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ABSTRACT 
 

 
Solvency requirements are based on the idea that risk can be accepted if enough 
capital is present.   The determination of this minimum level of capital depends on 
the way to consider and measure the underlying risk. Apart from the kind of risk 
measure used, an important factor is the way to integrate time in the process. This 
topic is particularly important for long term liabilities such as life insurance or 
pension benefits.   
In this paper we study the market risk of a life insurer offering a fixed guaranteed 
rate on a certain time horizon and investing the premium in a risky fund.     
We develop and compare various risk measurements based either on a single 
point analysis or on a continuous time test. Dynamic risk measures are also 
considered.    
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1. Introduction:  
 
Solvency requirements for insurance companies are more than ever of first 
importance in the context of the recent financial crisis and the achievement of 
Solvency 2 rules. One of the most important aspects of Solvency 2 is to recognize 
that risks affecting insurance companies are of different natures and that in 
particular, financial risks are at the heart of the question, especially for life 
insurance companies. Amongst the various financial drivers of risk, equity risk 
plays a very special role. In deed, even if traditionally insurance companies invest 
the biggest part in risk free instruments (bonds, cash,…), a significant proportion of 
premiums are invested in equity in order to boost the returns. Pension funds have 
also important positions in equity.  At the same time, investing in equity is riskier 
and will require more capital. A good equilibrium has to be found between the 
safety of the liability proposed to the clients and the performance of the investment 
strategy.   A pertinent measurement of this market risk is therefore crucial.  In 
particular the influence of the time horizon is a classical question in finance  
( see for instance Bodi(1995),Campbell/Viceira(2002),Lee(1990),Samuelson(1994) 
, Thorley(1995)).     
 
Solvency 2 rules are only based on an annual measure (annual value at risk at 
99.5%). The purpose of this paper is to compare various instruments of solvency 
measure of the market risk, integrating the time dimension and the horizon of the 
liabilities.     
 
In order to integrate time in the process, we have considered 3 different ways to 
check the solvency of the contract.   First, we can consider classical risk measures 
such as value at risk or tail value at risk but applied to the long term risk. 
The idea is then to analyze the form of the needed capital in relation with the 
maturity of the liability. A second approach is based on a continuous check of the 
solvency throughout the duration and not only at maturity or at the end of the year. 
The classical actuarial concept of probability of ruin has been used and 
comparisons can be done with “static” risk measures.  Finally the technique of 
dynamic risk measure can be proposed to obtain time consistent measurement.  
  
The paper is organized as follows. In section 2 we describe the general framework 
of the model in terms of asset and liability structure. Section 3 is based on a static 
risk measurement and analyzes the influence of the time horizon on the probability 
of default at maturity and on the solvency capital using a value at risk or a tail 
value at risk approach.  In section 4, we consider a continuous time measurement 
based on probability of ruin during a whole time interval (and no more at a single 
point) using a similar philosophy as in classical actuarial ruin theory. In section 5 
we move to dynamic risk measures and we compute solvency requirements based 
on iterated values at risk. Section 6 concludes the paper.      
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2. General framework:  
 
In order to capture the market risk of a life insurance contract with guarantee, we 
consider a unit amount of money paid at time t=0 ( single premium) assumed to be 
invested on the asset side in a fund driven by a classical geometric Brownian 
motion . On this amount paid initially by the policyholder we assume the insurer 
will guarantee a fixed return at a fixed maturity t = N (liability side). Being only 
interested in the market risk, we will consider in this paper only pure financial 
products without any mortality effect. The methodology can be easily adapted 
introducing a deterministic life table.  
For N=1, we have a yearly guarantee (horizon of one year as in Solvency 2). The 
guarantee can be nominal (0% guarantee corresponding to the guarantee to pay 
back at maturity the initial premium) or based on a positive return denoted by rG. In 
general we assume:   0rG ≥ . 
  
So the liability at maturity is given by:  
 

                       
NrGe)N(L =                                                                            (2.1)   

              
On the asset side, we denote by A(t) the value of the risky asset at time t, given by 
a geometric Brownian motion:  
 
                       )Nt0())t(wt)2/exp(()t(A 2 ≤≤σ+σ−δ=                   (2.2)  
 
where:           δ =  mean return of the  fund 
                       σ = volatility of the fund 
                       w= standard Brownian motion.  
 
We can easily introduce an asset allocation in order to measure the influence of 
the investment policy on the risk. We consider in this context a continuous 
rebalancing between the risky asset modeled by (2.2) and a riskless asset, 
assuming a deterministic constant risk free rate.  Denoting by:  
 

                       
)10(assetriskyinproportion

ratefreeriskr

≤β<=β

=
  

 
then the new mixed asset becomes:  
 
              ))t(wt)2/r)1(exp(()t(A 22 βσ+σβ−β−+βδ=β            (2.3) 
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3. Static risk measurement  
 
We start our solvency analysis of this product by applying static risk measures 
based on the eventual deficit at maturity of the contract (at time N).   
 
3.1.  Probability of default:  
 
A first interesting question is to look at the probability of default at maturity without 
any extra capital (i.e. the risk to have not enough assets at maturity to pay the 
required liability). In particular we can consider this probability as a function of the 
time horizon N.   This probability can be easily computed: 
 

)1.3()Na(

)
N

))2/(r(N(

)))2/(r(N)N(w(P

)rN)N(wN)2/((P
)e))N(wN)2/(exp((P))N(L)N(A(P)N(

2
G

2
G

G
2

Nr2 G

Φ=

σ
σ−δ−

Φ=

σ
σ−δ−

<=

<σ+σ−δ=

<σ+σ−δ=<=ϕ

                            

           With :       

              
∫
∞−

−

π
=Φ

σ
σ−δ−

=

s
2/t

2
G

dte
2
1)s(

)2/(ra

2
                                                                     (3.2) 

(The number a representing the spread between the guaranteed rate and the 
mean return normalized by the volatility). 
 
For a coherent level of guarantee (compared to the mean return of the asset), this 
spread is negative: 
 
                                                   2/r 2

G σ−δ<  
  
Then the probability of ruin decreases with the time horizon.  
We can conclude here that investing in risky assets such as equities for the long 
run gives better chance to achieve a fixed guaranteed return. This could lead to 
more aggressive strategies for long duration ( Bodie Z. (1995), Campbell /Viceira 
(2002) ).   
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Example 3.1 :  
We will work with the central following scenario:  
- guaranteed rate:                         rG = 2% 
- risk free rate :                              r = 4% 
- mean return of the equity fund :  δ = 7% 
- volatility of the equity fund :         σ=16% 
 
Figure 1  shows the evolution of the probability of default as a function of the time 
horizon N . For this scenario, the probability of default on one year is equal to 
40.81% but on 30 years this probability decreases to 10.14%.  
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                                        Figure  1 :  Probability of default 
 
Remark 3.1. : 
 
We can also look at the influence of the asset allocation on this probability.  
Using a mixed investment strategy, the probability of default, considered now as a 
joined function of the time horizon and the asset allocation becomes:  
 

                  

βσ
σβ−β−+βδ−

=β

βΦ=<=βϕ β

)2/r)1((r)(a

:with
)N).(a())N(L)N(A(P),N(

22
G
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3.2.  Value at risk :  
 
The Solvency 2 framework is based on a quantile measurement.  So we will use in 
this section the value at risk methodology. We introduce the following notations:  
 
SC = initial solvency capital using a value at risk methodology 
VaR = value at risk 
r = risk free rate  
α(N) = chosen safety level for a horizon of N years  ( 99.5% on one year in 
Solvency 2) . 
For this safety level we can for instance choice the following value based on yearly 
independent default probabilities (probability of default of (1 – α) independently 
each year): 
 
                                       N

N )(α=α                                                            (3.3)  
 
Assuming first that the solvency capital is invested in the riskless asset, we can 
define the solvency capital SC as the solution of:   
  
                                      N

rN 1)}N(Le.SC)N(A{P α−=<+  
                                                                       
This probability is given by:  
 

)
N

N)2/(Nr}e.SCln{(

}N)2/(Nr}e.SCln{)N(w{P}ee.SCe{P

2
G

rN

2
G

rN
NrrN)N(wN)2/( G

2

σ
σ−δ−+−

Φ=

σ
σ−δ−+−

<=<+σ+σ−δ

 

So we obtain in this case the following value for the solvency capital: 
 

                                   rN

zNN)2/(Nr

e
eeSC

N1
2

G α−σ+σ−δ−
=                                       (3.4) 

  
where     
 
            β=Φβ= ββ )z(:thatsuchondistributinormaltheofquantilez   
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We can no more conclude here in absolute terms that the risk measure is 
systematically a decreasing function of the time horizon even if a decreasing form 
appears on long term as showed by the following example:    
 
Example 3.2.   : 
 
- safety level on one year :               α=99.5%   
- safety level on N years :                 N

N )(α=α        
 
Figure 2  shows then the evolution of the value at risk as a function of the time 
horizon N  with same assumptions as in example 3.1.  
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                                  Figure 2 : Value at Risk 
 
Remark 3.2. : We could also assume that the initial solvency capital is invested in 
the risky asset (cf. Briys /De Varenne ( 1997)). Then the solvency condition 
becomes:  
 
                        N1)}N(L)N(A.SC)N(A{P α−=<+                                               
 
Similar direct computations lead to the following alternative value for the solvency 
capital SC:  
 

                                          1eSC N1
2

G zN))2/(r(N −= α−σ−σ−δ−
                     (3.5)                  

  
 
Remark 3.3 : as in section 3.1., we could introduce a mixed investment strategy for 
the premium and/or the solvency capital.  
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3.3.  Tail Value at risk:  
 
 Value at risk is a classical tool in risk management and is the reference for Basel 
2 and Solvency 2. But from a theoretical point of view it is well known that value at 
risk presents some important problems (Artzner et all ( 1997)). 
 
The methodology presented above can be easily extended using tail value at risk 
instead of value at risk. Assuming that the solvency capital is invested in the 
riskless asset and denoting by:   
 
 SC = initial solvency capital using a tail value at risk methodology 
 
then we obtain: 
 
 
with 
 
 
 
Then using the properties of the log normal distribution we get:   
 

))Nz(
1

1ee(e

})e)N(A)N(A{Ee(eSC

N

G

N1
2

G

1
N

NNrrN

zNN)2/(NrrN

σ−Φ
α−

−=

<−=

α−
δ−
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Finally: 
 

 ))Nz(
1

1eeSC
N

G
1

N

N)r(N)rr( σ−Φ
α−

−= α−
−δ−

                                    (3.6) 

 
Example 3.3.   : 
 
Figure 3  shows then the evolution of the tail value at risk as a function of the time 
horizon N  with same assumptions as in examples 3.1. and 3.2. The form is similar 
to the value at risk  (first increasing then decreasing on a long term basis).  
 

})V)N(A)N(L)N(A)N(L{E(eSC
N

rN
α

− >−−=

N1
2

G

N

z.NN)2/(Nr eeV α−σ+σ−δ
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                                         Figure 3 : Tail value at risk  
 
 
 
4. Continuous time risk measurement : 
 
The different approaches presented in the preceding section show undoubtedly 
that a horizon effect exists in terms of measurement of equity risk when based on 
solvency tools. We used for this a static risk measurement consisting on a point 
measure only at maturity. Another classical actuarial approach should be to check 
the solvency not only at maturity of the contract but at any time. The purpose of 
this section is to analyze this philosophy inspired by the actuarial classical ruin 
theory.  
 
4.1. Probability of ruin without capital:    
 
We first look at the probability of  ruin without solvency capital given by:  
 
                           [ ]}N,0t),t(L)t(A{P1)N( ∈∀≥−=Ψ                      (4.1) 
 
In order to compute this probability , we have to define the level of liability L(t) not 
only at maturity but also at any time , the asset process being still defined by its 
market value ( 2.2).  
 
4.1.1. Accounting view :  
 
We will first use an accounting view (mathematical reserve approach ) :  
 

                                     
trGe)t(L =                                                           (4.2)  
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Then the probability (4.1) can be  seen as a probability related to the minimum of a 
Geometric Brownian motion along an interval :  
 

              
)1e(minP

)ee(minP)N(
)s(ws)2/r(

Ns0

sr)s(ws)2/(
Ns0

2
G

G
2

<=

<=Ψ
σ+σ−−δ

≤≤

σ+σ−δ
≤≤

                                 (4.3) 

 
We can then obtain the following result : 
  
Proposition 4.1. 
 
Without solvency capital and using the accounting value (4.2) for the liabilities, the 
ruin is sure whatever the mean return of the risky asset is.  
 
Proof:  
This is a direct consequence of the law of the minimum of a Geometric Brownian 
motion ( see for instance Back(2005) ) :  
     If the process S is given by :  

                          )t(wt)2/( 2

e)t(S σ+σ−µ=  
     and if  :           

                         
1L0

)}s(S{minz ts0

≤<
= ≤≤

 

     Then:            )d(.L)d()Lz(P 2

12

1
2 Φ+Φ=≤
−

σ

µ

                           (4.4) 

      with:            t
t)2/(Llnd

2

2,1
σ

σ−µ
=


 

 
Taking L=1 in (4.4) , we obtain for the probability of ruin (4.3) :  
 

        1)
N

N)2/r(()
N

N)2/r(()N(
2

G
2

G =
σ

σ−−δ
Φ+

σ
σ−−δ−

Φ=Ψ  

 
4.1.2.  Surrender view :  
 
Instead of using for the liability valuation the mathematical reserve, we could 
introduce a classical surrender penalization ( see for instance Grosen / Jorgensen 
(2002)) , and alternatively substitute to (4.2) the following form for the liability :   
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trGe).t()t(L ρ=                

 
where the function ρ  is a non decreasing function such that :  
 

                                  1)N(
Nt0for1)t(

=ρ
≤≤≤ρ

 

(1- ρ (t)) representing the surrender charge in case of surrender at time t. 
As example we will use here an exponential form for this penalty (used in some life 
insurance products):  
 

                                     )0(e)t( )tN( >λ=ρ −λ−  
 leading to the following liability function:  
 

                                      t)r(N

tr)tN(

G

G

e.e

e.e)t(L
λ+λ−

−λ−

=

=
                                            (4.5) 

 
Then the probability of ruin (4.3) becomes:     
 

                          )ee(minP),N( N)s(ws)2/r(
Ns0

2
G λ−σ+σ−λ−−δ

≤≤ <=λΨ  
 
  Using the general formula (4.4) we obtain the following result: 
 
Proposition 4.2:  
          
 Without solvency capital and using a negative exponential surrender penalty of 
the form (4.5),  the probability of ruin is given by : 
 
      

)N)/2a(()e()Na(

)
N

N)2/2r(()e()
N

N)2/r((),N(

1
)r(2

N

2
G

1
)r(2

N
2

G

2
G

2
G

σλ−−Φ+Φ=

σ
σ−λ−−δ

Φ+
σ

σ−−δ−
Φ=λΨ

−
σ

λ−−δ
λ−

−
σ

λ−−δ
λ−

                                                                                                                (4.6) 
 
Remark 4.1: the first part of this probability corresponds to the probability of default 
(3.1) only at maturity. The second term reflects the risk of insolvency before 
maturity.  
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4.1.3. Fair valuation of liability:  
 
Another possibility for the liability function is to introduce a fair valuation concept.  
Then the liability at time t can be seen as the present value of the final liability 
discounted at the risk free rate:  
 

                                         
Nr)tN(r Ge.e)t(L −−=  

  

or:                                      
tr)tN)(rr( GG e.e)t(L −−−=  

 
So this expression can be seen as a special case of section 4.1.2 with: 
 
                                          Grr −=λ  
 
 This parameter is strictly positive as prescribed in section 4.1.2. if the risk free 
rate is strictly higher than the guaranteed rate of the product. We can then obtain 
the following corollary of proposition 4.2 :  
 
Corollary 4.1 : 
 
If the liability is measured at its fair value and if the guaranteed rate is less than 
the risk free rate , the probability of ruin without solvency capital is given by :   
 

   )N)/)rr(2a(()e()Na()N( G

1
)r(2

N)rr( 2G σ−−−Φ+Φ=Ψ
−

σ

−δ
−−

       (4.7) 
 
 
4.2. Probability of ruin with riskless  capital:    
  
We assume now that an initial solvency capital SC is injected in the business at 
time t=0 and invested in the riskless asset till maturity.   
Then the probability of ruin (4.1) becomes:        
              

                     [ ]}N,0t),t(Le.SC)t(A{P1)SC,N( rt ∈∀≥+−=Ψ       
  
Using as liability valuation the surrender view of section 4.1.2, this probability can 
be written as:  
 

                     [ ]}N,0t,e.ee.SC)t(A{P1),SC,N( tr)tN(rt G ∈∀≥+−=λΨ −λ−  
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This probability can be once again expressed as a minimum but unfortunately not 
as the minimum of a Geometric Brownian motion:   
                        

)1))e.SCee/(e((minP),SC,N( rtt)r(N)s(ws)2/(
Ns0

G
2

<−=λΨ λ+λ−σ+σ−δ
≤≤   (4.8) 

 
Nevertheless we can obtain an explicit form of this probability if we use a fair 
valuation approach for the liabilities : 
 
Proposition 4.3. 
 
If the liability is measured by its fair value and if the guaranteed rate is less than 
the risk free rate, the probability of ruin with a riskless solvency capital SC strictly 
less than N)rr( Ge −−  is given by:   
 
                                                        

)
N

N)2/r()SCeln(()SCe(

)
N

N)2/r()SCeln(()SC,N(

2N)rr(1)r(2
N)rr(

2N)rr(

G
2G

G

σ
σ−−δ+−

Φ−+

σ
σ−−δ−−

Φ=Ψ

−−−
σ
−δ

−−

−−

    (4.9)     

 Proof : 
The fair valuation approach corresponding to the case Grr −=λ  then  probability 
(4.8) becomes :  

)SCe)e((minP

)1))e.SCee/(e((minP
N)rr()s(ws)2/r(

Ns0

rtt)r(N)s(ws)2/(
Ns0

G
2

G
2

−<=

<−
−−σ+σ−−δ

≤≤

λ+λ−σ+σ−δ
≤≤

 

We can then use directly formula (4.4) with :  
 
          SCeL N)rr( G −= −−  
 
which satisfies the condition  1L0 ≤< taking into account the assumptions of the 
proposition. 
 
Remark 4.2. :  
The condition on the solvency capital just means that the initial capital is less than 
the present value of the total liability at maturity, which seems trivial.  
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4.3. Probability of ruin with risky  capital:    
  
Assuming finally that the initial solvency capital SC is  invested in the risky asset A 
given by (2.2)  till maturity, we obtain for the probability of ruin :   
       

                     [ ]}N,0t,e.e)t(A.SC)t(A{P1),SC,N( tr)tN( G ∈∀≥+−=λΨ −λ−           
 
In this case it is possible to obtain an explicit value of this probability whatever the 
value of λ  is:  
 
Proposition 4.4:   
 
With a risky solvency capital and using a negative exponential surrender penalty of 
the form (4.5),  the probability of ruin is given by : 
 

)
N

N2)SC1ln(Na()
SC1

e(

)
N

)SC1ln(Na()SC,,N(

1)r(2N
2
G

σ
λ++

−−Φ
+

+

σ
+

−Φ=λΨ

−
σ

λ−−δλ−

                             (4.10) 

 
Proof :  
 
The probability of ruin can be written in this case :  

[ ]

))SC1/(e)e((minP

)e)e/))s(A.SC)s(A(((minP

}N,0t,e.e)t(A.SC)t(A{P1),SC,N(

N)s(ws)2/r(
Ns0

Ns)r(
Ns0

tr)tN(

2
G

G

G

+<=

<+=

∈∀≥+−=λΨ

λ−σ+σ−λ−−δ
≤≤

λ−λ+
≤≤

−λ−

 

 
We can then apply directly formula (4.4) to obtain the result.  
 
Remarks 4.3 :  
 
1°) For 0=λ   we obtain the accounting view ( section 4.1.1) and for Grr −=λ , 
the fair valuation ( section 4.1.3). 
 
2°) Formula (4.10) shows the influence of the two possible tools available for the 
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insurer to decrease its probability of ruin: putting a surrender penalty on the 
product and/or injecting an initial solvency capital.  
 
4.4. Computation of the solvency capital :   
 
For a fixed level of solvency capital SC, the formulas developed in sections 4.2 
and 4.3  permit us to compute the corresponding probability of ruin. We could also 
use a reverse methodology and try to determine the level of capital corresponding 
to a maximum accepted probability of ruin (equivalent to section 3.2 in static 
measurement). Taking into account the form of these probabilities of ruin (see for 
instance (4.9) or (4.10)), no explicit solution of the capital can be hoped. Numerical 
procedures must then be applied.  
For instance, in the case of a risky solvency capital, using (4.10), the solvency 
capital SC corresponding to a fixed level of safety Nα  is the solution of the 
following implicit equation: 
 
 

N

1)r(2N

1)
N

N2)SC1ln(Na()
SC1

e()
N

)SC1ln(Na( 2
G

α−=
σ

λ++
−−Φ

+
+

σ
+

−Φ
−

σ

λ−−δλ−

 

This equation can also be written as : 
 

                           1
))SC(d(1

))SC(*d(eSC
/1

N

N −







Φ−α−

Φ
=

Κ

λ−
 

 
with :        

N
N2)SC1ln(Na)SC(*dand

N
)SC1ln(Na)SC(d

1)r(2K 2
G

σ
λ++

−−=
σ
+

−=

−
σ

λ−−δ
=

 

 
 
 suggesting the following recursive algorithm for the computation of SC:  
 

                              1
))SC(d(1

))SC(*d(eSC
/1

1nN

1nN
n −








Φ−α−

Φ
=

Κ

−

−λ−
                     (4.11) 
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5. Iterated risk measurement : 
 
Instead of using only a point approach as in section 3 or a continuous risk 
measurement through a probability of ruin as in section 4, we could introduce an 
intermediate requirement by asking an initial solvency capital  such as to remain 
solvent only at some fixed discrete times (for instance at the end of each year). 
Dynamic risk measures must be then considered; in particular we can work with 
the concept of iterated risk measures (see for instance Pflug / Romisch(2007) or 
Hardy/Wirch (2004)).  
 
5.1. General principle of iterated measurement:  
 
We will use the following notations in this section:  
 

rateriskfreer
)Xonormationinfofarrivaleprogressiv(filtration}Nt0,{

)riskatvaluecetaninsfor(measureriskstatic
NtimeatXrisktheercovtottimeatcapitalsolvency)X(SC

NtmaturityatpaidbetoflowcashstochasticriskX

t

N,t

=
=≤≤ℑ

=ρ

=
===

 

 
Then the initial needed capital at time t=0 using a classical static risk 
measurement is given by the present value of the risk measure (cf. section 3):   
 

                                     )X(.e)X(SC 0
rN

N,0 ℑρ= −
                             (5.1) 

 
With dynamic risk measurement we are now interested to compute the needed 
capital not only at time 0 but for instance at the end of each year.  
Two approaches can be immediately introduced: 
  
- the accumulated approach: successive solvency capitals are just the 
accumulation with interest of the initial capital (assumed to be invested in a 
riskless asset):  
 

                )X(.e)X(SC.e)X(SC 0
)tN(r

N,0
rt

N,t ℑρ== −−
                       (5.2) 

 
 
As suggested by formula (5.2) no additional information is integrated in the 
succesive capitals. 
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- The recalculated approach: the static risk measurement is applied at each time t 
and gives then:  
 

                      )X(.e)X(SC t
)tN(r

N,t ℑρ= −−
                                          (5.3) 

This approach seems to be more time consistent, taking into account the 
progressive arrival of new information on the risk X.  
 
But it could generate during the process unexpected variations of the solvency 
capital.  
 
Then a third approach called the iterated risk measurement, tries to anticipate 
these possible future capital requirements; in this vision, the successive risks are 
no more the future cash flow X but the needed capital at the next period of time. In 
this recursive method we first compute the needed capital one period before 
maturity (we will assume here annual units of time following the accounting rules 
but off course formula can be developed using other time units). 
 
At time t=N-1 we will use the recalculated formula (5.3) : 
          

                                   )X(.e)X(SC 1N
r

N,1N −
−

− ℑρ=  
 
Then at time t=N-2, the solvency capital becomes :  
 

                               )SC(.e)X(SC 2NN,1N
r

N,2N −−
−

− ℑρ=         
 
 In general , at time t :  
                                                  

                                 )SC(.e)X(SC tN,1t
r

N,t ℑρ= +
−

                                  (5.4) 
 
5.2. Application to solvency requirement:    
 
Let us adapt here the value at risk computations of section 3.2 in this iterated 
approach. More precisely we would like to generalize, in a dynamic iterated 
environment, formula (3.4) written as: 
 

                       N1
2

G zNN)2/r(N)rr(
N,0 eeSC α−σ+σ−−δ− −=  
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Proposition 5.1.  
 
The iterated solvency capital at time t (t=0,1,…, N-1) using a value at risk 
approach is given by :  

             11
2

G z)tN()tN)(2/r()tN(rNr
N,t e)t(Ae.eSC α−−σ+−σ−−δ−− −=                       (5.5) 

where A(t) is the asset value at time t .  
 
In particular the initial solvency capital at time t=0 is given by:  
 

               11
2

G NzN)2/r(N)rr(
N,0 eeSC α−σ+σ−−δ− −=                                               (5.6) 

 
These values can be compared with a simple recalculated approach at each time:   

               tN1
2

G ztN)tN)(2/r()tN(rNr
N,t e)t(Ae.eSC −α−−σ+−σ−−δ−− −=                     (5.7) 

 
Proof : 
 
We start the recursive calculation with the capital at time t=N-1. 
This first computation gives by definition a same value as in the recalculated 
approach: 

                               11
2

G z)2/r(rNr
N,1N e).1N(Ae.eSC α−σ+σ−−δ−

− −−=  
 
 Then at time t=N-2, this capital is stochastic because of the presence of the future 
value of the asset. This random variable, seen from time t=N-2 , can be written:  
 

                           ))2t(w)1t(w()2/( 2

e).2t(A)1t(A −−−σ+σ−δ−=−  
So the needed solvency capital at time t=N-1 seen from time t=N-2 is a random 
variable X given by : 
 

                          11
2

G z))2N(w)1N(w(r)2/(2rNr e).2N(Ae.eX α−σ+−−−σ+−σ−δ− −−=  

     The needed capital at time t=N-2 is then the amount  N,2NSC −        such that :  
 
                                   1

r
2N )Xe.SC(P α=≥−     

Or :  
                             

1
z))2N(w)1N(w(r)2/(2rNrr

N,2N ))e).2N(Ae.e(e.SC(P 11
2

G α=−−≥ α−σ+−−−σ+−σ−δ−
−  
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Or:  
 

1
zr)2/(2r

N,2N
rNr ))e).2N(Aln()e.SC.e(ln(1))2t(w)1t(w((P 11

2
G α=−−−

σ
≥−−− α−σ+−σ−δ

−
−

 
So that:  
 

1

11
2

G
1

zr)2/(2r
N,2N

rNr z.)e).2N(Aln()e.SC.eln( α−
σ+−σ−δ

−
− σ=−−− α−  

 
And finally:  
 

                         11
2

G z2)2/r(2r2Nr
N,2N e)2N(Ae.eSC α−σ+σ−−δ−

− −−=  
 
The same procedure can be used recursively to generate all the values (5.5). 
 
Corollary 5.1 : 
 
1°) If we use a same safety level for any time horizon and higher than 50%  :  
                                               2/1s >α=α  
then the iterated approach ( 5.5) gives higher capital requirements than the 
classical approach (5.7). 
 
2°) It is possible to have a same capital level in the 2 approaches if we adjust the 
safety level according to the equilibrium relation:  
 

                                                   
1S 11 z.sz α−α− =  

                                        
 
6. Conclusion  : 
 
Starting from the classical problem of solvency linked to a guaranteed interest rate 
in life insurance and assuming the investment in some risky asset driven by a 
geometric Brownian motion, we have developed various methodologies to 
measure the risk and determine the solvency capital requirement. More precisely 
we have compared 3 different approaches:  
- a static approach based on a risk measure on the final position of the insurer; 
- a continuous approach based on the probability of ruin during all the life of the 
contract;  
- a dynamic approach based on iterated risk measures on annual successive risks.  
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These different results illustrate the importance of considering in the capital 
requirement computation, not only the kind of risk measure used but also the way 
to integrate the time horizon.    
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