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Abstract. We briefly recall some essential notions on interest rates and zero-
coupon bonds. We then define a sound mathematical framework to study a model
of the short rate in which the parameters are allowed to vary according to an un-
derlying semi-Markov process. We give some properties of the short rate in our
model. We follow by studying the notion of risk-neutral martingale measures in
this context. Finally, we discuss the pricing of interest-rate derivatives. In par-
ticular, we show that the price of a zero-coupon bond has to satisfy a system of
integro-differential equations that is influenced both by the market price of risk and
by the market price of regime switch risk.
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1 Introduction

Modelling the uncertainty about the future behavior of interest rates has be-
come a very active topic of research. Some classical continuous-time models
include the Vasicek model (see Vasicek [15]), the Hull and White model (see
Hull and White [8]) or the CIR model (See Cox et al. [2]).

Regime switching models of interest rates have gained some interest in
the literature. The idea is to model the fact that the economic environment
is not constant through time and that this should be reflected in the model
via a change of the value of the parameters. Some papers that deal with this
are Landén [11] and Wu and Zeng [16].

Most of the existing literature focuses on homogeneous Markov switch-
ing models. However, many authors have shown that markets exhibit some
characteristics that are not well captured by homogeneous Markov switching
models (let us cite Hong and Li [7], Easly and O’Hara [5] and [6], Diebold
and Rudebusch [3] and Durland and McCurdy [4]). An interesting extension
that better fits the data is the class of semi-Markov regime switching models.
These are flexible and more general than homogeneous Markov models. Our
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paper deals with such a model, specifically a semi-Markov switching exten-
sion of the Vasicek model of the short rate of interest. The aim is to provide
a sound mathematical framework for this model and to derive equations that
allow to price interest-rate derivatives in this framewok.

2 Basic notation

We consider a financial market defined on a probability space (Ω,F ,P) car-
rying a filtration Ft and a brownian motion W . We suppose that it is defined
for all times t ∈ [0, T ].

We recall some notions about interest rate theory (see Björk [1] for more
on this subject).

Definition 1. A zero coupon bond with maturity T (also called a T-bond)
is a contract which guarantees the holder a payment of one unit of currency
at time T . We denote by p(t, T ) the price of a T-bond a time t. We suppose
that p(t, T ) is a strictly positive adapted process for all t ∈ [0, T ].

Definition 2. The instantaneous forward rate with maturity T contracted
at t is defined by

f(t, T ) = −∂ log p(t, T )
∂T

Definition 3. The instantaneous short rate at time t is defined by

r(t) = f(t, t)

Our paper will provide a model for the evolution of the short rate rt. For
the moment, we simply assume that rt is adapted to the filtration Ft. Given
the short rate, the money account process or risk free asset (that will serve
as numeraire) is defined by

Bt = exp
{∫ t

0

r(s)ds
}

This allows us to introduce risk neutral martingale measures that will be
useful in the pricing of interest rate derivatives.

Definition 4. A risk neutral martingale measure will be a measure P∗ equiv-
alent to P and such that for every T , the quantity

p(t, T )
Bt

is a P∗-martingale.
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3 Semi-Markov regime switching model

We define the set E ⊂ R by E = {1, ....,m} for a fixed m ∈ N and we define
E as the sigma-algebra of all the parts of E.

For each n ∈ N, let (Xn, Tn) be a pair of random variables taking values
in E × R+. We suppose that the process (X,T ) = {Xn, Tn;n ≥ 0} is a
homogeneous Markov renewal process with state space E. The associated
semi-Markov kernel is denoted by Qij(t). We denote by P the transition
matrix of the embedded Markov chain.

Remark 1. Given the number of states is finite, the number of jumps in a
finite time interval is almost surely finite (for a proof see Pyke [13]).

We impose some regularity conditions on the Markov renewal process:

• No fictitious transitions are allowed i.e. Pii = 0.
• No instantaneous transitions are allowed i.e. Qij(0) = 0.
• All states in E ”communicate” at all times i.e. Qij(t) > 0 ,∀t > 0.

Definition 5. Let us define st by

st := sup(n ≥ 0 : Tn ≤ t)

with n ∈ N and t ∈ R+ and Yt as

Yt := Xst

Process Y is called a semi-Markov process with kernel Q.

Definition 6. We define Ft as the completed filtration generated by process
Yt and Wt i.e., Ft = σ(Ys,Ws, N,N ∈ N , s ≤ t) where N is the collection of
all null sets.

The aim is to use Y with the usual tools of stochastic calculus. A step in
that direction is made with the following result.

Lemma 1. Yt is a semimartingale.

Proof. It is easy to show that Y is an adapted càdlàg finite variation process.

We denote the set of all possible jumps of Y by Z i.e. Z = {zij =
i−j; i, j ∈ E, i 6= j}. Given there are m states, the set Z comprises m(m−1)
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elements. Let Zn denote the size of the nth jump of Y . The jump measure
of Y is the random integer-valued measure µ on (0,∞)× Z defined by

µ =
∞∑

n=1

11(Tn,Zn)

We can write

Yt = Y0 +
∫ t

0

∫
Z

zµ(ds, dz)

This can be written as

Yt = Y0 +
∑

zij∈Z

zijNt(zij)

where
Nt(zij) =

∑
n≥1

11{Tn≤t}11{Zn=zij}

Proposition 1. The P-compensator associated with the jump measure µ is
given by

ν(ds, {zij}) = λs(zij)ds (1)

where the intensity λs(zij) is defined as

λs(zij) =
∑
n≥0

11{Tn<s≤Tn+1}
Pj,ig(j, i, t− Tn)

1−
∑

i 6=j Qj,i(t− Tn)
11{Xn=j}

where g(j, i, t − Tn) is the density of the waiting time distribution between
state j and i calculated at time t− Tn.

Proof. This follows from the general theory of marked point processes and
properties of semi-Markov processes (for more details see [12]).

Remark 2. It follows that the intensity associated with process Nt(zij) is
simply λt(zij).

We introduce the backward recurrence time Kt. This process represents
the time continuously spent in a state since the last regime switch. We can
write

Kt = t− TNt(Z) = t−
∑

zij∈Z

∫ t

0

Ks−dNs(zij)

We now turn to our model of the short rate. Under P, the short rate is
supposed to have the following dynamics:

drt = (a(Yt)− b(Yt)rt)dt+ σ(Yt)dWt (2)
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where we define a(Yt), b(Yt) and σ(Yt) by

a(Yt) =
m∑

i=1

ai11{Yt=i}

b(Yt) =
m∑

i=1

bi11{Yt=i}

σ(Yt) =
m∑

i=1

σi11{Yt=i}

for some given constants (a1, ..., am), (b1, ..., bm) and (σ1, ..., σm) (all the σi’s
are strictly positive).

Proposition 2. Equation 2 is well defined.

Proof. The proof is exactly similar to that in Hunt [9], proposition 3.

Remark 3. Equation 2 is an extension of the well-known Vasicek model (see
Vasicek [15]) where we allow for the parameters of the model to switch be-
tween different states and the switching is controlled by a semi-Markov pro-
cess Y .

In the classical Vasicek model, rt is a mean-reverting process. In our
setting, we have

Proposition 3. For Tn ≤ t < Tn+1, rt|FTn
∼ N(µ, σ2) where

µ = rTne
−b(YTn )(t−Tn) +

a(YTn
)

b(YTn)
(1− e−b(YTN

)(t−Tn))

σ2 =
σ2(YTn

)
2b(YTn)

(1− e−2b(YTn )(t−Tn))

Proof. This is a direct application of Itô’s formula and of the properties of
semi-Markov processes.

Remark 4. Proposition 3 tells us that for Tn ≤ t < Tn+1, rt starts in rTn
but

moves away from this value as time goes by and that the process tends to
locally mean revert around value a(YTn )

b(YTn ) until the next jump.

4 Martingale measures and derivative pricing

LetNt represent the multivariate point process (m(m−1)-dimensional) whose
components are given by (Nt(zij))zij∈Z . Let λt be the multivariate intensity
associated to process Nt whose components are given by (λt(zij))zij∈Z .

We discuss the existence of risk neutral measures by following this version
of the Girsanov theorem.
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Theorem 1. Let θ be a progressively measurable process such that∫ t

0

θ2sds <∞

Consider the multivariate point process Nt previously defined with (P,Ft)-
intensity λt. Consider a predictable multivariate process (ψt(zij))zij∈Z such
that P-a.s. and for t ∈ [0, T ]

∑
zij∈Z

∫ t

0

ψs(zij)λs(zij)ds <∞

Define the process L by:

Lt = exp
{
−1

2

∫ t

0

θ2sds+
∫ t

0

θsdWs

} ∏
zij∈Z

exp
{∫ t

0

(1− ψs(zij))λs(zij)ds
}Nt(zij)∏

n=1

ψTn
(zij)


And suppose that for all finite t:

EP[Lt] = 1

Define a probability measure Q on F by

dQ = LtdP

Then, every measure Q equivalent to P has the structure above. Further-
more, let WQ

t be defined as

dWQ
t = dWt − θtdt

then WQ
t is a Q-brownian motion. We denote by NQ

t the multivariate
point process Nt whose Q-intensity given by λQ

t (zij) := (ψt(zij)λt(zij))zij∈Z .

Proof. For a proof see [10].

It follows from theorem 1 that under any risk neutral measure Q, we have
the following dynamics for processes rt, Yt and Kt:

drt = (a(Yt) + θtσ(Yt)− b(Yt)rt)dt+ σ(Yt)dW
Q
t (3)

Yt = Y0 +
∑

zij∈Z

zijN
Q
t (zij)

Kt = t−
∑

zij∈Z

∫ t

0

Ks−dN
Q
s (zij)

Specifying a risk neutral measure requires the knowledge of θ, the market
price of risk but also the m(m− 1) other parameters i.e. the ψt(zij)’s. These
represent the market price of regime switch risks for jumps from state j to
state i.
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Remark 5. It is clear from equation 3 and proposition 3 that the distribution
of rt|FTn

under Q is the same as that in proposition 3 with a(YTn
) replaced

by a(YTn) + θTnσ(YTn).

Suppose a measure Q has been chosen. As far as pricing is concerned, it
is well known that the price Pt at time t of a contingent claim whose payoff
is given by an FT measurable square integrable random variable H is given
by

Pt = EQ[e−
∫ T

t
rsdsH|Ft] (4)

Remark 6. Equation 4 implies that we treat Yt as an observable variable as
argued in Silvestrov and Stenberg [14].

The process (rt, Yt) does not -in general- satisfy the Markov property but
process (rt, Yt,Kt) does and so we can write:

Pt = EQ[e−
∫ T

t
rsdsH|rt, Yt,Kt]

In particular the price of a zero-coupon T -bond is given by

Pt = EQ[e−
∫ T

t
rsds|rt, Yt,Kt] = f(t, r, y, k)

This leads to the following result

Theorem 2. The price f(t, r, y, k) of a zero-coupon bond is given by the
solution to the following system of integro-differential equations (one for each
possible state i)

rf = Lf + Sf ∀(t, r, k) ∈ [0, T ]× R+
0 × R+

0

where (with the subscript on f indicating the partial derivatives)

Lf = ft(t, r, i, k) + fk(t, r, i, k) + (a(i) + θσ(i)− b(i)r)fr(t, r, i, k) +
1
2
frr(t, r, i, k)σ2(i)

Sf =
∑
j 6=i

(f(t, r, j, 0)− f(t, r, i, k))λQ
t (zji)

with boundary condition:

f(T, r, i, k) = 1 ∀i ∈ E ∀r, k ∈ R+
0

Proof. This follows from Feynman-Kac theory and the fact that (rt, Yt,Kt)
is a Markov process.

Remark 7. In theorem 2, we clearly see the impact of the market price of
risk and the market prices of regime switch risk on the price of a zero-coupon
bond.
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