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Abstract

Our goal is to predict a scalar value or a group membership fitee discretized observation of curves with sharp
local local features that might vary both vertically andikontally. To this aim, we propose to combine the use
of the non parametric functional regression estimator @&zl by Ferraty and Vieu (2006) [1] with thea@brs
semimetric developed by Timmermans and von Sachs (2010 [2lew of efficiently measuring dissimilarities
between curves with sharp patterns. This association leepesverful. Under quite general conditions, we obtain
the rate of convergence of the nonparametric regressigmadst in this case, as a function of the parameters of
the Baginis semimetric. We propose to optimize those parameters usimgsa-validation procedure, and show the
optimality of the selected vector. This last result has gdaiscope and concerns the optimization of any vector
parameter characterizing a semimetric used in this conigx¢ performances of our methodology are assessed on
simulated and real data examples. Results are shown suffeiothose obtained using competing semimetrics as
soon as the variations of the significant sharp patternsdctinves have an horizontal component.

Keywords: functional data, nonparametric regression, semimetiédwglet, misalignment, cross-validation

1. Introduction

Modern datasets often provide sets of points corresportdidgscretized curves, typically time series or spectra.
In this framework, the suitable information unit is the urigieg curve instead of the vectorial quantity encoding the
series - we refer to it as tofanctional data Functional statistical methods aim at taking this feainte account
when extracting the information content of a dataset (seadg and Silverman [3, 4], Bosq [5], Ferraty and Vieu
[1], Ferraty and Romain [6], e.g.). Amongst them, nonpataimmethods often rely on the availability of a suitable
metric or semimetric for measuringfférences amongst the curves of the dataset.

In this framework, the Bsiois semimetric has been introduced in Timmermans and von S&¢tes[a highly
adaptive wavelet-based tool for measuring dissimilaitietween functional data. Its main originality is to be loase
upon the expansion of each series of a dataset itifferent wavelet basis, one that is particularly suited for its
hierarchical description. Measuring dissimilarities irck a way implies comparing not only the projections of the
series onto the bases, as usual, but also the bases thesndgbeause of this specificity, the semimetric is named
Baagmis, which meanBBAses Glving DIStancesAs a consequence of this feature, theiBis semimetric has the
ability to capture the variations of patterns occurringénies along both the vertical and the horizontal axis. This
property makes the semimetric particularly powerful whealthg with curves that might bdfacted simultaneously
by horizontal shifts and vertical amplifications.
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Nonparametric functional data analysis techniques haea édely described in Ferraty and Vieu [1]. They
include a set of prediction techniques that do not requireake an hypothesis on the form of the prediction operator -
only smoothness hypotheses are made - and are alfticieratly deal with functional data provided it is used togeth
with a semimetric able to extract the relevant features @tiirves and satisfying some theoretical properties.

The purpose of the present study is to illustrate how we caargtdgeously make use of thedbis semimetric
in the context of nonparametric functional prediction whlea curves we are predicting from are characterized by
some horizontally- and vertically-varying sharp localtpats. Our goal is also to show how this good behaviour is
theoretically supported. Simulated examples are shownedisag a real data example, with spectrometric H-NMR
data.

This paper is organized as follows. The statistical franvévwead our study is first described in Section 2: the
notion of functional models for prediction is introduceafdre focusing on nonparametric functional prediction;
the Bwcipis semimetric, which is the tool we propose to use in this sgttis then presented. Then, our two main
theoretical results are stated in Section 3. The first onesdive rate of convergence of a nonparametric functional
prediction using the Bsipis semimetric, as a function of its parametrization. A praataross-validation approach
for optimizing the parametrization ofaBibis in this context is deduced therefrom and theoreticallydatgd. This
second result has a more general scope as it theoreticpliypss for a cross-validated optimization of the paranseter
of any projection-based semimetric. Finally, simulated ezal data examples are investigated in Section 4, so as to
illustrate nonparametric prediction withn&ois in action.

2. Statistical framework

This paper proposes to bring together two advanced statigtols, in view of providing a new,fiécient, way
to predict from curves with sharp local patterns. Thoses@wk, on the one hand, the non parametric functional
regression estimator provided by Ferraty and Vieu [1] faaoting predictions from functional data and, on the other
hand, the Bciois semimetric developed by Timmermans and von Sachs [2] fompewsimg curves with sharp local
patterns. As a support for our present work, those two taelsaccessively described in this Section, after a general
presentation of the stakes and challenges of functiondigtien.

2.1. Functional models for prediction

The general goal of a regression model is to link two randornabies; the first one is eesponse variabley
which we are interested to explain; the second one exgtanatory variablge which is believed to be able to inform
us about the response. Practically, this requires to eiamaunknown link operatar, based on some known pairs
(xi, Yi) - those pairs are called thiaining set- so as to be able to predigtfor any newy using this link.

About the response variabldRegarding the response variable, two cases are most comereduntered:

e the responseY is a real measurementwvhose we aim at predicting the conditional mean value forgingn
value ofy. In that case, the link functionbetween the two variables is an operator defined as the oomalit
expectation of the response variable, given the explapa#oiable:

r(x) = E(Y),
which can be equivalently rewritten as
Y =r(y) +e,

wheree is an error term such th@il(e|y) = 0. This is called aegression modeFor any given valug of y, the
associated scalar valiféis thus estimated as

¥ = (0.

for an estimator of r.



e the responseY is a class membershighat we have to determine for any given valueyofThis is called a
discrimination model The link function we are looking at in that case is the pralitgtof being member of a
given clasgy given a value of:

rglx) = P(Y = dlx) = E(Lv=g lx),

for each class indeg € {gi}i-1.c, with G the number of classes aldg,—q = 1if Y = g and O otherwise. For
any given valug of y, the associated class memberstiig thus estimated as

Y = arg maxfy(x)).
gelditi=1.c

according to the Bayes rule, for an estimatpofrg, g € {gi}i=1. G-

As we can see, both regression and discrimination problemplyithe estimation of an operatoor rq that is defined
as a conditional expectation. Consequently, the samstitatitools for its estimation may be involved in both cases

About the explanatory variableClassically, the explanatory variable has been a scalamat-glimensional vector
variable, and ways to estimate the operatr rg) in that case have been known for a long time. New challenges a
opportunities have appeared witinctionalexplanatory variables taking their values in some functipacer - i.e.
explanatory variables being actually curves, typicallgapa or functions of time. Of course, from a practical point
of view, a curve is necessarily observed as a discretizetirsjme or a time series, that is to say a vector. Nevertheless,
the classical multivariate regression framework is oftenaonvenient anymore. There are two reasons for that:

e The use of the complete information at hand.The knowledge that there is a dynamic process underlying the
sampled data is an information that could be exploited foptimal estimation of the prediction model.

e The “curse of dimensionality”. To render the functional nature of the explanatory variables often use-
ful to make use of either a fine discretization, either a loegqa of data collection. As a consequence, the
vectors representing the curves are rather large, leaditisetneed of a very large set of observations to cor-
rectly estimate the prediction model. In the nonparamétaimework, this “curse of dimensionality” has been
mathematically stated by Stone [7]:

Theorem. Consider a p times gerentiable unknown regression function r of a-Nimensional variable, and
f a nonparametric estimator of r based on a training set oésiz Then the optimal rate of convergencé tf

ris loa e -
(%)2"“. 2.1)

To the best of our knowledge, the only way to predict from azeuronparametrically while avoiding this curse of
dimensionality consists in assuming that relevant infdiomeof reduced dimension can be extracted from the curves,
the price to pay associated with this assumption being faunebularity assumptions on the regression operator. The
knowledge of the functional nature of the data might helpficiently extract this reduced dimensional information.

About the estimation of the link operator r, in case of funieéil data. Several ways have been recently proposed to
take into account the functional nature of the explanatanjable in regression or discrimination problems. Works of
Ramsay and Silverman [4], as well as Crambes et al. [8], Raarsa Dalzell [9] and Cai and Hall [10], for instance,
are devoted tgarametricfunctional modelling and focus on linear models. Besidéepkinds of parametric or
semiparametric regression models have been considerezbih & al. [11], Ait-Saidi et al. [12] and Aneiros-Pérez
and Vieu [13], for instance. On the other hand, researchers as Ferraty and Vieu [1] exploreonparametric
functional prediction models - i.e. techniques allowingdispose of the need to make an hypothesis on the form
of the regression operator. Only smoothness hypothesasguéed. Our work places itself in this nonparametric
context.



2.2. Estimation in a nonparametric functional predictionde!

Suppose we have got a set of curyggi-1.n and associated scalar valu@s$li-1.n, and we are looking for a
prediction model

rQy) = E(Yly),
for which we do not assume a particular parametric form, mly some regularity conditions. One of the basic
assumptions underlying the concept of modelling is thatlaimaalues ofy correspond to similar value &f. We need
thus ways to quantify the similarity of the explanatory @svFollowing Ferraty and Vieu [1], we will say théis a
semimetric on some spageas soon as

e Vye¥, d(x.x)=0,

o Yxixixk €F,  dlxixk) < dlxi, xj) + dlxj, xx)-

A semimetric is thus defined in the same way as a distancepetwd(yi, vj) = 0 # xi = xj, and distances are
particular cases of semimetrics. Semimetrics allow for sndag dissimilarities between curves through a reduced
number of components. A well-suited semimetric may thus tmobfor extracting the relevant features of a set of
curves.

A semimetric-based Nadaraya-Watson regression estim&iwen this definition, Ferraty and Vieu [1] have proposed
an extended Nadaraya-Watson estimator, that is able tovd#afunctional data provided we have a well-suited
semimetriad such that some theoretical properties are satisfied. Ttimasr has the form:

d(x.xi
I YiK (S

W= T )

for regression problems, (2.2)

and, as a particular case,
Al
Zinzl Lpvi=g K( (Xh_)())
dly.xi
T, K(H)

whereK is an asymmetric bounded kernaljs the number of independent paipg,(Y;) in the training setd is a
semimetric andh is the bandwidth.

folx) =

,  for classification problems, (2.3)

The choice of the semimetridt is clear that the predictive qualities of the estimategression or discrimination
model depends on the features extraction capacities ohtheen semimetrid. It also relies on the regularity of the
regression operatorwith respect tad. Definitely, it is clear that the choice of the semimetricrigaal and must be
related to the particular features on the functional datseand. Commonly used families of semimetrics [1] are :

e The derivative-based family of semimetridg?”" based on the derivatives of ordgof the curves :

g™ (yi, x) = \/ f @) - pO(t)2dt, (2.4)

wherey!?(t), ¢@(t) are the estimations of trgd" derivative ofy; andy , respectively, at abscissaand where

the integral has to be numerically estimated by a sum. Esitiméhe derivatives usually rely on a smoothing
of the data. This family includes the Euclidean distabgdetween the smoothed curves as a particular case,
with g = O; it will be denoteddge”". A contrario, the classical vectorial euclidebs distance between the
unsmoothed observations will be shortly referred td'as

e The PCA-based family of semimetrid§CA based on a certain numhbgof principal components of the dataset:

q
df “Axi-x) = sz_;(f(/\/i(t) - x(0)%(t)d)?, (2.5)

wherevi, k = 1..qis thek™" estimated eigenfunction of the principal component anglgsid where the integral
has to be numerically estimated by a sum.



e Thehshiftsemimetricd"s"' that realigns curves before computidff™ distances between them.

Those semimetrics have been shown useful in various pralen4, 15]. However, they happen to fail when dealing
with curves with sharp local features that might not be widireed from one curve to another one, as discussed by
Timmermans and von Sachs [2]. Besides, the computationosktsemimetrics relies on a smoothing of the data,
which is generally problematic for curves with abrupt patte This dificulty with curves with sharp patterns will
be illustrated in subsequent examples of regression prahlim Section 4. However, such curves with sharp patterns
happen to be dealt with in a large variety of scientific arg@¢trometric curves, time series ...), so that it is worth
thinking of the use of another, better adapted, semimedrithibse data.

2.3. Bacmis, a semimetric for comparing curves with sharp horizontadigd vertically-varying local features

The Bagipis semimetricdg has been introduced by Timmermans and von Sachs [2] so asasuneediferences
between regularly discretized curves that are charaetiizy some sharp local features. It is a functional data-
driven and wavelet-based measure that is highly adaptitleetourves being considered. It has been proved to be a
semimetric by Timmermans and von Sachs [2]. Key ideas arellasvt.

Looking for a hierarchical description of the patterns oétkeries. We consider series observed on a regular grid
Ninj. When we evaluate dissimilarities between series visually intuitively investigate first the global shapes

of the series for estimating their resemblance, beforeingfithe analysis by comparing the smaller features of the
series. In other words our comparison is based upon a higcatcomprehension of the curves. This visual approach
inspired us to define our semimetric: we expand each seriaqdiferent, series-adapted) basis that describes its
features hierarchically, in the sense that the first bagitove carry the main features of the series while subsequent
basis vectors support less significant patterns; aftersyard compare both the bases and the expansions of the series
onto those bases, rank by rank, according to the hierarchy.

Expanding each series of the dataset in trebalanced Haar Wavelet Badlgat is best suited for the hierarchical
description of its shapeThe family ofUnbalanced Haar Wavelet Baskas been introduced by Girardi and Sweldens
[16]. It consists in orthonormal bases that are made of onetaat vector and a set of Haar-like (iigp-and-down
shaped) orthonormal wavelets whose discontinuity poietdafter the breakpoint) between the positive and negative
parts is not necessarily located at the middle of its suppbine Bottom Up Unbalanced Haar Wavelet Transform
(Buunwr), an algorithm that was developed by Fryzlewicz [17], abdar selecting amongst this family of bases the
best basis for describing a given series hierarchicallgidgethis hierarchical organization, the selected bakisrits
the good capacity of Haar wavelets th@&ently capture sharp patterns.

We denote the expansion of a senjgén that basis as

N-1
xi= ) dk, (2.6)
k=0

where the coﬁcientsdik (hereafter thaletail codticients) are the projections of the serjgon the corresponding
basis vector&j/!‘ and where the set of vecto{nﬁ!(}k:om,\._l is the Unbalanced Haar wavelet basis that is best suited to
the seriey, as obtained using theuBuwr algorithm. Besides, we denok¥, the breakpoint of the wavelgt, at
every rankk # 0.

Defining a semimetric by taking advantage of the hierarchiho$e expansions As shown by Fryzlewicz [17], the
ordered set of breakpoin{ﬂs,k}k:lm,\._l determines the bas{$!<}k:0,,,N_1 uniquely. As a consequence, the set of points

{Z%ern-1 = {08, I heer noa (2.7)

determines the shape of the serjgsiniquely - i.e. it determines the series on the g¥ign;, except for a change
of the mean level of the series, that is encoded by the addlt'rm&icientd?. It is the signature of the series in the



breakpoints-detailplane. Given that, and with the definitibft = 0 for each curve, we define the®ois semimetric
as a 2-norm (weighted) distance in thieakpoints-detailplane:

N-1

N-1 1/2
05, Ccnxz) = ) w2 = 2, = Y we{of - b+ ok - o)
k=0 k=0

wherewy, k = 0...N — 1, are well suited weights. As such, this semimetric takes iaidhgge of the hierarchy of the
well adapted unbalanced Haar wavelet bases: breakpoitidedails of similar rank in the hierarchical description

of each series are compared to each other, and the resuifiagedces can be weighted according to that rank. As
the breakpoints point to level changes in the series, tlmelta-”{r— bgl can be interpreted as a measure of tifeedénce

of location of the features, along the horizontal axis. Beirdiference of the projections of the series onto wavelets
that encode level changes, the tdd‘[}— d'gl can be interpreted as a measure of thfeedences of the amplitudes of
the features, along the vertical axis. At rank 0, |b% — b| vanishes an¢tl) — dS| measures the flerence between
the means of the curves.

Investigating the balance between breakpoints and dethffsrences.We introduce an extension of thexd@pis

semimetric as follows:
N-1

B Kk k|2 k k|2 12
& vz = > W (/1 Ik — 65 + (1 — 2) o — o ) 2.8)
k=0
with A € [0; 1]. This parameter actually defines a scaling in thgeakpoints-detailplane, and hence in the original
units of the problem. Setting at its extreme values 0 or 1 allows to investigate the coutidbs of the breakpoints
differences and detailsftBrences separately. Moreover, the presence of this pazaalkiws the semimetric to be
robust with respect to scalingfects: if A is optimized according to a given criteria (such as the meaar® error
of a prediction model), the relative dissimilarities betwehe series of a dataset will remain the same, whatever the
scales of measurements along the horizontal and vertieal an that the predictive qualities of the model will not be
affected by such a change in the units of measurements. Thiswé2i8) of the Rcipis semimetric is the one that we
will use throughout this paper. For the sake of simplicitg, will simply denote it byd®.

Choosing the weightsln a prediction setting, weights should ideally be positiveankk if that rank carries infor-
mation for discriminating the series, and 0 otherwise. Ichsaiway, the weights could act as a filter that extract the
part of the distances between the curves that carries reléatures. This paper will illustrate and validate that th
weights could easily be obtained, altogether with the l@dgrarameter and the bandwidth, using a cross-validation
procedure across a set of possible values, in the frameviorroparametric functional prediction.

3. The main results

This Section states the two main theoretical results ofthjser, that support for the use ofdsois in nonparamet-
ric functional regression. First, we obtain the rate of @gence of the nonparametric regression estimator (2e2) us
with the Bagiois semimetric under suitable conditions. We see that thisabt®nvergence is related to the sparsity
of the weight function that parametrizes thesBis semimetric in equation (2.8). Consequently, we proposeéoau
cross-validation procedure so as to optimize this weightfion, as well as the balance parameter equation (2.8)
and the bandwidth in equation (2.2). Our second result is the asymptotic cgiftynof this method.

3.1. Rate of convergence of estimafdr2)when used together witBacipis.

Our first result is the rate of pointwise convergence of thepamametric functional regression estimator (2.2) (and
(2.3) as a particular case) used together with theds semimetric. Under quite general conditions, we show that we
can reach the rate of convergence

log n\ %
(=7

[l



with B being a Lipzschitz parameter quantifying the smoothnessrothe number of curves in the training set atd
the number of non-zero weightsin the Bicinis semimetric (2.8). This rate of convergence is to be compartd
the rate of convergence (2.1) for a nonparametric multtaniegression directly based oNalimensional variable:

log N\ =25
(=)"

El

with p the order of diferentiability ofr andN the length of the discretized curve. This indicates that arereach a
quite good rate of convergence with< N, provided we can restrict ourselves to a sparse enough wieigttion
while satisfying regularity conditions an This may happen if the number of significant features in tirges of the
dataset is not too large.

Our result relies on the following set of assumptions anchitedns.

About the random curvg. The random curvg is observed on a regular g y;. It is defined as a function of the
breakpoints and details parameters (2.7) definingitail T expansion (2.6):

x = x(b, d), with (b, d) € NNjg. x RN, (3.1)
Let us recall that the random signatule d) characterizes the random cupyeiniquely on the gridNj.n;.

About the point of predictiop. We denote by
x = x(b,d) 3.2)
the fixed curve for which we want to obtain a prediction. Thisve is uniquely related to the fixed poittt () in
the breakpoint-detail plane.

About the responsé. We assume that is a scalar variable and that there existg.) continuous at such that
vm> 2, E(Y|"y = x) < om(y). (3.3)
About the datasetWe assume to haveindependent observations
(xi» Yi)i=1..n (3.4)
of the random pairy, Y).

About theBacipis semimetric. We denote byd® the Bsciois semimetric (2.8) with given balance parameteand
weight functionw = {wijk-0.n-1. We denote byK the set of indexes of non-zero componentsvinandK the
cardinality of this set. We assume that the non-zero weigtgstrictly positive:

Vke K, wg> 0. (3.5)
About the probability distribution of. We denote byfgl(b(d) the conditional density function af givenb = b,

restricted on thekf, d) such thatkk € K. We assume that, at the fixed poilat @), fglfj(d) is strictly positive and

continuous with respect @P**™ : for all e positive, there exists, positive such that
d®(x(b. d). x(b. d)) < 6. implies|fji(d) - fiL(d)l < e. (3.6)

We also assume that the curyg®, d) andy(b, d) can have the same breakpoints for all rakks % with a non-
vanishing probability:
P(Vk € K, b=b" > 0. (3.7)

This is possible because the breakpoints take their valuadiaite grid of values. According to Ferraty and Vieu [1],
we define the small ball probability gf aroundy as

$ax () = Plx € Bu(x. 1)),
whereBy(y, h) is the ball of radiu$ centered oy and defined according to the semimettid®Ve assume that

Ve >0, ¢y, () >0 (3.8)
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About the regression operato¥Ve assume that there exiggositive such that
reliprg={f: F >R ACERE VY € F. If(x) - f(¥) < C(r.x'Y) (3.9)

About the kernel.We assume th& is a kernel function froniR to R* such thatf K = 1. We assume that there exists
positive constant€ andC’ such that

dB(y, ,
Coae,, (h) < E(K(%)) < C'¢ge, () (3.10)
About the bandwidth.The bandwidtth is chosen according to a positive sequelngceelated ton in such a way that

logn
——— =0. 3.11
n¢dB,X(hn) ( )
About the type of convergenc€ollowing Ferraty and Vieu [1], we consider almost complaiavergence. One says

that the stochastic sequencé jny converges almost completely to the real random varixbileand only if for all
€ positive, we have

lim p—ohnh =0 and limy-e

Z P(Xn - X| > €) < oo,

neN
and we denote it by lim_,. X, = X a.co. Moreover, one says that the rate of almost complete conmeegs® (Xn)nen
to X is up if and only if there existgy positive such that

D P(1Xa = X| > €olin) < oo,
neN

and we writeX,, — X = Oaco(Un). A direct application of the Borel-Cantelli Lemma allows tmpe that Ferraty and
Vieu [1] that almost complete convergence implies almost sonvergence and convergence in probability, and that

Xn - X = Oa_co(Un) Imp“eS Xn - X = Oa_s'(Un) anan - X = Op(Un).

We note that most of those conditions are very general andhatrspecific to the use of (2.2) withaBirs.
Only conditions (3.5), (3.6) and (3.7) are specific to theilis semimetric and to the expansion of the curves in the
breakpoints-detailplane. Given those assumptions, our result is stated asvll

Theorem 1. Given assumption@.1)to (3.11) the functional kernel regression estimé®e?) used together with the

Bacipis semimetric is such that
X log n
() = 1) = O(t¥) + Oaca [ \/%].

In particular, it can reach the rate of pointwise almost cdetp convergence

log n

) - 100 = 0((7)_)

The proof of this Theorem is given in AppendixA. An idea is alidws.

It is shown in Ferraty and Vieu [1] that the rate of convergeatestimator (2.2) is linked with the semimetric
through the behaviour of the small ball probabilty, (h) about O: the highegq,, (h), the faster the rate of convergence.
This functiongg,, (h) measures the concentration of the functional varigbbeccording to the topology defined by the
semimetric. Given this, our proof relies on two steps. First determine the behaviour of the small ball probability
around 0, for the Bsibis semimetric, as a function of the number of non-zero weighissidefinition. We see that
there exist<C > 0 such thatpee , (h) ~ C h¢, whenh tends to zero. This means thais fractal of orderK around
x- Then, we make use of a result of Ferraty and Vieu [1] that giiesrate of convergence of estimator (2.2) as a
function of the small ball probability of fractal random iatles.

The key step in this proof is thus the studysgé , (), the probability for a curvg to be in a small ball of radiuis
aroundy, according to the semimetrat®. As soon as we consider curvest distances smaller than the minimum
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of the weights foik € K (which is strictly positive because of condition (3.5))isitclear that their breakpoints¢
must be the same as the breakpobftsf the curvey at which we want to predict, for akl € K. Indeed, if this were
not true, there would exist at least okiec % such thatb® — b¥'| > 1, as the step of the grid is %o that the distance
between the curves would be strictly greater than

Wie |bX = b > Wie > minwi,
keK

which leads to a contradiction férsmall enough. This is the reason for condition (3.7). It oahe reason why
our proof requires only the continuity of the conditionahdity functionfy, of (b, d) givenb at (b, d) (equation (3.6)).
Finally, the reason for the cardinality of K to appear in the behavior of the small ball probability anddeein the
rate of convergence is that the volume of a ball of ratiasid dimensiorK is proportional tch¥.

In the second step of our analysis, we refer to Theorem 6.Egiiraty and Vieu [1], that states that

P() - r(x) = O(HF) +0aco{, /%] (3.12)

This Theorem relies on conditions (3.3), (3.8), (3.9), (3.4nd (3.11) As in the classical multivariate setting, the
first component on the right hand side of equation (3.12)lated to the bias of the estimate and depends only on
the smoothness of the operatoiThis component is controlled through condition (3.lf). Similarly, the second
component on the right hand side of equation (3.12) is rélett¢he variance of the estimate. It is controlled through
condition (3.11yight). In the case of a fractal type variable, witge ,(h) ~ C h¢ whenh tends to zero, this term

becomes
/Io n
Oaco. [ ngW] )

which proves the first part of Theorem 1. The second part oftiteorem is then proved by choosing the bandwidth
usedin (3.12) as .
h~C ('Oﬂ)m .
n
We note that condition (3.11ight) is automatically satisfied in that case.

We finally mention here two possible ways to generalize Téeot. First, we could combine our result about
the fractality of the random variabje with results of Ferraty et al. [18], so as to obtain the ratemform almost
complete convergence of the functional kernel regressitimate (2.2) used with theaBiois semimetric. Second, we
could consider the use of the®bis semimetric in a more general nonparametric regressionggettith a functional
response variable, in the framework provided by Ferraty. 18].

3.2. Asymptotic optimality of a cross-validated choicehefparameters of the semimetric and the bandwidth

As a second result, we propose, and theoretically suppatselection of a relevant weight function by using a
leave-one-out cross-validation procedure, with a meaarggerror minimization criterion .

The cross-validated leave-one-out mean square error nigaition criterion in nonparametric functional regression

We consider the estimator given by equation (2.2). The badtti has to be specified in this expression. More-
over, in casel designates thedipis semimetric, it is parametrized by the balance paramieded the weight function
w. Consequently;, felies on a vectorial parameter= (h, 1, w) € RN+2. We propose to chose this vectorial parame-
ter H amongst a sett,, of possibilities by using a cross-validation procedurdwaiteave-one-out mean square error
(MSE) criterion.

This cross-validation based approach for optimizingeferalizes the ideas of Rachdi and Vieu [20] and Ait-Saidi
et al. [12]. Rachdi and Vieu [20] use a leave-one-out cradslated MSE minimizer for choosing the bandwidith
once a semimetric has been fully specified. They have shogvoptimality of this procedure. For our purpose, not
only the bandwidth but also the parametéendw defining the semimetric within a given family of semimetitiave
to be optimized. A leave-one-out cross-validated selaativa parameter specifying a semimetric used withitas
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been proved asymptotically optimal in the particular cdseesingle functional index model [12]. In what follows, we
generalize those results to families of semimetrics ddtexdby a vectorial parameter. This more general framework
includes the optimization af dsed not only with the Bsibis semimetric, but also with any kind of projection-based
semimetric for which we aim at selecting the componentsiemntumber of first components) upon which we project
the series for their comparison. Given the importance ofcthss of projection-based semimetric (see Ferraty and
Vieu [1, Chapter 13]), the opportunity to derive such a gahezsult is clear.

Notations and main ideas
We denote byrj(y) the regression operator estimatdy) used with the fixed parametét. For the sake of
simplicity, we denote

d(x, xi A
A|(X) — K( (Xth)) and KH()(,Xi) — I(X) ,
E(Ai (X))
with d, a semimetric parametrized biAh. Consequently;,j(y) is denoted by
n
%_Z}lYi Kn (s xi)
Phly) = 'l*n— (3.13)
52 Knlys xi)
I

1

Our criterion for measuring the quality of (y) is the Mean Integrated Square Error (MISE) defined as falow

MIS E(H) = MIS E(fn, 1) = E( f(w) = r(1))* W(x) dP(x)). (3.14)

whereW(y) is a non negative weight function aiy is the probability distribution measure of the functionatiable
x- We defineH, , a set of possible values for the parameéiewith the cardinality ofH, increasing with the sample
size. We aim at selecting
H* = arg min MIS E(H).
HeH,

HoweverH* cannot be obtained asis unknown in expression (3.14). Consequently, we proposstimateH* by
HCV, defined as follows:
HCY = arg minCV(H),
HeH,

whereCV(H) is the leave-one-out cross-validated criterion defined by
AN o 2
CV(H) = ﬁ;m =P )P W),

with \
Y YiKu(y, xi)

i=1i#]

Zn: KH(X’Xi) .

1I=11#)

P =

f;j()(,-) is thus the prediction associateditpbased upon the regression estimator (3.13) applied to dasetavhose
the pair f;, Y;) has been excluded, with the parametelCV(H) is thus an estimation d#11S E(H) calculated over
the dataset.

The main result
The main result of this Section relies on the following caiaatis.
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About the datasetWe assume to haveindependent observations
(xi> Yi)i=1..n (3.15)
of the random variabley, Y).

About the kernel.The kernelK is bounded with compact support [0; 1], LipszchitzIeh, and we have that for all
i=1,2..., there exisCyj, Cy; > 0 such that for alH € H,, there exists 6 ®y < 1 so that

dlx. xi)

Vy.xi €W, Cpj®y < E(Ki(T)) < Cy Dy (3.16)
About the probability distribution of. We have that
Iy > 0, 3C; > 0 such that supy < Cin7?, (3.17)
HeH,
and
35 > 0, 3C, > 0 such thaL iﬂfncDH > Con°. (3.18)

About the weight function The weight functiolW(.) is non negative, of compact suppa#t c ¥, bounded by some
positive constanty, and such that

0< fwcy)d P.(x). (3.19)
The interior of W is non-empty and we have, for &l € H,,
do
Wc U B(Ck, '), (3.20)
k=1

whereB(cy, ) are balls ofF, of centerc, and radius, = of inf hdy), with dy < Cr7, 5 > 0,

A
About the conditional distribution of the errorsThe conditional mean of the errors is zero:
E(ely) = O. (3.21)
The conditional variance of the error is positive and theiisteo > 0 such that
E(€’ly) > 0. (3.22)

About the regression operatoil he regression operatoiis bounded by some positive const&hit We introduce the
following definitions of the bias and the integrated squaas:b

B) = E((Y - ()Kn(rx)l) and b = [ BLOW(IR, ().
There exists a positive constady such that for alH € H,,,

Yy, x' € F such thatd(y, x’) < h, we haver(y) - r(y’)| < CBbé. (3.23)

This property is satisfied as soon as there exists constais> 0 such that/y, y’ € # such thad(y, x’) < h, there
existsBy > 0 so that

Ir(y) - r(x) <C’h"  and f B%(x)W(x)dP,(x) = C'h**.
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About the set of parameterg.he cardinality of the set of parametdr is increasing at most algebraically fast:
Ja > 0, AC > 0 such that #, < Crf". (3.24)

About the conditional moments of We assume thaf is such that

Vk = 1,2,... 3C > 0 such that£(|Y“|y) < Cx, (3.25)
and
d(x xi)

h

This last property is valid as soon as conditions (3.16) 8125 are satisfied.

Vy.xi € W, Vk|=1,2... 3Cy > 0 such thaf(|Y[K'( )) < Cu®n. (3.26)
Theorem 2. Assuming condition.15)to (3.26) we have

MIS E(HCY)

1 a
MISE(Hy 2%

This Theorem states the asymptotic optimality of the crasilated choicéd©Y amongst the setfy. It is proved
in AppendixA. An idea of the proof is as follows.
In a view to prove Theorem 2, we need to introduce the quantity

MISE(H) = [ (2100 - r00P00)2) WOIAPL () = [ (Y 6)?) WP (1),
i=1

with
i) = £ O Knlr ). Fan) = = YiKiaGe,x1) andy, = % ~ 1) Kie, ).
i=1 i=1

Two results are then needed for this quanttiS E*(H) :

MIS E(H) - MISE'(H)| _
S s B = 0as(1) (3.27)
MIS Ef(H®Y)
MISE(H) — 1 as (3.28)

MISE (H*)
is bounded above by a sequence tending to zero when n termdsnityj because of (3.28). The proof of (3.27) is the
purpose of Lemma 13. It requires that

The proofis then rather short: first, (3.27) is used to detil Wil S E*(H) instead oMI1S E(H), then| MIS E'(H*)-MIS E*(HCV)‘

-1
VH € H,, IC,C’ > 0, such that £ .0 by < MISE (H).

ndy n

This bound from below oMIS E*(H) is shown valid by Lemma 5. The proof of (3.28) is given by Leantd. This
Lemma relies on the following inequality:

MIS E'(HSY) - MIS E*(H¥) 2
’ MIS E() (1-Toe-Tp-T,) <(Ta +Tﬁ+Ty)—l_T” +2T,,
with
MIS E*(H) — AS HH) AS HH) - ASHH) CT(H)
T, = su , Tg= su andT, = 2 sup| ——=——|, 3.29
sl isEmy T e Vise gy =2 Pwsemr G
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and the following definitions of the Average Square Error

n

ASEH) = 1" (i) ~ (1) W),

i=1
of the Average Square Error of the leave-one-out predictor

ASEH) = = 3" (1) - 1) W),

=1

and with the following definition o€T(H):

CT(H) = % DY =1 (Fl ) = 1) = %Z &’

=1 =1

It is thus necessary to show thBt, Tz andT, converge to zero almost surely whemgoes to infinity. Those terms
are dealt with separately through Lemmas 10, 11 and 12 ri#gplgc Lemma 6 validates a condition that is needed
for the proofs of those three Lemmas. Lemmas 8 and 9 provittedeicompositions that have a role in the proof of
Lemma 10. Those decompositions allow to highlight termsltlaae a form similar to the ones identified by Marron
and Hardle [21] for a similar problem in the multivariatetseg. Those terms can be shown to converge to 0 in a way
similar to the one proposed by those authors, but with canditadapted to our functional setting. The purpose of
Lemma 7 is to show that the conditions for our Theorem are gihoo obtain conditions that play the same role as
the ones used by Marron and Hardle [21] in their proof.

Although our proofs follow similar ideas as the one given acRdi and Vieu [20] and Ait-Saidi et al. [12], some
major diferences occur. As the parameltethat we cross-validate makes changes in the semimetrioyuitds not
natural to assume that the functignis always regular with respect to the semimetric. Opposifeachdi and Vieu
[20] and Ait-Saidi et al. [12], we can thus not make use of ttuadition anymore. This translates into the fact that
the Lipschitz parametedy might be equal to zero in condition (3.23). As a consequetieebias of the estimate
might not necessarily go to zero, for some choice of the patars. This translates into the need to use a more precise
inferior bound

C n-1
— +
ndy n

for the MIS E*(H) (Lemma 5), instead oﬁ%H in Rachdi and Vieu [20] and Ait-Saidi et al. [12]. In partien| the
proof of the convergence df, in Lemma 12 require a much more careful treatment.

by

4. Applications and discussions

In this Section, we assess the performanceswefis; in nonparametric functional prediction using estimato2)2
as compared with results relying upon the usual semimetéfined in Subsection 2.2. We also illustrate tie®ncy
of the cross-validation procedure described in Subse@&i@rior selecting the weights of thesBpis semimetric in
this context. Simulated and real data examples involvingesuwith sharp patterns are studied therefore.

We observe on simulated examples thatiBis shows prediction performances highly superior to comegtias
soon as the model involves curves whose significant vanait sharp local patterns have an horizontal component.
In case the model involves a sharp pattern whose variatiamjplitude is significant but which remains well-aligned
across the dataset, thesPbased semimetric is best, but performances afilds achieve nearly the same order of
magnitude when the noise on the curves is not too high. Theseralidated selection of the non-zero weights of
the Bagiois semimetric, and hence of the significant ranks in tlerBvr expansion (2.6) of the curves, proves very
efficient on those examples, with very few selections of unficarit ranks. This also holds when the significant
sharp pattern to capture is a secondary pattern and is thwennoded in the first ranks of thesBawt expansion.
Such a cross-validated selection allows to further imptbeepredicting performances oh&bpis as compared with a
non-optimized version of Ribis and with competing semimetrics.
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A real data example involving H-NMR serum spectra is thedistill The goal is to discriminate healthy patients
from patients sfiering from a given illness, according to the compositiorheiit blood serum. Again, Bipis proves
highly efficient for that purpose.

Those analyses are performed using the R software [22], sind the R implementation of estimators (2.2) and
(2.3), provided by Ferraty and Vieu [1], slightly adaptedtteeir use together with theaBibis semimetric.

4.1. A systematic simulated study of the prediction cajescdf Baciois for datasets of curves having horizontally
shifted angbr vertically amplified sharp patterns

We investigate the potential of using theddbis semimetric in regression by studying simulated datasetdving
curves having a single significant sharp pattern that iseeittorizontally shifted across the dataset, or vertically
amplified, or both simultaneously. The related responsdlhdee regression problems derive from the amplitude
andor location of that sharp pattern. Those examples allowigmbsing the ability of Beiois to deal with diferent
kinds of diferences amongst the curves of a dataset. We emphasizetttieatatbe method does not make use of the
prior information of the nature of the variation amongst thieves. One of our goals in this work is precisely for our
method to automatically adapt to this nature, through am@bichoice of the balance parameteof the weightsw,
and of the bandwidth.

Definition of the simulated modeld.he models we study are as follows. First, we investigate Bawbis handles
horizontal shifts and vertical amplifications of pattereparately, through the analysis of curves generated frem th
following models:

e Model 1: an up-and-down horizontally shifted pattern is related to its delay. The first example involves
series of length 21, being zero-valued except for the pasefi anup-and-dowrpattern (10-10) that is
horizontally shifted from one series to the next one. Eacleses related to the delay at which thp-and-
downpattern occurs. This is illustrated at Figuré&dp, left).

e Model 2: an up-and-down vertically amplified pattern is related to its height. The second example involves
series of length 21 being zero-valued except fouprand-dowrpattern located at abscissas ,(10), that is
more or less amplified from one series to the next one, fromliaudp 1 to amplitude 20. Each series is
associated with the height of tlup-and-dowrpattern. This is illustrated at Figure(®p, left).

We then study a model that combines horizontal shifts antice¢éamplifications of sharp patterns:

e Model 3: an amplified and shiftedup-and-down pattern is related to a value depending on both its height
and delay. We consider series of length 21, being zero-valued exaepthe presence of anp-and-down
pattern (1-1). That pattern appears after a certain delay andféected by a certain multiplicative amplifi-
cation factor, both being randomly generated in.20. Sample curves generated according to this model are
illustrated in Figure 3top, lef). The responses associated with those curves are the sura délay and the
amplitude.

The last model we consider involves two sharp patterns, #ia one being non-informative, the secondary one being
the only one whose variation carries significant infornatio

e Model 4: an horizontally shifted secondaryup-and-down pattern is related to its delay. We consider
series of length 21, being zero-valued except for the paseha mairup-and-dowrpattern (-20,20) located
at abscissas (10,11), as well as the presence of a secanutarnd-dowrpattern (-10,10) that is horizontally
shifted along the series (it is thus possibly combined tontlaén pattern, for certain delays). Response values
are defined as the delay at which this secondary pattern®cthis is illustrated at Figure 4dp, lef?.

The simulated series we generate according to those fouelsmade &ected by a Gaussian noise with standard
deviationo,, with o, taking its values in (@5, 0.5, 1, 2, 3) - depending on the simulation, and the responses are
affected by a Gaussian noise with standard deviatipr= 1. The related signal-to-noise ratio are provided in Table
1.
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oy: | 025 05 1 2 3
% 4 2 1 05 0.3
Sd(X) for Model 1: shifted patterns | 12.8 6.4 3.2 16 1.1
Sd(X) for Model 2: amplified patterns | 13.2 66.6 33 16 1.1
Sd(;‘) for Model 3: randomly shifted and amplified patterns | 13.2 66.6 3.3 16 1.1

ng) for Model 4: secondary shifted patterns | 28 14 7 35 23

Table 1: Signal-to-noise ratio for the simulation study of Subsectin 4.1. = is the ratio of the smallest filerence (vertically or horizontally)
between the model curvessand the standard deviation of the noise applled to the curyest is the same for all models, ads always fixed to

1. Sd(X) is the ratio of the standard deviation of the model curvesrayed on a sample set of curve%() and the standard deviation of the noise

applled to the curves,. Although common, those valuesgg— have to be taken with caution in our study,saky) includes thus variations of the
curves that are either significant or non-significant (Maednd do not take horizontal shifts into account (Models 4n@ 4) .

Description of the analysisThe following test is performed T times, for each model ancheealue ofo,. We
generateM noisy pairs i, Yi)i-1..m according to the chosen model, each model value of the deldpraheight
having the same probability to appear in the dataset. Themamndomly seleat pairs out of thoséV, and use them
as a training set to calibrate the regression model. Usiagrtbdel for predicting the responses associated with the
M — nremaining series and comparing it with their “true” simeldhoisy response, we calculate the associated mean
square error of prediction (MSE).

The performances obtained using theiBis semimetric with estimator (2.2) on those problems are coatpaith
the one we obtain using the functional PCA-based semimﬁﬁf:with various number of principal components, the
derivative-based semimetrdig’e"" with various order of derivation (including no derivatiard thehshiftsemimetric
d"shift The use of a vectoridl,-distanced™> as a semimetric is also considered. Besidesp @fect prediction is
provided - i.e. a prediction by the mean of the response gadfithe training set, which acts as a benchmark for the
performances.

Our analysis actually proceeds into two steps.

e Step 1: Studying the performances of Beipis in nonparametric functional regression as a function of
the balance parameter, with a prior, sub-optimal, choice of the weights and a crosslidated-choice
of the bandwidth h. In order to get a first insight into the behaviour of thesBis-based regression estimator
as a function oft, only an adaptation of the bandwidth is considered, axdoB is used with a prior weight
function defined as

log(N+1-Kk)
log(N + 1)

as proposed in Timmermans and von Sachs [2]. This allowssocéte a large weight to the comparison of
features encoded at the first rank of the hierarchy, and adsitig weight to the smaller features at the end of
the hierarchy, which is empirically what we expect for riglally sparse noisy curves. Values frohfrom 0 to

1 with a step of 0.1 are tested. The bandwidils optimized through a set of values defined as a sequence of
20 equispaced values from the quantile 0.05 to the quanBl®fthe observed distances between the curves,
which is the default behaviour of the R function provided trriaty and Vieu [1]. With this first step, we
investigate thus how those “sub-optimal” versions of therlds semimetric behave compared with “classical”
semimetrics, depending on the valuetlpfvhich gives a first idea of the potential of our method. lbadiows

to identify the best competitors ofaBinis in each setting.

This analysis is performed with = 100 andM = 60, n = 45 for Model 1, Model 2 andModel 4. Because

of the more important complexity dflodel 3, a larger training setM = 180, n = 160) is to be used if we
wish to achieve an explained percentage of the fiieeeMSE that is about 90 far, = 0.25, as for the other
models. Smaller size of the training sets (eMy= 60, n = 45 as for the other models) leads to the same relative
performances of the semimetrics as those presented heve;dut with a systematically higher MSE.

Wo = 0; wi = fork=1...N-1, (4.2)

e Step 2: Optimizing the weights, the balance parameter and th bandwidth in nonparametric regression
using aleave-one-out cross-validation procedure.As theoretically supported by Theorem 1, having a sparse
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weight function will significantly improve the rate of comgence the estimator, and hence the performance of
Baginis compared to competitors. With this second step, we illtsstiaw we can further improve the predicting
performances of Bsis on the above-defined models by optimizing the weightthe balance parametgias
well as the smoothing parameterPractically, this is done using a cross-validation pracednd deave-one-
out mean square error criterion, as suggested by Theorem 2.€Tlod garametersl = (w, 4, h) over which
we optimize thdeave-one-ouMSE criterion is defined as follows: values ofare tested from O to 1 with a
step of 01; h is allowed for taking its values in a sequence of 20 equisp&eakies from the quantile 0.05 to
the quantile 0.5 of the observed distances between the swakies of the weightay are only allowed for
being 1 or O - i.e each rarkcan beactivatedor unactivatedn the semimetric. However, not all the possible
combinations of weights are actually tested, &sravard selection approacis favoured in order to reduce the
optimization time [23]. This means we first compute kb@ve-one-ouMSE on the training set for any possible
combination oft andh, for each of the possible single activated weights. The kimkhose activation leads to
the smallefeave-one-ouMSE is selected. If the best so-obtairedve-one-ouMSE is strictly smaller than a
“no effect” leave-one-ouMSE, the weightv is set to 1. We then do the same for selecting another adiivate
rank in the weight function. This procedure is iterated witiie resultindeave-one-ouMSE decreases. The
best set of parametek°Pt = (W"Opt, AOPL 1OPY s thus selected as the minimizer of our criterion amortugst t
tested sets of parameters. Note here that suoveard selection proceduris a very common approach for
selecting among a large set of parameters (see Guyon ase&l{23], for instance). Once the optimal set of
parameter$i Pl is selected, the mean square errors of prediction is ewaluai the validation set, using the
optimal so-parametrized predictor.

This analysis is performed with = 30 andM andn defined as for Step 1.

Presentation and discussion of the resul®esulting distributions of the MSE obtainedsiép 1for each of the tested
semimetrics are presented in Figures 1 to 4, for each mode¢ach value ofr,. When interpreting those results,
we have to keep in mind that the®bis results are sub-optimal here, as the parametrization afeh@metric is not

optimized in this first analysis. Summary results extraéteth those graphs about the MSE obtained usiagiss
and using its best competitor semimetric are shown in TablRexsulting distribution of the MSE obtained Step
2,when the parametrization ofaBipis is fully optimized using a cross-validation procedure, thien summarized in

Table 3. MSE distributions obtained with the optimizedBis semimetric for each model are confronted with the best

competitor MSE distributions on the same model obtainedbyanalysis otep 1 this best competitor distribution
being either Raipis with unoptimized weights and with the best expected valug of another semimetric -typically
the Rea.

Analysis of Model 1: Capturing the location of an horizontaly shifted sharp pattern. A look at Figure 1

and Table 2 ow 1) tells us that, as expected, thaddis semimetric leads to excellent performances compared to

all competitors for dealing with th&lodel 1: shifted patterns, as soon ag > 0 - i.e. as soon as theftBrences

between the breakpoints are taken into account in equali@). (We observe that the sensitivity to the choice of

the parameten increases witlr,, andA = 1 is most systematically favored in this case. This is nopssing

as we know, by construction of the model, that only the breakp (solely captured witih = 1) carry significant
information. Only in the least noisy casg = 0.25,d8'e”" performs better thanA&iis. In that case, the bandwidth is
actually selected so small that quasi-only similarly aéigrcurves define the predictor. On the contrargiids is able
to detect the closeness of neighbour shifted curves fodimgjithe predictor. This leads to the fact thatBis-based

model explains a significant part of the nfieet MSE, up tar, = 3. The additionally explained percentage of the

no-efect MSE that is explained byaBipis as compared with the best competitor reache3B®heno, = 3. At that

level of noise, the percentage of explanatidiieed by the sub-optimalddipis-based model is more than twice better

than the one achieved by its best competitor. Further nostithted studies show that this advantage of tk@os
semimetric remains up to a noise levgl = 6, where no model is able to do significantly better than the fiiece

MSE. Moreover, as could have been expected, increasinigcreases the MSE whatever the semimetric, but does

not dfect their relative performances.
Optimizing the parameters of thead@ois allows to further improve our prediction performances. As be seen

from Table 3(row 1), a significant percentage 80%) of the no-&ect MSE is now explained even in the most noisy

illustrated setting withr,, = 3. We observe a gain of 7 to 10 % of explanationYpfas compared with theABipis
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Model 1 Shifted Patternsry = 1

No-effect Bacipis Competitor Comparison of performances
MSE Percentage of Percentage of Additionaly Ratio of
Best no-&ect MSE Best no-&ect MSE explained explained
P Mean explained by| selected Mean explained by percentage of  percentages of
oy selected  MSE the mode| competitor ~ MSE the model| no-effect MSE  no-&fect MSE
0.25 36.09 0.2 3.34 90.74 Deriv-0 2.14 94.06 -3.32 0.96
0.5 35.54 0.2 3.45 90.29 | PCA-11 5.23 85.28 5.01 1.06
1 34.80 0.5 4.08 88.28 PCA-11 7.46 78.56 9.72 1.12
2 34.77 0.8 4.62 86.71 PCA-21 13.92 59.96 26.75 1.45
3 35.59 1 8.83 75.15 PCA-21 22.99 35.40 39.75 2.12
Model 2 Amplified Patternsgy = 1
No-effect Bacipis Competitor Comparison of performances
MSE Percentage of Percentage of Additionaly Ratio of
Best no-&ect MSE Best no-&ect MSE explained explained
Pl Mean explained by| selected Mean explained by percentage of  percentages of
oy selected  MSE the mode| competitor ~ MSE the model| no-dfect MSE  no-&fect MSE
0.25 36.96 0 1.46 96.04 PCA-11 1.41 96.18 -0.14 1.00
0.5 35.20 0 1.56 95.57 PCA-7 1.43 95.94 -0.37 1.00
1 36.26 0 2.77 92.36 PCA-5 1.98 94.54 -2.18 0.98
2 37.17 0 7.65 79.42 PCA-1 3.83 89.97 -10.55 0.88
3 35.86 0.1 11.18 68.82 PCA-1 5.57 84.47 -15.65 0.81
Model 3Random Amplification and Location of the Patterag,= 1
No-effect Bacipis Competitor Comparison of performances
MSE Percentage of Percentage of Additionaly Ratio of
Best no-&fect MSE Best no-éfect MSE explained explained
Pl Mean explained by| selected Mean explained by percentage of  percentages of
oy selected  MSE the mode| competitor ~ MSE the model| no-effect MSE  no-&fect MSE
0.25 82.16 0.2 4.91 94.02 PCA-12 12.30 85.03 8.99 1.11
0.5 82.57 0.2 6.98 91.5 PCA-13 14.59 82.33 9.17 1.11
1 70.55 0.3 11.35 83.91 PCA-19 19.38 72.53 11.38 1.16
2 70.14 0.3 18.55 73.55 PCA-15 22.40 68.06 5.49 1.08
3 67.29 0.3 26.93 59.98 hshift 36.11 46.34 13.64 1.29
Model 4Second Order Shifted Patterns; = 1
No-effect Bacipis Competitor Comparison of performances
MSE Percentage of Percentage of Additionaly Ratio of
Best no-&fect MSE Best no-éfect MSE explained explained
P Mean explained by| selected Mean explained by percentage of  percentages of
oy selected  MSE the mode| competitor ~ MSE the model| no-effect MSE  no-&fect MSE
0.25 35.65 0.6 7.04 80.25 Deriv-0 2.08 94.16 -13.91 0.85
0.5 35.13 0.6 7.118 79.56 Deriv-0 6.94 80.24 -0.68 0.99
1 34.29 0.6 6.91 79.85 PCA-11 8.86 74.16 5.69 1.08
2 35.54 0.9 8.55 79.94 PCA-21 12.49 64.85 11.09 1.17
3 36.04 0.9 12.36 65.70 PCA-21 23.63 34.43 31.27 1.91

Table 2: Summary analysis of the examples of Step 1 analysis in Subsea 4.1. The percentage of noffect explained by the modal
calculated as 100(% me The diference between this percentage for therls semimetric and for its best competitor is given as
the Additionaly explained percentage of nfieet MSE This percentage is thus negative in case the competitoinsstnt performs better than
Bagmis. The last column of the table is the ratio of the percentades-@fect MSE explained usingABmois and using its best competitora&ois

is superior as soon as this ratio exceeds 1.
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Model 1 Shifted Patternsry = 1

Optimized Bacibis Competitor Comparison of performances
Mean Percentage o Percentage of Additionaly Ratio of
number of Most nogect MSE Best no-éfect MSE explained explained
activated activated  Mean explained y selected Mean explained by percentage of  percentages
oy weights weights MSE the mode| competitor MSE the model| no-dfect MSE  no-&ect MSE
0.25 1.4 land?2 1.48 95.11 Bagipis-1 4.16 85.99 9.13 1.11
0.5 1.2 land?2 1.62 94.92 Bagipis-1 4.48 85.73 9.19 1.11
1 15 land2 1.46 95.34 Bacmis-1 4.01 86.37 8.97 1.10
2 1.5 land?2 2.48 92.76 Bacmis-1 4.89 85.16 7.60 1.09
3 2.3 land?2 5.77 80.86 Bacmis-1 8.16 73.75 7.11 1.10
Model 2 Amplified Patternsgy = 1
Optimized Bacois Competitor Comparison of performances
Mean Percentage o Percentage of Additionaly Ratio of
number of Most no-fect MSE Best no-&ect MSE explained explained
activated activated  Mean explained y selected Mean explained by percentage of  percentages
oy weights weights MSE the mode|] competitor MSE the model| no-dfect MSE  no-&ect MSE
0.25 4.6 2and3 1.47 95.44 pca-1 1.49 95.36 0.07 1.00
0.5 4.1 2and3 1.56 95.08 pca-1 1.46 95.41 -0.33 1.00
1 4.1 2and 3 2.57 91.70 pca-1 1.92 93.65 -1.95 0.98
2 4.3 2and3 5.56 80.34 pca-1 3.65 87.11 -6.77 0.92
3 3.2 2and3 9.93 68.40 pcA-1 5.82 81.68 -13.28 0.84
Model 3 Randomly Shifted and Amplified Patternsy = 1
Optimized Bacibis Competitor Comparison of performances
Mean Percentage o Percentage of Additionaly Ratio of
number of Most no-fect MSE Best no-&ect MSE explained explained
activated activated  Mean explained y selected Mean explained by percentage of  percentages
oy weights weights MSE the mode| competitor MSE the model| no-dfect MSE  no-&ect MSE
0.25 2.0 2and1 2.37 96.19 | Bacmis-0.25 5.94 90.58 5.61 1.06
0.5 2.6 2and1 5.72 91.58 | Bacmis-0.25 8.91 87.06 4.52 1.05
1 2.4 2and1 11.41 80.67| Bacmis-0.25 11.95 80.61 0.06 1.00
2 2.7 2and1 13.83 75.35| Bacmis-0.25 16.92 69.88 5.46 1.08
3 2.6 2and1l 24.06 60.75| Bacmis-0.25 31.07 49.87 10.88 1.22
Model 4 Second order Shifted Patterms; = 1
Optimized Bacibis Competitor Comparison of performances
Mean Percentage o Percentage of Additionaly Ratio of
number of Most nogect MSE Best no-éfect MSE explained explained
activated activated  Mean explained ly selected Mean explained by percentage of  percentages
oy weights weights MSE the mode| competitor MSE the model| no-dfect MSE  no-&ect MSE
0.25 15 4 2.60 90.27 Bacmis-1 11.01 66.68 25.45 1.38
Deriv-0 2.21 93.31 -1.18 0.99
0.5 1.5 4 and 5 3.18 92.13 Bagipis-1 10.51 67.85 22.42 1.33
Deriv-0 7.95 75.68 14.52 1.19
1 1.7 4and 5 3.75 88.16 Bacmis-1 9.24 70.83 17.33 1.24
Deriv-0 17.87 43.59 44.57 2.02
2 2.7 4 and 5 6.83 78.57 Bagipis-1 9.48 70.25 8.32 1.12
Deriv-0 33.93 -6.46 78.57* *
3 3.0 4and5 13.34 58.30| Bacmis-1 13.28 58.49 -0.19 1.00
Deriv-0 35.34 -10.47 58.30* *

Table 3: Summary analysis of the examples of Step 2 analysis in Subsea 4.1. The percentage of noffect explained by the modal
calculated as 100(% z)- The diference between this percentage for therks semimetric and for its best competitor is given as
the Additionaly explained percentage of nfieet MSE This percentage is thus negative in case the competitoinsstnt performs better than
Bagmis. The last column of the table is the ratio of the percentajes-@fect MSE explained usingABmois and using its best competitora&ois

is superior as soon as this ratio exceeds 1. Values denoteéhlihie Comparison of performancésr Model 4 appear when thpercentage of no
effect MSE explained using the competitor semimésrabserved negative, indicating the the rifeet prediction is better - i.e. that the semimetric
does not capture anything about the significant variatiorteeé curves. In this case, theditionaly explained percentage of ngieet MSEis the

Mean MSE
Mean ne-effect MS!

actualpercentage of noffect MSE explained bgaaciois, and theRatio of explained percentagesnot computed.
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semimetric used with its prior weight function and the otinvaelued = 1, that was noticed superior to all competitors
at Step 1for o, > 0.25. Moreover, the Bsiors semimetric is now competitive as compared V\dﬁ“i”" even in this
situation of small noiser, = 0.25. The number of selected weights remains small in all exesnfRanks 1 arfdr

2, the ones that carry significant, redundant, informattooua the shifted pattern, are selected most of the time. On
average less than 2 non-zero weights are selected,for 3, as expected. In conclusion, thedbis semimetric is
clearly better than competitor for capturing the shift oharp pattern, and its performances are further improved by
optimizing its parameters.

Analysis of Model 2: Capturing the amplification of well-aligned sharp pattern. Not surprisingly, theModel
2: amplified patternsis best tackled by the functional PCA-based semimetricaade seen from Figure 2 and Table
2 (row 2). Nevertheless, it is interesting to note that our sub-opttiBaciois semimetric performs quite well too for
oy < 2,with 2 = 0 - i.e where only amplitude fferences are taken into account. In those cases less thapezckht
of the no-éfect MSE is additionally explained when using aased semimetric. The advantage of the-Pased
semimetric becomes really significant afterwards. Howeites interesting to note that&irs still significantly
detects anféect of the amplification of the sharp pattern, up to a noiselley = 5, what the derivative-based family
of semimetric cannot do. Again, increasimg increases the MSE whatever the semimetric, but doesffesttaheir
relative performances.
As indicated by Table 3row 2), optimizing the parameters of theaBois does not significantly allow to further
improve our prediction performances. The number of setbeteights is higher than 4 most of the time, indicating a
certain number of spurious rank selection. In summary, @&-Based semimetric is best in case of well aligned sharp
patterns variations, but thex&pis semimetric remains competitive if the noise on the curve®igzoo important

Analysis of Model 3: Capturing the height and delay of a randanly amplified and shifted sharp pattern.
From Figure 3 and row 3 of Table 2, it is clear that even theapiiimal form of Bwcipis performs very well oiModel
3: randomly amplified and shifted pattern, and significantly better than competitors in every illagid case. For
upper values ofr, (o, > 4), no model is able to do significantly better than the ffle@ MSE. As expected, an
intermediate value ot seems to be the best choice as botfedénces in the localizations and in the amplitudes are
informative for the predictiond = 0.2 or 2 = 0.3 seem to be favoured. This can be interpreted because 025 is
ratio of the squared range for the breakpoints over the sgqaage of the details (the square has to be taken because
we usep = 2 in equation (2.8)). Again, further non illustrated stidghow that increasingy increases the MSE
whatever the semimetric, but does nfitat their relative performances.
Optimizing the parameters of the®@ois semimetric slightly improves our prediction performan@sscompared with
Bagipis semimetric used with its prior weight function and= 0.25. This smaller amelioration, as compared with the
improvement achieved for Model 1, might be related to thetfaat a larger training set is used here so that the noise
that dfects the prediction due to the presence of unsignificantramthe prior weights function is better averaged to
zero. The diterence is more marked for a high level of naise= 3, as seen from for Table(@w 3). The number
of selected weights remains small whatever the noise I®aatks 1 and 2, the ones that carry significant, redundant,
information about the shifted and amplified pattern, aremtsslly selected, and few spurious selections occur. In
average about 2 non-zero weights are selected, as exp@ttisthird example shows that the®pis semimetric is
clearly superior to competitors and optimizing its paramation might help to further improve its performances.

Analysis of Model 4: Capturing a secondary shifted sharp paern. The definition ofModel 4: secondary
shifted pattern implies that the first ranks of theaBibis semimetric should encode non significant information as
they essentially compare the largest uninformative maiteps while ranks 4 and 5 should be relevant for predicting
the response. This last example aims at checking that thisddibehaviour is correctly handled by our optimization
procedure. Results obtainedStiep 1for this model can be found in Figure 4 and Tabler@( 4). As for Model
1: shifted pattern, it shows that the sub-optimal non-optimizeskBis semimetric has very good performances as
compared with competitors, as soonas 0, with the besti significantly tending to 1 as,increases. Again, and for
the same reason as discussedMiadel 1, d3*™ is best in case of a low level of noisg = 0.25 and has equivalent
performances for, = 0.5. For higher noise levels, > 0.5, the Bicipis semimetric, even with its sub-optimal
parametrization, performs clearly better that competitéturther non illustrated studies show that this advant@ge
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the Bagiois semimetric remains up to a noise lewgl = 6, where no model is able to do significantly better than the
no-etect MSE.

Table 3 ¢ow 4) shows that the cross-validated selection of the weigl#dddo a significant improvement of the
performances of Bipis, at least foro, < 3. This is probably due to the fact that the prior weight functivas
not really adapted to this example, as it gave a higher weitghthe first unsignificant ranks. On the contrary, the
optimization procedureficiently selects ranks 4 afat 5, the ones that carry significant information on the sdaon
shifted pattern, with very few spurious selection so thattbhmber of selected weights remain small in every case.
The advantage cdge”" for small values ofr, disappears as soon as the selection procedure of the wisighssplace,
and results achieved with the optimizeds®is semimetric are equivalent( = 0.25) or highly better{, > 0.25)
than withdge™ .

In summary, the Bsiois semimetric is highly ficient for predicting from curves with a secondary shiftedrgh
pattern, and highly benefits from a cross-validated sa@edif the activated weights in this case. The significantsank
are directly selected with very few spurious selection.

Conclusion of the simulated study. Those simulated examples illustrates the potential ofguSiksipis for
nonparametric prediction of curves. Even used with its aptimized prior weight function, performances ofdbis
shows superior performances compared to classical sengrastsoon as variations of sharp local patterns in curves
have an horizontal component. Those performances may teefumproved by a cross-validated selection of the
parameters of Biibis. The mean number of activated weights is then always smhlt Means we reach quite good
rates of convergence in these examples. Moreover, therpafices of Beiois are equivalent to the ones of its best
competitor, the Ba-based semimetric, in case no horizontal variation of thaiicant pattern occur, provided that
the noise is not too high. It remains “acceptable” for high@ses, meaning that a prediction is still possible (which i
not the case for the derivative-based semimetric for itgpT his means thatdgois could be used quite confidently
on datasets with sharp patterns whose kind of variation tmighbe known in advance. A specificity ofa@brs is
indeed that the semimetric can adapt itself to the kind afwian to detect in the dataset, through the optimization of
the balance parameter

4.2. Analysis of a real spectrometric dataset

This last Subsection presents a real data example of pi@dfodbm spectrometric curves (de Tullio, Frédérich and
Lambert, Université de Liege). We consider 193 H-NMR serpetgra of length 600, as illustrated in Figure 5, 94 of
which corresponding to patientsfering from a specific iliness, the other ones correspondimgalthy patients. We
aim at predicting from the spectrum if a patient is healthyaot. A training set of 150 spectra is randomly selected
and a functional nonparametric discrimination model isiatdjd, with various semimetrics. In each case, the number
of misclassification observed on the remaining 43 spectecisrded.

In order to avoid a confusion of the features in such longeseive make use of theaBpis semimetric together
with a sliding window of length 30 ( as suggested in[2]). Talisws for comparing the variations of one or few given
peak(s) at a time. A specific R function for using estimatoBY2n a discrimination setting has been provided by
Ferraty and Vieu [1]. However, it makes use of a slightlffetient version of the non parametric estimator (2.3): a
local bandwidth is used, which is defined through a numbeeafe@st neighbour that have to be included in the support
of the kernel function. Consequently, our good propertiated in Section 3 are not strictly proved in this case of a
k-NN based estimator. However, we believe that the good@m®nce properties of the kernel-basealve-one-out
MSE minimizer might be extended to ad¢~basedeave-one-ouMSE minimizer, by generalizing our proofs to this
case using similar arguments as those found in Burba et4jl. [2

Our test for the prediction of the health status from the Bpeis repeated 80 times, withftirent randomly
selected training sets, using the sub-optimaliBs semimetric with its prior weight function, with = 0.5 and with
a cross-validated bandwidth and with the competitor semimetrics identified in SubsecH.2 and a cross-validated
bandwidth. Results are summarized in Table 4.2, famBs and its best competitor, being a PCA-based semimetric
with at least 6 components. We observe that the non-optavitaemrs obtainsno error 10% more often than the
PCA-based semimetric. Afterwards, we optimize the weights$ thel parameter of the Riibis semimetric using a
cross-validation procedure within the training set, arelréssulting model is tested on the remaining 43 series. This
testis repeated 18 times orfférent randomly selected training sets, and no predictian eccurs. At each repetition,
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Figure 5:An H-NMR serum spectra for a ill patient.

Occurrences of 0 error Occurrences of 1 error
out of 43 predictions out of 43 predictions

Pca-based semimetriq 40 times out of 80 40 times out of 80
with q> 6 50% 50%

Non-optimized Baipis semimetric 48 times out of 80 32 times out of 80
with prior weights andl = 0.5 60% 40%

Optimized Biiois semimetric 18 times out of 18 0 times out of 18
(1 non zero weight is selected) 100% 0%

Table 4:Summary results for the prediction of the health status fromthe spectra. Training sets of 150 curves are randomly selected. Prediti
are obtained for the 43 remaining spectra and compared héttide health status of those 43 patients. The number oficederrors is computed.
The process is repeated several times feiedént randomly selected training sets.

only 1 non-zero weight is selected. We observe no predieioor in every case, indicating a risk of misclassification
that is probably smaller than 0.05. This indicates a verydgmapacity of discriminating the serum spectra fromill
and healthy patients.

Conclusion

The key idea of this paper is to combine the nonparametrictfomal framework provided by Ferraty and Vieu
[1] with the highly adaptive Beipis semimetric [2], from predicting from curves with sharp patts. This association
proves highly pertinent. Applications on simulated dataehshown in a systematic way the ability ohdsors to
take into account both horizontal and vertical variatiohshe patterns, as well as its flexibility in the use of this
information. Predictions usingABiois appear to be clearly better than predictions using comgesgmimetrics, as
soon as the variations of the significant sharp patterns aaverizontal component. Those performances concerns
both high and relatively low signal-to-noise ratio, whiclakes the method really attractive. The method also proves
really powerful for prediction based on H-NMR spectra, exsfrom biomedical research.

A theoretical support for those very good observed perfocea has also been provided in this paper. It was
shown that a really competitive rate of convergence of tedigtion estimator can be achieved, provided that the mul-
tidimensional parametrization of thedbis semimetric is sparse enough. It is also shown that this diolénsional
parametrization can be chosen using a cross-validatioregige, with a mean-square-error minimization criterion.
This method is proved to be asymptotically optimal, and @shhighly dficient on the proposed data analyses exam-
ples. The related theoretical results also support for ssevalidated choice of the multidimensional parametionat
of others semimetrics, which opens a large scope of petigpeathen using projection-based semimetrics in non
parametric functional prediction, for instance.

Given all those elements, we think that thesBis semimetric really worth to have a place amongst the semi-
metrics used in nonparametric functional data analysisautomatic adaptivity to the nature of the variations of the
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patterns in the curves, its ability to deal with horizontaifts and its capacity to detect the signal in even quiteynois
data make it a competitive tool for predicting from curvesivgharp patterns.
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AppendixA. Proofs

In what follows, we denote b§, C’ positive constants, whose value might change from onedimmbther.
AppendixA.1. Proof of Theorem 1

Proof of Theorem 1 is a direct consequence of Lemma 3 and Ledrabave.

Lemma 3. Assume condition.1), (3.5), (3.6) and (3.7)to be satisfied. Then, the random varialgplelefined by
(b, d) € Njo.n-1) X RN is fractal of order K with respect to thBacipis semimetric at poing = (b, d). This means that
the small ball probability functiomgs , (.) = P(x € Bge(x,.)) of x abouty is such that there exists a positive constant
C such that

¢as,,(N) ~CHC,  whenh tends to 0

Proof. We have

oo ()

P(d®(x. x) < h) (A.1)
P(dB(x.x) <h n Vk e K, b* = b + P(dB(y.x) < h n Tk e K, b* # b¥)

If 3k € K, bX £ bK, it implies thatdk € K such thatb — b¥| > 1, where 1 is the step of the gridio,n-1; on which the
curve is observed. In such a case, we have

1/p
®lrx) = Y w Aok — b7+ @2 fd<— o
kek —_—
>0
> > wid"P o - b
keK
> Y prkr;;?(wk).

Consequently, the right hand side term of equation (A.1)gdrabability zero forh < Alfprlpiq?(wk). Thus, wherh
&
tends to zero, we have

day(h) = P(Z wi(1-)YPd - d<h nvke%X, b*=0b (A.2)
VkeK
=(|d-dlyw
= PWkeXK, be=b).P(ld-=d|,w<h [VYke K, b =hy)
>0
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By definition, the last term of this expression is
P(Id - dil,w < hiVk € %, b* = b¥) = f fin(b, ) ds
B(d.h)w

Then, by the continuity condition of the conditional depsite have/e > 0, Yh < min(§,, min(wy)),

fB(d,h)m dlb(s)dS fB(d,h)m db(d)d%‘

fB(d,h)/L {d‘b(s) d\b(d)} %‘

jI‘B(dh)AwsupStQIIS—dleQ ab(S) — d|b(d)|ds

Joay,, €98

E. f ds
B(d,h)aw
—_———

Vaw(N;h)

IA

whereB(d, h),.w is theN-dimensional ball of radiub, centered oml, at the sense of norifi|,,, andV,w(N; h) is the
volume of this ball. Hence, we have

Ye > 0, Yh < min(§,, min(w)), f d|b(5)d5 fio(b, d). f ds < eVaw(N; h).
B(d.h)w (CRYP
P(lld-dl|,w<hlb=b) =Vaw(N;h)
As V w(N;h) fd‘b(d) > 0, this means

P(lld - dilxw < hib = b)

€
Ve > 0, Vh < min(6., min(w)), -1 < <
€ ( ( k)) Il Vv, W(N h) fd\b(d) f|b(b, d)

with C > 0. Consequently, and becauggy(N; h) ~ C’.hK with C’ > 0, we have

P(ld - dll,w < hIVk € %, b = b%) = Vow(N; h) fd‘b(d) ~C”.h* whenhtendsto 0
N —

N———
~C’.hK >0
with C” > 0. Going back to equality (A.2), it results in

¢ae,.(h) = P(@®(x, x) < h) = P(Vk € K b= b*)P(|d - dl|,,, < hIVk € K b* = b¥) ~ C".hK,

>0 ~C hK

for h small enough. O
Lemma 4. Assuming that there exists a finite constant O such that
¢dy(€) ~Ce" ase— 0,

and under the condition8.9), (3.8), (3.11) (3.10)and(3.3), the functional kernel regression estimate can reach the
rate of convergence:
logn

) = 100) = Oaca(S
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Proof. This is proved in [1]. O
The proof of Theorem 1 is a direct consequence of Lemmas 3 dod the semimetricl = d®.

AppendixA.2. Proof of Theorem 2
In order to prove Theorem 2, we consider the following Lemmas

Lemma 5. Under conditions of Theorem 2, we have

C -1
3C,C’ > 0, such that — + n by < MISE (H).

ndy n

Proof. We start with the following decomposition 841S E*(H), that holds because of condition (3.15):

MIS E*(H)

[ B Y 0 wedr ) (3)
i=1

f E(n_1225§()W(X)dPX(X)+ f n—iZE(échSjXIX)W(X)dP)((X)
i=1 hi=1

= % f E(&ﬁ()W(X)dPX(X)+n%1 f E?(Siy ) W()dP, (x)

n- 1b

n H>

= Rg(H) +
with 1
Re(H) = 1 [ B(G3) WD), (a9)

It remains to boundR;(H) from below. We consider

E((Y; = r0a) + () = r00Kn(rxi))?)
E((6Kn 0, xi) + (r(i) = r0)Kn (e x1))?)
E(ekE Oc.x1)) + E((r0) = r00))?KE (e x)) + 2E(& () = re))Kn (s xi)).

The last term of this equation is null, because of conditi®21), and the second term is positive. Thus, using
conditions (3.22) and (3.16), we have

E(}) = E(€KE0x1)) = E(E( ) EKA (v xilxi))
K 2( dbexi)

) n )) )

EP(K(%5))

h

o5 _ E(K(d()(r,]/\(i)))

E(6%

\%

0'31[*](

v
Q
|

for a certainC’ > 0. Then, Lemma 5 follows from

1 o C
Rs(H = | o =Lw)dP > —
3(H) > nchDH (x)d Kz

where the last inequality holds because of condition (3.19) O
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Lemma 6. Under conditions of Theorem 2, we have

sup'rlH@) 1‘—>O a.s.

HeH,
Xcw

and
sup' (X) - 1' — 0 as

HeH,
xcw

Proof. We denote byc, center that is the closest foin condition (3.20). Using condition (3.20), we observettha
Ve > 0,

P( suplf1n () - 11 > €) < P( suplfu(x) - Fan(c,)l > )+ﬁwndnsup(P(|(le(ck>—1|>§>). (A5)
Hegtn Hegtn Hegtn
1<k<dn

We first consider the first term on the right side of the ineifypidlvVe have
IF11 (x) = Fan(C)l (A.6)
AW XA
nE(AG))  nE(AI(C,)
SAGOE(M(©) - ZACIE(8)
nE(Ai () JE(Ai(c,)) '
2 (800 - A (0)) + Ale)(E( () - ()
nE(A; ())E(Ai(cy)) '
Then, because the kernel is Lipschitzldh by condition (3.16), we know that

Cv )

<C C—

h’

’Ai () - D Ai(cy)
i=1

and
‘A (c) — A (X)|1d()(. )<hud(, c)()<h) <ch . "y

(o

Thus, equation (A.6) gives

I

:EUpn|rlH(X) —f(cy)l < W,

XcW HE(]‘(n
Xcw

which tends to 0 because of condition (3.18), so that
~ ~ €
P(suplfin(x) — Fin(cy)l > E) =0 (A.7)
HeH,

X<W

for nlarge enough. We now consider the second term on the righidichequality (A.5). We have

n

1 1
fin(c) — 1= (Ku(Cxj) —1)= —— ) Uj,
1H (Ck Jz; H Xij E(A](Ck))]z; i
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with
Uj = Aj(Ck) - E(A]‘(Ck)).
We would like to make use of a Bernstein inequality (see Van/dart and Wellner [25, Lemma 2.2.11], for instance),

for the U;. By construction, we hav&(U;) = 0, and|U;| is bounded, as the kernel is bounded. Moreover, using
condition (3.16) and the fact théty < 1,

2
E((A i(c) — E(Aj(cd)) ) = E(A%(c)) — E*(Aj(c)) < Co2®h + C3, 0% < Chy.
Finally , asUj is bounded and fom > 2, we have
|
E(UI™ = B(U;PIU; ™) < BQU,PC™) < Coy < -Cby,

This tells us that we are in the conditions of the Bernsteagirality, withM = 1,v; = C'®y andv = Y, C'dy =
nC' @y This ensures that, for adl positive,

o 1
P(((0) - 2129 = P Sul-¢)
nE(A]‘(Ck)) i=1
n n
( Z > (:'nE A (Ck))) < P(’ Z U]’ > (:'an_,lq)H)
-1 =1
~ (enC1Dp)? B }ezcilnrbH
<2 eXp( 2(0C'Dpy + enCydr) < 2exp SO reC <

2 expC.ndy)

where condition (3.16) is used. From this expression angh fequations (A.5) and (A.7), and by using conditions
(3.18), (3.20) and(3.24), it follows thak > 0,

0 < P(sup|r1H(X) 1|>e)

HeH,
X<W

M8 2

IA

P(suplrchv)—rlH(cX)b ZﬂﬂndnzsupP(lrlH(ck) 1> 3)

)(c W )(C’W
1<k<dn

||
=
3
;_\
m
::

n

M
P(C——— > n**" sup2 expC.nd
( inf ndy Z HE%E: PC H)
HeH, xw
xcw 1<k<dn

Ms

T
L

IA

C+ anz expEC. |nf (nd)H))

= )(c W
1<k<dn

IA

C+ Y n™12expC'n) < C” (A.8)
n=1

This ensures the uniform almost complete convergencg.@fJ to 1, itself implying the required almost sure con-
vergence. The convergence to Jrgjc\/) is shown using very similar ideas. In that case, (A.5) isaegd by

(sup|r () - 1|>e)<P(sup|r (x) - P (c)l > )+ﬁﬂndnnsup(P(|(f (o) - 1|>§)). (A.9)
l— l— J—
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Lemma 7. We consider the quantify (y) = Fan (x)—F(x)f1n (x), and we note that &) = E(gn(y)). Under conditions
of Theorem 2, we have

1. The estimatogy(y) has the form of a delta sequence:
1 n
== Z Siy (A.10)
i=1

with 6i, = (Yi = r(x))Ku (x, xi)-
2. Fork=1,2,... there is a constant so that for any m= 2. .. 2k, we have

k-3
U” ”"HHW@.)ﬁ'}dP (r)dP, (xm) <ck( ) , (A.11)
ii=1
whereq;; = 0...k are subject to
m
Dlan=k (A.12)
=1
and the restriction that
for eachi=1,...,m, there is an i #iso that eitheraj; or aj. is non zero (A.13)

and wheres; = 0, 1, with 8; = 1 any time arw;; > 1, and with Wy;)* taken to bel when Wy;) =8 =0
3. The quantitySij = f6,—X6iXW(X)dP(X) is such that for k= 1,2,... there is a constant so that for any
m=2...2k, we have

o 1\“?
] ]‘[ SR LY ol I (A14)
whereq;; = 0...k are subject to
m
Z aii = K, (A.15)
=1
and the restriction that
for eachi=1...m, there is an'i#iso that eithew or ; is non zero (A.16)
4. There exists a constant € 0 such that
ff’&jdpxcyi)dpm) <C. (A.17)
5. There exists a constant G 0 such that c
f S dP(x) > —. (A.18)
Oy

6. There existg > 0 so that for k= 1,2, ... there is a constant > 0 such that

f B(x)*W(x)dP,(x) < Ckbn. (A.19)

Proof. The proof of (A.10) is trivial by definition ofi;(y). The proof of (A.11) is as follows. Because of condition

(3.16), we have
]_[ E" ( d(" 4 )) = EZQM(K(@)) = IE"(K(@)) > Cf P
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Then, using successively, the definitionki (v, xi) in d;,, the fact that is bounded, the fact thaV is bounded, the
Newton binome, condition (3.25), and condition (3.16), vagé

ﬁW@i)ﬁ‘H

m

[T

ol

(" d@., Dy | [12 i
fq&ﬂly“*mm [
BN [y —— ~~Hnwm
117H Li,i'=1 i=1
< a1 ((w.|+cr>K<d°“;””>>(“'}[nw}m...xm
1,17 H i,ir=1 i=1
—1 . [ jri d(/\/i’ i’)
< gran Flow ] 1B oo ampen (R ' (A20)
< %E Cwl_[ (Y”( (lY |a"|,\/l...)(m)+Cr‘Yi’i)Km/i(d(Xi’Xi’)) ' (A21)
CL1®h iir=1 h
1 = S((~S s v dxi, xir)
- C'I,lq)ﬁE Cw,l,_llsjgpk(z (¢ +C))K (=F— )' (A.22)
_1 /W Qi d(Xi’ i’)
= Kk E CWiDleK (—hX ) ' (A.23)
- = E[ﬁ K(—dw;m)m 'SC&’CDHH%"- (A.24)
H iir=1

The last inequality comes from condition (3.16) and from filet that it is always possible to find floé[g(—l) pairs
(i1, ji) such that for all = 1...floor(™),ij # j; andi, or j; is unique among the set of pailisq.)':lmﬂoor(m%l). There
are thus at leas¥ pairsi, i’ such thaty; is non zero. As a consequence, (A.24) is valid and it prowsstent (A.11)
. The proof of statement (A.14) follows nearly the same stapd we have

B[ 13 {1 [ Rm o) |

=1
Again, we know that there exists at legspairsi, i’ such that;; is non zero andor i’ is unique. For those pairs, we
use Holder’s inequality and condition (3.16) to see that

E((fK(d(/\/l‘i;/\/))K(d(X;;’X))dPX(X))U/i/i ’/\/i,)(i/, - i') S C(D;_'Wi.

As the kernel is bounded, this integral is bounded for aleoftairs. Thus, we have

- 2k g2k
C1,2(1)H

1 1 o
60, ,)’ < C(DHk+m/2 — (_)(k_i)’
1) = o,

which proves statement (A.14). We now consider statemerit7)A Using the Theorem of Fubini to permute the
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integrals, we have

[ [ [ snonweodpidrimdrirn] =| [ [ snapiten [ odp.miinco
= B(E(61)E@)WO0)

Then, using condition (3.25) and the fact thas bounded, we have fgr=1i,i’,

K ((90exi)
E(5y)) < E(‘(W—f(x))ﬁ‘)
() | k()
< ElEQYil)) 5 +E(Cr X
e ) o ey
Kd()(»)(j)
< (€ +Cr)E(E é(dﬁﬁm)») -C1+C.

Combining this result and the fact thatis bounded, we have
E(E(63,)E(5i,)W(y)) < C.
which proves statement (A.17). In a view to prove statemarit), we note that
(Y = ()2 = ((Yi = 1 (i) + 1) = r(0))* = (& + (i) = 1) = & + 26 (r(xi) = 1) + (r(xi) = r(x))%

and
E((Y; - r(0))?lxi) > E(€’lvi)

because of condition (3.21). Then, using conditions (3a2@)) (3.16) successively, we have

f 5idP(xi)

f f 5181 W(x) P (1) P, (i)
2( d(x.x;j)
CE((Yi—rcv»z R
EZ

K2( L)
CE(E(eFm)WM_W))))
K(%52) )2 S

EA(K(5)

\%

\%

\%

cagE( > —.
Oy
Finally, statement (A.19) is shown true by takiGg= C%2 O

Lemma 8. Under conditions of Theorem 2, we have

MIS E*(H) — IS E*(H)

0 a
Hﬁ" MIS E'(H) —v as
with
1 n
ISE(H) = = f 37 S0P, (). (A.25)
k=1
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Proof. The proof relies on the following decomposition:
1 1
ISE'(H) = Ri(H) + Ry(H) + Rg(H) + 2(1 - H)S(H) +by(1- ﬁ)’

with Rz(H) defined by (A.4) and

RuH) = o [ D (0~ EG0)(6 ~ EG)WLIIPL )
=1
R(H) = o5 [ (6% - BGE)WOOR (0. (A.26)
i=1
S = & [ B )0 - EG)WO)dP,(0) (A.27)
i=1

Those definitions meet the one of Marron and Hardle [21]. Therause of this decomposition, and because of
decomposition (A.3), we have

MISE(H) - ISEM)| _ Ri(H) + Ry(H) + 2(1- %)S(H)‘
MIS E-(H) P MIS E-(H)

Ri(H)
MISE(H)| oo
S(H)
MIS E(H)|

HeH,

Ro(H)

<
= P MIS E-H)

HeH,
n-1

HeH,

+2

We then use exactly the same steps as Marron and Hardle [35]pwith conditions (3.1) and (3.3) in that paper
replaced by conditions (A.10), (3.24), and (3.17) and (Br&8pectively, and where the conditions equivalent to)(3.4
to (3.7) in that paper are shown valid by Lemma 7. This allanshiow that for alk = 1, 2, ..., we have

Ri(H) B Ro(H) 2 B S(H) 2 _
E((WE*(H)) ) < Ckn yk, E((WE*(H)) )S Ckn yk, andE((WE*(H)) ) < Ckn yk. (A28)

Then, given this, given condition (3.24), and using Markaoequality, we have

MIS E*(H) - ISE*(H) MIS E'(H) - ISE*(H)

P < P
(,ili{n MIS E-(H) >€) = #Hn sup ( MIS E-(H) > €)
1 MISE'(H) - IS E'(H) .
< Cin*— E .
= Sl EZk,iLif: (« MIS E<(H) )
< Cnna%ckn’yk = Cn ke
€

As a,v > 0, the validity of equation (A.28) for ak = 1,2, ... tells us that, for alk > 0, one can always choseka
such thatyk — @ > 1 and aN large enough so that for all> N, the above probability is smaller thanThis indicates

the almost sure convergence of s{ Safgg'(a;?(”)' , Which proves the Lemma. O
HeH,

Lemma 9. Under conditions of Theorem 2, we have
MIS E*(H) - ASE(H)
MIS E(H)
34
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with

n

ASE(H) = T3 (Fan(r) — r)fan ()P Wer) = 5 > 030aW(). (A.29)

i=1 i, k=1

Proof. The proof of this Lemma follows the same steps as Theorem 4drrdvi and Hardle [21]. First, long but
simple calculations lead to the following decompositiolA& E (H) :

ASE(H) ”%le E'(H)

+ T]_(H) + Tz(H) + n%ng(H) + 2T4(H) + 2T5(H) + TG(H) + T7(H)

n-2 (n-2)(n-1)
n n2

+ 2 U1(H)+2n%l(U2(H)+U3(H))+ V(H) (A.30)
+ ZR(H) + ZRy(H),

with IS E*(H), Rx(H) andR3(H) defined by equations (A.25), (A.26) and (A.4), and with tbikofving definitions:

Ti(H)

n_13 Z (610 W(xi) + E(8ij0xW(x1)) — E(6ij i Wi)lx j, xi) — E(Sij ik Wli)lxis xio)
=1

i# [k

=E(6i;0 W(0)lxi» x ) + E(6ij0W(xi)lxk) + E(G6ij0iW(xi)lx j) — E(6ij 0 W(xi)lxi)),

TaH) = 5 D)W - S WG - EGE WG + EGTWG)
ij=

i#]

TH) = D EEWII - EGWG),

T4H) = n_13 Z(5ii5ijW(Xi) = E(5ii 6i; Wxi)lxi) — E(8ii6i; Wxi)l j) + E(8ii 6ij W(xi))),

ij=1
i#]

TH) = 25 3 (EGi0 WGl - EGio W)

=1

TeH) = = > 6EWOr) - EGEWO).
i=1

TiH) = SEGWO).

Ui(H) = n—lzZ(5ijW(/Yi)B(/Yi)—E(B(Xi)W(Xi)&jIXj)),
=1

UaH) + Us(H) = = > [ 0i6uW()dR (o),
i=1
VH) = = OWG)B ) - BB W),
i=1

Those terms are the same as the ones identified by the samemdfagon and Hardle [21]. As a consequence of
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this decomposition, we have
ASE(H) - MISE‘(H)

MIS E-(H) (A-31)

([ "RISE(H) + {Re(H) - MISE'(H) Ta(H) Ta(H)
"( MIS E(H) )+(MISE*(H))+(MISE*(H))

n-1( Ta(H) T4(H) Ts(H) Te(H) T7(H)
T Th (MISE*(H))+2(MISE*(H))+Z(MISE*(H))+(MISE*(H))+(MISE*(H))

2(-2)( Us(H) N—1{Us(H)+ Us(H)\ (n=2)-1)( V(H)
" n (MISE*(H))+2 n ( MIS E(H) )+ 2 (MISE*(H))

1/ R(H)
" H(MISE*(H))

In this expression, the eleven last terms on the right hatel @ie shown to converge to 0 almost surely in exactly
the same manner as in Marron and Hardle [21], with condit{8rE) and (3.3) in that paper replaced by conditions
(A.10), (3.24), and (3.17) and (3.18) respectively, andmehibe conditions equivalent to (3.4) to (3.7) in that paper
are shown valid by Lemma 7. Now, going back to equation (A.BI¢mains to prove that

2|1SE(H) + 2Rg(H) - MISE*(H)

MISE (H) — 0 as. (A.32)
Therefore, we consider the following decomposition:
BZISE'(H) + tRy(H) -MISE(H)  n-2ISE(H) - MISE(H)
MIS E+(H) T MIS E+(H)
1Rs(H) - MISE(H)
n  MISE(H)
Using (A.3) and Lemma 5, we observe that
1Rs(H)-MISE(H) |_ [n-1 by 1
n  MISE(H) n2 MISE(H)|  n

which converges to 0 asgoes too. We then make use of Lemma 8, and equation (A.32) is provedhwiroves the
Lemma. (]

Lemma 10. Under conditions of Theorem 2, we have

M -
SE(H) - ASHH) .0 as
HeH, MIS E*(H)
Proof. We first state that
AS E(H) - AS HH)
— 0 as, A.33
| T ASE(M) (A.33)

with AS E(H) defined by (A.29). We have, for ail € H,,

n

ASHH) = Z o) — F) WOk
i-1
= 21 (xi) = r(xi)Fan (i) )
B ( rlH(Xl ) W(Xl)
e 11\ 2
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Expression (A.33) follows from this decomposition, be@asLemma 6. Given this, we can write

MIS E*(H) - AS HH)

Hs‘if' MIS E-(H)
< sy MIS E'(H) - ASE(H) AS E(H) - ASHH)
" Hen, MIS E«(H) Het, MIS E«(H)
_ MIS E*(H) - ASE(H) N sup( ASE(H) - AS E(H)' ’AS E(H) - MISE(H) N 1’)
HeH, MIS E(H) He, AS E(H) MIS E(H)
The proof is then completed because of (A.33) and of Lemma 9. O

Lemma 11. Under conditions of Theorem 2, we have

ASHH) - ASHH)

MisE®m | 0 @S

sup
HeH,

Proof. For allH € H,, we consider the result (A.33) f&S E(H), and the following decomposition &S HH) :

n

ASEH) = = (Fllci) - ) W),
=1

Ly [fzgcm - rwlécm)z
n

- W(x)
P (i) :

=1

18, - 11—t )V
= 5 J_Z;(rzdm)— fm)flﬁm))zwm)[ﬂ ﬁ) :

By the same arguments as in (A.33), it results in

ASHH) - ASE (H)
ASE(H)

sup
HeH,

—0 as (A.34)

with

ASE(H) = = (Fabe) — r)fah () W),
j=1

J
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Consequently, we have

ASHH) - AS HH)

| MISE(H)

ASE(H) - ASHH) ASE(H) - ASHH)
= Pl MIsSEMR) | e MISEH)

ASE (H) - ASHH)|(|ASE (H) — MIS E*(H)

: HS”)?( ASER) ’(' MIS E(H) ”))

ASE (H) - AS E(H) ASE(H) - ASEH)|(|ASE(H) - MISE(H)|
Tl MISE(H) He«Hn( ASE(H) ( MISE(H) | ))
. (A’S“E*(H)—A’§E(H)’(|A’§|§‘(H)—ASE(H) +|ASE‘(H)—ASE(H) 1))

" HeH, ASE (H) MIS E-(H) MIS E(H)

ASE (H) - AS E(H) AS E(H) — AS BH)|(| AS E (H) - MIS E*(H)
T MISE®) HE,HH( ASE(H) ’(' MIS E-(H) * 1))
. (A’é’E*(H)—A’é’E(H)’('A“S’é‘(H)—ASEf(H) +1))

" HeH, ASE (H) MIS E*(H)

ASE (H) - ASHH)|(|AS E(H) - MIS E*(H)
+HS52( ASE(H) '(’ MIS E'(H) D)

ASE (H) - AS E(H) AS E(H) — AS HH)|(| AS E(H) - MIS E*(H)
TP T MISE(R) * Hseliﬁ( ASE(H) ’(' MIS E-(H) * 1))

Thus, the Lemma will be proved by using (A.33), (A.34) and lnead, plus the fact that

ASE(H) - ASE(H)

MISE (H) -0 as

HeH,
This last result is shown as follows. Because of decompus{th.30) and of the following decomposition

ASE(H) = n;nZISE*(H)+T1(H)+T2(H)+n;

+HRo(H) + R(H)) + 272U (H) +

1T3(H)
(n-2)(n-1)
2

V(H),
we have, for alH € H,,

ASE(H) - AS E(H)

< 2' T4(H) +2| Ts(H) +| Te(H)

MIS E+(H) MIS E+(H) MISE(H)| |MISE(H)
T7(H) + 2n -1 Uz(H) + Ug(H)
MIS E+(H) n MIS E+(H)

As discussed for equation (A.31) that contains the samesteaiththe terms on the right hand side converge to zero
almost surely. This is enough to proof Lemma 11. O

Lemma 12. Under conditions of Theorem 2, we have

CT(H)

7MISE*(H) — 0 as.

sup
HeH,
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Proof. Using the definitions o€ T(H), f1n (x) andray(y), one gets:

sup [CTCH)
e, MIS E-(H)

< |_|56L12|(MISE*(H))1 JZ_:e,(r i) = PO )W))|

) HSE%’(MISE(H))_%J;q(;dcm r((;))r (x))W%_)'

: S“p’(M'SE(H))_ E,Z;E‘ T 1)E(\1A\/(Z(v-)))r Cv)’
+:el;5’(MISEk(H))l IZ;JZ;GJ(W(. TCY))ACY)( _1)E(\/A\/icgijj)))r1,ﬂcyj)'

j#i

We note hereafter

W(xj) _
(n— LE(Ai () i ()

Uij = (MIS E'(H)) Ygadil)

and

W(x)
(n— DE(AG)) i ()

Vij = MISE(H) 76(r(xi) - r()Ailx)

Now the aim is to show

and

To state (A.35) and (A.36) we are going to show that for any0 the series

18 18,8
;P(:EI:JHF:'E;;UH|>E) and Z HSELiE:|n;;VIJ|>E)
= -

are convergent. We consider the set

. i 1
A= inf () < E}

HeHn xyeW,1<j<n

From results obtained in the proof of Lemma 6 it is fairly etsget for anys > 0:

. —j 1
P(An) < n#H, sup P(Xlgqi/r“ﬂ()()<§)

HeH,, 1<j<n

IA

crt  sup P[ysup|rl,ggy)—1|>%)

HeH,, 1<j<n 4%

IA

Csn~ 1% for n large enough (i.e1 > ny).
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On the other hand, for argy> 0 and any positive integds it comes from Markov inequality and condition (3.24),

1
P(l_lsel;E:|—IZl:JZ;U.]| >enhy) < #hy Sup P(|ﬁizl:;ui,jlﬂn| > €)
’ Lo
< X, sup (1S Y > Ui 15 ) (A.38)
HeH, n i=1 j=1
1 n n J
< Crf sup]E(lﬁ ZZ Ui,jl,—%|2")

HeHn i=1 j=1

Hence, it is enough to show that for some positive intéger

Zn Sup E(|= ZZU., ) < +oo (A.39)

n= HeH, i=1 J 1
j#

Now, we define
Lo = {(is - -y 2k 1o - J2) € (L .oy # VL < | < 2K,

It comes

(2 ) )

i=1 j=1
j#i

= n¥ E(H,Zjluil,hlﬁn)|
(i1s J)1<1<2k€l 2k
4k .
< B IS B () ) ——— P |
m=2 (i1, ]i)1<1<2k€Im (n_l)E(Ah(Xh)) JI(XM)
2k
_ i} jr&i A O )W(x )
< E(szk IS B H)) t—aafWiWli) ) (A.40)
I - (n— DE(A () 1l (i)

m=2 (i1, j1)1<1<2k€Im

whereJy, contains elements d§x that involve exactly m dferent indices. The last line comes from the fact that when
m > 2k at least one of the's appears with exponent 1 and hence the mean equals 0 (oorattw.r.t. y1, ..., xn).
Using the fact thatV is bounded, using conditions (3.16) and (3.25), it comessctly from (A.40)

n n 2K
i=1 j=
j#

2k
CIT*MISE(Hnou) " 3T EB(TI 4 (), )W(x;)

M=2 (i, j1)1<1<2k€Im

IA

IA
@)
~2
3\
N}
H
<
3
(S
T

2k
, ok g k-1
C ok, E (D)™ * D, 2
m=2

IA

C ok, (A.41)

IA
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where the second inequality comes from the fact that onextaace at leas§ pairs {,, ji,) in which for eachp either
i, or ji, appears uniquely once. Now, (A.41) and (3.17) are enougtate §A.39) fork large enough. The proof of

I
(,&.36) is very similar.

E(ﬁ(iiwi)zﬁn)

i=1 j=1
j#

3k

< n¥

(A.42)

E(lekl (r(XiI) - r(Xj|))Ei|Ai|(Xj|)W(X?|) 1@)’
T (- )MISE(H)E(A(y;)) 1 ()
The last line comes from the fact that whan- 3k at least one of the's appears with exponent 1 and hence the mean

equals 0 (conditioning w.r.1, ..., xn). Now conditions (3.23), (3.17) and(3.18), as well as Len{&)are used to
get

m=2 (i1, j1)1<1<2E€Im

™)

|1]1
j#

3k
. > nmH(MIS E (H)(now)?) ‘o

m=2

IA

IA

3k
k 3k-m
CL07 > (n)™ ¥, 2
m=2

k
M2
Ci®2,

IA

what is enough to get (A.36). O
Lemma 13. Under conditions of Theorem 2, we have

MIS E(H) - MIS E*(H)

MIS E () — 0 as

HeH,

Proof. We consider the following decomposition BflS E(H) :

MIS E(H) = f((rZH(X) r(X)le(X))Z)W(X)dPX(X)

Far (x)?

_¢ 2
[ {210 - 00+ 1=ty + G0
17169

MIS E'(H) + Ai(H) + Ax(H) + 2A3(H) + 2A4(H) + 2As(H),

)2) WP, (1)

with
Au(H) = f E((F2n () = r(0)F1n (0))2(2 = Fa (1)) W) AP (x)
Ao(H) = f (P00 = 1L = Fau (1)) Wi AP, (x)
Ag(H) = f (21 00) = TP ()P = Fa (1)) W) Py ()
As(H) = f E((P21 () = 1 00)F1 () F () = 1 00))(L = P (0))?) W) AP (x)
As(H) = f E((Pa (1) = 1 00)F1 () F ) = 1 00))(L = P (1)) W) AP, ()
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We consider the termA;(H). Long but simple calculations leads to the following depmgition:
Al(H) = A1+ Ao+ Az + 2A14 + 2A15 + 2Al6»

which holds because of Lemma 6, with

A = [ B{(an(0) - ECan ()AL - P2 () WGP, (1)
Az = [ BE(Q- i) WeOdP (0

A = [ PE( - Fe0))) We)dP, ()

Ao = [ BIDE((F2100 - BN e WP, ()
As = [ TO0B((Fan(0) - EC2 (0 - Fas () WP 1)
Mo = [ BUrCOE(- i) WOIdP )

For dealing with termA;;, we first observe that
o R 2 R 2
E((sz (v) — E(fon (X))) (1 — 1 (X)) )

=m [Zl E((mi () - B(Yiay (x)))Z)E((A,-m - E(A,-cv)))z) (A.43)

n

v2) E((vi Ai() = E(Yi4i00))) (8 00) = E(4i00))(YiA100) — E(Y;45(0)))(4100) - E(A; Cv))))

. E((Yi 800 - B(Yidi () (800 - B(A W»Z) ]

:W [n(n — WVar(YaA(x))Var(As(y))

+2n(n— 1)E2((Y1A10Y) ~ E(Y18100))(2100) - E(Alm)))
s nE((YlAl(X) ~ E(YaAa(v)) (Ar0) - E(AM)))Z)}»

which relies on condition (3.15). Because of condition €3, lve have

Var(Ax(y)) = E(A2(y)) - E2(Ax(x)) < E(A2(y)) < Co1®h. (A.44)

Similarly, because of condition (3.26), we have

Var(Y:A1(x)) E(YZA2()) - E2(Y1A1(x)) (A.45)

IA

E(YfAigy)) < Cdy.
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Because of conditions (3.16) and (3.26), and becdyse 1, we have

{0 - E(s) a0 - E100)

2
(250 E(8100) - 22( )| (46)

4(E2(Y1A1(X))E2(A1(X)) + EZ(YlAi(X)) - ZE(YlAi(X))E(YlAl(X))E(Al(X)))

C(@f, + O + 0F) < C'0f,.

IA

Using the same conditions, we also have

E((YlAl(X) ~E(Yaaa(0)) (Aalw) - ]E(Al(x)))z)] (A.47)

=E(YZA3(0) JEX(Ax(x)) + E(YZAT(0)) - 2B(Y2A300) JE(A1(x)) + E*(Y2h1(x)) + E(A%(x) )E(Y2A1(x))
— AE%(A (1)) EX(Y101(x)) - 2E(Y2300) JE(Y1A1(x)) + 4E( Y143 (1) JE(A1 (1) )E(YaAa (x))
<C(Dy + DF + O, + DY) < C'Dy.

Now, given equations (A.43), (A.44), (A.45),(A.46) and 4X), and using condition (3.16) and the fact thétis
bounded, we obtain

A1

f E((P211 () — EG2n ())(L - P10 ())?) WP, (x)

1 2 1 H2 2 1
W(n(n ~ 1)COZ + 2n(n— 1)C'®Z + nC"dy) = O(W).
As a result, because of Lemma 5 and using condition (3.18have
|Aqdl Ny 1 1
SUp————— < supC—— = supC = - = 0(1).
HeﬂpnMIS E(H) He%}z n2@? HE‘I—E: ndy (HIQL n‘DH) @)

We then consider the teriy .. Using condition (3.15) and equation (A.44), we have

E((l o cv))Z) - m Zl E(E(Ai () - A oa)z) -

Consequently, and becaudkis bounded,

nVar(Al(X)) . c
anz(Al(X)) ~ ndy

C 2 C’
A< o f BE WO () < 17,
so that Asd b 1
12 H n
< = . = 1 3
nil(if: MISE(H) = "n®y (n-1)by (I-IIQ‘I{ n<I>H) oM

because of condition (3.18), and because of Lemma 5. In viedealing with termA;3, and because of condition
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(3.15), we note that

E(l —F1n (X))A) (A.48)
1 n ) n
B n4IE4(A1Q()) (3 i;l E((E(A' (X)) — 4 (X)) (E(AI(X) — A, (X) ) + 21: E( A (X) - A (X)))
3n(n- 1Var(Aq(y)) 1

) (AM)E((E(AM)) - Alcv))4).

Because of condition (3.16), and becadse< 1, we have

E((E(Al(x)) - AM)))")
= E(A100)) - 4E(A1(0)) E(A3(x)) + 6E(A1(x) JE(A3(x)) - 4E4(A1(x)) + E*(A1(x))
< C((@ + @ + OF + ) < C'p.

Moreover, due to equation (A.44), condition (3.16), andebsedy < 1, we have

1 1 1
2 4 212 ’
E(l— f1n(x)) ) <C 4q)ﬁn oL +C n3cl)ﬁ Oy < an(‘Dﬁ
Thus, ag andW are bounded, we obtain
C
Az < r2()W(y)dP,(x) <
5% g | FOWWAR 0 < 2
Consequently, using (3.18) and Lemma 5, we have
SUp————— Aasl < sup C(— —)quﬁH SO( . ): o(1).
Het, MISE'(H)  ~ oy, \n202  nea inf ndy

Now, using Cauchy-Schwarz inequality, we show that

[Aral < VIAL VA2, [Asl < VIAl VIAEl  and]Aggl < vIA] VAL

It results from this that

[Aq4| |Ags| |Aggl
su =0(1), su =0(1) and su = 0o(1).
mbwisem - Shvisem TP 2 Shisem - oY

Thus, supﬁ = 0(1). In a view to deal with termf\,, we observe that

E((P0r) = r())la - -xn) < 2EElra - xn) + 12(x)) < C,

the last inequality deriving from conditions (3.25) andl@, and from the fact thatis bounded. Consequently, we
have

A sC f E((1 - 1 (0)) W) AP, (1),
where the integral is dealt with in the same way as for tAgg) so that we obtair:| squs‘Aé—‘(H = 0(1). Finally, using

Cauchy-Schwarz inequality, we observe that

|A3| < VMISE(H) VA, |A4| < VMISE(H) VA and' As| < VA VAL
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It results from this that

|Ag] |A4|
sup————— =0(1 5 SUp—————
Ssupmisemm - oY SUPHisEM

|As|

=0(1) and qugpm =0(1)..

The proof of our Lemma is then completed. O
Lemma 14. Under conditions of Theorem 2, we have

MIS E(HY)

1 a
MISEH) - &%

Proof. The proof of this Lemma is completed as soon as we can prove tha

— 0 as

MIS E*(HSY) — MIS E*(H")
' MIS E(H")

In order to show this convergence, we make use of the follgwimper bound:

'MIS E'(H®Y) - MISE'(H") (A.49)

< |MISE(H®Y) - ASHH®Y)| + |ASHH®Y) - ASHH")

+ |ASEH" - ASEH")| + |AS HH*) - MIS E*(H")

b}

with H" = argHmfi{nAS HH). Given (A.49), we can further majoi 1S E*(H®VY) — MIS E*(H*)| using the inequality
eHy,

'AS HHY) - ASHH")

<|ASHH®Y) — ASHH") - CV(H®Y) + CV(H")

< |ASHH®Y) - ASHH") - CV(H®Y) + CV(H")

+|ASHH®Y) - ASHH®Y)| + [ASHH") - ASHH")

< 2ICT(H®Y)| + 2IcT(HM)| + [ASEH®Y) — ASHH®Y)| + |ASHH") — AS HH") (A.50)

which is valid becaus€V(H") > CV(H®V) andAS HH") < AS EH®Y), by construction, and because of the decom-
position -
CV(H) = ASEH) - 2CT(H) + R,

n
with R = %Z(Yj = 1(x}))*W(y;). Similarly, becaus#1S E*(H*) < MIS E*(H"), one gets:
j=1

AS EH") - ASEH")| < |ASEH" - AS HH*) - MIS E'(H") + MIS E*(H*)

<

AS EH") - MIS E*(H")

+

AS HH*) - MISE'(H*)

(A.51)
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Then, inequalities (A.49), (A.50) and (A.51) lead to

'MIS E(HSY) — MIS E*(H*)

MIS E(H")
AS EH*) - MIS E*(H")
4
MIS E(H")
MIS E'(HSY) (|MIS E'(HSY) — ASEHSY)| |ASEHSY) — AS HHSY) CT(HSY)
MIS E(H") ( MIS E (HSY) ' MIS E'(H%Y) MIS E(HOY) )
MIS E*(H") (|MIS E'(H") - ASEH"| [ASEH") — AS EH") CT(H")
MISE*(H*)( MIS E-(H") ’ MIS E-(H) MIS E-(H") )
We also have
MISE(HY) _ MISE(H®) - MISE(H)
MISE(HY) MIS E(H") T
MISE'(H") _ MISE(H") ASHHY) _ 1 ASEHY) - MISE(HY)|
MISE(H) = ASHHY MISE(HY) 1+%( MIS E(H") )

where the second inequality holds becaASHH") < AS HHY). Combining all those results, and using notations
(3.29), we finally get

MIS Ef(H®Y) — MIS E*(H*) 2
MIS E() (1—T(,—Tﬁ—Ty)ng(,+(T(,+Tﬁ+Ty)1_—Ta.
Consequently, the proof of Lemma 14 is completed becausemitas 10, 11 and 12 which ensure the convergence
to zero ofT,, Tg, andT, respectively. . O

Given those Lemmas, the proof of Theorem 2 is as follows. Wesicer the following decomposition, which
holds because of Lemma 13:

MIS E(HSY) 1’ _ ’an E(HSY) — MIS E(H*) |MIS E*(H*)

MIS E(H") MIS E+(H") MIS E(H")
MIS E*(H*)(|MIS E(HY) - MISEH®Y)|  IMISE(H®Y) - MIS E(H")
= MISE(H") MIS E(H") MIS E(H")
IMIS E(H*) — MIS E*(H*)|)
MIS E-(H")
<( 1 )(MIS E'(H) \p IMISE(HSY) -~ MIS E(HY))
“\1- sup MSEH) MISE M )\ MISE (H") we, MIS E+(HSY)

HeH,

IMISE'(H®) - MISE(H)| _ IMISE(H") - MISE (H")]
MIS E*(H") HeH MIS E-(H")

This tends to zero almost surely because of Lemmas 13 andhi4prbof of Theorem 2 is then completed.
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