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1 Introduction

The econometric literature on electricity markets has mainly focused on analyzing and modeling
the behavior of spot prices. For example, Carnero et al. (2007) use fractional integration to capture
the long memory nature of electricity spot prices. Haldrup and Nielsen (2006) suggest a Markov
regime-switching model with three regimes to reflect directional congestion. De Jong and Schneider
(2009) analyze cointegration between gas and power spot prices. Bosco et al. (2010) analyze the
interdependences between power spot prices of six European markets.

However, due to the intrinsic nature of electricity - non-storability, transmission constraints,
seasonality and weather dependence, power stack function - futures represent a larger market than
spot trading. Energy risk management uses futures to hedge against spot price risk but futures are
also a substitute to spot trading for investors willing to take positions in power markets without
the underlying physical constraints. The behavior of power prices is very specific and the absence
of an empirical relationship between spot and futures time series motivates a separate model for
forecasting futures prices.

In this paper, we are interested in understanding the volatility and the correlation structure
of three futures contracts corresponding to different maturities. Recent developments in the do-
main of GARCH models deal with changes in levels of volatilities and correlations, either through
regime shifts or through smooth evolutions. Engle and Rangel (2008) decompose the variance of
returns into low-frequency and high-frequency components where the low-frequency component is
approximated by spline functions and the high frequency component is a GARCH process. The
factor-spline GARCH-DCC model of Rangel and Engle (2009) is a multivariate extension that al-
lows conditional correlations to mean revert toward a slowly changing function within a factor
asset pricing framework. In the multivariate multiplicative volatility model of Hafner and Linton
(2010) the covariance matrix is decomposed into unconditional and conditional components where
the unconditional component is estimated nonparametrically and the conditional component is a
BEKK process. We propose a new multivariate volatility model that allows for smooth changes
in the unconditional volatilities and correlations. The unconditional covariance matrix is specified
nonparametrically as a smooth function of time and is estimated using a kernel estimator, while
the conditional component is specified as a DCC process. The proposed model can be viewed as
an extension of the multiplicative model of Hafner and Linton (2010) to the DCC case. We show
that this extended version of the DCC model is not subject to the inconsistency problem revealed
by Aielli (2009) for the standard DCC model of Engle (2002).

The multiplicative DCC model is applied to a set of futures contracts written on the index of the
European Energy Exchange (EEX). We show that the evolution of the nonparametric unconditional
covariance coincides with long-term trends in the power sector. The standardization of returns
with this unconditional component allows identifying new variables exclusively affecting short term
movements in conditional volatilities and correlations. Inspired by the model of Haldrup and Nielsen
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(2006), we adapt a congestion model to account for transmission shocks in the volatility of electricity
futures. Our congestion model for volatilities also accounts for the seasonality attached to the
delivery date of short-term contracts. More flexibility in the modeling of conditional correlations
is reached with the generalized DCC model of Hafner and Franses (2009). We also show that the
forecasting performance is improved compared to the conditional correlation model that ignores
long-term trends.

The paper is structured as follows: in Section two, we provide a description of electricity markets
with the example of the EEX market. In Section three, we present the data of EEX futures prices
that we use and a vector-error correction model that serves to filter the series for their co-movements
in means. In Section four, the results of standard DCC estimation are discussed. In Section five,
our new multiplicative DCC model is introduced. We apply this model to EEX futures in Section
six. In the next section, we discuss the forecasting performance of the new model compared to the
standard DCC process, and in the last section we conclude.

2 Electricity markets: the EEX case

The oldest electricity wholesale trading market is the Scandinavian Nord Pool market that was the
first to introduce electricity futures contracts (Borovkova and Geman (2006)). Most papers dealing
with electricity prices are referring to Nord Pool prices because of the exemplary efficiency of the
market and the availability of price series over long time horizons. Besides, the European Energy
Exchange (EEX) has recently become the leading energy exchange in continental Europe in terms of
sales and number of trading participants (see www.eex.com). EEX is the result of a merger between
the power exchanges in Leipzig and Frankfurt in 2002. Now based in Leipzig, the exchange is a
platform for trading in power, natural gas, emission rights and coal.

In 2008, the EEX power spot market concluded a joint venture with its French counterpart
Powernext to create the EPEX spot market for France, Germany/Austria and Switzerland. The
European Electricity Index (ELIX) was launched in October 2010 as the new market index in an
integrated European market. However, we prefer to use a more established index that has become
the reference in Germany and most of Europe: the Physical Electricity Index (Phelix). Phelix Base
is the arithmetic mean of twenty-four spot prices, each characterizing in Euros the price of one MWh
today delivered the next day in the market area Germany/Austria. To take account for intraday
seasonality, Phelix Peak is the average of the twelve peak load hour spot prices from 8 am until 8
pm for the same market area.

Spot prices are determined through daily auctions by matching supply and demand curves.
These curves have very specific shapes due to the intrinsic nature of electricity. The supply curve
for electricity is constructed such that each generation unit is stacked, ranked from the lowest
(hydropower and nuclear plants) to the highest (less efficient plants and peakers) marginal generation
cost. The resulting curve is also called power stack function or merit order of electricity. The
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characteristic of this curve is its convexity at the right hand side since it becomes steeper when
production moves to more expensive generation units during peak hours for example. The shape of
the supply curve is therefore mainly technology-driven (plant efficiency) but economic factors like
the price of primary energies (e.g. gas, oil, coal) can also have an impact either on the level of the
curve (general price movement) or on the merit order. On the demand side, the level of demand is
sensitive to weather and human activity such that it exhibits daily, weekly and yearly seasonality.
Despite the recent deregulation and the following increase of competition in electricity markets, the
demand curve remains inelastic, as electricity is an essential commodity for human activity.

Because electricity is non-storable, supply and demand have to match at any time. In commodity
markets the mean reversion rate of prices is a function of the speed of adjustment of the supply
side to ’events’ in the market (Pilipovic (2007), p. 24). For this reason, power spot prices tend to
exhibit very strong mean reversion and high volatility. Because of the convex shape of the power
stack function, spot price jumps tend to occur more frequently to the upside followed by a rapid
opposite movement towards the mean level. These jumps are caused by physical events like plant
outages creating sudden abrupt changes in the shape of the power stack function, or heat waves on
the demand side. As a result, jumps are expected to happen at a certain frequency as a natural
behavior of the price series.

Another important specificity of the electricity market is its transmission network as there is
no alternative to it for the transportation of electricity. Transmission constraints between intercon-
nected regions exist and may also impact strongly the price dynamics as suggested by Haldrup and
Nielsen (2006). Indeed, the price formation is different whether there is congestion or not between
interconnected zones operated by different Transmission System Operators (TSO).1 For example,
Germany/Austria is considered as a joint market area except in case of congestion between TSO
zones2 where spot prices are determined by means of separate auctions for each zone.

Next to the spot market, EEX operates a market for power derivatives in Germany and France.
Power derivatives are traded both over-the-counter (OTC) and on exchanges. Though OTC trans-
actions represent the largest volume in the EEX market, we are interested in standardized contracts
for their high liquidity and the transparency of their prices. Futures with cash settlement (Phelix
futures), futures with physical settlement (Power futures) and options on financial futures (Phelix
options) are traded on EEX. Phelix futures are written on Phelix Base or Phelix Peak indices.
For Power futures the delivery of power during base or peak load hours at a specified TSO zone
constitutes the underlying.

Several reasons lead to an increasing interest in electricity futures. First, futures are used by risk
management to hedge against spot price fluctuations during the delivery period. Indeed, futures

1The TSO is an independent organization responsible for the efficient supply of the total demand of electricity in
a particular region. After the deregulation and the following unbundling of vertically integrated power companies in
Europe, the TSO remains a regulated entity in order to ensure non-discriminatory access to the grid.

2Amprion GmbH, Transpower Stromübertragungs GmbH, 50hertz Transmission GmbH, EnBW Transportnetze
and Austrian Power Grid.
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contracts are a way to lock the price in advance for the planned generation/consumption of the year,
the quarter, the month and the week with the recent introduction of Phelix week futures so that
spot trading is only used to optimize the procurement and sale of power in the short run. Then,
futures are also the most natural vehicles to trade power for investors willing to take positions in
the market without the physical constraints linked to electricity. For these reasons, the portfolio of
electricity ’investors’ is mainly consisting of futures.

3 Phelix futures prices: data description and cointegration analysis

3.1 Data description

We consider the price series of three Phelix baseload futures contracts traded on EEX corresponding
to monthly, quarterly and yearly maturities with respective delivery periods. The futures are traded
for the current and the next nine months (month future), for the next eleven quarters (quarter future)
and for the next six years (year future). It seems however relevant to focus on front contracts that
account for the majority of futures trading activity at EEX (Wilkens and Wimschulte (2007)).
Month contracts are fulfilled by cash settlement where the settlement price is the Phelix Base
monthly index, the arithmetic mean of Phelix Base indices for the delivery month. Quarter and
year futures contracts are fulfilled by cascading. Cascading means the automatic splitting of long
term contracts into contracts with the next shortest maturity/delivery period which together total
the volume of the long term contract (Geman (2005), p. 274). For example, three trading days
before January 2005 the 2005-year future is divided into three-month futures for January, February
and March and three quarter futures for the second, third and fourth quarters. Then, three trading
days before April the second quarter contract is divided into April, May and June futures contracts
with cash settlement, etc.

The database consists of three daily price series composed of successive nearest contracts over
the period 07.01.2002 until 04.14.2010 (yielding 1963 observations).3 The month futures price series
is constructed such that the nearest contract month forms the first values for the continuous series
until the first business day of the actual contract month. The quarter and year futures series are
also composed of nearest contracts but the contract switch over is made on the cascading day. These
continuous futures prices and returns (adjusted for contract switches) are depicted in Figure 1.

Table 1 contains descriptive statistics for the percentage returns of Phelix Base monthly index
and Phelix Base futures prices where the first four lines give the empirical correlations. We notice
the extremely high excess kurtosis of the returns on the index compared to futures returns due to
the presence of jumps. As expected, we also observe a decrease in the standard deviations of returns
when maturity increases from one day (spot index) to one year (year future). However, a linear
relationship between spot and futures returns is not observed; correlations are negative and close to

3Source: Datastream. Series codes: EBMCS00, EBQCS00, EBYCS00.
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zero.4 The absence of a clear-cut relationship between observed spot and futures returns motivates
our choice to consider a model for forecasting futures returns separately from the spot market.
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Figure 1: Phelix futures prices and returns (month, quarter, year future)

Phelix Base Month Future Quarter Future Year Future
Phelix Base 1
Month Future -0.005 1
Quarter Future -0.032 0.791 1
Year Future -0.051 0.559 0.773 1

Mean -0.014 -0.118 -0.008 0.025
St. Deviation 7.871 2.383 1.462 1.098
Skewness -1.773 -0.131 -0.149 -0.176

Excess Kurtosis 32.841 4.467 3.541 6.952

Table 1: Descriptive statistics of spot and futures returns (1962 observations). The upper panel
shows the sample correlation matrix.

3.2 Cointegration in Phelix futures prices

To simplify estimation, we opt for a two-step approach. In the first step, we model jointly the
conditional means of futures log-prices. In the second step (see next Sections) we model the volatility
and correlation structure of the residuals of the first step.

Unit root augmented Dickey-Fuller tests applied to the log prices confirm the three series to be
integrated of order one and their first differences to be stationary. This result suggests the possible
existence of cointegrating relationships between log prices. To filter the series from possible co-
movements in the conditional means, we use a vector error correction model (VECM). Based on a

4A possible explanation for the negative correlations comes from the very weak persistence of spot price jumps
(implied by a strong mean reversion rate). Hence, when a spot jump induces a jump in futures prices (of less
amplitude) the price of the futures contract tend to remain at this higher level for a certain period whilst the spot
automatically reverts towards a mean level on the next day.
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lag-structure analysis of log prices, we specify the following VECM:

∆yt = Πyt−1 + Γ∆yt−1 + ut, ut ∼ IN(0,Ω),

where yt = (yMt yQt yY t)′ is the vector of log prices for different maturities.5 The long-run
matrix Π can be factorized into αβ′ where α (of dimension 3×r) contains the speed of adjustment to
disequilibrium coefficients and β (of dimension 3× r) contains the coefficients of the r cointegration
relationships such that β′yt is stationary. The trace rank test of Johansen (1991) indicates the pres-
ence of two cointegration vectors. The matrices α and β are identified by imposing β = (I2 B′)′ .
Their maximum likelihood estimates are:

β̂ =

 1 0
0 1

−0.898 −0.960

 α̂ =

 −0.010 0.016
−0.004 0.009
0.000 0.001

 .

Given the p-value of 64% for the likelihood ratio test, we conclude that the last row of the alpha
matrix (α31 α32) is not rejected to be null. Year futures returns are therefore not subject to error-
correction, and can be interpreted as the common trend of the system. Integrating this restriction,
we get β̂1 = (1 0 −0.91) and β̂2 = (0 1 −0.968) as estimated cointegration vectors.

As parsimonious VECM model (after removing non significant variables at the 5% level) we get

∆yMt = 0.066
(0.092)

+ 0.121
(0.033)

∆yMt−1 − 0.010
(0.004)

β̂′1yt−1 + 0.014
(0.005)

β̂′2yt−1 + εMt

∆yQt = 0.028
(0.052)

+ 0.15
(0.028)

∆yQt−1 − 0.003
(0.002)

β̂′1yt−1 + 0.006
(0.002)

β̂′2yt−1 + εQt

∆yY t = 0.026
(0.025)

+ 0.071
(0.021)

∆yQt−1 + εY t,

where White’s heteroskedastic consistent standard errors are reported in parentheses. Note that we
keep the non-significant constants in the equations to obtain zero-mean residuals for the next step
devoted to multivariate volatility modeling.

Multivariate GARCH modeling of the covariance matrix of the above VECM residuals is princi-
pally motivated by two observations. First, the autocorrelation functions of squared residuals show
evidence of dependence that could be typically captured in a GARCH model. Second, the high
positive correlations between the residuals - 0.56 for month-year futures, 0.77 for quarter-year, and
0.79 for month-quarter - give a clear incentive to consider a joint model for the volatility of the
series.

5Note that yt−1, like the returns, is adjusted for contract switches.
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4 Standard DCC models

Multivariate GARCH models are increasingly used thanks to recent progresses in their specification,
the associated inference tools, and their increased availability in econometric software; see Bauwens
et al. (2006), Silvennoinen and Teräsvirta (2009) for surveys of these models. For electricity fu-
tures as much as for other financial returns, understanding the co-movements in their second-order
moments is of great practical importance for portfolio and risk management purposes. Portfolio al-
location, risk measures and hedging strategies can be significantly improved by taking into account
the co-volatilities between futures of different maturities.

In the following, we consider the vector εt of "demeaned" return series of electricity futures
which are the VECM residuals of the previous section. In general, a multivariate GARCH model
for T observations on a vector εt of n elements is defined by

εt = H
1/2
t zt, zt ∼ iid(0, In), t = 1, 2, . . . , T, (1)

where H1/2
t is any n × n full rank matrix such that Var(εt|Ft−1) = H

1/2
t (H1/2

t )′ = Ht. The model
definition is completed by specifying the information set Ft−1 and the way in which the conditional
covariance matrix Ht depends on Ft−1 through a finite number of parameters. By default Ft−1 is
the sigma field generated by {εt−1, εt−2, ...} but it may be augmented by additional variables as we
do in Section 6.2.

Different specifications for Ht were tested and a ranking according to Bayesian and Akaike
information criteria revealed the Dynamic Conditional Correlation (DCC) model of Engle (2002)
and the corrected Dynamic Conditional Correlation (cDCC) model of Aielli (2009) to outperform
other models for the εt series of residuals obtained in the previous section. For this reason, the
results we present in this paper are based on this class of models though we do not reject the
possibility that other models may perform better, for example when the number of series increases.

In conditional correlation models the conditional covariance matrix Ht is expressed as Ht =
DtRtDt where Dt = diag

(
h

1/2
11t , ..., h

1/2
nnt

)
is a matrix collecting the univariate conditional volatilities

on its diagonal and Rt is a correlation matrix. If the distribution of zt in (1) is assumed Gaussian, the
DCC model allows for a two-stage estimation procedure, where in the first stage the parameters of
the univariate conditional variance processes are estimated, and in the second stage the parameters of
the conditional correlation process are estimated conditionally on the parameter estimates obtained
in the first stage.

In the first stage, we notice that information criteria decrease when replacing the standard
GARCH specification by the asymmetric GARCH model (GJR) of Glosten et al. (1993). The
conditional variance hiit following a GJR process is defined as

hiit = ωi + αiε
2
it−1 + βihiit−1 + γiε

2
it−1I{εit−1<0} (2)
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where I{εit<0} is a dummy variable equal to one when the past shock is negative, αi, βi ≥ 0, and
αi + βi + 0.5γi < 1. The parameter γi is expected to be positive in equity markets and is usually
interpreted as the leverage effect parameter where the conditional volatility is affected more strongly
by negative shocks (εit < 0) than positive shocks of the same size. The negative sign of the estimated
GJR parameter for month and quarter futures in Table 2 (left part) suggests the presence of an
“inverse leverage effect” where positive shocks to returns amplify the conditional variance more than
negative shocks. The absolute value of the estimate of γ is decreasing with the maturity and γ is not
significant for the year future. Knittel and Roberts (2005) also find this effect on power spot prices
from California. They attribute the inverse leverage effect in electricity returns to the convexity
of the power stack function where positive demand shocks have a larger impact on price volatility
than negative demand shocks.

GJR (eq (2)) GJR (eq (4))
Month Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.068 0.028 - -
ARCH (α) 0.232 0.037 0.296 0.032
GARCH (β) 0.836 0.024 0.724 0.034
GJR (γ) -0.126 0.032 -0.164 0.033

Log-likelihood: -3862.30 -2293.23

GJR (eq (2)) GJR (eq (4))
Quarter Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.020 0.008 - -
ARCH (α) 0.215 0.030 0.211 0.027
GARCH (β) 0.838 0.020 0.755 0.029
GJR (γ) -0.087 0.029 -0.093 0.032

Log-likelihood: -3019.41 -2420.46

GJR (eq (2)) GJR (eq (4))
Year Baseload Future Coefficient Std. error Coefficient Std. error

Cst (ω) 0.006 0.004 - -
ARCH (α) 0.159 0.024 0.136 0.013
GARCH (β) 0.856 0.023 0.823 0.018

Log-likelihood: -2393.37 -2303.15

Table 2: Conditional variance parameter estimates for εt (eq (2), left part) and ξt (eq (4), right
part). Sample period: 01.09.2003-04.14.2010 (1831 observations)

Despite the negative GJR parameters, the estimates imply non-existence of the unconditional
variances (α + β + γ/2 > 1). We suspect the persistence to be overestimated due to a changing
unconditional variance over time. Extensions of the univariate GARCH model to deal with spurious
persistence have been proposed, such as component (Engle and Lee (1999); Bauwens and Storti
(2009)), regime switching (Haas et al. (2004b); Bauwens et al. (2010)), mixture (Haas et al. (2004a))
and spline (Engle and Rangel (2008)) GARCH models.
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The second stage is devoted to the estimation of conditional correlation parameters. The DCC
structure is defined by

Qt = (1− a− b)Q̄+ aut−1u
′
t−1 + bQt−1 (3)

where a+b < 1, a, b ≥ 0, uit = εit/
√
hiit are the "degarched" errors, Qt is a n×n symmetric positive

definite matrix, Q̄ is a parameter matrix and it is assumed that Q̄ = E(utu′t). Then correlations are
obtained by transforming this to

Rt = (diagQt)−1/2Qt(diagQt)−1/2.

However, Aielli (2009) proved the estimation of Q̄ by the empirical covariance of ut to be
inconsistent since

E(utu′t) = E
(
E
(
utu
′
t|Ft−1

))
= E (Rt) 6= E (Qt) .

Aielli proposes a corrected specification of Qt :

Qt = (1− a− b)Q̄+ aũt−1ũ
′
t−1 + bQt−1

where ũt = Ptut and Pt = diag
(
q
1/2
11t , ...q

1/2
nnt

)
= (diagQt)1/2, so that, by construction, Q̄ is the

unconditional covariance of ũt.
The DCC and cDCC models are however empirically very similar.6 Table 3 collects the second

stage estimation results for the parameters of the DCC model. Only a slight increase of the likelihood
function to 1952.83 is observed for the cDCC model and the measure for the persistence of shocks
in correlations is high (a+ b is close to one) in both models.

DCC Coefficient Std. error
Q̄MQ 0.795 0.020
Q̄MY 0.621 0.034
Q̄QY 0.808 0.021
a 0.044 0.013
b 0.915 0.030

Log-likelihood: 1949.18

Table 3: Standard DCC parameter estimates (eq (3)). Sample period: 01.09.2003-04.14.2010 (1831
observations)

Some empirical results tend to underline the need for a more flexible modeling of the condi-
tional correlations too. For example, bivariate estimations lead to very different parameters for the
dynamics of each pair of correlations. Besides, estimations on time subsamples give different con-
stant correlation levels. We are therefore interested in introducing flexibility in these two directions;

6As for the conditional variances, the standard (c)DCC process for conditional correlations may be improved
allowing for asymmetries (Cappiello et al. (2006)). The presence of asymmetries in Phelix futures correlations is
however not significant at the 5% level.
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allowing for asset-specific correlation dynamics and time-varying unconditional correlation levels.
Developments of this kind are recent and show the growing interest of flexible modeling of con-
ditional correlations. On one hand, asset-specific parameters for dynamic conditional correlations
have already been introduced with the quadratic flexible DCC model of Billio and Caporin (2009)
and the generalized DCC model of Hafner and Franses (2009). On the other hand, several models
deal with changing levels in constant correlations like the regime switching dynamic correlation
model of Pelletier (2006), the component DCC model of Colacito et al. (2009), the smooth transi-
tion conditional correlation model of Silvennoinen and Teräsvirta (2005), the factor-spline-GARCH
DCC model of Rangel and Engle (2009), and the multivariate multiplicative volatility model of
Hafner and Linton (2010).

Evidence from first and second stage estimation, such as the extreme persistence, suggests a
model that allows for smooth changes in the unconditional volatilities and correlations of electricity
futures. These changes are induced by different factors affecting the market environment or the
market structure like changing energy prices, growing market size, new technologies or the arrival of
new market participants, new products, etc. In the model of Hafner and Linton (2010) the covariance
matrix Ht is decomposed into conditional and unconditional components where the unconditional
component is a deterministic function of time estimated by a kernel method and the conditional
component is a BEKK model. However, we prefer to keep the DCC structure for the conditional
covariance matrix since it was shown to perform significantly better in terms of fit. In the next
section, we present a new multiplicative model that extends the multivariate multiplicative volatility
model of Hafner and Linton (2010) to the DCC framework.

5 Multiplicative DCC model

Before applying it to electricity futures, we define the multiplicative DCC (mDCC) model in its most
general form. The idea is to decompose the conditional covariance matrix of εt into an unconditional
component that can change smoothly through time, and a conditional component that captures the
short-run dynamic structure typical of multivariate GARCH processes.

To achieve this, the square root matrix H1/2
t in (1) is itself written as the product of two square

root matrices Σ(t/T )1/2 and G1/2
t such that

Ht = Σ(t/T )1/2G1/2
t (G1/2

t )′[Σ(t/T )1/2]′ = Σ(t/T )1/2Gt [Σ(t/T )1/2]′

is positive-definite, symmetric, and of full rank. The matrix Gt is specified as a DCC process to
capture the short run GARCH dynamics. By assuming, for identification, that E(Gt) = In, it
follows that

Var(εt) = E(Ht) = Σ(t/T )1/2[Σ(t/T )1/2]′ = Σ(t/T )

so that Σ(t/T ) is the unconditional "long run" covariance matrix that is assumed to be a determin-
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istic and smooth function of time.
The idea behind this formulation is to combine the estimation by kernel of the long run covariance

matrix with maximum likelihood estimation of the short run parameters in Gt. By further splitting
the latter into the two usual estimation stages of the DCCmodel, the estimation procedure comprises
three stages where an initial stage is added for the estimation of the unconditonal covariance.

In the first stage, the unconditional covariance matrix is estimated by the Nadaraya-Watson
estimator

Σ̂(τ) =
∑T

t=1Kh

(
t
T − τ

)
εtε
′
t∑T

t=1Kh

(
t
T − τ

)
where τ ∈ [0, 1], Kh(·) = (1/h)K(·/h), K(·) is a kernel function, and h is a positive bandwidth
parameter. Unconditional correlations are then estimated by

ρ̂ij(τ) =
Σ̂ij(τ)√

Σ̂ii(τ)Σ̂jj(τ)
.

The standardized returns derived from the first stage estimation, defined by

ξt = Σ̂(τ)−1/2εt,

have asymptotically as unconditional covariance an identity matrix, and as conditional covariance
the matrix Gt, i.e. E(ξtξ′t) = In and E(ξtξ′t|Ft−1) = Gt.

In the second stage, the conditional variance parameters for the elements of ξt are estimated by
maximum likelihood. Like for the standard DCC model, any univariate GARCH process satisfying
appropriate stationarity conditions and non-negativity constraints can be used. We shall use for our
application in Section 6 the GJR model as in (2) with ξit replacing εit and imposing a unit variance:

giit = (1− αi − βi − 0.5γi) + αiξ
2
it−1 + βigiit−1 + γiξ

2
it−1I{ξit−1<0}, (4)

where giit = Var(ξit|Ft−1). The Gaussian log-likelihood for stage two is

l2 = −1
2

n∑
i=1

T∑
t=1

[
log(giit) +

ξ2it
giit

]
.

The second-stage "degarched" residuals, defined by

ut = D−1
t ξt,

where Dt = diag
(
g
1/2
11t , ..., g

1/2
nnt

)
, have consequently an identity matrix as unconditional covariance

matrix and unit conditional variances but are conditionally correlated, i.e. E(utu′t) = In and
E(utu′t|Ft−1) = Rt, where Rt is the conditional correlation matrix.
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In the third stage, the parameters of the conditional correlation matrix are estimated. The
proposed dynamic correlation structure is a DCC model for the second-stage residuals

Qt = (1− a− b)In + aut−1u
′
t−1 + bQt−1, (5)

where a+ b < 1 and a, b ≥ 0, and the conditional correlations are obtained from

Rt = (diagQt)−1/2Qt(diagQt)−1/2.

This DCC model à la Engle is not subject to Aielli’s critique, since

E (Qt) = (1− a− b)In + aE(ut−1u
′
t−1) + bE (Qt−1) = In

as E(ut−1u
′
t−1) = E(utu′t) = In by construction. However a cDCC version, with ũt−1 = Ptut−1

replacing ut−1 in equation (5), where Pt = (diagQt)1/2, can also be used and has the same property.7

The Gaussian log-likelihood for stage three is

l3 = −1
2

T∑
t=1

[
log (|Rt|) + u′tR

−1
t ut − utu′t

]
.

Finally, if the model is correctly specified, both unconditional and conditional covariance matrices
of the third-stage residuals ẑt = Ĥ

−1/2
t εt are asymptotically equal to the identity matrix, which can

be used for misspecification diagnostics.

6 Application to Phelix futures

6.1 Smoothly time-varying unconditional covariance matrix

The proposed mDCC model allows for a long-term component that is slowly changing over time.
The bandwidth parameter h serves to identify long term and short-term movements. The smaller
the bandwidth, the larger the size of movements that is captured by the long-term component and
the smaller the amplitude of short-term conditional movements.

Several procedures are available to select the bandwidth based on the minimization of quadratic
error measures for a regression curve. For nonparametric regression, a common criterion for choosing
the optimal bandwidth is the least squares cross-validation criterion. Härdle (1990) shows that
the procedure amounts to choosing the bandwidth that minimizes the sum of squared differences
between model predictions and observed data, where small values for the bandwidth are penalized.8

Since the long-term covariance matrix is not observed, we take a six-month rolling covariance as
the reference for the computation of squared differences. The optimal bandwidth is the bandwidth

7Indeed, E (Qt) = (1 − a − b)In + aE(ũt−1ũ
′
t−1) + bE (Qt−1) with E(ũt−1ũ

′
t−1) = E [E(Pt−1ut−1u

′
t−1P

′
t−1|Ft−2)]

= E [Pt−1Rt−1P
′
t−1] = E (Qt−1) and E (Qt−1) = E (Qt) imply that E (Qt) = In.

8As penalty function we use Rice’s T , defined as ΞT (u) = (1− 2u)−1.
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that minimizes this criterion and is equal to 0.05 for a Gaussian kernel.
To assess the quality of fit of long-term variances and correlations, estimated unconditional levels

are compared with alternative measures of long-term variances and correlations. In Figures 2 and
3, we compare estimated unconditional variances and correlations (black smooth lines) with their
six-month realized levels (black dots) and their six-month rolling levels (black discontinuous lines).
The light grey lines are the total levels of variances and correlations including unconditional and
conditional components. In Figure 4, we present pointwise confidence bands (black dashed lines)
at 95% confidence level for the kernel estimator of the covariance as defined in Härdle (1990, p.
127). The level of confidence intervals gives a clear indication to reject the hypothesis of constant
unconditional variance and covariance levels.

2003 2004 2005 2006 2007 2008 2009 2010

25

50

75 sig(MM) 
6­month rolling variance M 

Var(M) 
6­month realized variance M 

2003 2004 2005 2006 2007 2008 2009 2010

10

20 sig(QQ) 
6­month rolling variance Q 

Var(Q) 
6­month realized variance Q 

2003 2004 2005 2006 2007 2008 2009 2010

5

10

15

20
sig(YY) 
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Figure 2: Unconditional variances (month, quarter, year future). The nonparametric unconditional variance
of futures contracts of maturity i is sig(ii) = Σ̂ii,t. The estimated total variance of contract i is V ar(i) =
Ĥii,t.
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Figure 3: Unconditional correlations (month-quarter, month-year, quarter-year). The nonparametric un-
conditional correlation between contracts of maturity i and contracts of maturity j is rho(i, j) = ρ̂ij,t for
i 6= j. The estimated total correlation between contracts i and j is Cor(i, j) = Ĥij,t/(Ĥii,tĤjj,t)1/2 for i 6= j.

Changing regimes in variances and covariances should coincide with structural changes in power
markets. Figure 5 shows the annual growth of the total volume of electricity consumed in Germany
from 2004 to 2009.9 The period of high demand growth of 2006-2008 has led to increasing trading
volumes of derivatives on the EEX market. While the decline of consumption after 2008 may
be attributable to the downturn of the industrial sector after the 2008 financial crisis, the period
of consumption growth between 2005-2008 is mainly driven by residential and tertiary sectors.
According to a report published by the Joint Research Center of the European Commission,10 the
increase of residential consumption in the European Union is due to many factors among which
the widespread use of traditional appliances (refrigerators, dishwashers, personal computers, etc.)
and the introduction of new consumer electronics and information and communication technology
equipment. As already mentioned, positive demand growth has an impact on the volatility of
electricity prices. Like for other commodities, higher volatility may be caused by a probable shortage
of the resource. For electricity, a shortage is implied by generation and transmission constraints. As
a result, month and quarter futures display a mode in their variances and covariances in 2007; a year

9Source: Datamonitor, Electricity in Germany: industry profile, October 2008 and August 2010 (ref. 0165-0663).
10Source: JRC, Electricity Consumption and Efficiency Trends in the Enlarged European Union - Status Report

2006 - (ref. JRC36429).
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of maximal demand growth in Germany. More generally, the period 2006-2008 witnesses both high
power consumption growth in Germany and high variances/covariances for all futures products.
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Figure 4: Unconditional covariance (h = 0.05) and confidence intervals. The unconditional covariance of
contracts i and j is sig(ij) = Σ̂ij,t for all i, j.
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Figure 5: German electricity consumption volume growth

In 2009, we observe a volatility bump in quarter and year futures, and in their co-volatility,
see Figure 6. On the same figure, we observe a similar pattern in the volatilities of the S&P 500
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index and of the Brent spot price11 following the 2008 financial crisis. Nonparametric estimates of
variances of S&P 500 and Brent spot returns12 are taken as proxies for the volatility of financial and
oil markets, respectively. The volatility of S&P 500 reached extreme levels after the announcement
of Lehman Brothers bankruptcy in September 2008. The following economic recession caused oil
prices to plummet after a long-term trend of slowly increasing prices. This sudden drop induced a
maximal volatility of Brent returns in late 2008/early 2009 corresponding to the volatility bump we
observe for quarter and year Phelix futures. As a result, the 2009 bump observed for the volatility of
quarter and year electricity futures is related to the high volatility of oil prices during the 2008/2009
recession period.
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3 sigQQ 
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Figure 6: S&P500 and Brent spot variance estimates compared to estimates of unconditional variances of
quarter and year futures and their covariance.

The consumption growth and the economic recession are certainly not the unique elements to
explain the long-term level of the variances and covariances of electricity futures. Other long-term
factors may be responsible for these changes, like political decisions in favor of ’cleaner’ electricity,
the level of primary energy prices, the launch of new generation technologies or the introduction of
emission rights changing the merit order, a raising awareness of resource scarcity affecting the risk
aversion of investors, new regulations ensuring the independence of TSOs, etc. The arrival of new
market participants, new financial products, mergers, acquisitions and other alliances also change
the market structure by rebalancing the actual forces governing the market. The integration of
European power exchanges like the merger of German and French spot exchanges in 2008 may also

11Source: U.S. Energy Information Administration (EIA).
12Estimated with a Gaussian kernel, with h=0.05
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have impacted the variance-covariance levels of futures. Risk aversion, market power or the impact
of some market trends are however hard to measure quantitatively. For this reason, the mDCC
model is convenient as it is exclusively based on data evidence and does not require identifying and
measuring the variables influencing the long-term level of the variances and covariances.

6.2 A seasonal congestion model for conditional variances

We turn to the modeling and the estimation of conditional variances of electricity futures. The right
part of Table 2 gathers the results of the (second stage) estimation of the conditional GJR variances
given by (4). Compared to the estimates of the standard GJR variances on the left hand, we notice
the substantial reduction of the persistence of each univariate process and the increased absolute
value of the “inverse leverage” parameters for month and quarter futures. As for the standard model,
the leverage parameter is not significant for the year future and is therefore not included.

With the decomposition of the variances into long and short term components we are able
to identify variables exclusively explaining short-term movements in the volatility of electricity
futures. Next to supply and demand shocks, grid transmission shocks may influence the volatility of
electricity futures. As already mentioned, the spot price formation at EEX is different whether there
is congestion between TSO zones (inside the same market area) or not. Haldrup and Nielsen (2006)
model Nord Pool spot prices with directional congestion as the state variable in a regime-switching
model. Their proxy for congestion is the difference of spot prices between Nord Pool regions where
the region with the highest price is the region with excess demand. Besides, transmission constraints
also exist between countries or market areas and may also impact the short-term volatility of
electricity futures. We adapt the congestion variable of Haldrup and Nielsen to account for the
impact of international congestion on the conditional variances. The proxy employed for congestion
is the squared difference of log baseload or peakload indices between EEX and neighboring markets
such as APX for the Netherlands, Nord Pool West and East Denmark, GME for Italy, Powernext
for France and the Dow Jones index for Swiss electricity prices.13 These variables are incorporated
additively in the GJR process (4):

giit = φi+αiξ2it−1 +βigiit−1 +γiξ2it−1I{ξit−1<0}+
K∑
k=1

δik [log (pEEX,t−1)− log (pk,t−1)]2 +κi (TMD − t)

(6)
where

φi = 1− αi − βi − 0.5γi −
K∑
k=1

δikT
−1

T∑
t=2

[log (pEEX,t−1/pk,t−1)]2 − κiT−1
T∑
t=1

(TMD − t),

pk,t−1 is the index of market k at time t − 1, K is the number of adjacent market areas and
(TMD − t) is the number of days before the first day of the next delivery period of the month future.

13The list is not exhaustive. These price indices are available in Datastream.
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The parameter κi captures the seasonality attached to the expiry date of the futures contract. A
negative κi is a manifestation of the so-called “Samuelson effect”: futures volatility increases when
they approach their maturity date (Samuelson (1965)). Only the seasonality of the month contract
is found to be significant to explain the volatility of Phelix futures returns. We know that the month
future is directly followed by a delivery period while other futures are cascading at maturity. Since
the month Phelix contract is still traded during the delivery month we prefer to call this effect a
day-to-delivery effect rather than a Samuelson (day-to-maturity) effect.

The congestion variables are lagged by one day to allow for forecasting and their selection is based
on BIC minimization for the second stage estimation. Estimation results of the selected congestion
models accounting for delivery seasonality are presented in Table 4 (left part).14 The parameter
estimates obtained with the seasonal congestion model can be compared with the estimates obtained
with a GJR model without exogenous variables for the same sample period (right part of Table 4).

seasonal congestion GJR GJR
Month Baseload Future Coefficient Std. error Coefficient Std. error

ARCH (α) 0.250 0.029 0.285 0.037
GARCH (β) 0.747 0.032 0.709 0.041
GJR (γ) -0.116 0.035 -0.117 0.039

Congestion (δSwiss) 0.193 0.087 - -
Day-to-delivery (κ) -0.007 0.001 - -
Log-likelihood: -1826.85 -1850.53

seasonal congestion GJR GJR
Quarter Baseload Future Coefficient Std. error Coefficient Std. error

ARCH (α) 0.200 0.028 0.203 0.029
GARCH (β) 0.762 0.030 0.759 0.033
GJR (γ) -0.090 0.034 -0.076 0.036

Congestion (δFR Peak) 0.431 0.206 - -
Day-to-delivery (κ) -0.008 0.002 - -
Log-likelihood: -1918.45 -1936.80

seasonal congestion GJR GJR
Year Baseload Future Coefficient Std. error Coefficient Std. error

ARCH (α) 0.144 0.015 0.134 0.013
GARCH (β) 0.811 0.021 0.827 0.019

Congestion (δE.DK Peak) 0.061 0.025 - -
Log-likelihood: -1837.56 -1841.83

Table 4: Conditional variance parameter estimates for ξt, eq (6) and eq (4). Sample period: 06.23.2004-
04.14.2010 (1467 observations)

14The likelihood values of Table 4 are not comparable with those of Table 2 because of the reduction of the
estimation sample to 1467 observations. This is due to the lack of availability of the Powernext baseload index series
before 06.23.2004.
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From the results of the seasonal congestion model, we first notice that the congestion and day-
to-delivery parameters are all significant at the 5% level. Congestion parameter estimates are all
positive and day-to-delivery ones are negative as expected. The seasonality associated with the
delivery of the month contract is stongly significant for month and quarter futures and is excluded
from the yearly futures equation as it is not significant at 5%. The log-likelihood value increases
significantly when we incorporate congestion and seasonality variables. It comes out that different
markets influence Phelix futures according to their maturity; the month future reacts to congestion
with Switzerland (Swiss) whilst quarter and year futures are subject to transmission shocks during
the day from France (FRPeak) and East Denmark (E.DK Peak) respectively.

Simulations of conditional variances using the parameter estimates of the seasonal congestion
GJR are also better able to replicate empirical (estimated) variances compared to the simulations
based on the GJR model. When simulating the variances using the GJR model without exogenous
variables, the mean squared error with respect to the estimated variances from the same model is
equal to 3.67. Adding seasonal and congestion variables to simulate the variances, the mean squared
error with respect to the estimated variances using the seasonal congestion GJR model drops to
3.31.15 The reason for this improvement mostly lies in the presence of exogenous congestion variables
that force the simulation of jumps to occur at the same time as the estimated jumps.

6.3 Asset-specific dynamic conditional correlations

The third and last stage of the estimation procedure consists in the estimation of the process of
conditional correlations between pairs of electricity futures contracts. The DCC estimated param-
eters are reported in Table 5.16 We have shown in Section 5 that both DCC and cDCC models
are consistent in the multiplicative framework. They also give very similar estimates but the log-
likelihood of the cDCC model (35.82) is slightly lower than the DCC log-likelihood (38.76) in this
case. The estimate of a + b of the mDCC model (about 0.88) is lower than in the standard DCC
model (about 0.95)17 that does not have a changing unconditional level of the covariance matrix,
implying a much smaller persistence of conditional correlations.

We have already mentioned that bivariate estimations for the standard DCC model lead to very
different estimates of the parameters for the dynamics of the different pairs of correlations. Though
the model was originally conceived for a large number of assets, the generalized DCC (GDCC) of
Hafner and Franses (2009) appears also useful in the present context. The conditional correlation
structure of the mGDCC model is

Qt = (ιι′ − aa′ − bb′)� In + aa′ � ut−1u
′
t−1 + bb′ �Qt−1

15Simulation study based on unique simulation paths with the same starting values and the same generated random
numbers.

16Note that the estimates of conditional correlation parameters reported in the next tables are all conditional on
second stage estimation using the GJR model capturing congestion and seasonality effects (eq 6).

17Different from the estimate of 0.96 in Table 3 because of the different sample period used.
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where ι is a vector of 1s, a and b are vectors of N parameters each, such that a2
i + b2i < 1 and

ai, bi ≥ 0. Hence (ιι′ − aa′ − bb′) � In is positive semidefinite18 for all a and b ensuring a positive
definite Qt. Based on a likelihood-ratio test, we consider a simplified version of the GDCC model,
where only the elements of a differ:

Qt = (ιι′ − aa′ − bIn)� In + aa′ � ut−1u
′
t−1 + b2Qt−1, (7)

where b is now a scalar. The mGDCC parameter estimates are provided in Table 6. The estimate
of the first element of a is much smaller than for the last two elements.

We show the mDCC and mGDCC short-term conditional correlations of second stage residuals
ut in Figure 7. Notice that they fluctuate around zero since the long run changing level has been
removed by the estimation of the long run component. While the mDCC correlations have by
assumption the same dynamics, we see that the correlations of the mGDCC model exhibit different
patterns. For the correlation process between month and quarter futures, there seems to be no
considerable change between mDCC and mGDCC correlation processes. Compared to the mDCC
parameter a, the lower parameter related to the month future (a2

M ) in the mGDCC process forces
correlations to concentrate more around the mean but this effect is counterbalanced by a higher
parameter for the quarter future (a2

Q) that amplifies correlation movements. The same observation
is applicable for the conditional correlations between month and year futures. The largest change
is observed in quarter-year correlations with a higher persistence and amplified movement for short
run correlation dynamics. In this case, there is no balancing effect since both parameters (a2

Q and
a2
Y ) have increased compared to the a parameter of the mDCC process.

mDCC Coefficient Std. error
a 0.067 0.010
b 0.812 0.031

Log-likelihood: 38.76

Table 5: mDCC parameter estimates (eq (5)). Sample period: 06.23.2004-04.14.2010 (1467 observations)

mGDCC Coefficient Std. error
a2

M 0.035 0.013
a2

Q 0.116 0.036
a2

Y 0.070 0.027
b2 0.804 0.031

Log-likelihood: 41.55

Table 6: mGDCC parameter estimates (eq (7)). Sample period: 06.23.2004-04.14.2010 (1467 observations)

18This is only true for E(Qt) = Q̄ = In, otherwise (ιι′ − aa′ − bb′)� Q̄ is not necessarily positive semidefinite.
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Figure 7: mDCC and mGDCC conditional correlations of ut (month-quarter, month-year, quarter-year).
DCC(i, j)/GDCC(i, j) are the conditional correlation between contracts i and j estimated with the
mDCC/mGDCC model.

The standardized residuals ẑt obtained after this third estimation stage19 are used for diag-
nostic tests. Specifically, we test for autocorrelation in the squares (ẑtẑ′t) using the multivariate
Portmanteau statistic. The observed value for the multivariate Portmanteau statistic does not al-
low us to confirm the absence of autocorrelation in the squared standardized residuals for both
the standard DCC and the multiplicative DCC. However, the value of the statistic is significantly
reduced compared to the value obtained using VECM squared residuals (εtε′t). To compare multi-
variate volatility models in terms of in-sample fit, we look at the total log-likelihood value.20 The
estimated log-likelihood of the multiplicative DCC (l̂ = −1961.8) is higher than the one of the
standard DCC model (l̂ = −2040.9) and the best model, according to this criterion, is the mul-
tiplicative GDCC model where conditional variances are adjusted for congestion and seasonality
(l̂ = −1904.5).

7 Short-term forecasts of Phelix futures covariance matrix

Our ultimate objective in this paper is to provide joint forecasts of the volatility matrix of Phelix
baseload futures. We give priority to short run forecasting where the future long-term covariance
matrix is approximated by a constant. Let us mention however the possibility to forecast the
nonparametrically estimated covariance matrix by a Taylor series expansion as discussed in Hafner

19ẑt = Ĥ
−1/2
t εt.

20The total estimated log-likelihood is l̂ = −0.5
hPT

t=1 log(|Ĥt|) + ε′tĤ
−1
t εt

i
.
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and Linton (2010). For short-term forecasts it seems relevant to overlook the evolution of the
long-term covariance matrix and to replace it by a constant. We could simply take the estimated
unconditional matrix on the last day of the estimation sample. But this procedure is problematic in
the case of nonparametric estimation for two reasons: it is known that the nonparametric smoothing
method is less accurate near the boundary of the observation interval and for forecasting, the level
of the unconditional covariance on the last day is not consistent since the estimate is obtained using
out-of-sample data. A solution is then to use one-sided kernels. We follow an alternative method
where the future unconditional covariance matrix is approximated replacing the Gaussian kernel
by a bounded one (e.g. Epanechnikov kernel) and stopping the regression h × T days before the
out-of-sample limit,21 ensuring the nonparametric regression to be exclusively based on in-sample
data.

As for the conditional part, due to the non-linearity of the DCC process, there is no direct
solution for forecasting correlations over longer horizons than one day. Engle and Sheppard (2001)
discuss two approximation methods to generate multi-step ahead forecasts. We limit the scope of
this paper to one-step forecasts for which there exists a straightforward solution. The one-day ahead
forecast of the covariance matrix is given by

Ĥt+1 = E (Ht+1|Ft) ' Σ̂(t/T )1/2E (Gt+1|Ft) Σ̂(t/T )1/2

where Σ̂(t/T ) ≈ Σ̂ (t/T − h) and regression weights are derived using Epanechnikov kernels.
We compute rolling one-day ahead forecasts over H days for the variances and covariances of

baseload futures according to two different procedures. In the first method, forecasts are based on
recursive estimation where one day is added to the estimation sample each day so that parameters are
updated daily. In the second, the estimation sample and the parameters are fixed and forecasts are
computed each day based on the exogenous variables and on the forecasted values of the covariance
matrix and VECM residuals obtained the day before.

Rolling forecasts (black lines) based on recursive estimation over six months (130 trading days)
from 04.15.2010 until 10.15.2010 are illustrated in Figure 8 for one model. Because of the lack
of intraday data for futures prices we cannot compare the forecasts with realized variances and
covariances. Instead of realized data, we take the squares (colorful lines) and cross-products (grey
lines) of VECM residuals as proxies for variances and covariances respectively.

21with h = 0.09, the optimal bandwidth for the Epanechnikov kernel and T, the in-sample size.
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Figure 8: 130 day rolling forecasts (seasonal congestion mGDCC, recursive estimation). The one-day ahead
variance forecasts of contract i is V ar(i) forecast = Ĥii,t+1. The one-day ahead covariance forecasts of
contracts i and j is Cov(i, j) forecast = Ĥij,t+1 for i 6= j. res(i) are VECM residuals.

We compare different specifications for the covariance matrix of Phelix futures in terms of mean
squared forecasting error (MSE) in the next tables. Tables 7 and 8 report the performance of rolling
one-day ahead forecasts over 130 days using recursive and fixed sample estimation, respectively. The
obtained forecasts of variances and covariances are based on one-day ahead forecasts for the VECM
residuals using the same fixed estimation sample. For each procedure, the multiplicative gener-
alized DCC model with congestion and seasonality variables (sc-mGDCC) is the best performing
model. The largest improvement comes with the multiplicative DCC model (mDCC) compared
to the standard DCC (DCC) that ignores slowly evolving trends in volatilities and co-volatilities.
The multiplicative generalized DCC model (mGDCC) and the seasonal and congestion effects in
volatilities only bring some small improvements. As expected, only the forecasts of short-term
maturity products (month and quarter futures) are improved when incorporating a seasonal effect
(s-mGDCC). The congestion model for volatilities seems also to be more useful for short-term prod-
ucts for which we observe the largest spikes in the conditional variances and covariances. In this
case, the exogenous variables are able to capture, to some extent, the spikes that are induced by
transmission constraints so that the congestion model would be favored during more hectic times.
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Model Var(M) Var(Q) Var(Y) Cov(M,Q) Cov(M,Y) Cov(Q,Y) Total
DCC 10.672 7.048 3.667 7.738 4.935 4.208 38.267
mDCC 9.646 6.374 3.518 7.101 4.685 3.975 35.300
mGDCC 9.588 6.392 3.534 7.078 4.670 3.999 35.261
s-mGDCC 9.381 6.417 3.548 7.064 4.670 4.022 35.102
sc-mGDCC 9.371 6.396 3.544 7.051 4.666 4.012 35.038

Table 7: MSE (H = 130, recursive estimation)

Model Var(M) Var(Q) Var(Y) Cov(M,Q) Cov(M,Y) Cov(Q,Y) Total
DCC 10.107 6.691 3.657 7.403 4.865 4.129 36.852
mDCC 9.552 6.307 3.496 7.011 4.637 3.932 34.935
mGDCC 9.520 6.317 3.502 6.995 4.619 3.945 34.897
s-mGDCC 9.257 6.306 3.511 6.955 4.616 3.956 34.601
sc-mGDCC 9.230 6.305 3.517 6.944 4.616 3.957 34.569

Table 8: MSE (H = 130, fixed estimation sample)

8 Conclusion

We have presented a new multiplicative model for the multivariate volatility of Phelix baseload
futures where the unconditional volatilities and correlations are allowed to change smoothly over
time. The evolution of the unconditional component is explained by long-term factors observed in
power markets. We also introduce a seasonal congestion model accounting for transmission shocks
and seasonality in the conditional volatility of futures contracts. It is shown that futures respond
to congestion with different markets according to their maturity. An augmented multiplicative
DCC model that allows for component-specific dynamics is applied for modeling the conditional
correlations of electricity futures. Specifically, a higher persistence and amplified movements are
found for the conditional correlation of long-term contracts. Finally, rolling one-step ahead forecasts
are derived and a higher forecasting performance is achieved with the multiplicative DCC model
compared to the standard DCC model that ignores the changes in unconditional volatilities and
correlations. More generally, the multiplicative DCC model could respond to the modeling needs
for other markets that are subject to changing long-term trends.
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