1
n2

∫ n∑

i, j=1
i, j

(
δix − E(δix)

)(
δ jx − E(δ jx))

)
W(χ)dPχ(χ),

R2(H) =
1
n2

∫ n∑

i=1

(
δ2ix − E(δ2ix)

)
W(χ)dPχ(χ), (A.26)

S(H) =
1
n

∫
E

(
δ jx)

n∑

i=1

(δix − E(δix)
)
W(χ)dPχ(χ) (A.27)

Those definitions meet the one of Marron and Hardle [21]. Then, because of this decomposition, and because of
decomposition (A.3), we have

sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − IS E∗(H)

MIS E∗(H)

∣∣∣∣∣ = sup
H∈Hn

∣∣∣∣∣∣
R1(H) + R2(H) + 2(1− 1

n)S(H)

MIS E∗(H)

∣∣∣∣∣∣

≤ sup
H∈Hn

∣∣∣∣∣∣
R1(H)

MIS E∗(H)

∣∣∣∣∣∣ + sup
H∈Hn

∣∣∣∣∣∣
R2(H)

MIS E∗H)

∣∣∣∣∣∣

+2
n− 1

n
sup

H∈Hn

∣∣∣∣∣∣
S(H)

MIS E∗(H)

∣∣∣∣∣∣.

We then use exactly the same steps as Marron and Hardle [21, p.105], with conditions (3.1) and (3.3) in that paper
replaced by conditions (A.10), (3.24), and (3.17) and (3.18) respectively, and where the conditions equivalent to (3.4)
to (3.7) in that paper are shown valid by Lemma 7. This allows to show that for allk = 1, 2, . . . , we have

E

(( R1(H)
MIS E∗(H)

)2k
)
≤ Ckn

−γk, E

(( R2(H)
MIS E∗(H)

)2k
)
≤ Ckn

−γk, andE

(( S(H)
MIS E∗(H)

)2k
)
≤ Ckn

−γk. (A.28)

Then, given this, given condition (3.24), and using Markov inequality, we have

P( sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − IS E∗(H)

MIS E∗(H)

∣∣∣∣∣ > ǫ) ≤ #Hn sup
H∈Hn

P(
∣∣∣∣∣
MIS E∗(H) − IS E∗(H)

MIS E∗(H)

∣∣∣∣∣ > ǫ)

≤ Cnnα
1
ǫ2k

sup
H∈Hn

E((
MIS E∗(H) − IS E∗(H)

MIS E∗(H)
)2k).

≤ Cnnα
1
ǫ2k

Ckn
−γk = Cn−γk+α

As α, γ > 0, the validity of equation (A.28) for allk = 1, 2, . . . tells us that, for allǫ > 0, one can always chose ak
such thatγk− α > 1 and aN large enough so that for alln > N, the above probability is smaller thanǫ. This indicates

the almost sure convergence of sup
H∈Hn

∣∣∣∣ MIS E∗ (H)−IS E∗ (H)
MIS E∗ (H)

∣∣∣∣ , which proves the Lemma.

Lemma 9. Under conditions of Theorem 2, we have

sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − AS E∗(H)

MIS E∗(H)

∣∣∣∣∣ −→ 0 a.s,
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with

AS E∗(H) =
1
n

n∑

i=1

(r̂2H(χi) − r(χi)r̂1H(χi))2 W(χi) =
1
n3

n∑

i, j,k=1

δ jiδkiW(χi). (A.29)

Proof. The proof of this Lemma follows the same steps as Theorem 4 in Marron and Hardle [21]. First, long but
simple calculations lead to the following decomposition ofAS E∗(H) :

AS E∗(H) =
n− 2

n
IS E∗(H)

+ T1(H) + T2(H) +
n− 1

n
T3(H) + 2T4(H) + 2T5(H) + T6(H) + T7(H)

+ 2
n− 2

n
U1(H) + 2

n− 1
n

(U2(H) + U3(H)) +
(n− 2)(n− 1)

n2
V(H) (A.30)

+
1
n

R2(H) +
1
n

R3(H),

with IS E∗(H), R2(H) andR3(H) defined by equations (A.25), (A.26) and (A.4), and with the following definitions:

T1(H) =
1
n3

n∑

i, j,k=1
i, j,k,i

(δi jδikW(χi) + E(δi jδikW(χi)) − E(δi jδikW(χi)|χ j, χk) − E(δi jδikW(χi)|χi , χk)

−E(δi jδikW(χ)|χi , χ j) + E(δi jδikW(χi)|χk) + E(δi jδikW(χi)|χ j) − E(δi jδikW(χi)|χi)),

T2(H) =
1
n3

n∑

i, j=1
i, j

(δ2i jW(χi) − E(δ2i j W(χi)|χi) − E(δ2i j W(χi)|χ j) + E(δ2i jW(χi)))

T3(H) =
1
n2

n∑

i=1

(E(δ2i jW(χi)|χi) − E(δ2i jW(χi))),

T4(H) =
1
n3

n∑

i, j=1
i, j

(δiiδi j W(χi) − E(δiiδi j W(χi)|χi) − E(δiiδi j W(χi)|χ j) + E(δiiδi j W(χi))),

T5(H) =
1
n3

n∑

i, j=1
i, j

(E(δiiδi j W(χi)|χ j) − E(δiiδi j W(χi))),

T6(H) =
1
n3

n∑

i=1

(δ2ii W(χi) − E(δ2ii W(χi))),

T7(H) =
1
n2

E(δ2ii W(χi)),

U1(H) =
1
n2

n∑

i, j=1
i, j

(δi jW(χi)B(χi) − E(B(χi)W(χi)δi j |χ j)),

U2(H) + U3(H) =
1
n2

n∑

i=1

∫
δiiδixW(χi)dPχ(χ),

V(H) =
1
n

n∑

i=1

(W(χi)B2(χi) − E(B2(χi)W(χi))).

Those terms are the same as the ones identified by the same namein Marron and Hardle [21]. As a consequence of
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this decomposition, we have

AS E∗(H) − MIS E∗(H)
MIS E∗(H)

(A.31)

=

( n−2
n IS E∗(H) + 1

nR3(H) − MIS E∗(H)

MIS E∗(H)

)
+

(
T1(H)

MIS E∗(H)

)
+

(
T2(H)

MIS E∗(H)

)

+
n− 1

n

(
T3(H)

MIS E∗(H)

)
+ 2

(
T4(H)

MIS E∗(H)

)
+ 2

(
T5(H)

MIS E∗(H)

)
+

(
T6(H)

MIS E∗(H)

)
+

(
T7(H)

MIS E∗(H)

)

+
2(n− 2)

n

(
U1(H)

MIS E∗(H)

)
+ 2

n− 1
n

(
U2(H) + U3(H)

MIS E∗(H)

)
+

(n− 2)(n− 1)
n2

(
V(H)

MIS E∗(H)

)

+
1
n

(
R2(H)

MIS E∗(H)

)

In this expression, the eleven last terms on the right hand side are shown to converge to 0 almost surely in exactly
the same manner as in Marron and Hardle [21], with conditions(3.1) and (3.3) in that paper replaced by conditions
(A.10), (3.24), and (3.17) and (3.18) respectively, and where the conditions equivalent to (3.4) to (3.7) in that paper
are shown valid by Lemma 7. Now, going back to equation (A.31), it remains to prove that

n−2
n IS E∗(H) + 1

nR3(H) − MIS E∗(H)

MIS E∗(H)
−→ 0 a.s. (A.32)

Therefore, we consider the following decomposition:

n−2
n IS E∗(H) + 1

nR3(H) − MIS E∗(H)

MIS E∗(H)
=

n− 2
n

IS E∗(H) − MIS E∗(H)
MIS E∗(H)

+
1
n

R3(H) − MIS E∗(H)
MIS E∗(H)

+
1
n
.

Using (A.3) and Lemma 5, we observe that
∣∣∣∣∣∣
1
n

R3(H) − MIS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n− 1

n2

bH

MIS E∗(H)

∣∣∣∣∣∣ ≤
1
n

which converges to 0 asn goes to∞.We then make use of Lemma 8, and equation (A.32) is proved, which proves the
Lemma.

Lemma 10. Under conditions of Theorem 2, we have

sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣ −→ 0 a.s.

Proof. We first state that

sup
H∈Hn

∣∣∣∣∣
AS E∗(H) − AS E(H)

AS E∗(H)

∣∣∣∣∣ −→ 0 a.s., (A.33)

with AS E∗(H) defined by (A.29). We have, for allH ∈ Hn,

AS E(H) =
1
n

n∑

i=1

(r̂H(χi) − r(χi))2 W(χi)

=
1
n

n∑

i=1

(
r̂2H(χi) − r(χi)r̂1H(χi)

r̂1H(χi)

)2

W(χi)

=
1
n

n∑

i=1

(
r̂2H(χi) − r(χi)r̂1H(χi)

)2

W(χi)

(
1+

1− r̂1H(χi)
r̂1H(χi)

)2

.
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Expression (A.33) follows from this decomposition, because of Lemma 6. Given this, we can write

sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣

≤ sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − AS E∗(H)

MIS E∗(H)

∣∣∣∣∣ + sup
H∈Hn

∣∣∣∣∣
AS E∗(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣

= sup
H∈Hn

∣∣∣∣∣
MIS E∗(H) − AS E∗(H)

MIS E∗(H)

∣∣∣∣∣ + sup
H∈Hn

( ∣∣∣∣∣
AS E∗(H) − AS E(H)

AS E∗(H)

∣∣∣∣∣
∣∣∣∣∣
AS E∗(H) − MIS E∗(H)

MIS E∗(H)
+ 1

∣∣∣∣∣
)

The proof is then completed because of (A.33) and of Lemma 9.

Lemma 11. Under conditions of Theorem 2, we have

sup
H∈Hn

∣∣∣∣∣∣
ÃS E(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣∣ −→ 0 a.s.

Proof. For all H ∈ Hn, we consider the result (A.33) forAS E∗(H), and the following decomposition of̃AS E(H) :

ÃS E(H) =
1
n

n∑

j=1

(
r̂− j

H (χ j) − r(χ j)
)2

W(χ j),

=
1
n

n∑

j=1


r̂− j
2H(χ j) − r(χ j)r̂

− j
1H(χ j)

r̂− j
1H(χ j)


2

W(χ j)

=
1
n

n∑

j=1

(
r̂− j
2H(χ j) − r(χ j)r̂

− j
1H(χ j)

)2
W(χ j)

1+
1− r̂− j

1H(χ j)

r̂− j
1H(χ j)


2

.

By the same arguments as in (A.33), it results in

sup
H∈Hn

∣∣∣∣∣∣∣
ÃS E(H) − ÃS E

∗
(H)

ÃS E
∗
(H)

∣∣∣∣∣∣∣
−→ 0 a.s (A.34)

with

ÃS E
∗
(H) =

1
n

n∑

j=1

(
r̂− j
2H(χ j) − r(χ j)r̂

− j
1H(χ j)

)2
W(χ j).

37



Consequently, we have

sup
H∈Hn

∣∣∣∣∣∣
ÃS E(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣∣

≤ sup
H∈Hn

∣∣∣∣∣∣∣
ÃS E

∗
(H) − ÃS E(H)

MIS E∗(H)

∣∣∣∣∣∣∣
+ sup

H∈Hn

∣∣∣∣∣∣∣
ÃS E

∗
(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣∣∣

≤ sup
H∈Hn

(∣∣∣∣∣∣
ÃS E

∗
(H) − ÃS E(H)

ÃS E
∗
(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
ÃS E

∗
(H) − MIS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ + 1

))

+ sup
H∈Hn

∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ + sup
H∈Hn

(∣∣∣∣∣∣
AS E∗(H) − AS E(H)

AS E∗(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
AS E∗(H) − MIS E∗(H)

MIS E∗(H)

∣∣∣∣∣∣ + 1

))

≤ sup
H∈Hn

(∣∣∣∣∣∣
ÃS E

∗
(H) − ÃS E(H)

ÃS E
∗
(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
AS E∗(H) − AS E(H)

MIS E∗(H)

∣∣∣∣∣∣ + 1

))

+ sup
H∈Hn

∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ + sup
H∈Hn

(∣∣∣∣∣∣
AS E∗(H) − AS E(H)

AS E∗(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
AS E∗(H) − MIS E∗(H)

MIS E∗(H)

∣∣∣∣∣∣ + 1

))

≤ sup
H∈Hn

(∣∣∣∣∣∣
ÃS E

∗
(H) − ÃS E(H)

ÃS E
∗
(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ + 1

))

+ sup
H∈Hn

(∣∣∣∣∣∣
ÃS E

∗
(H) − ÃS E(H)

ÃS E
∗
(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
AS E∗(H) − MIS E∗(H)

MIS E∗(H)

∣∣∣∣∣∣

))

+ sup
H∈Hn

∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣ + sup
H∈Hn

(∣∣∣∣∣∣
AS E∗(H) − AS E(H)

AS E∗(H)

∣∣∣∣∣∣

(∣∣∣∣∣∣
AS E∗(H) − MIS E∗(H)

MIS E∗(H)

∣∣∣∣∣∣ + 1

))

Thus, the Lemma will be proved by using (A.33), (A.34) and Lemma 9, plus the fact that

sup
H∈Hn

∣∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣∣
→ 0 a.s.

This last result is shown as follows. Because of decomposition (A.30) and of the following decomposition

ÃS E
∗
(H) =

n− 2
n

IS E∗(H) + T1(H) + T2(H) +
n− 1

n
T3(H)

+
1
n

(R2(H) + R3(H)) + 2
n− 2

n
U1(H) +

(n− 2)(n− 1)
n2

V(H),

we have, for allH ∈ Hn,
∣∣∣∣∣∣∣
ÃS E

∗
(H) − AS E∗(H)
MIS E∗(H)

∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
T4(H)

MIS E∗(H)

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
T5(H)

MIS E∗(H)

∣∣∣∣∣∣ +
∣∣∣∣∣∣

T6(H)
MIS E∗(H)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
T7(H)

MIS E∗(H)

∣∣∣∣∣∣ + 2
n− 1

n

∣∣∣∣∣∣
U2(H) + U3(H)

MIS E∗(H)

∣∣∣∣∣∣.

As discussed for equation (A.31) that contains the same terms, all the terms on the right hand side converge to zero
almost surely. This is enough to proof Lemma 11.

Lemma 12. Under conditions of Theorem 2, we have

sup
H∈Hn

∣∣∣∣∣
CT(H)

MIS E∗(H)

∣∣∣∣∣ −→ 0 a.s.
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Proof. Using the definitions ofCT(H), r̂1H(χ) andr̂2H(χ), one gets:

sup
H∈Hn

|CT(H)|
MIS E∗(H)

≤ sup
H∈Hn

∣∣∣∣(MIS E∗(H))−11
n

n∑

j=1

ǫ j(r̂− j(χ j) − r(χ j))W(χ j)
∣∣∣∣

≤ sup
H∈Hn

∣∣∣∣(MIS E∗(H))−11
n

n∑

j=1

ǫ j
(r̂− j

2H(χ j) − r(χ j)r
− j
1H(χ j))

r− j
1H(χ j)

W(χ j)
∣∣∣∣

≤ sup
H∈Hn

∣∣∣∣(MIS E∗(H))−11
n

n∑

i=1

n∑

j=1
j,i

ǫ jǫi∆i(χ j)
W(χ j)

(n− 1)E
(
∆i(χ j)

)
r− j
1H(χ j)

∣∣∣∣

+ sup
H∈Hn

∣∣∣∣(MIS E∗(H))−11
n

n∑

i=1

n∑

j=1
j,i

ǫ j(r(χi) − r(χ j))∆i(χ j)
W(χ j)

(n− 1)E
(
∆i(χ j)

)
r− j
1H(χ j)

∣∣∣∣

We note hereafter

Ui, j = (MIS E∗(H))−1ǫ jǫi∆i(χ j)
W(χ j)

(n− 1)E
(
∆i(χ j)

)
r− j
1H(χ j)

and

Vi, j = MIS E∗(H))−1ǫ j(r(χi) − r(χ j))∆i(χ j)
W(χ j)

(n− 1)E
(
∆(χ j)

)
r− j
1H(χ j)

Now the aim is to show

sup
H∈Hn

∣∣∣∣
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j

∣∣∣∣ = oa.s.(1) (A.35)

and

sup
H∈Hn

∣∣∣∣
1
n

n∑

i=1

n∑

j=1
j,i

Vi, j

∣∣∣∣ = oa.s.(1) (A.36)

To state (A.35) and (A.36) we are going to show that for anyǫ > 0 the series

∞∑

n=1

P
(

sup
H∈Hn

∣∣∣∣
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j

∣∣∣∣ > ǫ
)

and
∞∑

n=1

P
(

sup
H∈Hn

∣∣∣∣
1
n

n∑

i=1

n∑

j=1
j,i

Vi, j

∣∣∣∣ > ǫ)
)

are convergent. We consider the set

An = { inf
H∈Hn,χ∈W,1≤ j≤n

r− j
1H(χ) <

1
2
}.

From results obtained in the proof of Lemma 6 it is fairly easyto get for anys> 0:

P(An) ≤ n#Hn sup
H∈Hn, 1≤ j≤n

P

(
inf
χ∈W

r− j
1H(χ) <

1
2

)

≤ Cnα+1 sup
H∈Hn,1≤ j≤n

P

sup
χ∈W

|r− j
1H(χ) − 1| >

1
2



≤ Csn
−1−s for n large enough (i.e.n ≥ ns). (A.37)
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On the other hand, for anyǫ > 0 and any positive integerk, it comes from Markov inequality and condition (3.24),

P( sup
H∈Hn

|
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j | > ǫ ∩ An) ≤ #Hn sup
H∈Hn

P
(
|
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j1An
| > ǫ

)

≤ ǫ−2k#Hn sup
H∈Hn

E

(
|
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j1An
|2k

)
(A.38)

≤ Cnα sup
H∈Hn

E

(
|
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j1An
|2k

)

Hence, it is enough to show that for some positive integerk

∞∑

n=1

nα sup
H∈Hn

E

(
|
1
n

n∑

i=1

n∑

j=1
j,i

Ui, j1An
|2k

)
< +∞ (A.39)

Now, we define
I2k = {(i1, . . . , i2k, j1, . . . , j2k) ∈ {1, . . . , n}

2k|i l , j l∀1 ≤ l ≤ 2k}.

It comes

E

(
1

n2k

( n∑

i=1

n∑

j=1
j,i

Ui, j

)2k
1An

)

= n−2k
∑

(i l , j l)1≤l≤2k∈I2k

∣∣∣∣∣∣E
(
Π2k

l=1Ui l , j l 1An

)∣∣∣∣∣∣

≤ n−2k
4k∑

m=2

∑

(i l , j l)1≤l≤2k∈Jm

∣∣∣∣∣∣E
(
Π2k

l=1(MIS E∗(H))−1ǫ j l ǫi l∆i l (χ j l )
W(χ j l )

(n− 1)E
(
∆i l (χ j l )

)
r− j l
1H (χ j l )

1An

)∣∣∣∣∣∣,

≤ n−2k
2k∑

m=2

∑

(i l , j l)1≤l≤2k∈Jm

∣∣∣∣∣∣E
(
Π2k

l=1(MIS E∗(H))−1 ǫ j l ǫi l∆i l (χ j l )W(χ j l )

(n− 1)E
(
∆i l (χ j l )

)
r− j l
1H (χ j l )

1An

)∣∣∣∣∣∣, (A.40)

whereJm contains elements ofI2k that involve exactly m different indices. The last line comes from the fact that when
m > 2k at least one of theǫ’s appears with exponent 1 and hence the mean equals 0 (conditioning w.r.t.χ1, . . . , χn).
Using the fact thatW is bounded, using conditions (3.16) and (3.25), it comes directly from (A.40)

E

(
1

n2k

( n∑

i=1

n∑

j=1
j,i

Ui, j

)2k
1An

)

≤ C′kn
−2k(MIS E∗(H)nΦH)−2k

2k∑

m=2

∑

(i l , j l)1≤l≤2k∈Jm

E

(
Π2k

l=1∆i l (χ j l )W(χ j l )
)

≤ C′kn
−2k

2k∑

m=2

#JmΦ
m
2
H

≤ C′kΦ
k
H

2k∑

m=2

(nΦH)m−2kΦ
k−m

2
H

≤ C′kΦ
k
H (A.41)
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where the second inequality comes from the fact that one can extract at leastm2 pairs (i lp, j lp) in which for eachp either
i lp or j lp appears uniquely once. Now, (A.41) and (3.17) are enough to state (A.39) fork large enough. The proof of
(A.36) is very similar.

E

(
1

n2k

( n∑

i=1

n∑

j=1
j,i

Vi, j

)2k
1An

)

≤ n−2k
3k∑

m=2

∑

(i l , j l)1≤l≤2k∈Jm

∣∣∣∣∣∣E
(
Π2k

l=1

(r(χi l ) − r(χ j l ))ǫi l∆i l (χ j l )w(χ j l )

(n− 1) MIS E∗(H)E
(
∆(χ j l )

)
r− j l
1H (χ j l )

1An

)∣∣∣∣∣∣, (A.42)

The last line comes from the fact that whenm> 3k at least one of theǫ’s appears with exponent 1 and hence the mean
equals 0 (conditioning w.r.t.χ1, . . . , χn). Now conditions (3.23), (3.17) and(3.18), as well as Lemma(5) are used to
get

E

(
1

n2k

( n∑

i=1

n∑

j=1
j,i

Vi, j

)2k
1An

)

≤ C′k

3k∑

m=2

nm−2k
(
MIS E∗(H)(nΦH)2

)−k
Φ

m
2
H

≤ C′kΦ
k
2
H

3k∑

m=2

(nΦH)m−3kΦ
3k−m

2
H

≤ C′kΦ
k
2
H ,

what is enough to get (A.36).

Lemma 13. Under conditions of Theorem 2, we have

sup
H∈Hn

∣∣∣∣∣∣
MIS E(H) − MIS E∗(H)

MIS E∗(H)

∣∣∣∣∣∣ −→ 0 a.s

Proof. We consider the following decomposition ofMIS E(H) :

MIS E(H) =

∫
E

(
(r̂2H(χ) − r(χ)r̂1H(χ))2

r̂1H(χ)2

)
W(χ)dPχ(χ)

=

∫
E

(
(r̂2H(χ) − r(χ)r̂1H(χ))2(1+ (1− r̂1H(χ)) +

(1− r̂1H(χ))2

r̂1H(χ)
)2

)
W(χ)dPχ(χ)

= MIS E∗(H) + A1(H) + A2(H) + 2A3(H) + 2A4(H) + 2A5(H),

with

A1(H) =

∫
E

(
(r̂2H(χ) − r(χ)r̂1H(χ))2(1− r̂1H(χ))2)

)
W(χ)dPχ(χ)

A2(H) =

∫
E

(
(r̂(χ) − r(χ))2(1− r̂1H(χ))4)

)
W(χ)dPχ(χ)

A3(H) =

∫
E

(
(r̂2H(χ) − r(χ)r̂1H(χ))2(1− r̂1H(χ)))

)
W(χ)dPχ(χ)

A4(H) =

∫
E

(
(r̂2H(χ) − r(χ)r̂1H(χ))(r̂(χ) − r(χ))(1− r̂1H(χ))2

)
W(χ)dPχ(χ)

A5(H) =

∫
E

(
(r̂2H(χ) − r(χ)r̂1H(χ))(r̂(χ) − r(χ))(1− r̂1H(χ))3

)
W(χ)dPχ(χ).
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We consider the termA1(H). Long but simple calculations leads to the following decomposition:

A1(H) = A11 + A12+ A13+ 2A14+ 2A15+ 2A16,

which holds because of Lemma 6, with

A11 =

∫
E

(
(r̂2H(χ) − E(r̂2H(χ)))2(1− r̂1H(χ))2

)
W(χ)dPχ(χ)

A12 =

∫
B2(χ)E

(
(1− r̂1H(χ))2

)
W(χ)dPχ(χ)

A13 =

∫
r2(χ)E

(
(1− r̂1H(χ))4)

)
W(χ)dPχ(χ)

A14 =

∫
B(χ)E

(
(r̂2H(χ) − E(r̂2H(χ)))(1− r̂1H(χ))2

)
W(χ)dPχ(χ)

A15 =

∫
r(χ)E

(
(r̂2H(χ) − E(r̂2H(χ)))(1− r̂1H(χ))3

)
W(χ)dPχ(χ)

A16 =

∫
B(χ)r(χ)E

(
(1− r̂1H(χ))3

)
W(χ)dPχ(χ).

For dealing with termA11, we first observe that

E

((
r̂2H(χ) − E(r̂2H(χ))

)2(
1− r̂1H(χ)

)2
)

=
1

n4E4
(
∆1(χ)

)
[ n∑

i, j=1
i, j

E

((
Yi∆i(χ) − E

(
Yi∆i(χ)

))2
)
E

((
∆ j(χ) − E

(
∆ j(χ)

))2
)

(A.43)

+ 2
n∑

i,, j=1
i, j=1

E

((
Yi∆i(χ) − E

(
Yi∆i(χ)

))(
∆i(χ) − E

(
∆i(χ)

))(
Yj∆ j(χ) − E

(
Yj∆ j(χ)

))(
∆ j(χ) − E

(
∆ j(χ)

)))

+

n∑

i=1

E

((
Yi∆i(χ) − E

(
Yi∆i(χ)

))2(
∆i(χ) − E

(
∆i(χ)

))2
) ]

=
1

n4E4
(
∆1(χ)

)
[
n(n− 1)Var

(
Y1∆1(χ)

)
Var

(
∆1(χ)

)

+ 2n(n− 1)E2

((
Y1∆1(χ) − E

(
Y1∆1(χ)

))(
∆1(χ) − E

(
∆1(χ)

)))

+ nE

((
Y1∆1(χ) − E

(
Y1∆1(χ)

))2(
∆1(χ) − E

(
∆1(χ)

))2
)]
,

which relies on condition (3.15). Because of condition (3.16), we have

Var
(
∆1(χ)

)
= E

(
∆2

1(χ)
)
− E2

(
∆1(χ)

)
≤ E

(
∆2

1(χ)
)
≤ C2,1ΦH . (A.44)

Similarly, because of condition (3.26), we have

Var
(
Y1∆1(χ)

)
= E

(
Y2

1∆
2
1(χ)

)
− E2

(
Y1∆1(χ)

)
(A.45)

≤ E

(
Y2

1∆
2
1(χ)

)
≤ CΦH .
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Because of conditions (3.16) and (3.26), and becauseΦH ≤ 1, we have

E
2

((
Y1∆1(χ) − E

(
Y1∆1(χ)

))(
∆1(χ) − E

(
∆1(χ)

)))

=

(
2E

(
Y1∆1(χ)

)
E

(
∆1(χ)

)
− 2E

(
Y1∆

2
1(χ)

))2

(A.46)

= 4

(
E

2
(
Y1∆1(χ)

)
E

2
(
∆1(χ)

)
+ E2

(
Y1∆

2
1(χ)

)
− 2E

(
Y1∆

2
1(χ)

)
E

(
Y1∆1(χ)

)
E

(
∆1(χ)

))

≤ C
(
Φ4

H + Φ
2
H + Φ

3
H

)
≤ C′Φ2

H .

Using the same conditions, we also have

E

((
Y1∆1(χ) − E

(
Y1∆1(χ)

))2(
∆1(χ) − E

(
∆1(χ)

))2
)]

(A.47)

=E
(
Y2

1∆
2
1(χ)

)
E

2
(
∆1(χ)

)
+ E

(
Y2

1∆
4
1(χ)

)
− 2E

(
Y2

1∆
3
1(χ)

)
E

(
∆1(χ)

)
+ E4

(
Y1∆1(χ)

)
+ E

(
∆2

1(χ)
)
E

2
(
Y1∆1(χ)

)

− 4E2
(
∆1(χ)

)
E

2
(
Y1∆1(χ)

)
− 2E

(
Y1∆

3
1(χ)

)
E

(
Y1∆1(χ)

)
+ 4E

(
Y1∆

2
1(χ)

)
E

(
∆1(χ)

)
E

(
Y1∆1(χ)

)

≤C(ΦH + Φ
2
H + Φ

3
H + Φ

4
H) ≤ C′ΦH.

Now, given equations (A.43), (A.44), (A.45),(A.46) and (A.47), and using condition (3.16) and the fact thatW is
bounded, we obtain

A11 =

∫
E

(
(r̂2H(χ) − E(r̂2H(χ)))2(1− r̂1H(χ))2

)
W(χ)dPχ(χ)

≤
1

n4Φ4
H

(n(n− 1)CΦ2
H + 2n(n− 1)C′Φ2

H + nC′′ΦH) = O
( 1

n2Φ2
H

)
.

As a result, because of Lemma 5 and using condition (3.18), wehave

sup
H∈Hn

|A11|

MIS E∗(H)
≤ sup

H∈Hn

C
nΦH

n2Φ2
H

= sup
H∈Hn

C
1

nΦH
= O

( 1
inf

H∈Hn

nΦH

)
= o(1).

We then consider the termA12. Using condition (3.15) and equation (A.44), we have

E

(
(1− r̂1H(χ))2

)
=

1

n2E2
(
∆1(χ)

)
n∑

i=1

E

(
E

(
∆i(χ)

)
− ∆i(χ)

)2
)
=

nVar
(
∆1(χ)

)

n2E2
(
∆1(χ)

) ≤ C
nΦH

Consequently, and becauseW is bounded,

A12 ≤
C

nΦH

∫
B2(χ)W(χ)dPχ(χ) ≤

C′

nΦH
bH ,

so that

sup
H∈Hn

|A12|

MIS E∗(H)
≤ C

bH

nΦH

n
(n− 1)bH

= O
( 1

inf
H∈Hn

nΦH

)
= o(1),

because of condition (3.18), and because of Lemma 5. In view of dealing with termA13, and because of condition
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(3.15), we note that

E

(
1− r̂1H(χ))4

)
(A.48)

=
1

n4E4
(
∆1(χ)

)
(
3

n∑

i, j=1
i, j

E

((
E

(
∆i(χ)

)
− ∆i(χ)

)2(
E

(
∆ j(χ)

)
− ∆ j(χ)

)2
)
+

n∑

i=1

E

((
E

(
∆i(χ)

)
− ∆i(χ)

))

=
3n(n− 1)Var2

(
∆1(χ)

)

n4E4
(
∆1(χ)

) +
1

n3E4
(
∆1(χ)

)E
((
E

(
∆1(χ)

)
− ∆1(χ)

)4
)
.

Because of condition (3.16), and becauseΦH < 1, we have

E

((
E

(
∆1(χ)

)
− ∆1(χ)

))4
)

= E

(
∆4

1(χ)
)
− 4E

(
∆1(χ)

)
E

(
∆3

1(χ)
)
+ 6E2

(
∆1(χ)

)
E

(
∆2

1(χ)
)
− 4E4

(
∆1(χ)

)
+ E4

(
∆1(χ)

)

≤ C(
(
Φ + Φ2

H + Φ
3
H + Φ

4
H

)
≤ C′ΦH .

Moreover, due to equation (A.44), condition (3.16), and becauseΦH < 1, we have

E

(
1− r̂1H(χ))4

)
≤ C

1

n4Φ4
H

n2Φ2
H +C′

1

n3Φ4
H

ΦH ≤ C
1

n2Φ2
H

Thus, asr andW are bounded, we obtain

A13 ≤
C

n2Φ2
H

∫
r2(χ)W(χ)dPχ(χ) ≤

C′

n2Φ2
H

Consequently, using (3.18) and Lemma 5, we have

sup
H∈Hn

|A13|

MIS E∗(H)
≤ sup

H∈Hn

C

(
1

n2Φ2
H

+
1

n3Φ3
H

)
CnφH ≤ O

( 1
inf

H∈Hn

nΦH

)
= o(1).

Now, using Cauchy-Schwarz inequality, we show that

|A14| ≤
√
|A11|

√
|A12|, |A15| ≤

√
|A11|

√
|A13| and|A16| ≤

√
|A12|

√
|A13|.

It results from this that

sup
H∈Hn

|A14|

MIS E∗(H)
= o(1), sup

H∈Hn

|A15|

MIS E∗(H)
= o(1) and sup

H∈Hn

|A16|

MIS E∗(H)
= o(1).

Thus, sup
H∈Hn

|A1|

MIS E∗ (H) = o(1). In a view to deal with termA2, we observe that

E

(
(r̂(χ) − r(χ))2|χ1 . . . χn

)
≤ 2

(
E(r̂2(χ)|χ1 . . . χn) + r2(χ)

)
≤ C,

the last inequality deriving from conditions (3.25) and (3.16), and from the fact thatr is bounded. Consequently, we
have

A2 ≤ C
∫

E

(
(1− r̂1H(χ))4)

)
W(χ)dPχ(χ),

where the integral is dealt with in the same way as for termA13, so that we obtain sup
H∈Hn

|A2|

MIS E∗ (H) = o(1). Finally, using

Cauchy-Schwarz inequality, we observe that

|A3|

2
≤

√
MIS E∗(H)

√
|A1|,

|A4|

2
≤

√
MIS E∗(H)

√
|A2| and

|A5|

2
≤

√
|A1|

√
|A2|.
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It results from this that

sup
H∈Hn

|A3|

MIS E∗(H)
= o(1), sup

H∈Hn

|A4|

MIS E∗(H)
= o(1) and sup

H∈Hn

|A5|

MIS E∗(H)
= o(1)..

The proof of our Lemma is then completed.

Lemma 14. Under conditions of Theorem 2, we have

MIS E∗(HCV)
MIS E∗(H∗)

−→ 1 a.s.

Proof. The proof of this Lemma is completed as soon as we can prove that

∣∣∣∣∣
MIS E∗(HCV) − MIS E∗(H∗)

MIS E∗(H∗)

∣∣∣∣∣ −→ 0 a.s.

In order to show this convergence, we make use of the following upper bound:
∣∣∣∣∣MIS E∗(HCV) − MIS E∗(H∗)

∣∣∣∣∣ (A.49)

≤

∣∣∣∣∣MIS E∗(HCV) − AS E(HCV)
∣∣∣∣∣ +

∣∣∣∣∣AS E(HCV) − AS E(Hn)
∣∣∣∣∣

+

∣∣∣∣∣AS E(Hn) − AS E(H∗)
∣∣∣∣∣ +

∣∣∣∣∣AS E(H∗) − MIS E∗(H∗)
∣∣∣∣∣,

with Hn = arg min
H∈Hn

AS E(H).Given (A.49), we can further major|MIS E∗(HCV) − MIS E∗(H∗)| using the inequality

∣∣∣∣∣AS E(HCV) − AS E(Hn)
∣∣∣∣∣

≤

∣∣∣∣∣AS E(HCV) − AS E(Hn) −CV(HCV) +CV(Hn)
∣∣∣∣∣

≤

∣∣∣∣∣ÃS E(HCV) − ÃS E(Hn) −CV(HCV) +CV(Hn)
∣∣∣∣∣

+

∣∣∣∣∣ÃS E(HCV) − AS E(HCV)
∣∣∣∣∣ +

∣∣∣∣∣ÃS E(Hn) − AS E(Hn)
∣∣∣∣∣

≤ 2
∣∣∣∣∣CT(HCV)

∣∣∣∣∣ + 2
∣∣∣∣∣CT(Hn)

∣∣∣∣∣ +
∣∣∣∣∣ÃS E(HCV) − AS E(HCV)

∣∣∣∣∣ +
∣∣∣∣∣ÃS E(Hn) − AS E(Hn)

∣∣∣∣∣ (A.50)

which is valid becauseCV(Hn) ≥ CV(HCV) andAS E(Hn) ≤ AS E(HCV), by construction, and because of the decom-
position

CV(H) = ÃS E(H) − 2CT(H) + R,

with R= 1
n

n∑
j=1

(Yj − r(χ j))2W(χ j). Similarly, becauseMIS E∗(H∗) ≤ MIS E∗(Hn), one gets:

∣∣∣∣∣AS E(Hn) − AS E(H∗)
∣∣∣∣∣ ≤

∣∣∣∣∣AS E(Hn) − AS E(H∗) − MIS E∗(Hn) + MIS E∗(H∗)
∣∣∣∣∣

≤

∣∣∣∣∣AS E(Hn) − MIS E∗(Hn)
∣∣∣∣∣ +

∣∣∣∣∣AS E(H∗) − MIS E∗(H∗)
∣∣∣∣∣ (A.51)
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Then, inequalities (A.49), (A.50) and (A.51) lead to

∣∣∣∣∣
MIS E∗(HCV) − MIS E∗(H∗)

MIS E∗(H∗)

∣∣∣∣∣

≤2
∣∣∣∣∣
AS E(H∗) − MIS E∗(H∗)

MIS E∗(H∗)

∣∣∣∣∣

+
MIS E∗(HCV)
MIS E∗(H∗)

(∣∣∣∣∣
MIS E∗(HCV) − AS E(HCV)

MIS E∗(HCV)

∣∣∣∣∣ +
∣∣∣∣∣
ÃS E(HCV) − AS E(HCV)

MIS E∗(HCV)

∣∣∣∣∣ + 2
∣∣∣∣∣

CT(HCV)
MIS E∗(HCV)

∣∣∣∣∣
)

+
MIS E∗(Hn)
MIS E∗(H∗)

(∣∣∣∣∣
MIS E∗(Hn) − AS E(Hn)

MIS E∗(Hn)

∣∣∣∣∣ +
∣∣∣∣∣
ÃS E(Hn) − AS E(Hn)

MIS E∗(Hn)

∣∣∣∣∣ + 2
∣∣∣∣∣

CT(Hn)
MIS E∗(Hn)

∣∣∣∣∣
)
.

We also have

MIS E∗(HCV)
MIS E∗(H∗)

=
MIS E∗(HCV) − MIS E∗(H∗)

MIS E∗(H∗)
+ 1,

MIS E∗(Hn)
MIS E∗(H∗)

≤
MIS E∗(Hn)
AS E(Hn)

AS E(H∗)
MIS E∗(H∗)

=
1

1+ |AS E(Hn)−MIS E∗ (Hn)|
MIS E∗ (Hn)

(
|AS E(H∗) − MIS E∗(H∗)|

MIS E∗(H∗)
+ 1

)
,

where the second inequality holds becauseAS E(Hn) ≤ AS E(HCV). Combining all those results, and using notations
(3.29), we finally get

∣∣∣∣∣
MIS E∗(HCV) − MIS E∗(H∗)

MIS E∗(H∗)

∣∣∣∣∣
(
1− Tα − Tβ − Tγ

)
≤ 2Tα +

(
Tα + Tβ + Tγ

) 2
1− Tα

.

Consequently, the proof of Lemma 14 is completed because of Lemmas 10, 11 and 12 which ensure the convergence
to zero ofTα, Tβ, andTγ respectively. .

Given those Lemmas, the proof of Theorem 2 is as follows. We consider the following decomposition, which
holds because of Lemma 13:

∣∣∣∣∣
MIS E(HCV)
MIS E(H∗)

− 1
∣∣∣∣∣ =

∣∣∣∣∣
MIS E(HCV) − MIS E(H∗)

MIS E∗(H∗)

∣∣∣∣∣
MIS E∗(H∗)
MIS E(H∗)

≤
MIS E∗(H∗)
MIS E(H∗)

(
|MIS E(HCV) − MIS E∗(HCV)|

MIS E∗(H∗)
+
|MIS E∗(HCV) − MIS E∗(H∗)|

MIS E∗(H∗)

+
|MIS E(H∗) − MIS E∗(H∗)|

MIS E∗(H∗)

)

≤

(
1

1− sup
H∈Hn

|MIS E(H)−MIS E∗ (H)|
MIS E∗ (H)

)(
MIS E∗(HCV)
MIS E∗(H∗)

sup
H∈Hn

|MIS E(HCV) − MIS E∗(HCV)|
MIS E∗(HCV)

+
|MIS E∗(HCV) − MIS E∗(H∗)|

MIS E∗(H∗)
+ sup

H∈Hn

|MIS E(H∗) − MIS E∗(H∗)|
MIS E∗(H∗)

)

This tends to zero almost surely because of Lemmas 13 and 14. The proof of Theorem 2 is then completed.
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