
T E C H N I C A L

R E P O R T

11019

Block-Threshold-Adapted Estimators via a maxiset approach

AUTIN, F., FREYERMUTH, J.M. and R. von SACH

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



Block-Threshold-Adapted Estimators via a maxiset

approach

Florent Autin ∗ Jean-Marc Freyermuth † Rainer von Sachs ‡

June 30, 2011

Abstract

We study the performance of a large collection of block thresholding wavelet estimators,
namely the Horizontal Block Thresholding family. In particular, we adopt a maxiset point of
view, i.e. we are asking for the maximal functional space for a given estimator to converge
in the L2−sense with a chosen rate of convergence. We provide sufficient conditions on
the choices of rates and threshold values to ensure large maxisets. By deriving maxiset
embeddings, we identify the best estimator of such a family, that is the one associated with
the largest maxiset. As a particularity of this paper we propose a refined maxiset approach
that models method-dependent threshold values. By a series of simulation studies, we
confirm the good performance of the best estimator when comparing to the other members
of its family.
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1 Introduction

Nonparametric estimation of functions by non-linear wavelet methods has proven to be a real
success story, in particular for functions showing a high spatial variability. This is due to the fact
that wavelets localize the information of a function in a few large coefficients for a wide range
of function classes, the key property to the good performance of hard and soft thresholding es-
timators. Using empirical wavelet coefficients which are larger than a chosen threshold value,
namely the Universal Threshold (U.T.), Donoho and Johnstone (1994), among others, showed
that these estimators are not only near optimal over Besov spaces but also adaptive for the reg-
ularity parameter. Nevertheless these thresholding methods suffer from some criticisms over the
last decade because of the presence of the suboptimal log-term in their minimax performance as
shown in Cai (1999). Related to this, Autin (2004) emphasizes that such thresholding methods
are elitist: they do not use small - but potentially important - empirical wavelet coefficients for
reconstructing the function of interest.

In order to remedy the shortcomings of elitist procedures both from a theoretical and practical
point of view, it has been shown in recent literature (Cai (1999), Hall et al. (1998, 1999), and
Autin (2004, 2008), Autin et al. (2011), among others) that one can do better by using informa-
tion from neighboring empirical wavelet coefficients. Cai (1997) proved that wavelet estimators
based on thresholding of empirical wavelet coefficients by blocks (BT-methods) can be minimax
optimal over Besov spaces (i.e. without the suboptimal log-term), such as the Blockshrink es-
timator. This estimator reconstructs functions using blocks of empirical wavelet coefficients for
which the l2-mean is larger than the noise level ǫ, up to a constant. From a different perspective,
Autin (2008) proved that the set of functional spaces well estimated by wavelet estimators using
BT-methods (the so-called maxiset) can be larger than the ones of hard and soft thresholding
estimators. For instance, the Maximum-block estimator was proved to perform particularly well.
This estimator uses blocks of empirical wavelet coefficients for which the l∞-mean is larger than
the U.T., up to a constant.

Indeed, these BT-estimators provide good visual reconstructions as shown in the Figures 1-4.
This can be explained by the group-structure of the large true wavelet coefficients represented in
the Figure 1 (the darker, the larger the coefficient magnitude). Note in particular the ability of
the Blockshrink estimator to retrieve the local group-structure down to the finest scales where
suggested by the presence of sharp local signal structure.
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Figure 1: True function. Figure 2: Noisy data.

Figure 3: Blockshrink estimator. Figure 4: Maximum-block estimator.

In this paper we consider a wide range of wavelet estimators relying on BT-methods (BT-
estimators), and we propose to study both their theoretical and numerical performances. We
provide conditions to ensure that all the BT-estimators considered in the sequel perform well
in maxiset sense in particular. These conditions deal with the scores of the blocks of empirical
wavelet coefficients (their ℓp-mean) and the threshold value they are compared with.

The paper is organized as follows. After recalling in Section 2 the sequential version of the
Gaussian white noise model, we introduce in Section 3 a general family of BT-estimators: the
Horizontal Block Thresholding family. Estimators of such a family are associated with a thresh-
olding rule on non overlapping blocks of coefficients. They are distinguished by the way how to
compare scores of blocks - that are the lp-means of blocks - to a threshold value that depends
on the noise level ǫ > 0 and may depend on the parameter p (2 ≤ p ≤ ∞). (We recall the usual
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fact that in this more abstract study the noise level ǫ is related to the sample size of the accom-
panying nonparametric curve estimation problem, and that all derived quantities such as rates
of convergence and threshold values depending on ǫ do have the usual interpretation in terms of

sample size.) For the specific case where the threshold value is of order ǫ(log(ǫ−1))
1
2− 1

p (using
the convention 1

∞ = 0), the family under interest contains the Blockshrink and Maximum-block
estimators.

In Section 4 we compute the set of all the functions well estimated by estimators belonging to
the Horizontal Block Thresholding family. Precisely we identify all the functions for which the
quadratic risk of these estimators does not exceed a given rate of convergence (see Theorem 4.1).
We provide sufficient conditions on the possible choices of the rate of convergence and the thresh-
old value to ensure that the maxisets of the estimators of the family contain Besov bodies (see
Proposition 4.1), that is, we ensure that each estimator of the Horizontal Block Thresholding
Family we are interested in performs well.

Further we show in Section 4 that for a wide range of threshold values, the family under study
contains an estimator for which the maxiset at a given rate is the largest one. Hence it corre-
sponds to the most performing estimator within the family according to the maxiset approach.
Moreover, we point out that the best way to give a score to blocks may be different from one
family to the other. Indeed, it depends on the threshold value under consideration (see Corol-
laries 4.1 and 4.2). This result is our most important contribution of this paper and it can be
nicely interpreted through hypothesis testing ideas, in terms of false positives (erroneously active
coefficients) and false negatives (erroneously deleted coefficients). The Corollary 4.1 shows that
when using a conservative threshold value (such as the U.T.) that controls the false positives,
one should apply the method that reduces the most the false negatives in order to get the largest
maxiset. Choosing less conservative threshold values allows to get even larger maxisets but this
choice leads to an important increase in false positives, and therefore, as expressed by the Corol-
lary 4.2, a method that is able to control simultaneously false positives and negatives is required.
Section 5 proposes numerical experiments to confirm the superiority of the best estimator using
as a benchmark the informative results obtained by the keep-or-kill Oracle estimator (defined
in, e.g., (9)). Finally after brief conclusive remarks in Section 6, Section 7 presents the proofs of
our main results.

2 Wavelet setting and model

Let us consider a compactly supported wavelet basis of L2([0, 1]) with V vanishing moments
(V ∈ N

∗) which has been previously periodized
{

φ, ψjk, j ∈ N, k ∈ {0, . . . , 2j − 1}
}

. Examples of
such bases are given in Daubechies (1992). Any function f ∈ L2([0, 1]) can be written as follows:

f = αφ+

∞
∑

j=0

2j−1
∑

k=0

θjkψjk. (1)

The coefficient α and the components of θ = (θjk)jk are respectively the scaling/wavelet co-

efficients of f . They correspond to the L2-scalar products between f and the scaling/wavelet
functions φ and ψjk.
We consider the sequential version of the Gaussian white noise model, i.e., of observations of
f embedded into Gaussian white noise (see also equation (8) and its interpretation). I.e., we
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dispose of observations of these coefficients which are assumed to be realizations of independent
random variables:

α̂ = α+ ǫξ,

θ̂jk = θjk + ǫξjk, (2)

where ξ, ξjk are i.i.d. N (0, 1), 0 < ǫ < 1 is supposed to be the noise level, and where the sequence
(θjk)j,k is sparse, meaning that only a small number of large coefficients contain nearly all the
information about the signal. That motivates the use of keep-or-kill estimators, for which we
recall the hard thresholding estimator:

f̂S = α̂φ+
∑

(j,k)∈Sǫ

θ̂jkψjk, (3)

where Sǫ =
{

(j, k) ; j ∈ N, j ≤ jnǫ
; 0 ≤ k < 2j ;

∣

∣

∣θ̂jk

∣

∣

∣ > tǫ = mǫ
√

log(ǫ−1)
}

. If Sǫ is non empty, it

forms an unstructured set of indices associated with large empirical wavelet coefficients (in the
sequel, by large empirical wavelet coefficients, we understand those which belong to Sǫ). Here,

• 0 < m <∞,

• nǫ is the integer such that 2−(nǫ+1) ≤ (mtǫ)
2 < 2−nǫ . For a general tǫ < 1, nǫ is the

finest scale up to which we can consider the empirical wavelet coefficients to reconstruct
the signal f .

This term by term thresholding does not take into account the information that give us the
clusters of wavelet coefficients that we observed in the Figure 1. This information allows to be
more precise in the choice of the coefficients to keep. Indeed, we would not use in the reconstruc-
tion a large isolated wavelet coefficient because it is not likely to be part of the signal; while a
small coefficient in the neighborhood of large coefficients would be kept. Under this model and
considering the sequence {θjk}jk to be in Besov spaces (see Definition 4.1), several impressive

minimax results were obtained for such estimators (see in particular Cai (1999) and Cai and
Zhou (2009)). Nevertheless, these results do not model the information given by the clusters
of coefficients since the Besov norm is invariant under permutations within scale. Using the
maxiset approach, for which the basics are recalled further down, we introduce a way to model
these clusters of coefficients by introducing new functional spaces related to the methods (see
Definition 4.2). This allows a more precise characterization of the performances of the estimators
under consideration.

Let us consider an estimator f̃ (λ) with a threshold value λ. The maxiset approach consists in
computing the set of all the functions for which the rate of convergence of the quadratic-risk of
the estimator f̃ (λ) is at least as fast as a given rate of convergence ρ (with ρ = ρǫ → 0 as ǫ→ 0),
i.e:

sup
0<ǫ<1

ρ−1
ǫ E‖f̃ (λ) − f‖2

2 <∞ ⇐⇒ f ∈ G.

In this setting, the functional space G will be called maxiset of f̃ (λ) for the rate of convergence ρǫ.
Obviously, the larger the maxiset, the better the procedure; and the slower the rate, the larger
the maxiset (and conversely). In the existing maxiset literature, λ and ρ are generally chosen to
be about the same order. Autin (2008) already gives results for more flexible choices of the rate
and a given threshold value. In this paper, we go beyond this by further disconnecting the rate
and the threshold value.
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3 Horizontal Block Thresholding Estimators

For any 0 < m <∞ and any 2 ≤ p ≤ ∞, let

• (tǫ,p)ǫ and (vǫ,p)ǫ be two sequences of positive real numbers continuously tending to 0 as ǫ
goes to 0;

• jvǫ,p
be the integer such that 2−jvǫ,p ≤ (mvǫ,p)

2 < 21−jvǫ,p for any 0 < ǫ < 1;

• and let the length of the blocks be fixed in the order of log
(

ǫ−1
)

(this choice has been
proven to be pertinent from both a minimax (see Cai (1999)) and a maxiset (see Autin
(2008)) point of view.

In Section 4 we will use the tuning parameter m to link threshold values of the form mtǫ,p and
rates of convergence of the L2−risk of the form ρǫ = (mvǫ,p)

β . As usual, 0 < β < 1 depends on

the regularity of the given function space, e.g. we recall the form of the minimax-rate ǫ
4s

1+2s over
Besov spaces Bγ

2,∞ (see Definition 4.1 below), which will amount to choosing vǫ,p = ǫ - see also
Example 2 below.

Let us now define a general BT-estimator f̃
(t)
p , 2 ≤ p ≤ ∞ associated with a block-thresholding

rule, namely the HBT(t)(p)-estimator.

Definition 3.1. [HBT(t)(p)-estimator] Let 0 < ǫ < 1 and 2 ≤ p ≤ ∞ and a given m > 0. Let

us consider the following wavelet estimator f̃
(t)
p

f̃ (t)
p = f̃ (t)ǫ

p := α̂φ+
∑

(j,k)∈Hǫ(t,p)

θ̂jkψjk

= α̂φ+
∑

j∈N,j<jvǫ,p

2j−1
∑

k=0

θ̂jk 1

{

‖θ̂ / Bjk(ǫ)‖p > m tǫ,p

}

ψjk,

where, for any 0 < ǫ < 1, Bjk(ǫ) corresponds to the set of indices which contains k and such that

Bjk(ǫ) ∈ {B
(1)
j , B

(2)
j , . . . , B

(uj,ǫ)
j } with

B
(u)
j :=

{

k′, 0 ≤ k′ < 2j , (u− 1)⌊log(ǫ−1)⌋ ≤ k′ < u⌊log(ǫ−1)⌋
}

, u ∈ {1, 2, . . . , uj,ǫ = 2j(⌊log(ǫ−1)⌋)−1}.

Notations used are the following

‖θ / Bjk(ǫ)‖p :=





1

#Bjk(ǫ)

∑

k′∈Bjk(ǫ)

|θjk′ |p





1/p

for 2 ≤ p <∞,

‖θ / Bjk(ǫ)‖∞ := max {|θjk′ |, k′ ∈ Bjk(ǫ)} .

For any 2 ≤ p ≤ ∞, Hǫ(t, p) is the set of empirical wavelet coefficients used in the reconstruction
based on a thresholding rule using the ℓp-norm and the threshold value mtǫ,p.

Moreover, for any scale j < jvǫ,p
,
(

B
(u)
j , u ∈ {1, 2, . . . , uj,ǫ}

)

constitutes a set of non overlapping

blocks of indices with size smaller or equal to log(ǫ−1).

From now on, we will study the performances of these BT-estimators to address the following
question: what is the best choice of ℓp-norm to consider (2 ≤ p ≤ ∞)? In the next section we use
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the maxiset approach to prove that among the different possibilities of choice of p the best one
depends on the threshold value used. Comparing to Autin (2008) in which rules are based on
the universal threshold value (up to a constant), we shall consider here a wide range of threshold
values to refine existing maxiset results in the literature. Below are listed three examples of
threshold values and rates we are interested in:

Example 1:

v
(1)
ǫ,p = t

(1)
ǫ,p = ǫ

√

log(ǫ−1)
With such a choice, the threshold value corresponds to the universal threshold value (see Donoho
and Johnstone (1994)) and the rate ρǫ with β = 4s(1 + 2s)−1 corresponds to the minimax rate
over Bs

2,∞ up to a term (log
(

ǫ−1
)

)1/2.

Example 2:

v
(2)
ǫ,p = (log(ǫ−1))

1
p
− 1

2 t
(2)
ǫ,p = ǫ. With such a choice, the rate ρǫ with β = 4s(1 + 2s)−1 corresponds

to the minimax rate over Bs
2,∞.

Example 3:

Choose v
(3)
ǫ,p = t

(3)
ǫ,p = ǫ(log(ǫ−1))

1
2− 1

p . With such a choice, the threshold value corresponds to
a lower threshold value than the universal threshold and the rate ρǫ with β = 4s(1 + 2s)−1

corresponds to the minimax rate over Bs
2,∞ up to a term (log

(

ǫ−1
)

)1/2−1/p.

Remark 3.1. For the case tǫ,p = ǫ
(

log(ǫ−1)
)

1
2− 1

p (with 0 < ǫ < 1 and the convention 1
∞ = 0),

the estimator f̃
(t)
2 is the BlockShrink estimator proposed by Cai (1999) and can be viewed as an

hybrid version of NeighBlock estimator introduced by Cai and Silverman (2001), whereas f̃
(t)
∞ is

the Maximum Block estimator proposed by Autin (2008).

Define the Horizontal Block Thresholding family, namely (HBT
(t)
ǫ ), as

HBT(t)
ǫ =

{

f̃ (t)
p , 2 ≤ p ≤ ∞

}

.

At first glance, as 2 ≤ p ≤ ∞ is real-valued, this family of estimators (HBT
(t)
ǫ ) seems to be

uncountable. But it is not for a large choice of threshold value as we shall see in Propositions
7.2 and 7.3.

4 Main results

4.1 Functional spaces: definitions and embeddings

In this paragraph, we characterize the functional spaces which shall appear in the maxiset study
of our estimators. Recall that, for later use of these functional spaces, we shall consider wavelet
bases with V vanishing moments.
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Definition 4.1. Let 0 < γ < V . We say that a function f ∈ L2([0, 1]) belongs to the Besov
space Bγ

2,∞ if and only if:

sup
J∈N

22Jγ
∑

j≥J

2j−1
∑

k=0

|θjk|
2 <∞.

Besov spaces naturally appear in estimation problems (see Autin (2004) and Cohen et al. (2001)).
These spaces characterize the functions for which the energy of wavelet coefficients on scales larger
than J (J ∈ N) is decreasing exponentially in J . For an overview of these spaces, see Hardle
et al. (1998).

We provide here the definition of a new function space which is the key to our results:

Definition 4.2. Let m′ > 0, 0 < r < 2 and 1 ≤ p ≤ ∞. We say that a function f belongs to the

space W
(t,v)
r,m′,p if and only if:

sup
0<λ<1

(m′vλ,p)
r−2

∑

j∈N

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(λ)‖p ≤ m′tλ,p

}

<∞.

First, note that the larger r, the larger the functional space. Second, the spaces W
(t,v)
r,m′,p

(m′ > 0, 0 < r < 2) are not invariant under permutations of wavelet coefficients within each
scale. This makes them appear more interesting than weak Besov spaces (see Cohen et al. (2001)
for an explicit definition) which are usually studied to derive maxiset results, in connection with
near minimax rate over Besov spaces and for hard thresholding estimators as defined in equa-
tion (3). Indeed, it is precisely the non-invariance property that allows to distinguish functions
according to the "block-neighborhood properties" of their wavelet coefficients.
Assuming some conditions on the choice of both rate of convergence and threshold value, these
functional spaces are enlargements of classical Besov spaces as suggested by our following Propo-
sition 4.1.

Proposition 4.1. Let 0 < s < V and 2 ≤ p ≤ ∞. Assume that (tǫ,p)ǫ and (vǫ,p)ǫ are such that

sup
0<ǫ<1

tǫ,p vǫ,p
−1 <∞. (4)

Then, for any m′ > 0

Bs
2,∞ ⊆ W

(t,v)
2

1+2s
,m′,p

. (5)

Our following Proposition 4.2 shows that, for the same parameters m′ and r (m′ > 0, 0 < r < 2),

the functional spaces W
(t,v)

2
1+2s

,m′,p
(p ≥ 2) are embedded. The larger p the larger W

(t,v)
r,m′,p.

Proposition 4.2. Let 2 ≤ p < q ≤ ∞. Assume that for any 0 < ǫ < 1, tǫ,p and vǫ,p only depend
on ǫ. Then, for any m′ > 0 and any 0 < r < 2, we have the following embeddings of spaces:

W
(t,v)
r,m′,p ⊆ W

(t,v)
r,m′,q.

The assertion of this proposition changes however, if the scores over blocks {Bj,k} appearing in
Definition 4.2 are compared to a "threshold" value which depends in a particular way also on p,
namely by rescaling with the length of the blocks:
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Proposition 4.3. Let s > 0 and 2 ≤ p < q ≤ ∞. Assume that for any 0 < ǫ < 1,
(

log(ǫ−1)
)

1
p tǫ,p

and vǫ,p only depend on ǫ. Then, for any m′ > 0 and any 0 < r < 2, we have the following
embeddings of spaces:

W
(t,v)
r,m′,q ⊆ W

(t,v)
r,m′,p.

Further insights into these two crucial results can be found by investigating their proofs, but it is
essential to note that these results prepare the ground to find the "maxiset-optimal" estimator

f̃
(t)
p , i.e. the best p, according to the more refined specification of both rate (via vǫ,p) and

threshold value (via tǫ,p). For this we refer to Corollaries 4.1 and 4.2 below.

4.2 Maxiset results

In this paragraph we provide the maximal space (maxiset) of any f̃
(t)
p ∈ HBT(t)

ǫ associated

to a large collection of rates, that are (mvǫ,p)
4s

1+2s (s > 0) and of threshold values tǫ,p. Some
assumptions are necessary for sequences (vǫ,p)ǫ and (tǫ,p)ǫ (2 ≤ p ≤ ∞) to ensure the validity of
our next results. Firstly we suppose that, for any c > 0 there exists mc > 0 - the bigger c the
bigger mc - such that

sup
0<ǫ<1

v−c
ǫ,p P (‖Z(ǫ)‖p > mc tǫ,p) <∞, (6)

where Z(ǫ) = (Z1, . . . , Z⌈log(ǫ−1)⌉) is a vector with i.i.d. N (0, ǫ2) entries. Secondly, assume that

sup
0<ǫ<1

vǫ,p

ǫ
> 0, sup

0<ǫ<1

ǫ(log(ǫ−1))
1
2

vǫ,p
> 0, and sup

0<ǫ<1

tǫ,p

ǫ(log(ǫ−1))
1
2− 1

p

> 0. (7)

For any chosen s > 0, the reader can check that assumptions (6) and (7) are satisfied by the
three examples given in the Section 3. We can now state the main theorem.

Theorem 4.1. Let s > 0 and 2 ≤ p ≤ ∞. We have the following equivalence:

For any m ≥ 2m4, sup
0<ǫ<1

(mvǫ,p)
− 4s

1+2s E‖f̃ (t)
p

−f‖2
2 <∞ ⇐⇒ f ∈ B

s
1+2s

2,∞ ∩





⋂

m′≥m4

W
(t,v)

2
1+2s

,m′,p



 .

Note that, if assumption (4) is satisfied, maxisets of estimators in HBT
(t)
ǫ are quite large func-

tional spaces since from (5) of Proposition 4.1 and Besov embedding properties, we deduce that

the functional space B
s

1+2s

2,∞ ∩ (
⋂

m′≥m4
W

(t,v)
2

1+2s
,m′,p

) contains the space Bs
2,∞.

Remark that we got sufficient conditions (see assumptions (4), (6) and (7)) on choices of (tǫ,p)ǫ

and (vǫ,p)ǫ to ensure that all the BT-estimators in our families are good estimators, in the
sense that they outperform hard and soft thresholding estimators. Indeed, in such cases, our
BT-estimators reconstruct sets of functions at least as large as the Besov spaces with a rate of
convergence faster than or in the same order as the ones associated with vǫ,p = ǫ

√

log(ǫ−1). Con-
sequently, these methods are better than any diagonal procedures (see Theorem 2 in Cai (2008)).

We now state the following corollaries 4.1 and 4.2 that are a direct consequences of Theorem 4.1
and Propositions 4.2 and 4.3.
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Corollary 4.1. Under assumptions (6) and (7), f̃
(t)
∞ is the best estimator in the maxiset sense

among the HBT
(t)
ǫ family when choosing tǫ,p such that, for any 0 < ǫ < 1, tǫ,p and vǫ,p only

depend on ǫ.

Corollary 4.2. Under assumptions (6) and (7), f̃
(t)
2 is the best estimator in the maxiset sense

among the HBT
(t)
ǫ family when choosing tǫ,p such that, for any 0 < ǫ < 1,

(

log(ǫ−1)
)

1
p tǫ,p and

vǫ,p only depend on ǫ.

The two previous corollaries allow to identify the BT-estimators within the family with the largest
maxiset. They clearly indicate that the best way to get large maxisets is to choose threshold
values that are of lower order than the universal threshold. This very interesting fact has a
powerful interpretation in terms of false discoveries for which we refer to the Section 5.

Remark 4.1. In Section 2 we emphasize the importance of taking into account the clusters
among the wavelet coefficient sequences across scales in order to fully capture the behavior of
these estimators. Once done through the maxiset approach, this reveals that the Blockshrink
estimator is able to reconstruct at the optimal minimax rate a set of functions which is larger
than the Besov space Bs

2,∞.

5 Numerical experiments

We first introduce the notations of the nonparametric model we are dealing with:

Yi = f (i/N) + σζi, 1 ≤ i ≤ N, ζi are i.i.d. N (0, 1) . (8)

We refer the reader to the classical literature (e.g., Tsybakov (2008)) for details about the equiva-
lence between this nonparametric regression model and the sequence model given by equation (2).
We only recall that the noise level ǫ is such that ǫ = σ√

N
.

This section proposes numerical experiments designed to check whether our theoretical conclu-
sions can be observed in a practical setting. The previous theory does not model all the complex-
ity encountered in practice with the choice of the wavelet functions, of the primary resolution
scale, etc. Therefore, we choose a classical setting for numerical experiments, using Daubechies
Extremal Phase wavelets with 8 vanishing moments. To illustrate our theoretical results we

choose to consider two examples of HBT
(t)
ǫ that have already been discussed (see Examples 1 and

2 in Section 4) and respectively correspond to the choice of threshold value tǫ,p = ǫ
(

log(ǫ−1)
)

1
2

and tǫ,p = ǫ
(

log(ǫ−1)
)

1
2− 1

p . Let us respectively denote by HBT
(t),1
ǫ and HBT

(t),2
ǫ these two fam-

ilies of BT-estimators. Following Cai (1997), we set the threshold λ̂ = σ̂(5N−1 log (N))
1
2 (resp.

λ̂p = σ̂(5N−1 log (N))
1
2− 1

p ) for all BT-methods associated with HBT
(t),1
ǫ (resp. HBT

(t),2
ǫ ). We

follow a standard approach to estimate σ by the Median Absolute Deviation (MAD) divided by
0.6745 over the wavelet coefficients at the finest wavelet scale J − 1 (see e.g., Vidakovic (1999)).

We generate the data sets from a large panel of functions often used in wavelet estimation studies
(Antoniadis et al. (2001)) with various Signal to Noise Ratios SNR = {5, 10, 15, 20} and sample
sizes N = {512, 1024, 2048}. We define the SNR as the logarithmic decibel scale of the ratio of
the standard deviation of the function values to the standard deviation of the noise. We compute

the Integrated Squared Error of the estimators f̃
(t)
p , p ∈ {2, 3, 5, 10,∞} at the ℓ-th Monte Carlo
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replication (ISE(l)
(

f̃
(t)
p

)

, 1 ≤ l ≤M) as follows:

ISE(l)
(

f̃ (t)
p

)

=
1

N

N
∑

i=1

(

f̃ (l)
p

(

i

N

)

− f

(

i

N

))2

.

We generate 2000 Monte Carlo replications and compute the Mean ISE as followsMISE
(

f̃
(t)
p

)

=

1
M

M
∑

l=1

ISE(l)
(

f̃ (t)
p

)

. In practice, we compute the ISE over a subinterval of [0, 1] in order to avoid

that potential boundary effects mask the comparison of our methods.

In fact, there are numerous connections between keep-or-kill estimation and hypothesis testing,
see e.g. Abramovich et al. (2006). In order to emphasize that, we report in the Tables 1 and 2
the number of false positives/negatives (i.e., type I/II errors) obtained by comparing the set of
indices of wavelet coefficients Hǫ(t, p) (as defined in Definition 3.1) kept by each estimators, with
the set of indices of the keep-or-kill Oracle estimator

f̂O = α̂φ+
∑

(j,k)∈SO

θ̂jkψjk , (9)

where SO =

{

(j, k) ; j ∈ N, j < jv
λ σ√

N

,p
; 0 ≤ k < 2j ; |θjk| >

σ√
N

}

.

The results suggest similar behavior for different values of N and SNR. To keep clear the pre-
sentation of the results, we only report those for N = 2048 and SNR = 10 in Tables 1 and 2.

The Figures 5 and 6 summarize the MISE results. We observe the optimality of the estimator

f̃
(t)
∞ ∈ HBT(t),1

ǫ ∩HBT(t),2
ǫ (resp. f̃

(t)
2 ∈ HBT(t),2

ǫ ) for all the tested functions as it was suggested
by the Corollary 4.1 (resp. Corollary 4.2). In addition, there is a gradual improvement of the
MISE performances when p increases (resp. decreases) reflecting the embeddings of the maxisets
of the BT-estimators considered (see Section 4).

Figure 5: MISE of the non overlapping BT-estimator in HBT
(t),1
ǫ for different values of 2 ≤ p ≤

∞ for estimating various functions with a SNR equal to 10.
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Looking at the number of false positives/negatives for the BT-estimators reported in the Ta-
bles 1 and 2, we can check that the best estimators in each family allow to reduce the percentage
of false negatives with a comparatively small increase in the number of false positives yielding

their good performances in terms of MISE. In the family HBT
(t),1
ǫ , the conservative universal

threshold strongly controls the false positives but discards many small coefficients that would
be useful for the reconstruction. Using the structure among the coefficients allows to reduce the
number of false negatives. With such high threshold value, the method that appears to be the

most powerful to reduce the false negatives is the estimator f̃
(t)
∞ .

Nevertheless, comparing Corollaries 4.1 and 4.2, our results point out that the HBT
(t),1
ǫ family,

based on a ’large’ threshold, reaches a certain limit of detection of true discoveries that only a
smaller order threshold would allow to overcome. That is confirmed when comparing the MISE

of f̃
(t)
∞ and f̃

(t)
2 . The latter have lower MISE for all the tested functions with improvements

ranging from 4 up to nearly 21 percent lower MISE. This emphasizes also that the use of a less
conservative threshold gives rise to false positives, and thus we need a method that is able to
treat simultaneously the false positives and the false negatives to control the overall risk (i.e.,
p <∞). As we observe in the Figure 6, the best results are obtained for p = 2.

Figure 6: MISE of the non overlapping BT-estimator in HBT
(t),2
ǫ for different values of 2 ≤ p ≤

∞ for estimating various functions with a SNR equal to 10.
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threshold HBT
(t),1
ǫ HBT

(t),2
ǫ

method f̂2 f̂5 f̂10 f̂∞ f̂2 f̂5 f̂10 f̂∞ f̂O

Function: Step
MISE 39.8 25.3 19.2 13.8 9.0 12.0 13.2 13.8 3.4
False + 1.0 2.1 5.1 10.4 17.6 11.7 10.7 10.4 0.0
False − 50.8 42.9 37.9 31.6 24.2 29.2 30.9 31.6 0.0
size 19.2 28.2 36.2 47.7 62.4 51.6 48.8 47.7 69.0

Function: Wave
MISE 3.3 3.3 3.3 3.3 1.2 3.3 3.3 3.3 0.7
False + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
False − 36.0 36.0 36.0 35.6 9.7 34.9 35.6 35.6 0.0
Size 24.0 24.0 24.0 24.4 50.3 25.1 24.4 24.4 59.0

Function: Blip
MISE 14.0 6.2 5.1 4.3 3.0 4.2 4.3 4.3 0.9
False + 2.1 6.9 8.9 12.8 22.3 13.7 13.0 12.8 0.0
False − 26.9 19.1 17.2 14.6 9.7 14.2 14.5 14.6 0.0
Size 16.3 28.8 32.6 39.2 53.6 40.5 39.5 39.2 41.0

Function: Blocks
MISE 14.3 9.8 8.5 7.3 4.7 6.6 7.2 7.3 1.8
False + 6.0 8.4 10.5 15.1 29.1 17.4 15.6 15.1 0.0
False − 152.3 137.6 130.4 119.8 92.2 114.6 118.6 119.8 0.0
Size 47.7 64.7 74.1 89.3 130.9 96.8 91.0 89.3 194.0

Function: Bumps
MISE 5.9 3.6 2.6 2.1 1.7 2.0 2.1 2.1 0.7
False + 16.2 21.1 33.0 40.7 54.3 41.3 40.8 40.7 0.0
False − 110.5 92.3 81.4 74.5 62.9 73.9 74.4 74.5 0.0
Size 115.7 138.8 161.6 176.2 201.4 177.4 176.4 176.2 210.0

Function: Heavisine
MISE 5.1 5.1 4.9 3.7 2.4 3.1 3.5 3.7 1
False + 0.0 0.0 0.1 0.7 1.9 0.8 0.7 0.7 0
False − 26.0 26.0 25.3 22.3 18.8 20.9 21.9 22.3 0
Size 8.0 8.0 8.8 12.4 17.2 14.0 12.9 12.4 34

Table 1: MISE (10−4), average number of false positives/negatives and average number of non zero
empirical wavelet coefficients in the estimator.
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threshold HBT
(t),1
ǫ HBT

(t),2
ǫ

method f̂2 f̂5 f̂10 f̂∞ f̂2 f̂5 f̂10 f̂∞ f̂O

Function: Doppler
MISE 7.0 6.5 5.4 4.2 2.5 4.0 4.2 4.2 1.2
False + 4 4.2 5.3 8.3 11.8 8.9 8.4 8.3 0.0
False − 37 35.5 32.0 27.9 17.5 26.7 27.6 27.9 0.0
Size 42 43.7 48.2 55.4 69.3 57.2 55.8 55.4 75.0

Function: Angles
MISE 5.0 1.8 1.6 1.5 1.5 1.5 1.5 1.5 0.8
False + 0.7 2.8 3.0 3.3 3.6 3.3 3.3 3.3 0.0
False − 14.8 10.4 10.0 9.9 9.8 9.9 9.9 9.9 0.0
Size 20.9 27.4 28.0 28.4 28.8 28.4 28.4 28.4 35.0

Function: Parabolas
MISE 10.3 4.7 3.4 2.7 1.3 2.3 2.6 2.7 0.8
False + 0.9 3.5 4.7 5.5 7.0 5.9 5.6 5.5 0.0
False − 12.8 9.5 8.2 6.8 3.0 5.9 6.6 6.8 0.0
Size 14.2 20.1 22.5 24.7 30.0 26.0 25.0 24.7 26.0

Function: Time Shift sine
MISE 1.7 1.7 1.7 1.6 1.1 1.6 1.6 1.6 0.6
False + 2.0 2.0 2.0 2.2 4.9 2.4 2.2 2.2 0.0
False − 5.0 5.0 5.0 4.9 2.8 4.7 4.8 4.9 0.0
Size 23.0 23.0 23.0 23.3 28.1 23.7 23.4 23.3 26.0

Function: Spikes
MISE 3.8 1.5 1.2 0.8 0.6 0.7 0.8 0.8 0.3
False + 3.0 14.0 16.3 20.4 23.7 20.9 20.5 20.4 0.0
False − 25.0 16.0 13.3 9.9 8.0 9.4 9.8 9.9 0.0
Size 42.1 62.1 67.0 74.5 79.7 75.5 74.8 74.5 64.0

Function: Corner
MISE 3.8 1.5 1.0 0.8 0.5 0.8 0.8 0.8 0.3
False + 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
False − 17.4 12.7 11.1 10.0 7.2 9.5 9.9 10.0 0.0
Size 9.6 14.3 15.9 17.1 19.9 17.5 17.1 17.1 27.0

Table 2: MISE (10−4), average number of false positives/negatives and average number of non zero
empirical wavelet coefficients in the estimator.

6 Summary of results and conclusion

In this paper we introduced the family of Horizontal Block Thresholding estimators. We studied
the performances of the estimators of this family under the L2-risk using the maxiset approach.
We remark the good maxiset performances for a wide range of rates and threshold values, and
we identified the best procedure in some cases, that is the one using the l2-norm and a threshold
value of order ǫ. This paper shows the importance of adapting the threshold to the method in
order to enlarge the maxiset.

For a given (fixed) threshold value, there is the following interpretation of this family according
to p: the situation of p = ∞ corresponds to a methodology that really focuses on the reduction
of false negatives, all the coefficients in a block where one coefficient passes over the threshold
are kept. This method, however, has to accommodate with really high threshold values in order
that also the false positives are well controlled. Methods with lower p are meant to control simul-
taneously false positives and negatives. For those, one has to reduce the value of the threshold
if one aims to really improve the estimation. But as a trade-off lowering the threshold calls for
correcting on the side of the chosen method in order to not lose control of the false positives and
to expect a higher potential for the method. Developing these fine tunings for the link between
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chosen threshold method and associated threshold value, is precisely the content of this paper
using the maxiset approach.

Our numerical experiments for fixed threshold (as HBT
(t),1
ǫ ) confirm the best procedure for

p = ∞. On the contrary, for methods with a threshold value that depends on p (as HBT
(t),2
ǫ ),

the best procedure is the one associated with p = 2.

For future research, it would be interesting to model the improvements related to the James Stein
correction used in Cai (2008). Another important point is about overlapping horizontal block
thresholding theory. Indeed, the behavior of overlapping and non overlapping block thresholding
procedures according to p and to the threshold value is similar - as it is shown in the Figures 7

and 8. Comparing non overlapping and overlapping HBT
(t),2
ǫ we discover that the latter reduces

the MISE for almost all the tested functions up to nearly 38 percent for the ’Doppler’ function.

Nevertheless, while the maxisets of the overlapping HBT
(t),1
ǫ methods can be easily computed

using a similar approach to ours in that paper, it appears to be non trivial for overlapping

HBT
(t),2
ǫ .

Figure 7: MISE of the overlapping HBT
(t),1
ǫ estimators for different values of 2 ≤ p ≤ ∞ for

estimating various functions with a SNR equal to 10.
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Figure 8: MISE of the overlapping HBT
(t),2
ǫ estimator for different values of 2 ≤ p ≤ ∞ for

estimating various functions with a SNR equal to 10.

7 Proofs of results

In this Section, C denotes a constant that does not depend on m and ǫ and that may be different
from one line to an other line. Proofs of many results use the following lemma recalled from Cai
and Silverman (2001).

Lemma 7.1. Let x = (x1, . . . , xd) ∈ R
d and 0 < p ≤ q ≤ ∞. Then the following inequalities

hold:
(

d
∑

i=1

|xi|
q

)

1
q

≤

(

d
∑

i=1

|xi|
p

)

1
p

≤ d
1
p
− 1

q

(

d
∑

i=1

|xi|
q

)

1
q

.

7.1 Proof of Proposition 4.1

Proof. Fix 2 ≤ p ≤ ∞ and let f ∈ Bs
2,∞. There exists C > 0 such that, for any j ∈ N, the

wavelet coefficients of f satisfy:
2j−1
∑

k=0

θ2jk ≤ C 2−2js.

Fix m′ ≥ m4. For any 0 < λ < 1, let j
(s)
v

λ,p
be the integer such that 2

−j(s)
v

λ,p ≤ (m′v
λ,p

)
2

1+2s <

2
1−j(s)

v
λ,p .

∑

j∈N

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(λ)‖p ≤ m′tλ,p

}

= A0 +A1

with, using Lemma 7.1
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A0 =
∑

j<j
(s)
v

λ,p

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(λ)‖p ≤ m′tλ,p

}

≤
∑

j<j
(s)
v

λ,p

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(λ)‖2 ≤ m′tλ,p

}

≤ ⌊log(λ−1)⌋(m′tλ,p)
2
∑

j<j
(s)
v

λ,p

uj,λ
∑

u=1

1

{

‖θ / B
(u)
j (λ)‖2 ≤ m′tλ,p

}

≤ 2
j(s)
v

λ,p (m′tλ,p)
2

≤ C (m′v
λ,p

)
4s

1+2s .

The last inequality is obtained using sup
0<λ<1

tλ,p vλ,p
−1 <∞. Since f ∈ Bs

2,∞,

A1 =
∑

j≥j
(s)
v

λ,p

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(λ)‖p ≤ m′tλ,p

}

≤
∑

j≥j
(s)
v

λ,p

2j−1
∑

k=0

θ2jk

≤ C 2
−2sj(s)

v
λ,p

≤ C (m′v
λ,p

)
4s

1+2s .

Hence, for any m′ ≥ m4,

sup
0<λ<1

(m′v
λ,p

)−
4s

1+2s

∑

j∈N

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(λ)‖p ≤ m′tλ,p

}

<∞,

that is to say, f ∈
⋂

m′≥m4
W

(t,v)
2

1+2s
,m′,p

.

7.2 Proof of Proposition 4.2 and of Proposition 4.3

For all m′ > 0, 0 < r < 2 and all 2 ≤ p < q ≤ ∞, the definitions of W
(t,v)
r,m′,p and W

(t,v)
r,m′,q only

differ by the indicator functions they are associated with. These spaces defined in Definition 4.2
control the energy of the coefficients that are not used in the reconstruction. That is exactly
the complementary set to Hǫ(t,m

′, p). Therefore, the embeddings given in Propositions 4.2 and
4.3, holding for a wide range of threshold values (tǫ,p)ǫ, can be deduced from the embedding
properties of the sets of indices Hǫ(t,m

′, p) stated in the following lemmas and proved further
down.

Lemma 7.2. Assume that, for any 2 ≤ p ≤ ∞, tǫ,p only depends on ǫ. Then, for any m > 0,
any 2 ≤ p1 ≤ p2 ≤ ∞ and any 0 < ǫ < 1
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• Hǫ(t,m, p1) ⊆ Hǫ(t,m, p2),

• Hǫ(t,m,∞) is the set of indices which contains all the empirical wavelet coefficients larger
than the threshold value and their block-neighborhood, i.e. the empirical wavelet coefficients
belonging to the same block.

Lemma 7.3. Assume that, for any 2 ≤ p ≤ ∞,
(

log(ǫ−1)
)

1
p tǫ,p only depends on ǫ. Then, for

any m > 0, any 2 ≤ p1 ≤ p2 ≤ ∞ and any 0 < ǫ < 1

• Hǫ(t,m, p2) ⊆ Hǫ(t,m, p1).

The two previous lemmas show that the embedding properties depend on the choice of the thresh-
old tǫ,p. More precisely, for any 0 < ǫ < 1, if tǫ,p only depends on ǫ then the larger p the bigger

the set of indices Hǫ(t,m, p) (m > 0). If the quantity (log(ǫ−1))
1
p tǫ,p only depends on ǫ then the

larger p the smaller the set of indices Hǫ(t,m, p).

Proof. Let m > 0 and 2 ≤ p1 ≤ p2 ≤ ∞. Proofs of Lemmas 7.2 and 7.3 are a direct consequence
of Lemma 7.1. Indeed, if for any 0 < ǫ < 1, tǫ,p only depends on ǫ then, for any (j, k):

‖θ̂ / Bjk(ǫ)‖p1
> m tǫ,p1

=⇒ ‖θ̂ / Bjk(ǫ)‖p2
> m tǫ,p2

.

Hence Hǫ(t,m, p1) ⊆ Hǫ(t,m, p2).

In the same way, if for any 0 < ǫ < 1,
(

log(ǫ−1)
)

1
p tǫ,p only depends on ǫ then, noting that the

size of blocks is of order log(ǫ−1), for any (j, k):

‖θ̂ / Bjk(ǫ)‖p
2
> m tǫ,p

2
=⇒ ‖θ̂ / Bjk(ǫ)‖p

1
> m tǫ,p

1
.

Hence Hǫ(t,m, p2) ⊆ Hǫ(t,m, p1).

Remark 7.1. For any 2 ≤ p ≤ ∞ and any 0 < ǫ < 1, notice that the assumption of Lemma 7.2
is satisfied with the choice tǫ,p = ǫ whereas the assumption of Lemma 7.3 is satisfied with the

choice tǫ,p = ǫ(log(ǫ−1))
1
2− 1

p .

7.3 Proof of Theorem 4.1

Proof. Notice that the result can be proven by replacing the supremum over ǫ in [0, 1[ by the
supremum over ǫ in ]0, ǫv[, where ǫv is such that for any 0 < ǫ ≤ ǫv and such that 0 < mvǫ,p < 1.

=⇒

Suppose that, for any m ≥ 2m4 and any 0 < ǫ < ǫv, E‖f̃
(t)
p − f‖2

2 ≤ C (mvǫ,p)
4s

1+2s . Then,

∑

j≥jvǫ,p

2j−1
∑

k=0

θ2jk ≤ E‖f̃ (t)
p − f‖2

2

≤ C (mvǫ,p)
4s

1+2s

≤ C 2
− s

1+2s
2jvǫ,p .
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So, using the continuity of vǫ,p with respect to ǫ, f ∈ B
s

1+2s

2,∞ . Let m′ ≥ m4 and put m := 2m′,

(m′vǫ,p)
−4s
1+2s

∑

j∈N

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(ǫ)‖p ≤ m′tǫ,p

}

=
(mvǫ,p

2

)
−4s
1+2s

∑

j∈N

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(ǫ)‖p ≤
m

2
tǫ,p

}

≤ A2 +A3 +A4,

with

A2 =
(mvǫ,p

2

)
−4s
1+2s

E





∑

j<jvǫ,p

2j−1
∑

k=0

θ2jk1

{

‖θ̂ / Bjk(ǫ)‖p ≤ mtǫ,p

}





≤
(mvǫ,p

2

)
−4s
1+2s

E‖f̃ (t)
p − f‖2

2

≤ C,

A3 =
(mvǫ,p

2

)
−4s
1+2s

E





∑

j<jvǫ,p

2j−1
∑

k=0

θ2
jk1

{

‖θ̂ − θ / Bjk(ǫ)‖p >
m

2
tǫ,p

}





≤ C
(mvǫ,p

2

)
−4s
1+2s

P

(

‖Z(ǫ)‖p >
m

2
tǫ,p

)

≤ C.

The last inequality uses assumption (6) - with c = 2 - and the fact that m ≥ 2m4 ≥ 2m2.

Now

A4 =
(mvǫ,p

2

)
−4s
1+2s

∑

j≥jvǫ,p

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(ǫ)‖p ≤
m

2
tǫ,p

}

≤
(mvǫ,p

2

)
−4s
1+2s

∑

j≥jvǫ,p

2j−1
∑

k=0

θ2jk

≤ C
(mvǫ,p

2

)
−4s
1+2s

2−
s

1+2s
2jvǫ,p

≤ C.

The last inequality holds since we have already proved that f ∈ B
s

1+2s

2,∞ . When combining the
bounds of A2, A3 and A4 and when using the continuity on vǫ,p with respect to ǫ, one deduces

that f ∈ W
(t,v)

2
1+2s

,m′,p
. Following the arbitrary choice of m′ ≥ m4, one gets f ∈ ∩m′≥m4

W
(t,v)

2
1+2s

,m′,p
.

⇐=
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Suppose that f ∈ B
s

1+2s

2,∞ ∩





⋂

m′≥m4

W
(t,v)

2
1+2s

,m′,p



 . For any any m ≥ 2m4 and any 0 < ǫ < ǫv, the

quadratic risk of the estimator f̃
(t)
p can be decomposed as follows:

E‖f̃ (t)
p − f‖2

2 = E





∑

j<jvǫ,p

2j−1
∑

k=0

θ2jk1

{

‖θ̂ / Bjk(ǫ)‖p ≤ mtǫ,p

}





+
∑

j<jvǫ,p

2j−1
∑

k=0

E

[

(θ̂jk − θjk)21

{

‖θ̂ / Bjk(ǫ)‖p > mtǫ,p

}]

+
∑

j≥jvǫ,p

2j−1
∑

k=0

θ2jk + ǫ2

= A5 +A6 +A7.

Since f ∈ B
s

1+2s

2,∞ ∩W
(t,v)

2
1+2s

,2m,p
and due to assumption (6)

A5 = E





∑

j<jvǫ,p

2j−1
∑

k=0

θ2jk1

{

‖θ̂ / Bjk(ǫ)‖p ≤ mtǫ,p

}





≤
∑

j<jvǫ,p

2j−1
∑

k=0

θ2jk1

{

‖θ / Bjk(ǫ)‖p ≤ 2mtǫ,p

}

+ C P (‖Z(ǫ)‖p > mtǫ,p)

≤ C (mvǫ,p)
4s

1+2s .

The last inequality arises from m ≥ m2.

Using the Cauchy-Schwarz inequality and assumption (6)

A6 =
∑

j<jvǫ,p

2j−1
∑

k=0

E

[

(θ̂jk − θjk)21

{

‖θ̂ / Bjk(ǫ)‖p > mtǫ,p

}]

≤
∑

j<jvǫ,p

2j−1
∑

k=0

E

[

(θ̂jk − θjk)21

{

‖θ / Bjk(ǫ)‖p >
m

2
tǫ,p

}]

+C ǫ2 2jvǫ,p P
1
2

(

‖Z(ǫ)‖p >
m

2
tǫ,p

)

≤ C
(

(mvǫ,p)
4s

1+2s + P
1
2

(

‖Z(ǫ)‖p >
m

2
tǫ,p

))

≤ C (mvǫ,p)
4s

1+2s ,

since m ≥ 2m4.
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Since f ∈ B
s

1+2s

2,∞ and vǫ,p satisfies (7)

A7 = ǫ2 +
∑

j≥jvǫ,p

2j−1
∑

k=0

θ2jk

≤ ǫ2 + C 2−
2s

1+2s
jvǫ,p

≤ C (mvǫ,p)
4s

1+2s .

When combining the bounds of A5, A6 and A7 one deduces that

sup
0<ǫ<1

(mvǫ,p)
− 4s

1+2s E‖f̃ (t)
p − f‖2

2 <∞.

This ends the proof.
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