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Abstract Extreme-value copulas arise in the asymptotic theory for compo-
nentwise maxima of independent random samples. An extreme-value copula
is determined by its Pickands dependence function, which is a function on the
unit simplex subject to certain shape constraints that arise from an integral
transform of an underlying measure called spectral measure. Multivariate ex-
tensions are provided of certain rank-based nonparametric estimators of the
Pickands dependence function. The shape constraint that the estimator should
itself be a Pickands dependence function is enforced by replacing an initial es-
timator by its best least-squares approximation in the set of Pickands depen-
dence functions having a discrete spectral measure supported on a sufficiently
fine grid. Weak convergence of the standardized estimators is demonstrated
and the finite-sample performance of the estimators is investigated by means
of a simulation experiment.
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1 Introduction

Extreme-value copulas arise in the asymptotic theory for componentwise max-
ima of independent random samples. They provide the dependence structures
for the class of multivariate extreme-value or max-stable distributions. More
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generally, they constitute a flexible class of models for describing positive as-
sociation; see Gudendorf and Segers (2010) for a survey.

In this paper we will focus on the nonparametric estimation of extreme-
value copulas in general dimensions. In particular, we aim at multivariate
extensions of the rank-based estimators in Genest and Segers (2009) and the
projection methodology in Fils-Villetard et al. (2008).

Let Xi = (Xi,1, . . . , Xi,p), i ∈ {1, . . . , n}, be an independent random
sample from a p-variate, continuous distribution function F with margins
F1, . . . , Fp and copula C, that is,

F (x) = C
(

F1(x1), . . . , Fp(xp)
)

, x ∈ R
p,

where F (x) = P(X 6 x) (componentwise inequalities), Fj(xj) = P(Xj 6

xj), and C is the joint distribution function of (F1(X1), . . . , Fp(Xp)). We are
interested in nonparametric estimation of C in the model where the margins
F1, . . . , Fp are completely unknown (but continuous) and C is known to be an
extreme-value copula.

A p-variate copula C is an extreme-value copula if there exists a finite Borel
measureH on the unit simplex∆p−1 = {(w1, . . . , wp) ∈ [0, 1]p : w1+· · ·+wp =
1}, called spectral measure, such that

C(u) = exp
(

−ℓ(− logu1, . . . ,− logup)
)

, u ∈ (0, 1]p, (1.1)

the tail dependence function ℓ : [0,∞)p → [0,∞) being given by

ℓ(x) =

∫

∆p−1

max{v1x1, . . . , vpxp} H(dv). (1.2)

The spectral measure H is arbitrary except for the p moment constraints
∫

∆p−1

vj H(dv) = 1, j ∈ {1, . . . , p}, (1.3)

which are equivalent to requiring that the margins of C be uniform on (0, 1).
The tail dependence function ℓ in (1.2) is convex, homogeneous of order one,

that is ℓ(cx) = c ℓ(x) for c > 0, and satisfies max(x1, . . . , xp) 6 ℓ(x) 6 x1 +
· · ·+xp for all x ∈ [0,∞)p. By homogeneity, ℓ is characterized by the Pickands
dependence function A : ∆p−1 → [1/p, 1], which is simply the restriction of ℓ
to the unit simplex: for x ∈ [0,∞)p \ {0},

ℓ(x) = (x1 + · · ·+ xp)A(w1, . . . , wp−1)

where wj =
xj

x1 + · · ·+ xp
.

Here and further on, we frequently identify ∆p−1 with {(w1, . . . , wp−1) ∈
[0, 1]p−1 : w1+ · · ·+wp−1 6 1}. The extreme-value copula C can be expressed
in terms of A via

C(u) = exp

{

(
∑p

j=1 log uj
)

A

(

log u1
∑p

j=1 log uj
, . . . ,

log up−1
∑p

j=1 log uj

)}

(1.4)
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for u ∈ (0, 1]p \ {(1, . . . , 1)}, with

A(w) =

∫

∆p−1

max{v1w1, . . . , vpwp}H(dv), w ∈ ∆p−1, (1.5)

see Pickands (1981) and Zhang et al. (2008). The function A is convex as well
and satisfies max(w1, . . . , wp) 6 A(w) 6 1 for all w ∈ ∆p−1.

Popular nonparametric estimators for A have initially been developed in
Pickands (1981), with modifications in Deheuvels (1991) and Hall and Tajvidi
(2000), and in Capéraà et al. (1997). These estimators will be referred to as
the Pickands and CFG estimators, respectively; see Section 3 for definitions.
In the previously cited papers, the marginal distributions were assumed to be
known. The more realistic case of unknown margins has been treated in the bi-
variate case in Jiménez et al. (2001) for a submodel and in Genest and Segers
(2009) for the general model. Multivariate extensions have been proposed in
Zhang et al. (2008) and Gudendorf and Segers (2011) for the case of known
margins. In Section 3, we will provide a proof for the convergence of these esti-
mators in case of unknown margins being estimated by the empirical distribu-
tion functions, thus generalizing the main results in Genest and Segers (2009)
to arbitrary dimensions. As in Kojadinovic and Yan (2010) and Genest et al.
(2011), the estimators could also be used as a starting point for goodness-
of-fit tests, but for brevity we do not pursue this here. Finally, a new type
of nonparametric estimator has been proposed in Bücher et al. (2011) for the
bivariate case.

In the proofs of the asymptotic normality of the Pickands and CFG estima-
tors, a certain expansion of the empirical copula process due to Stute (1984)
and Tsukahara (2005) plays a crucial role. The second-order derivatives of
extreme-value copulas typically exhibit explosive behaviour near the corners
of the hypercube, violating the assumptions in the two papers just cited. In
Segers (2011), it was shown that the same expansion continues to hold under
much weaker conditions on the partial derivatives. In Section 2, these issues
are considered for multivariate extreme-value copulas.

As the estimators for A considered here fail to be Pickands dependence
functions themselves, it is natural to ask how to enforce the shape constraints
on such functions in the estimation procedure. In dimension p = 2, it is suf-
ficient to ensure that A is convex and takes values in the range max(w) 6
A(w) 6 1, for instance by truncation and convexification (Deheuvels, 1991). In
dimension p > 3, however, this procedure is no longer sufficient (Beirlant et al.,
2004, page 257) and one needs to rely on the spectral representation in (1.5).
In Section 4 we will apply an projection methodology (Fils-Villetard et al.,
2008) to obtain valid estimates: an initial estimate is replaced by its best
least-squares approximation in the set of Pickands dependence functions cor-
responding to discrete spectral measures supported on a fine grid.

The results of a simulation experiment aimed at investigating the finite-
sample performance of the original and projected Pickands and CFG estima-
tors are reported in Section 5. All proofs are relegated to the Appendix.
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Throughout the article, we will apply the following notations. For a space
W , let ℓ∞(W ) and C (W ) denote the spaces of real-valued bounded and real-
valued continuous functions respectively, where we endow both spaces with
the uniform norm ‖ · ‖∞ : f 7→ supx∈W |f(x)|. Furthermore, we denote by
1(E) the indicator function evaluated in a set E. The arrow ‘ ’ will stand
for weak convergence. For any p−variate real-valued function f with values
in R, first and second-order partial derivatives will be denoted by ḟi(x) =
∂

∂xi
f(x1, . . . , xp) and ḟij(x) =

∂2

∂xi∂xj
f(x1, . . . , xp).

2 Empirical copula processes

Let X1,X2, . . . be an iid sequence of random vectors from a p-variate mul-
tivariate distribution F with continuous margins F1, . . . , Fp. If the margins
F1, . . . , Fp are known, we can define the empirical cumulative distribution
function Cn of the (unobservable) random sample Ui = (Ui,1, . . . , Ui,p) =
(F1(Xi,1), . . . , Fp(Xi,p)) for i ∈ {1, . . . , n} by

Cn(u) =
1

n

n
∑

i=1

1 (Ui,1 6 u1, . . . , Ui,p 6 up) , u ∈ [0, 1]p, (2.1)

with associated empirical process

αn = n1/2 (Cn − C) . (2.2)

For ease of notation, we will write

αn,j(uj) = αn(1, . . . , 1, uj, 1, . . . , 1) for j ∈ {1, . . . , p}. (2.3)

In practice, the marginal distributions will need to be estimated. If we are not
willing to make any assumptions (except for continuity) we can estimate them
by the empirical distribution functions

Fn,j(x) =
1

n+ 1

n
∑

i=1

1(Xi,j 6 x), j ∈ {1, . . . , p}, (2.4)

where we divided by n+1 in order to avoid later problems at the borders. By
so doing, we can construct n vectors Ûi = (Ûi,1, . . . , Ûi,p) via

Ûi,j = Fn,j(Xi,j) =
1

n+ 1

n
∑

l=1

1(Xl,j 6 Xi,j) (2.5)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. The empirical copula will be denoted by

Ĉn(u) =
1

n

n
∑

i=1

1
(

Ûi,1 6 u1, . . . , Ûi,p 6 up

)

, u ∈ [0, 1]p (2.6)
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with associated empirical copula process

Cn = n1/2
(

Ĉn − C
)

. (2.7)

In Stute (1984) and Tsukahara (2005) it was established that if all second-
order derivatives of C exist and are continuous on [0, 1]p, the processes αn in
(2.2) and Cn in (2.7) are related via

Cn(u) = αn(u)−

p
∑

j=1

Ċj(u)αn,j(uj) +Rn(u), (2.8)

the remainder term Rn satisfying

sup
u∈[0,1]p

|Rn(u)| = O
(

n−1/4(logn)1/2(log logn)1/4
)

almost surely. (2.9)

Let ℓ∞([0, 1]p) be the space of bounded real-valued functions on R, equipped
with the topology of uniform convergence. Weak convergence of maps taking
values in ℓ∞([0, 1]p) will be understood as in van der Vaart and Wellner (1996,
Definition 1.3.3) and will be denoted by ‘ ’. By classical empirical process the-
ory, we have αn  α as n → ∞, the limiting process being a mean-zero tight
Gaussian process with continuous trajectories and covariance function given
by

cov
(

α(u), α(v)
)

= C(u ∧ v)− C(u)C(v), u,v ∈ [0, 1]p, (2.10)

where (u ∧ v)j = min(uj, vj). In view of the expansion (2.8), it then follows
that in ℓ∞([0, 1]p), we have Cn  C as n→ ∞, where

C(u) = α(u)−

p
∑

j=1

Ċj(u)αj(uj) (2.11)

and αj(uj) = α(1, . . . , 1, uj, 1, . . . , 1).
Like many other copulas, extreme-value copulas do in general not have uni-

formly bounded second-order partial derivatives. For instance, in the bivariate
case, every copula having a positive coefficient of upper tail dependence will
have first-order partial derivatives that fail to have a continuous extension to
the upper corner (1, 1); see Segers (2011, Example 1.1). As a consequence, the
only bivariate extreme-value copula whose density is uniformly bounded is the
independence copula. However, as shown in the same paper, for copulas sat-
isfying Assumption 1 below, the expansion (2.8)–(2.9) of the empirical copula
process remains valid.

Assumption 1 (C1) For every j ∈ {1, . . . , p}, the first-order partial deriva-
tive Ċj exists and is continuous on the set Vp,j = {u ∈ [0, 1]p : 0 < uj < 1}.

(C2) For every i, j ∈ {1, . . . , p} (i and j not necessarily distinct), C̈ij exists
and is continuous on Vp,i ∩ Vp,j and

sup
u∈Vp,i∩Vp,j

max{ui(1− ui), uj(1− uj)} |C̈ij(u)| <∞.
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In fact, for weak convergence Cn  C in ℓ∞([0, 1]p) to hold, condition (C1)
is already sufficient. In the context of multivariate extreme-value copulas, it
will be of interest to have a readily verifiable condition on the stable tail
dependence function ℓ for Assumption 1 to hold.

Assumption 2 (L1) For every j ∈ {1, . . . , p}, the first-order partial deriva-
tive ℓ̇j exists and is continuous on the set Wp,j = {x ∈ [0,∞)p : xj > 0}.

(L2) For every i, j ∈ {1, . . . , p} (i and j not necessarily distinct), ℓ̈ij exists
and is continuous on Wp,i ∩Wp,j and

sup
x∈Wp,i∩Wp,j

x1+···+xp=1

max(xi, xj) |ℓ̈ij(x)| <∞.

Proposition 1 For p-variate extreme-value copulas, (L1) implies (C1). If in
addition (L2) holds, then (C2) holds as well.

In the bivariate case, sufficient conditions for (C1) and (C2) can be given
in terms of the Pickands dependence function A(w) = ℓ(1 − w,w), where
w ∈ [0, 1]: (C1) holds as soon as A is continuously differentiable on (0, 1), and
(C1)–(C2) hold as soon as A is twice continuously differentiable on (0, 1) and
sup0<w<1 w(1− w)A′′(w) <∞ (Segers, 2011, Example 5.3).

For completeness, we want to mention that in the above references, the
empirical copula is not defined as in (2.6) but rather as

ĈD
n (u) = Fn

(

F←n,1(u1), . . . , F
←
n,p(up)

)

,

with F←n,j(uj) = inf{xj ∈ R : Fn,j(xj) > uj}. Straightforward calculus shows
that, in the absence of ties,

sup
u∈[0,1]p

|ĈD
n (u)− Ĉn(u)| 6

2p

n
,

As a consequence, Stute’s expansion (2.8) is valid for Ĉn if and only if it is
valid for ĈD

n .

3 Nonparametric estimation of the dependence function

Among the most popular nonparametric estimators for A figure the Pickands
estimator ÂP

n (Pickands, 1981) and the estimator ÂCFG
n proposed by Capéraà et al.

(1997), referred to as the CFG estimator from now on. Writing

ξ̂i(w) =

p
∧

j=1

− log Ûi,j

wj
.

for w ∈ ∆p−1, with Ûi,j as in (2.5), these estimators are defined as

1

ÂP
n(w)

=
1

n

n
∑

i=1

ξ̂i(w) and log ÂCFG
n (w) = −

1

n

n
∑

i=1

log ξ̂i(w)− γ,
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with γ = 0.5772 . . . the Euler–Mascheroni constant. Explanations on the con-
struction of these estimators are provided for instance in the original ref-
erences given before, in Genest and Segers (2009) and in the survey paper
Gudendorf and Segers (2010). The multivariate extension of the CFG estima-
tor was presented in Zhang et al. (2008), albeit under a different but equivalent
form.

In order to improve the small-sample properties of the above estimators, the
endpoint constraints A(ej) = 1 for j ∈ {1, . . . , p} can be imposed as follows.
Given continuous functions λ1, . . . , λp : ∆p−1 → R verifying λj(ek) = δjk
(Kronecker delta) for all j, k ∈ {1, . . . , p}, define

1

ÂP
λ,n(w)

=
1

ÂP
n(w)

−

p
∑

j=1

λj(w)

(

1

ÂP
n(ej)

− 1

)

, (3.1)

log ÂCFG
λ,n (w) = log ÂCFG

n (w)−

p
∑

j=1

λj(w) log ÂCFG
n (ej). (3.2)

In case of known margins, variance-minimizing weight functions λj can be de-
termined adaptively by ordinary least squares (Segers, 2007; Gudendorf and Segers,
2011). However, if the marginal distributions are unknown, these endpoint cor-
rections are asymptotically irrelevant (Genest and Segers, 2009), since

1

ÂP
n(ej)

− 1 =
1

n

n
∑

i=1

log

(

n+ 1

i

)

− 1 = O

(

logn

n

)

,

log ÂCFG
n (ej) = −

1

n

n
∑

i=1

log

(

log

(

n+ 1

i

))

+

∫ 1

0

log

(

log

(

1

x

))

dx

= O

(

(log n)2

n

)

.

as n → ∞. Nevertheless, in finite samples, the simple choice λj(w) = wj

can make quite a difference. Similarly, for unknown margins, the multivariate
extension of the estimator in Hall and Tajvidi (2000) simplifies to ÂHT

n (w) =
ÂP

n(w)/ÂP
n(ej) = ÂP

n(w){1 +O(n−1 logn)}.

The next lemma establishes a functional relationship between ÂP
n and

ÂCFG
n on the one hand and the empirical copula Ĉn on the other hand. Recall

the empirical copula process Cn in (2.7).

Lemma 1 For w ∈ ∆p−1, we have

n1/2

(

1

ÂP
n(w)

−
1

A(w)

)

=

∫ 1

0

Cn(u
w1 , . . . , uwp)

du

u
, (3.3)

n1/2
(

log ÂCFG
n (w)− logA(w)

)

=

∫ 1

0

Cn(u
w1 , . . . , uwp)

du

u log u
. (3.4)
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The proof is not different from the one in dimension two and can be found
in Genest and Segers (2009, Lemma 3.1). Equations (3.3) and (3.4) are instru-
mental for proving the weak convergence of the processes

A
P
n = n1/2(ÂP

n −A) and A
CFG
n = n1/2(ÂCFG

n −A).

Theorem 1 Under Assumption 1 above, AP
n  AP and ACFG

n  ACFG with

A
P(w) = −A2(w)

∫ 1

0

C(uw1 , . . . , uwp)
du

u

A
CFG(w) = A(w)

∫ 1

0

C(uw1 , . . . , uwp)
du

u log u
,

as n → ∞ in the space C (∆p−1) equipped with the topology of uniform con-
vergence.

The main idea of the proof consists in substituting Cn in (3.3) and (3.4)
by Stute’s expansion and to conclude using a refined version of the contin-
uous mapping theorem. As the proof follows the same lines as the one in
Genest and Segers (2009), we will just point out the main adjustments.

4 Projection estimator

The estimators of the Pickands dependence functions considered so far are in
general not valid Pickands dependence functions themselves. In this section,
we adapt the methodology in Fils-Villetard et al. (2008) to project a pilot
estimate Ân onto the set A of Pickands dependence functions of p-variate
extreme-value copulas. To this end, we view A as a closed and convex subset of
the real Hilbert space L2(∆p−1) with ∆p−1 equipped with (p− 1)-dimensional
Lebesgue measure when viewed as a subset of Rp−1. The inner product and
the norm on L2(∆p−1) are denoted by 〈f, g〉 =

∫

fg and ‖f‖2 = (〈f, f〉)1/2

respectively.
The orthogonal projection of an initial estimator Ân for A, for example

the Pickands or the CFG estimator, onto A is then defined as

Âpr = Π(Ân|A ) = argmin
A∈A

‖A− Ân‖2.

Projections being contractions, it follows that ‖Âpr −A‖2 6 ‖Ân −A‖2 for
all A ∈ A : the L2-risk of the projection estimator is bounded by the one of
the initial estimator.

For practical computations, we are obliged to refer to finite-dimensional
subclasses Am ⊂ A , yielding the approximate projection estimator

Âpr
m = Π(Ân|Am) = argmin

A∈Am

‖A− Ân‖2. (4.1)
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For each positive integer m, the class Am will be defined as the set of Pickands
dependence functions characterized by discrete spectral measuresH with fixed
and finite support depending on m.

Specifically, let Vp,m be the (finite) set of points v = (v1, . . . , vp) ∈ ∆p−1

such that kj = mvj is integer for every j ∈ {1, . . . , p}, so that in fact v =
(k1/m, . . . , kp/m) where kj ∈ {0, . . . ,m} and k1+· · ·+kp = m. The cardinality
of Vp,m is of the order O(mp−1) as m→ ∞. Let Hp,m be the set of (discrete)
spectral measures H ∈ Hp supported on Vp,m, that is, H =

∑

v∈Vp,m
hv δv,

with δv the Dirac measure at v and where hv = H({v}) is the spectral mass
of the atom v. The vector h = (hv)v∈Vp,m

satisfies the constraints

{

hv > 0, ∀v ∈ Vp,m,
∑

v∈Vp,m
hv vj = 1, ∀j ∈ {1, . . . , p},

(4.2)

the second constraint stemming from (1.3).
The Pickands dependence function A of a spectral measure H in Hp,m can

be written as

Ah(w) =
∑

v∈Vp,m

hv max{w1v1, . . . , wpvp}, w ∈ ∆p−1. (4.3)

Being a linear combination of piecewise linear functions, the function A in
(4.3) is itself piecewise linear. All Pickands dependence function of the form
(4.3) will be collected in the class Am. The next result can be seen as the
equivalent of Lemma 2 in Fils-Villetard et al. (2008) stating the denseness of
the piecewise linear Pickands dependence functions.

Lemma 2 For every H ∈ Hp and every positive integer m, there exists Hm ∈
Hp,m such that the Pickands dependence functions A and Am of H and Hm

respectively satisfy

sup
w∈∆p−1

|Am(w)−A(w)| 6
p2

m
. (4.4)

The bound in (4.4) implies that supA∈A infÃ∈Am
‖Ã−A‖2 = O(m−1)

as m → ∞. This rate is perhaps not sharp, for in case p = 2, Lemma 2
in Fils-Villetard et al. (2008) states the rate O(m−3/2). It remains an open
problem whether the latter rate can also be achieved in general dimension p.

In practice, the task is to compute the vector ĥ such that the function

Âpr
m(w) = A

ĥ
(w) =

∑

v∈Vp,m

ĥv max{w1v1, . . . , wpvp}, w ∈ ∆p−1,

solves (4.1). The vector ĥ is given as the solution to the least-squares problem

ĥ = argmin
h

‖Ah − Ân‖
2
2 = argmin

h

(

‖Ah‖
2
2 − 2〈Ah, Ân〉

)

, (4.5)
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with h subject to the constraints (4.2). The optimisation problem in (4.5) is
a quadratic program with linear constraints, which in matrix notation reads

ĥ = argmin
h

(

1

2
h
⊤
Dh− d

⊤
h

)

, subject to

{

Ch = c,

h > 0.
(4.6)

The matrix D and the vector d regroup all the scalar products of the form
∫

∆p−1

max(wv)max(wv
′) dw and

∫

∆p−1

max(wv)Ân(w) dw respectively, for

v,v′ ∈ Vp,m. The p equality constraints
∑

v∈Vp,m
hv vj = 1 are encoded by

means of the matrix C and the vector c.
For implementation, we used the R-package quadprog (Turlach and Weingessel,

2010) for solving quadratic programs under linear constraints. Although there
exist multiple packages for numerical multivariate integration, we preferred to
compute all the integrals appearing in D and d using Riemann sums on the
same fine grid. By so doing we reduce the risk of numerical problems as we
impose D to be positive definite.

The derivation of the asymptotics of the projection estimator follows the
same lines as in Fils-Villetard et al. (2008). Assume that ε−1n (Ân − A)  ζ
in L2(∆p−1) where ζ is a random process in L2(∆p−1) and 0 < εn → 0; for
the Pickands and CFG estimators, we have εn = n−1/2 and we have weak
convergence with respect to the uniform topology, which implies convergence
with respect to the L2-topology.

By Lemma 1 in Fils-Villetard et al. (2008), we have

‖Âpr
m − Âpr‖2 6 [δm{2‖Ân − Âpr‖2 + δm}]1/2,

with δm = ‖Âpr −Π(Âpr|Am)‖2. From Lemma 2 above, we have δm = O(1/m)
asm→ ∞. As a consequence, ifm = mn is such that 1/mn = o(εn) as n→ ∞,
then ‖Âpr

m − Âpr‖2 = oP(ǫn). From Fils-Villetard et al. (2008, Theorem 1), we
deduce that

ε−1n (Âpr
m −A) = ε−1n (Âpr −A) + oP(1) Π

(

ζ|TA (A)
)

(n→ ∞) (4.7)

in the space L2(∆p−1), where TA (A) is the tangent cone of A at A, defined

as the L2-closure of {λ(Ã−A) : λ > 0, Ã ∈ A }.
Interestingly, equation (4.7) implies that the choice of m is not to be seen

as a bias-variance trade-off problem but rather as a discretization problem. As
soon as m = mn converges to infinity faster than 1/εn, the finite-dimensional
projection estimator Âpr

m has the same limit behaviour as the ‘ideal’ projection
estimator Âpr. In practice, we will choose m sufficiently large so that any
further increase ofm does not make any significant difference, of course subject
to constraints on computing time and numerical stability.

Finally, note that the convergence in (4.7) is with respect to the L2-
topology only, even if originally the weak convergence of ε−1n (Ân − A) took
place in the stronger ℓ∞-topology. The asymptotic distribution of the projec-
tion estimator under the ℓ∞-topology remains an open problem.
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5 Simulation study

A simulation experiment was conducted to compare the finite-sample perfor-
mance of the following four estimators:

PD – the endpoint-corrected Pickands estimator in (3.1) with λj(w) = wj , in
the spirit of Deheuvels (1991);

PD-pr – the projection estimator in (4.1) with the previous end-point cor-
rected Pickands estimator as initial estimator;

CFG – the endpoint-corrected CFG estimator in (3.2) with λj(w) = wj ;
CFG-pr – the projection estimator in (4.1) with the previous end-point cor-

rected CFG estimator as initial estimator.

The set-up of the experiment was as follows. Following Zhang et al. (2008)
and Gudendorf and Segers (2011), random samples were generated from a
trivariate extreme-value distribution with asymmetric logistic dependence func-
tion A (Tawn, 1990):

A(w) = (θ1/αw
1/α
1 + φ1/αw

1/α
2 )α + (θ1/αw

1/α
2 + φ1/αw

1/α
3 )α

+ (θ1/αw
1/α
3 + φ1/αw

1/α
1 )α + ψ(w

1/α
1 + w

1/α
2 + w

1/α
3 )α

+ 1− θ − φ− ψ, w ∈ ∆2, (5.1)

with parameter vector (α, θ, φ, ψ) ∈ (0, 1] × [0, 1]3. For this model, Assump-
tion 2 can be verified by direct calculation. The dependence parameter α
ranged from 0.3 (high dependence) to 1 (independence, A ≡ 1) and the vector
(φ, ψ, θ) was set equal to either (0, 1, 0) (symmetric logistic copula or Gumbel
copula) and (0.3, 0, 0.6) (an asymmetric logistic copula). For each distribu-
tion, 1000 samples were generated of size n ∈ {50, 100, 200}. Simulations were
performed using the R-package evd (Stephenson, 2002), which implements the
algorithms presented in Stephenson (2003). The discretization parameter m
was set to 20, at which value the grid V3,20 contains 231 points.

Monte-Carlo approximations for the mean integrated squared error (MISE)
E[
∫

(Â−A)2] for the four estimators considered above are reported in the tables
below. The three main findings are the following:

1- The projection step yields a gain in efficiency, especially in case of weak
dependence.

2- Without projection step, the CFG estimator outperforms the PD estimator.
3- After the projection step, the PD-pr estimator is more efficient than the

CFG-pr estimator in case of independence and weak dependence (α > 0.9),
but less efficient otherwise (α 6 0.7).

Further, we find that as the dependence increases, all estimators tend to per-
form better. In accordance with asymptotic theory, the MISE is roughly pro-
portional to 1/n.
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α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

n = 50 PD 1.40 · 10−4 5.44 · 10−4 1.36 · 10−3 2.68 · 10−3 3.44 · 10−3

PD-pr 1.37 · 10−4 5.14 · 10−4 1.21 · 10−3 2.08 · 10−3 2.44 · 10−3

CFG 9.77 · 10−5 4.27 · 10−4 1.26 · 10−3 2.54 · 10−3 3.48 · 10−3

CFG-pr 9.69 · 10−5 4.22 · 10−4 1.22 · 10−3 2.43 · 10−3 3.31 · 10−3

n = 100 PD 7.08 · 10−5 2.84 · 10−4 7.06 · 10−4 1.34 · 10−3 1.69 · 10−3

PD-pr 6.99 · 10−5 2.74 · 10−4 6.53 · 10−4 1.03 · 10−3 1.08 · 10−3

CFG 5.03 · 10−5 2.39 · 10−4 6.56 · 10−4 1.23 · 10−3 1.48 · 10−3

CFG-pr 5.01 · 10−5 2.37 · 10−4 6.47 · 10−4 1.18 · 10−3 1.36 · 10−3

n = 200 PD 3.31 · 10−5 1.43 · 10−4 3.92 · 10−4 7.02 · 10−4 8.71 · 10−4

PD-pr 3.29 · 10−5 1.40 · 10−4 3.73 · 10−4 5.72 · 10−4 5.14 · 10−4

CFG 2.45 · 10−5 1.23 · 10−4 3.39 · 10−4 6.40 · 10−4 6.56 · 10−4

CFG-pr 2.45 · 10−5 1.23 · 10−4 3.36 · 10−4 6.19 · 10−4 5.78 · 10−4

Table 1 Symmetric logistic dependence function, (φ, ψ, θ) = (0, 1, 0): Monte-Carlo approx-
imation of the MISE of four estimators of A based on 1000 random samples

α = 0.3 α = 0.5 α = 0.7 α = 0.9

n = 50 PD 1.42 · 10−3 1.72 · 10−3 2.20 · 10−3 2.88 · 10−3

PD-pr 1.22 · 10−3 1.45 · 10−3 1.74 · 10−3 2.01 · 10−3

CFG 1.15 · 10−3 1.41 · 10−3 1.84 · 10−3 2.77 · 10−3

CFG-pr 1.10 · 10−3 1.35 · 10−3 1.75 · 10−3 2.60 · 10−3

n = 100 PD 7.67 · 10−4 8.76 · 10−4 1.10 · 10−3 1.51 · 10−3

PD-pr 6.77 · 10−4 7.70 · 10−4 9.00 · 10−4 1.08 · 10−3

CFG 5.90 · 10−4 7.06 · 10−4 9.05 · 10−4 1.20 · 10−3

CFG-pr 5.70 · 10−4 6.85 · 10−4 8.68 · 10−4 1.10 · 10−3

n = 200 PD 3.92 · 10−4 4.72 · 10−4 5.84 · 10−4 7.60 · 10−4

PD-pr 3.52 · 10−4 4.30 · 10−4 5.08 · 10−4 5.19 · 10−4

CFG 3.01 · 10−4 3.31 · 10−4 4.43 · 10−4 5.81 · 10−4

CFG-pr 2.92 · 10−4 3.22 · 10−4 4.29 · 10−4 5.36 · 10−4

Table 2 Asymmetric logistic dependence function, (φ, ψ, θ) = (0.3, 1, 0.6): Monte-Carlo
approximation of the MISE of four estimators of A based on 1000 random samples
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Genest, C., I. Kojadinovic, J. Nešlehová, and J. Yan (2011). A goodness-of-fit test for
extreme-value copulas. Bernoulli 17, 253–275.

Genest, C. and J. Segers (2009). Rank-based inference for bivariate extreme-value copulas.
Annals of Statistics 37 (5B), 2990–3022.

Gudendorf, G. and J. Segers (2010). Extreme-value copulas. In W. H. P. Jaworski, F. Du-
rante and T. Rychlik (Eds.), Proceedings of the Workshop on Copula Theory and its
Applications, pp. 127–146. Springer.

Gudendorf, G. and J. Segers (2011). Nonparametric estimation of an extreme-value copula
in arbitrary dimensions. J. Multivariate Analysis 102 (1), 37–47.

Hall, P. and N. Tajvidi (2000). Distribution and dependence-function estimation for bivariate
extreme-value distributions. Bernoulli 6 (5), 835–844.
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A Proofs

A.1 Proof of Proposition 1

If u ∈ (0, 1]p, then − logu ∈Wp,j and

Ċj(u) =
C(u)

uj
ℓ̇j(− logu). (A.1)

The assumptions on ℓ imply continuity of Ċj on the set (0, 1]p. If u ∈ [0, 1]p with uj > 0

and ui = 0 for some i ∈ {1, . . . , p} \ {j}, then Ċj(u) = 0 and continuity of Ċj at such u

follows from the fact that 0 6 ℓ̇j 6 1 and 0 6 C(v) 6 min(v).
If (L2) holds, then also

sup
x∈Wp,i∩Wp,j

max(xi, xj) |ℓ̈i,j(x)| <∞,

that is, without the condition x1 + · · · + xp = 1. This result is based on the fact that the
function ℓ is homogeneous of order one: ℓ(sx) = s ℓ(x) for all s ∈ [0,∞) and x ∈ [0,∞)p.
Hence if ℓ̇j exists on Wp,j , then for all s ∈ (0,∞) and x ∈ Wp,j we have

s ℓ̇j(sx) =
∂

∂xj
ℓ(sx) =

∂

∂xj
s ℓ(x) = s ℓ̇j(x)

and thus
ℓ̇j(sx) = ℓ̇j(x).

Taking partial derivatives again, we find for all s ∈ (0,∞) and x ∈ Wp,i ∩Wp,j that

s ℓ̈ij(sx) =
∂

∂xi
ℓ̇j(sx) =

∂

∂xi
ℓ̇j(x) = ℓ̈ij(x)

and thus
ℓ̈ij(sx) = s−1 ℓ̈ij(x).

It follows that
max(sxi, sxj) ℓ̈ij(sx) = max(xi, xj) ℓ̈ij(x),

that is, the map x 7→ max(xi, xj) ℓ̈ij(x) is constant on rays through the origin.
Next, we show the equivalence of (L2) and (C2). Fix i, j ∈ {1, . . . , p}, not necessarily

distinct and let u ∈ Vp,i ∩ Vp,j . On the one hand, if u ∈ Vp,i ∩ Vp,j ∩ (0, 1]p (meaning that
every component of u is different from 0), then − logu ∈ Wp,i ∩Wp,j and

C̈ij(u) =



















C(u)

uiuj

(

ℓ̇i ℓ̇j − ℓ̈ij
)

if i 6= j,

C(u)

u2j

(

ℓ̇2j − ℓ̇j − ℓ̈jj
)

if i = j,

with the convention that the partial derivatives of ℓ are evaluated in − logu. On the other
hand, if u ∈ (Vp,i∩Vp,j)\(0, 1]

p (i.e. at least one coordinate of u vanishes), then C̈ij(u) = 0.

We have to verify two things: first, the continuity of C̈ij at points in the set (Vp,i ∩
Vp,j) \ (0, 1]p; secondly, the finiteness of the supremum in (C2).

First, let u ∈ Vp,i ∩ Vp,j ∩ (0, 1]p. Let K be a positive constant not smaller than the

supremum in (L2). By assumption (L2) and the fact that 0 6 ℓ̇j 6 1, we have

|C̈ij(u)| 6
min(u)

uiuj

(

1 +
K

max(− log ui,− log uj)

)

.

Continuity of C̈ij at points in the set Vp,i ∩ Vp,j \ (0, 1]p follows.
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Secondly, as min(u)/(uiuj) 6 min(1/ui, 1/uj) and − log x > 1− x for all positive x,

|C̈ij(u)| 6 min

(

1

ui
,
1

uj

){

1 +K min

(

1

1− ui
,

1

1− uj

)}

6 (1 +K) min

(

1

ui
,
1

uj

)

min

(

1

1− ui
,

1

1− uj

)

6 (1 +K) min

(

1

ui(1− ui)
,

1

uj(1− uj)

)

,

which is equivalent to condition (C2).

A.2 Proof of Theorem 1

The proof of theorem 1 will require the following preliminary result on weighted empirical
copula processes. Recall the process αn in (2.2). Define qθ(t) = tθ(1 − t)θ for t ∈ (0, 1) and
a fixed value θ ∈ (0, 1/2). Write E = (0, 1]p \ {(1, . . . , 1)}. Define the process Gn,θ on [0, 1]p

by

Gn,θ(u) =

{

αn(u)
qθ(min(u))

if u ∈ E,

0 if u ∈ [0, 1]p \ E.
(A.2)

Similarly, define the process Gθ on [0, 1]p by replacing αn in (A.2) by its weak limit α, see
(2.10). The following result generalizes Theorem G.1 in Genest and Segers (2009).

Lemma 3 For every θ ∈ (0, 1/2), the trajectories of Gθ are continuous almost surely and
Gn,θ  Gθ in ℓ∞([0, 1]p).

Proof (Lemma 3) The proof is entirely analogue as the one of Theorem G.1 in Genest and Segers
(2009). For completeness, we sketch the main lines.

Fix u ∈ E and define the mapping fu : E → R by

fu(s) =
1(0,u](s)− C(u)

qθ(min(u))
, s ∈ E,

and consider the class
F = {fu : u ∈ E} ∪ {0},

where 0 of course stands for the zero function. The space F will be endowed with the metric

ρ2(f, g) = P(f − g)2 f, g ∈ F . (A.3)

Here, we adopt the notations of van der Vaart and Wellner (1996): P denotes the probability
distribution on E corresponding to C and Pn denotes the empirical measure of the sample
(Ui1, . . . , Uip) for i ∈ {1, . . . , n}, that is

P f =

∫

f dC, Pn f =
1

n

n
∑

i=1

f(Ui,1, . . . , Ui,p).

Moreover, put Gn = n1/2(Pn −P), viewed as a random function on F .
We will show that the collection F is a P-Donsker class, i.e. there exists a P-Brownian

bridge G such that
Gn  G in ℓ∞(F ) as n→ ∞.

It is sufficient to verify the conditions of Theorem 2.6.14 of van der Vaart and Wellner
(1996). The function F on E defined by

F (s1, . . . , sp) = pmax
{

s−θ
1 , . . . , s−θ

p , (1 − s1)
−θ, . . . , (1− sp)

−θ
}
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is a suitable envelope function for F . The fact that F is a VC-major class and is pointwise
separable follows from the same arguments as in Genest and Segers (2009).

For the moment Gn is defined on F with the metric ρ in (A.3). Consider the map
φ : [0, 1]p → F defined by φ(u) = fu if u ∈ E and φ(u) = 0 if u ∈ [0, 1]p \ E. Then
Gn,θ = Gn ◦φ and Gθ = G ◦φ. The map ℓ∞(F ) → ℓ∞([0, 1]p) : z 7→ z ◦φ being continuous,
the continuous mapping theorem permits to conclude that Gn,θ  Gθ in ℓ∞([0, 1]p). Since
the trajectories of G are ρ-continuous almost surely and since φ is continuous, it follows that
the sample paths of Gθ are continuous almost surely as well. This concludes the proof of
Lemma 3.

We now proceed with the proof of Theorem 1. Define

BP
n (w) = n1/2

(

1

ÂP
n(w)

−
1

A(w)

)

,

BCFG
n (w) = n1/2

(

log ÂCFG
n (w)− logA(w)

)

,

for w ∈ ∆p−1. Applying the change of variables u = e−s in Lemma 1, we find that the
processes BP

n and BCFG
n can be written as

Bn(w) =

∫

∞

0
Cn(e

−w1s, . . . , e−wps)h(s) ds, (A.4)

in terms of a function h on (0,∞) which is hP(s) = 1 for the Pickands estimator and
hCFG(s) = 1/s for the CFG estimator. In what follows, the function h denotes either hP or
hCFG.

Put ln = 1/(n + 1) and kn = p log(n + 1) and split the integral on the right-hand side
of (A.4) into three parts:

Bn(w) =

∫ ln

0
+

∫ kn

ln

+

∫

∞

kn

= I1,n(w) + I2,n(w) + I3,n(w). (A.5)

We will first prove that with probability one, the first and the third term on the right-hand
side converge to zero uniformly in w.

– If s ∈ [0, ln], then e−s > 1− ln and thus Cn(e−w1s, . . . , e−wps) = 1, which implies

0 6 I1,n(w) =

∫ ln

0
n1/2

(

1− e−sA(w)
)

h(s) ds

6 n1/2

∫ ln

0
s h(s) ds 6 n1/2ln 6 n−1/2.

– If s ∈ (kn,∞), then wj > 1/p and thus e−wjs < 1/(n+1) for at least one j ∈ {1, . . . , p},
so that Cn(e−w1s, . . . , e−wps) = 0, which implies

|I3,n(w)| 6

∫

∞

kn

n1/2e−sA(w) h(s) ds

6
n1/2

A(w)
e−kn A(w) 6 p n−1/2,

where we used the fact that A(w) > max(w) > 1/p.

As a consequence, the only non-negligible term in (A.5) is I2,n. By Assumption 1 and
by Proposition 4.2 in Segers (2011), Stute’s expansion (2.8)–(2.9) is valid, so that we can
write

In,2(w) = J0,n(w)−

p
∑

j=1

Jj,n(w) + Jp+1,n(w)
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where

J0,n(w) =

∫ kn

ln

αn(e
−w1s, . . . , e−wps) h(s) ds,

Jj,n(w) =

∫ kn

ln

αn,j(e
−wjs) Ċj(e

−w1s, . . . , e−wps)h(s) ds, j ∈ {1, . . . , p},

Jp+1,n(w) =

∫ kn

ln

Rn(e
−w1s, . . . , e−wps)h(s) ds.

In view of the bound (2.9) on Rn, the term Jp+1,n is negligible: as n → ∞,

sup
w∈∆p−1

|Jp+1,n(w)| = O
(

n−1/4 log(n)
∫ kn

ln
h(s) ds

)

→ 0, almost surely.

Fix θ ∈ (0, 1/2) and recall the process Gn,θ in (A.2). We have

J0,n(w) =

∫ kn

ln

Gn,θ(e
−sw1 , . . . , e−swp )K0(s,w)h(s) ds,

Jj,n(w) =

∫ kn

ln

Gn,θ(1, . . . , 1, e
−swj , 1, . . . , 1)Kj(s,w)h(s) ds, j ∈ {1, . . . , p},

with

K0(s,w) = qθ
(

min(e−sw1 , . . . , e−swp )
)

,

Kj(s,w) = qθ(e
−swj ) Ċj(e

−sw1 , . . . , e−swp ), j ∈ {1, . . . , p}.

The functions K0, . . . ,Kp satisfy the bounds

0 6 Kj(s,w) 6 K(s) = sθ 1(0,1](s) + e−(θ/p)s
1(1,∞)(s),

j ∈ {0, . . . , p}, s ∈ (0,∞), w ∈ ∆p−1. (A.6)

To prove these bounds, use equation (A.1), the fact that 0 6 ℓ̇j 6 1 and 0 6 C(v) 6 min(v)
for v ∈ [0, 1]p and the fact that max(w) > 1/p for w ∈ ∆p−1. The function K in (A.6)
satisfies

∫

∞

0 K(s)h(s) ds <∞.
By Lemma 3 and the extended continuous mapping theorem (van der Vaart and Wellner,

1996, Theorem 1.11.1), we find

Bn  B = J0 −

p
∑

j=1

Jj , n → ∞

in ℓ∞(∆p−1), where

J0(w) =

∫

∞

0
Gθ(e

−sw1 , . . . , e−swp )K0(s,w)h(s) ds,

Jj(w) =

∫

∞

0
Gθ(1, . . . , 1, e

−swj , 1, . . . , 1)Kj(s,w)h(s) ds, j ∈ {1, . . . , p}.

Substituting the definitions of the process Gθ and the functions K0, . . . ,Kp, we obtain

B(w) =

∫

∞

0
Cn(e

−w1s, . . . , e−wps)h(s) ds, w ∈ ∆p−1.

An application of the functional delta method (van der Vaart and Wellner, 1996, Theo-
rem 3.9.4) now yields the result.
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A.3 Proof of Lemma 2

The proof is constructive and consists of the following steps:
1. Construction of the spectral measure Hm.

(a) Discretisation of H yielding a measure Gm on ∆p−1, which is not necessarily a
spectral measure.

(b) Modification of Gm into a genuine spectral measure Hm .
2. Proof of the inequality (4.4).

1. Construction of the spectral measure Hm. For v ∈ Vp,m, consider the set ∆p−1,v,m of
points t ∈ ∆p−1 such that vj 6 tj < vj + 1/m for every j ∈ {1, . . . , p − 1}; recall that
tp = 1− t1 − · · ·− tp−1, so that necessarily vp − (p− 1)/m < tp 6 vp. The collection of sets
{∆p−1,v,m : v ∈ Vp,m} constitutes a partition of ∆p−1. Indeed, for every point t ∈ ∆p−1

there is a unique point v ∈ Vp,m such that t ∈ ∆p−1,v,m: Let vj be the integer part of mtj
for j ∈ {1, . . . , p− 1} and put vp = 1− v1 − · · · − vp−1.

(a) Discretisation of H, yielding Gm. Define a discrete measure Gm on ∆p−1 with
support contained in Vp,m by Gm({v}) = H(∆p−1,v,m) for v ∈ Vp,m. In words, the mass
assigned by the spectral measure H on the set ∆p−1,v,m is relocated to the corner point v.

Since the sets ∆p−1,v,m constitute a partition of ∆p−1, the total mass of Gm is still
Gm(∆p−1) = H(∆p−1) = p. However, Gm does not need to verify the moment constraints.
For j ∈ {1, . . . , p} we have

∫

∆p−1

tj dGm(t) =
∑

v∈Vp,m

vj Gm({v}) =
∑

v∈Vp,m

vj H(∆p−1,v,m),

which in general is not equal to unity.
Still, the moment constraints are not far from being verified. For t ∈ ∆p−1,v,m and j ∈

{1, . . . , p−1} we have vj 6 tj < vj +1/m. Integrating these inequalities over t ∈ ∆p−1,v,m

with respect to H and summing them over v ∈ Vp,m yields
∫

∆p−1

tj dGm(t) 6 1 <

∫

∆p−1

tj dGm(t) +
1

m
, j ∈ {1, . . . , p− 1}.

As a consequence, there exist numbers cj ∈ [0, 1) such that
∫

∆p−1

tj dGm(t) = 1−
cj

m
, j ∈ {1, . . . , p − 1}.

(b) Modification of Gm into a spectral measure Hm. We will modify Gm into a genuine
spectral measure Hm by (slightly) increasing the masses at the vertices e1, . . . , ep−1, where
ej is the jth coordinate vector in Rp. Specifically, we set

Hm = (1 − a0)Gm + a1 δe1 + · · ·+ ap−1 δep−1

for some nonnegative numbers a0, . . . , ap−1 to be determined by the moment constraints.
For j ∈ {1, . . . , p − 1}, we must have

1 =

∫

∆p−1

tj dHm(t) = (1 − a0)(1 − cj/m) + aj .

In addition, the total mass must be equal to

p = Hm(∆p−1) = (1− a0) p + a1 + · · ·+ ap−1.

Substituting aj = 1− (1− a0)(1 − cj/m) into this equation and solving for a0 yields, after
some algebra,

a0 =

∑p−1
i=1 ci

m+
∑p−1

i=1 ci
,

aj =
cj +

∑p−1
i=1 ci

m +
∑p−1

i=1 ci
, j ∈ {1, . . . , p− 1}.
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This concludes the construction of the spectral measure Hm. Note that 0 6 aj < p/m for
every j ∈ {0, . . . , p− 1}.

2. Proof of the inequality (4.4). For w, t ∈ ∆p−1, write

f(w, t) = max{w1t1, . . . , wptp}.

The Pickands dependence function Am of the spectral measure Hm constructed above is
given by

Am(w) =

∫

∆p−1

f(w, t)Hm(dt)

= (1− a0)

∫

∆p−1

f(w, t)Gm(dt) + a1w1 + · · ·+ ap−1wp−1.

Put Bm(w) =
∫

f(w, t)Gm(dt), the “Pickands transform” of Gm. Clearly Bm > 0 and
Bm is convex, being a weighted average (over t) of the convex functions w 7→ f(w, t). As
a consequence, Bm(w) 6 max{Bm(e1), . . . , Bm(ep)}. Now Bm(ej ) =

∫

tj Gm(dt), which

is equal to 1 − cj/m if j ∈ {1, . . . , p − 1} and which is equal to p −
∑p−1

i=1 (1 − ci/m) =

1+
∑p−1

i=1 ci/m = 1/(1−a0) if j = p. It follows that Bm(w) 6 1/(1−a0) for all w ∈ ∆p−1.
We obtain, on the one hand,

Am(w) 6 Bm(w) + a1w1 + · · ·+ ap−1wp−1

6 Bm(w) + max(a1, . . . , ap−1) < Bm(w) +
p

m

and, on the other hand,

Am(w) > (1− a0)Bm(w) > Bm(w)−
a0

1− a0
= Bm(w)−

1

m

p−1
∑

i=1

ci

> Bm(w)−
p

m
.

Therefore,

|A(w)−AP
m(w)| 6 |A(w)− Bm(w)|+ |Bm(w)− Am(w)| < |A(w)− Bm(w)|+

p

m
.

Furthermore,

|A(w)− Bm(w)| 6
∑

v∈Vp,m

∣

∣

∣

∣

∣

∫

∆p,v,m

f(w, t)H(dt) −

∫

∆p,v,m

f(w, t)Gm(dt)

∣

∣

∣

∣

∣

=
∑

v∈Vp,m

∣

∣

∣

∣

∣

∫

∆p,v,m

f(w, t)H(dt) − f(w,v)H(∆p,v,m)

∣

∣

∣

∣

∣

=
∑

v∈Vp,m

∣

∣

∣

∣

∣

∫

∆p,v,m

(

f(w, t)− f(w,v)
)

H(dt)

∣

∣

∣

∣

∣

6
∑

v∈Vp,m

∫

∆p,v,m

∣

∣f(w, t)− f(w,v)
∣

∣H(dt).

By checking all possible cases one verifies that |max(a1, a2) − max(b1, b2)| 6 max(|a1 −
b1|, |a2−b2|) for all real a1, a2, b1, b2. An induction argument then yields |max(a1, . . . , ak)−
max(b1, . . . , bk)| 6 max(|a1 − b1|, . . . , |ak − bk |). It follows that |f(w, t) − f(w,v)| 6
max(|t1 − v1|, . . . , |tp − vp|). As a consequence,

|A(w)−Bm(w)| <
∑

v∈Vp,m

∫

∆p,v,m

p− 1

m
H(dt) =

(p − 1)p

m
.

Inequality (4.4) follows.
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