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1 Introduction and background

A common objective across the sciences is to look for causes. Knowledge of causes is helpful in order

to explain phenomena, to make predictions and to control for bias and confounding. The social

sciences are no exception in this respect. This is not to say that we are always able to find and to

use causes, but this is a reason why causal knowledge is so central in science.

One difficulty the social sciences face is the large variability of its units of observation—that

is, at bottom, humans, but going up in the level of aggregation we may also find families, firms,

nations—and the large size of data we can collect on them. Statistics proved so helpful in the

practice of quantitative social science to the point of becoming a necessary tool. Yet, statistics alone

cannot find causes; social scientists instead need expertise in modelling procedures and wise use of

background knowledge. A very brief history of causal analysis will make the previous point clear.

Causal analysis has a long tradition, starting with the pioneering and seminal works of the

demographer Adolphe Quetelet and of the sociologist Emile Durkheim. Major improvements have

been done by, to name a few, Sewall Wright and Otis Dudley Duncan, up to the most recent

advancement by econometricians such as Jim Heckman or Kevin Hoover and computer scientists

such as Judea Pearl or Peter Spirtes, Clark Glymour and Richard Scheines. What is peculiar to this

development is that, whilst the early methodologists were overtly and explicitly causalist, the most

recent generations have shown some skepticism as to whether we can infer causation from statistics.

There is another way the development of causal analysis can be read. Whilst early methodologists

used basic statistics only, as time passed researchers aimed to model structures in order to analyse

complex networks of causal relations. This lead to the so-called structural modelling approach,

which is endorsed, with some differences to be discussed later in the paper, by a number of scholars

nowadays.

The last reading of this short history of causal analysis concerns the way researchers dealt with

modelling. In fact, despite the great advancement in complexity and sophistication of the statistical

models, what went lost is an overarching view of modelling qua scientific practice. That is to say,

what went lost is a global view on modelling that does not confine to the statistical model and does

not narrowly focus on the (statistical) properties of the distributions and on (statistical) tests. As

we shall discuss later in detail, modelling includes, within a hypothetico-deductive approach, making

background and field knowledge explicit and taking into account the type of data to be analysed,

and on this grounds to put in motion the whole statistical machinery.

This last point is a very sketchy formulation of the so-called hypothetico-deductive (H-D) method-

ology. According to the H-D methodology, causal relations cannot be inferred directly from data

nor with the sole aid of an algorithmic procedure. Nevertheless, there is also a florid tradition

that uses statistics in an inductive way, e.g. data mining or exploratory data analysis. This is, for

instance, the approach of Spirtes et al. (2000). Inductivist approaches claim that causal relations

3



can be drawn from data without the burden of extra-statistical and causal assumptions made in

their hypothetico-deductive counterparts. Unfortunately, it goes far beyond the goal of this paper

to discuss the success of inductive causal models. Consequently the scope will be limited to causal

models that employ a hypothetico-deductive methodology.

Thus, following the seminal works of e.g. Wright, Haavelmo, Blalock, Pearl and others, we

present the main features of structural modelling. There are in the literature competing ‘structural

accounts’, and we will discuss in section 3.1 in what respect these accounts are similar or different

and what are the characterising features of our own approach. In essence, a model is deemed

structural if it uncovers a structure underlying the data generating process. In section 2.1 we

present hypothetico-deductivism, a general methodology according to which causal analysis can

be schematically represented stepwise thus: 1. formulate the causal hypothesis out of background

knowledge and preliminary analyses of data; 2. build the statistical model; 3. test the model; 4. check

congruence between the results and available background knowledge. Sections 2.2–2.4 argue that a

structural approach systematically blends two ingredients. First, the model must be congruent with

background knowledge: modelling the data generating process must be operated in the light of the

current information on the relevant field. Second, the model must show stability in a wide sense:

both the structure of the model and the parameters have to be stable or invariant with respect to a

large class of interventions or of modifications of the environment. Section 2.4 introduces causality

in terms of exogeneity within structural models. Section 2.5 discusses some difficulties and threats

to structural modelling in the presence of latent variables.

It is crucial to note that this concept of structural modelling is wider than the framework of

structural equation models, also known as covariance structure models or LISREL type models,

widely used in psychology or in sociology, and of simultaneous equations models, widely used in

econometrics.

A first consequence of this approach is that the notion of causality becomes relative to the model

itself, rather than to the data, as is the case, for instance, in the Granger-type concept of causality.

Also, this means that we do not aim at making metaphysical claims about causal relations, but

rather at saying when we have enough reasons—specifically, reasons about background knowledge

and about structural stability—to believe that we modelled a causal mechanism able to explain a

given social phenomenon. A second consequence of this model-based concept of causality, involving

both background knowledge and stability, is that the model does not simply derive from theory as

is often the case in the econometric tradition. Therefore structural modelling is much more than a

sophisticated statistical tool that translates (economic) theory into mathematical equations. Good

structural modelling ought to be accompanied by a broad and sensible account of what a statistical

model is and represents, of what statistical inference is.

An important aspect of structural modelling is its explanatory import. In section 3 we discuss
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the feature of structural modelling that is supposed to do the explanatory job. This is the recursive

decomposition, appropriately interpreted as a mechanism.

Another important debate in the broad area of causal analysis concerns the relations and com-

petitions between the structural and the counterfactual approach, which we have thoroughly done

elsewhere. Space is limited and we cannot engage in a thorough discussion of the counterfactual

approach. Nevertheless, we shall try to set the tracks that we think should guide this debate in

section 4. We close the paper, in section 5, with some conclusions and discussions.

In this paper we attempt to present our views building on our previous works on structural

modelling, explanation, causality, and the relations they stand with each other. The attempt here

is to blend viewpoints coming from statistics, social sciences and philosophy in order to provide a

comprehensive approach to structural modelling, along with its practical aspects.

2 Modelling structures

In this section, we develop the formal framework of structural modelling. We start by presenting the

hypothetico-deductive methodology and three notions : (i) conditional model, (ii) exogeneity, (iii)

recursive decomposition. We then introduce the structural model as the model enabling a causal

interpretation of exogenous variables and a mechanistic interpretation of the recursive decomposition.

We close the section with some remarks on partial observability and latent variables.

2.1 Hypothetico-deductivism

As anticipated in the Introduction, there are, broadly speaking, two approaches in causal analy-

sis. On the one hand, inductivist approaches, put it very simply, try to infer causal relations from

data, with very minimal prior assumptions and virtually no explicit background knowledge sup-

porting the specific algorithm used (such as principal components analysis). On the other hand,

hypothetico-deductive approaches heavily rely on the prior specification of assumptions and of back-

ground knowledge in order to infer causal relations. In this section we discuss this hypothetico-

deductive methodology, which we endorse, in detail.

Hypothetico-deductivism (H-D) is a general methodology that prescribes to formulate hypotheses

and to derive consequences in order to test whether the hypotheses obtain or not. Famously, the

philosopher of science Karl Popper (1959) was the first to theorise the H-D methodology motivated

by the need of providing a methodology alternative to inductive ones (that is, Baconian). Popper’s

H-D methodology was characterised by (i) a strict meaning of ‘deducing the consequences from the

hypotheses’, and (ii) a complete rejection of the hypothesis in case tests disconfirm it. This implied,

in Popper’s view, to start every time from scratch. However, the form of hypothetico-deductivism

more recently endorsed by philosophers of sciences (see, e.g. Cartwright (2007, ch. 2) and Russo
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(2009, ch. 3.2)) is much less strict concerning deduction and does not imply starting from complete

scratch any time a hypothesis is disconfirmed. Yet, it does retain from the Popperian account the

primary role of the hypothesis-formulation stage. We shall return to these points later.

The H-D methodology can be presented as a stepwise procedure for model building and model

testing: 1. formulate the causal hypothesis out of background knowledge and preliminary analyses

of data; 2. build the statistical model; 3. test the model; 4. check congruence between the results

and available background knowledge.

In the first step (hypothesis formulation) background knowledge—from knowledge concerning

the phenomenon at stake to preliminary analyses of data—looms large. But background knowledge

is also very important for building the model, that is, as we shall discuss in detail in section 2.3

and 2.4, choosing the particular statistical model and the recursive decomposition. Model testing,

performed in step 3, concerns various aspects: estimation, goodness of fit, exogeneity, stability. Yet

the results of those tests alone do not allow yet inferring a causal structure as the results need to

be checked, again, against background knowledge. This is done in step 4. This last stage is very

important because, even if positive results are not obtained—that is we are not able to successfully

infer the presence of a causal relation—it is not all lost. In fact, this all may feed research later on.

Differently put, we also learn from failure.

As just said, hypothetico-deductivism in causal modelling does not involve making deductive

inferences strictly speaking. What is instead at stake in H-D methodology is a weaker inferential

step of ‘drawing consequences’ from the hypothesis. This means that, after we formulate the causal

hypothesis taking into account available background knowledge and meaningful co-variations be-

tween the putative cause and effect, we do not require data to be implied by the hypothesis but just

that data conform to it. ‘Conform’ means that the available indicators in the data set adequately

represent the conceptual variables appearing in the causal hypothesis.

It is in this sense that the confirmation of the causal hypothesis is not done by ‘deductive

inferences’ strictly interpreted but does involve a ‘deductive procedure’ loosely speaking. To be

more precise, it is a hypothetico-deductive procedure in the sense that it goes the opposite direction

of inductive methodologies: not from data to causation, but from causal hypotheses down to data,

so to speak.

The important role of background knowledge is worth emphasising. The notion of background

knowledge belongs to most quoted and least explicated concepts in causal analysis. It is so broad

that it is hard to discriminate between knowledge and information that does or does not count

as background knowledge. Let’s try to be more specific. Background knowledge may include vari-

ous aspects: (i) general knowledge about socio-demo-political contexts, (ii) knowledge of physical-

biological-physiological mechanisms, (iii) institutional knowledge (such as of the procedure of a

central bank), (iv) evidence supporting similar mechanisms in different populations, (v) use of sim-
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ilar or different methodologies or data to study the phenomenon of interest. It is important to

carefully take these points into account because studies in social science typically consider different

populations. It is a proper and explicit use of background knowledge that justifies the choice of

variables and of the model, and that allows a sound interpretation of results. Any empirical study

based on sound structural modelling is in turn a contribution to background knowledge, that is

toward the process of gathering together knowledge and information coming from different sources.

The H-D methodology hereby presented is general and is not restricted to quantitative causal ap-

proaches but also includes qualitative methodologies. In the following, we shall restrict our attention

to quantitative approaches, and more particularly to the so-called structural modelling approach in

statistics.

2.2 The conditional model

Let us start with an unconditional parameterized statistical model MX given in the following form:

MX = {pX(x | ω) : ω ∈ Ω} (1)

where for each ω ∈ Ω, pX(x | ω) is a (sampling) probability density on an underlying sample

space corresponding to a (well-defined) random variable X and Ω is the parameter space, aimed at

describing the set of sampling distributions considered to be of interest. The basic idea is that the

data can be analyzed as if they were a realization of one of those distributions. Thus, a statistical

model is based on a stochastic representation of the world. Its randomness delineates the frontier or

the internal limitation of the statistical explanation, since the random component represents what

is not explained by the model.

A conditional model is constructed through embedding this concept into the usual concept of

an unconditional statistical model (1). For expository purposes, we only consider the case where a

random vector X of observations is decomposed into X ′ = (Y ′ , Z ′) (where ′ denotes transposition)

and where the model is conditional on Z.

The basic idea of a conditional model is the following: starting from a global model MX as

given in (1), each sampling density pX(x | ω) is first decomposed through a marginal-conditional

product:

pX(x | ω) = pZ(z | θZ) pY |Z(y | z, θY |Z) ω = (θZ , θY |Z) (2)

where pZ(z | θZ) is the marginal density of Z, parametrized by θZ , and pY |Z(y | z, θY |Z) is the

conditional density of (Y | Z), parametrized by θY |Z . Next, one makes specific assumptions on the

conditional component leaving virtually unspecified the marginal component. Thus a conditional

model may be represented as follows :

MZ

Y
= {pX(x | ω) = pZ(z | θZ) pY |Z(y | z, θY |Z) ω = (θZ , θY |Z) ∈ Ω = ΘZ × ΘY |Z } (3)
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where ΘZ parametrizes a typically large family of sampling probabilities on Z only and for each

θY |Z ∈ ΘY |Z , pY |Z(y | z, θY |Z) represents a conditional density of (Y | Z).

A conditional model, as in (3), endows the global model (1) with two properties. Firstly, the

parameters characterizing the marginal (θZ) and the conditional (θY |Z) components are independent.

Here, ‘independence’ means ‘variation-free’ in a sampling theory framework, i.e. ω = (θZ , θY |Z) ∈

Ω = ΘZ × ΘY |Z , or independent in the (prior) probability in a Bayesian framework, i.e. θZ⊥⊥θY |Z .

Secondly, a conditional model leaves almost unspecified the marginal component, i.e. the set ΘZ

represents a ‘very large’ set of possible distributions for Z.

2.3 Exogeneity and recursive decomposition

Formally, the condition of exogeneity can be stated as follows: the parameter of interest should only

depend on the parameters identified by the conditional model and the parameters identified by the

marginal process should be “independent” of the parameters identified by the conditional process.

It should be stressed that the independence among parameters has no bearing on a (sampling)

independence among the corresponding variables.

Exogeneity is a condition of separation of inference. The (partial) explanation of the statistician is

cast in the framework of a statistical model, in terms of parameters that characterise the distribution

of interest. Originally, the concept of exogeneity appears with regression models. A first, and naive,

approach was to consider an exogenous variable as a non-random variable, the endogenous variable

being the only random one. That this approach was unsatisfactory became clear when considering

complex models where the same variable could be exogenous in one equation and endogenous in

another one. A first progress came through a proper recognition of the nature of a conditional

model; for a more formal presentation, see e.g. Mouchart and Oulhaj (2000) and Oulhaj and

Mouchart (2003).

The concept of exogeneity has a long history in econometrics. The works of the Cowles Commis-

sion in the late Forties and the early Fifties have been path-breaking and are still influential nowa-

days; in particular, Koopmans (1950) puts emphasis on exogeneity in dynamic models. Barndorff-

Nielsen (1978) is significant in the development of conditions for separation of inference. Florens

and Mouchart (1980, 1985) and Florens, Mouchart and Rolin (1980) bridge Koopmans (1950) and

Barndorff-Nielsen (1978) works and provide a coherent account of exogeneity integrating the sepa-

ration of inference in dynamic and non-dynamic models. Engle, Hendry and Richard (1983) present

a list of different concepts from the econometric literature and display their connections with exo-

geneity through the introduction of supplementary conditions.

What are the consequences of a failure of exogeneity? There may be a loss of efficiency in the

inference if the failure comes from a restriction (equality or inequality), or a lack of independence in

a Bayesian framework, between the parameters of the marginal model and those of the conditional
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model. There may also be an impossibility of finding a suitable, e.g. unbiased or consistent, estimator

if the parameter of interest is not a function of θY |Z only. A typical example, well known in the field

of simultaneous equations in econometrics, is that the parameter of interest in a structural equation

may not be a function of the parameters identified by the model conditional on the explanatory

variables corresponding to that specific equation.

Let us now consider a decomposition of X into p components: X = (X1,X2, · · ·Xp). Suppose

that the components of X have been ordered in such a way that in the complete marginal-conditional

decomposition:

pX(x | ω) = pXp|X1,X2,···Xp−1
(xp | x1, x2, · · ·xp−1, θp|1,···p−1)

· pXp−1|X1,X2,···Xp−2
(xp−1 | x1, x2, · · ·xp−2, θp−1|1,···p−2) · · ·

· pXj |X1,X2,···Xj−1
(xj | x1, x2, · · ·xj−1, θj|1,···j−1) · · · pX1

(x1 | θ1) (4)

each component of the right hand side have mutually independent parameters, i.e. in a sampling

theory framework:

ω = (θp|1,···p−1, θp−1|1,···p−2 · · · , θ1) ∈ Θp|1,···p−1 × Θp−1|1,···p−2 · · · × Θ1 (5)

Under the condition (5), the decomposition (4) is called a recursive decomposition and the condi-

tioning variables of each term are the exogenous variables of their corresponding component.

Once the number of components p increases, we shall see in section 2.4 that background knowl-

edge, possibly substantiated by statistical tests, typically provides a simplification of the factors

in the form of conditional independence properties. More specifically, it is often the case that the

distribution of (Xj | X1, · · · ,Xj−1) is known not to depend on some of the conditioning variables.

Thus there is a subset Ij ⊂ {X1, · · · ,Xj−1} , of variables actually relevant for the conditional process

generating Xj | X1, · · · ,Xj−1 as defined by the property

Xj⊥⊥X1, · · · ,Xj−1 | Ij (6)

implying that the factor pXj |X1,X2,···Xj−1
in (4) is actually simplified into pXj |Ij

and Ij may be

called the relevant information of the j-th factor. Once Ij has been specified for each factor, (4) is

condensed into

pX1,X2,···Xp
=

∏
1≤j≤p

pXj |Ij
(7)

This form is accordingly called a condensed recursive decomposition.

2.4 Structural models, exogeneity and causality

Structural models are a class of models enabling the interpretation of exogeneous variables as causes

of the phenomenon to be explained. In this subsection, we show how the concepts of structural

model, exogeneity and causality are connected.
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A structural model conveys the idea of a representation of the world that is stable, or invariant,

under a large class of interventions or of modifications of the environment. Structural models are

also called ‘causal models’. Here, the concept of causality is internal to a model which is itself

stable, in the sense of structurally stable. Thus a structural model aims at capturing an underlying

structure; modelling this underlying structure requires taking into account the contextual knowledge

of the field of application.

The invariance, or stability, requirement is however not a sufficient condition for making a struc-

tural model palatable. A structural model should also help to understand the data generating

process; more precisely its characteristics, or parameters, should be interpretable. This is typi-

cally achieved by decomposing a model representing the generation of a set (vector) of variables

into an ordered sequence of subprocesses representing sub-mechanisms that are congruent with field

knowledge. This decomposition corresponds to a systematic marginal-conditional decomposition;

the ordered feature corresponds to a recursive decomposition. As developed in section 2.3, the con-

ditioning variables of each conditional component of the decomposition are exogenous variables for

the corresponding sub-process.

For this purpose, we look for a recursive decomposition such that each factor of the right-hand side

of (4) is structurally valid. As argued in Mouchart, Russo and Wunsch (2009), causes may then be

viewed as exogenous variables in the condensed recursive decomposition, alternatively as the relevant

information of a structurally valid conditional distribution. Readers familiar with the literature on

graph models may recognise that a directed acyclic graph (DAG) is a graphic representation of a

condensed recursive decomposition and that the causal structure is depicted by the set of ancestors.

Why interpreting exogenous variables as causal factors? The main reason is that structural

modelling is also meant to explain a phenomenon—an issue that we just briefly mentioned in the

Introduction and that we will develop in detail in section 3. In order to do that, we have to model

‘structures’, that is mechanisms where causal factors play a role. This ties a knot between structural

modelling, explanation, and causation.

Thus the variation-free condition (5) does not only allow us to separate the inferences on θj|1,···,j−1

and on θ1,···,j−1, but it also allows us to distinguish the process generating the causes, characterised

by θ1,···,j−1, and the process generating the effects, characterised by θj|1,···,j−1. Separating causes

from effects mirrors the asymmetry of causation.

The goal of structural modelling is to characterise clearly identified and interpretable mechanisms.

The choice of the marginal-conditional decomposition is therefore not arbitrary; we need background

knowledge and invariance to make a selection among the various possible decompositions. In other

words, the marginal-conditional decomposition alone does not provide a (causal) explanation of a

given phenomenon, but the whole modelling procedure does. This is indeed mirrored in the step-

wise H-D methodology presented in section 2.1 which seeks to decompose a vector of variables
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into structurally valid components. Next section shows that when latent variables are present in a

structural model, causal attribution becomes substantially more complex.

2.5 Partial observability and latent variables

Consider a three-variate completely recursive system, represented in Figure 1, for data in the form

X = (Y,Z, U) :

pX(x | θ) = pY |Z,U (y | z, u, θY |Z,U ) pZ|U (z | u, θZ|U ) pU (u | θU ) (8)

where each of the three components of the right hand side may be considered as structural models

with mutually independent parameters,

U Z

Y

-

@@R ��	

Figure 1: 3-component completely recursive system

This diagram suggests that U causes Z and (U,Z) cause Y . Here, U is a confounding variable for

the effect of Z on Y ; for more detail see e.g. Wunsch(2007).

Now suppose that U is not observable. It might be tempting to collapse the diagram in Figure 1

into that of Figure 2. Formally, Figure 2 may be obtained by integrating the latent variable U out

of (8):

pY |Z(y | z, θY |Z) =

∫
pY |Z,U (y | z, u, θY |Z,U ) pZ|U (z | u, θZ|U ) pU (u | θU ) du∫ ∫
pY |Z,U (y | z, u, θY |Z,U ) pZ|U (z | u, θZ|U ) pU (u | θU ) du dy

(9)

pZ(z | θZ) =

∫
pZ|U (z | u, θZ|U ) pU (u | θU ) du (10)

Z Y-

Figure 2: 2-component system

Therefore:

θY |Z = f1(θY |Z,U , θZ|U , θU ) θZ = f2(θZ|U , θU ) (11)

Two remarks are in order:

1. In general, Z is not exogenous anymore because (11) shows that the parameter θY |Z and θZ

are, in general, not independent; indeed some components of θZ|U and of θU may be common

to θY |Z and θZ . Therefore, Figure 2 is an inadequate simplification of Figure 1 (see however

next remark);
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2. the non-observability of U typically implies a loss of identification: the functions f1 and f2

are not one-to-one; thus Z might still be exogenous because potentially common parameters

in θY |Z and θZ might not be identified.

3 Explaining through structures

In the Introduction, we mentioned that causal analysis is important in order to explain, preditct,

and intervene. We also expressed skepticism about methodologies that pretend to infer causal

relations on the basis of sole data under analysis. In this section we therefore address two issues

of a more theoretical concern. One is the specific meaning of ‘structural’ adopted in our account.

We will argue that calling the approach ‘structural’ goes well beyond employing structural equations

and has instead to do with the goal of modelling structures. The second theoretical issue is the

explanatory import of structural models. We will argue that structural models explain insofar as

they model structures, that is causal mechanisms.

3.1 Meanings of ‘structural’

As the name suggests, structural modelling has to do with structures. What we take to be peculiar

to structural modelling is that the whole modelling procedure aims to uncovering (or modelling)

structures,i.e. mechanisms. The literature on ‘structural modelling’ abounds. One conception (and

perhaps the most widespread) takes ‘structural modelling’ and ‘structural equation modelling’ as

synonyms. In our view, however, those are not coextensive terms.

‘Structural equation modelling’ is a particular type of statistical model used in quantitative social

science, especially in econometrics. ‘Structural modelling’, instead, does not denote a particular

(statistical) model (e.g. structural equation models, covariance models, multilevel models, etc. )

but refers to a general methodological account of model-building and model-testing. In this sense,

we take structural modelling to be a general methodological framework for causal analysis. This

distinction between a particular statistical model and a general methodological framework is often

not clear. Some examples of how scholars both in statistics and in philosophy of science characterise

structural modelling clarifies the point.

A notable example is Pearl (2000). In his seminal book on causation, he deals with structural

models sometimes meaning structural modelling and sometimes more specifically structural equation

modelling. In a more recent contribution, Pearl (2011) develops a ‘structural theory of causation’,

i.e. in his terms, a ‘general theory of causation’. A possible interpretation of what he means is

a ‘general methodological framework’ for causal analysis. In that paper, he develops a formalism

that is general enough to subsume, as special cases, particular models such as structural equation

models, potential outcome models, and graphical models. The leading idea of his formalism is
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that we have to evaluate whether the probability distributions over a set of variables would differ

if external conditions were to change. Such information is provided by causal assumptions made

in the model. Those assumptions allow us to identify relationships that remain invariant when

external conditions change. We do not think that Pearl’s latest approach is in opposition with

our approach, at least as far as the formal tools of causal analysis are concerned. However, what

distinguishes Pearl’s from our approach is an explicit explanation of what makes a structural model

structural. This we attempt to do later in section 3.2, where we advance an explicit mechanistic

interpretation of structural modelling. There is another difference between Pearl’s and our approach.

Pearl usually distinguishes three types of queries: (i) about the effects of potential interventions, (ii)

about counterfactuals, and (iii) about direct and indirect effects. According to the methodology of

structural modelling detailed throughout section 2, some structure needs to be identified beforehand

in order to answer any of these queries. Such structure, or mechanism, is identified by the recursive

decomposition, as explained in section 2.4.

Among philosophers of science, Woodward (2003, ch.7) provides a lenghty discussion of ‘struc-

tural models’. To begin with, Woodward focuses on structural equation models; in particular, he

explains the underlying regression techniques and provides a particular definition of invariance con-

dition. However, in this way his account neglects the whole variety of statistical models used in

quantitative causal analysis and that could rightly be called ‘structural’ under our understanding

but not under his understanding. Thus the main difference is that whilst our discussion is quite gen-

eral in scope, Woodward’s discussion narrows down to one specific type of statistical model. Other

differences between our approaches exist, for instance about the use of counterfactuals in causal

analysis or about the role of manipulation and intervention. A thorough discussion falls beyond the

scope of the present paper. However, counterfactuals will be covered later in section 4.2. As for the

role of manipulation, the reader is referred to Russo (2011a and b).

In econometrics, another example is Hoover (2011) who considers that the goal of quantitative

causal analysis is to represent causal relationships by invariant parametrizations of a system of equa-

tions. It is worth noting that this position does not automatically imply endorsing a counterfactual

approach. In fact, quite to the contrary, Hoover criticises Woodward because, if causal analysis

is reduced to counterfactual analysis, it is eventually impoverished. Hoover is also concerned with

approaches that bestow much importance to counterfactual manipulability. As it will be clear from

section 4, we do share Hoover’s criticism of manipulation. So, there is a lot of positive overlap

between Hoover’s and our approach. Nevertheless, when Hoover presents the structural account as

based on Herbert Simon’s causal ordering (see, e.g. Simon (1953 and 1954) and Fennell (2011))

and on the condition of exogeneity, the question that is left unanswered is, again, what makes a

structural account structural.

Going back to philosophy of science again, Nancy Cartwright has also extensively written on
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quantitative causal analysis. Her worries and concerns are however different from ours. For instance

Cartwright (2007) discusses at length econometric techniques and theoretical models used for the

purposes of causal analysis in economics. Thus she restricts on purpose the discussion to one social

science area, whereas our arguments apply also to disciplines outside economics. But, interestingly

enough, the conclusion of one of her arguments indirectly supports ours. Cartwright is concerned

that controlled experiments are considered the ‘ideal’ test for causal hypotheses. She challenges the

claim that sometimes we do not need to run the experiment, as Nature does it for us. Cartwright

is particularly worried because we are seldom in the conditions to appeal to such an argument. In

fact, even if in principle ‘ideal’ tests done by Nature are conceivable, the reality of things is that

causal hypotheses are difficult to test. Consequently, we need reasons that are outside the regime

over which the test is conducted in order to draw causal conclusions. These reasons are, at bottom,

the background knowledge that we have been invoking so far.

Thus, we believe, none of the available approaches explains how we get a mechanism out of a

statistical model, which is exactly what the modelling procedure hereby presented instead is meant

to do. In the next sub-section, we focus on what we take to be the main characterising aspect of

structural models: that is, structural models model mechanisms, and those carry explanatory power.

It is interesting to point out that some discussion on the relations between structural (equa-

tion) modelling and mechanisms exists in the philosophical and methodological literature. Yet, the

connection has been drawn differently from the one done here. Consider classical economists such

as Adam Smith, David Ricardo, Thomas Malthus and John Stuart Mill or the Chicago School of

Economics. They developed economic theory so that the theory dictates the mechanism, but it does

not model it. Here is another example. We mentioned earlier Kevin Hoover’s approach, according

to which the causal structure represented by a set of structural equations is a “network of coun-

terfactual relations that maps out the underlying mechanisms through which one thing is used to

control or manipulate another” (Hoover 2001, p.24). This, as it will clear in the discussion later, is

at variance with our own understanding of mechanisms.

3.2 The mechanistic interpretation of the recursive decomposition

As explained earlier in section 2.4, the basic idea behind the recursive decomposition is to factorise

the initial joint probability distribution into a sequence of products of marginal and conditional

components, where the variables to condition upon play the explicit role of the causes. In this

subsection we address the question of the explanatory import of structural models. We argue, in

a nutshell, that the recursive decomposition interpreted in mechanistic terms does the explanatory

job; for a detailed discussion see Russo(2011c) and Mouchart and Russo(2011).

The argument is that the whole recursive decomposition can be interpreted as characterising

a global mechanism, whereas each conditional distribution within the recursive decomposition can
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be interpreted as characterising a sub-mechanism within the global one. If we can identify sub-

mechanisms within a global one, this means that we are able to decompose the global mechanism

and thus disentagle the action (or function) of each component. Notice, however, that this does

not mean that all recursive decompositions are mechanisms, but that some are interpretable in

mechanistic terms; a thorough discussion of this issue is however too broad to be discussed here.

The point we make is that explanatory power is provided by the specification of the decomposition

and its interpretation in mechanistic terms. Why? Because the decomposition specifies, as much as

possible, the functioning of a phenomenon; the articulation of the mechanism in this sense does the

explaining. Some remarks about the meaning of ‘mechanism’ is now in order.

To begin with, in the philosophical literature, a very vivid debate on the concept of mechanisms is

happening. Many questions concern what a mechanism is and consequently what definition captures

its essential features. Notwithstanding the importance of these discussions for those who have an

interest in the metaphysics of science, our claim that structural models carry explanatory power

insofar as the recursive decomposition is mechanistically interpreted does not depend on the specific

definition of mechanism.

What is most important for our claim is why mechanisms carry explanatory power (rather than

what is the right definition of mechanism). Thus, in saying that structural modelling looks for

structures, we are in line with the characterisation of Machamer, Darden and Craver (2000), in

that the structure being modelled assembles ‘things’ (entities, in MDC vocabulary; variables, in

the jargon of statistical models) that interact with and influence each other in a specified way (the

activities, in MDC vocabulary; the statistical relevance relations, in the jargon of statistical models).

We are also in line with the characterisation of Bechtel and Abrahamsen (2005), who put a lot more

emphasis on the structure or the organisation of the mechanism. Our understanding is however not

equivalent to the one of Woodward (2003), who conceives of mechanisms as chains of invariance

relations.

In our approach we do not make any ontological commitment as to the (degree of) physical ex-

istence of mechanisms. In other words, the choice of a particular ontological account of mechanisms

is perpendicular to the epistemological issue of the explanatory power of mechanisms. The under-

standing of mechanisms in structural modelling is rather epistemic—it is more concerned with how

we can (causally) make sense of the phenomenon to be explained. Structural modelling achieves this

goal by offering a story about a mechanism. Such epistemic understanding is akin to ‘mechanism

schemata’, as discussed in Machamer (2004), Machamer, Darden and Craver (2000), and Darden

and Craver (2002).

Needless to say, this is not to suggest that structural models provide immutable and eternal

causal explanations of social phenomena. Explanation is intrinsically relative and partial, that is

relative to the specific conceptual framework and dependent on available empirical and theoretical
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information. This means that nothing prevents future explanations to discard previous ones. Also,

such causal explanations involve a stopping rule in order to avoid an otherwise ad infinitum chain

of ‘explaining the explanatory’.

4 On the counterfactual approach to causal analysis

In the present paper, we defend a structural modelling approach to causality. Other frameworks

have however been proposed in the literature. In particular an approach based on counterfactuals

has also gained recognition. In this section, we first point out that counterfactuals may be of help

for causal reasoning. Next we question counterfactuals as a basis for causality.

4.1 Counterfactual questions as an aid to inferring causal relations

In observational studies especially, one is never sure that an observed association between a putative

cause and an effect reflects a causal relation between the two, as the association might also be

due to the presence of unknown latent confounding variables which have not been controlled for.

This important issue has been tackled in particular by epidemiologists several decades ago; they

have developed a series of criteria which have been recommended for drawing causal inferences.

The criteria have been systemised by Bradford Hill (1966); more recent versions can be found e.g.

in Beaglehole, Bonita and Kjellström (1994) or in Rothman and Greenland (1998). Briefly, these

criteria refer to the strength of the association, to the consistency of the observation of the association

in different populations and settings, to the temporality of the relation (a cause must precede its

effect in time), to the dose-response gradient, to the plausibility and coherence of the cause-and-effect

interpretation with background knowledge, and to the reversibility of the association: in the absence

of the cause one should not observe the effect. This last criterion can be stated in counterfactual

terms: if the cause had not been, the effect would not have occurred.

Except most probably for the criterion of temporality (see Wunsch, Russo and Mouchart, 2010),

all the other criteria suffer from exceptions and reservations (see Rothman and Greenland, op. cit.).

For example, an implausible explanation according to prior beliefs and current knowledge might

actually be correct and possibly lead to progress in science. Lack of consistency might be due to the

fact that the cause produces its effect only under particular circumstances. As to the counterfactual

criterion, several counterarguments will be outlined in the following sub-section. To take but one

issue, suppose one is interested in the effect of ‘Education’ (putative cause) on ‘Self-rated health’

(outcome). Following the counterfactual criterion, one would ask what would happen to self-rated

health for counterfactual values of education. In order to assess the causal effect of, e.g. higher

education on self-rated health, we have to ask what would happen to the individuals not benefiting

from a higher education. This counterfactual is however highly ambiguous. Not having a higher
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education may mean different things: secondary schooling or less, just secondary schooling, primary

schooling or less, just primary schooling, technical education, or no formal schooling at all. Which

one is the counterfactual to evaluate? Each counterfactual would correspond to a different model,

leading to a different measure of the effect.

Finally, all these criteria can be of help in inferring causality but they are not foolproof. In actual

social situations, taking into account the complexity of the network of causes and effects, some of

these criteria will be satisfied and others very often not. For example, the effect might appear

even in the absence of the putative cause due to the presence of other causes, in a multiple-cause

multiple-effect framework. It remains for the scientist to check all the evidence available and then to

decide upon the existence or not of a possible causal relation. No set of criteria—and in particular

no single criterion—will automatically lead to this result.

4.2 Counterfactuals as a basis for causality

We have seen that the counterfactual argument is but one of several criteria to be of help in inferring

causal relations. As with the other criteria, it is neither necessary nor sufficient for this purpose.

Nevertheless, notwithstanding its shortcomings, the counterfactual argument has been taken as a

basis for causality in what is now known as Rubin’s causal model (Holland, 1986), which has become

influential in various spheres of social research.

Rubin (1974) formalised the basic idea behind the counterfactual model as follows. Consider

comparing two ‘treatments’, E and C, in the case of a headache. Let E represent taking two aspirins

and C drinking just a glass of water. The potential outcomes Y relating to these two treatments may

then be written as two random variables, namely Y (E) and Y (C). The causal effect of treatment E

versus treatment C on Y for a particular subject j (say, Jones) observed at time t+k is then defined

as Yj(E) − Yj(C), i.e. the differential headache response to taking the aspirins or just drinking a

glass of water at time t. If we consider n subjects instead of only one subject, we have one causal

effect Yj(E)−Yj(C) per subject j. The average causal effect for this group of n persons can then be

written
∑

j [Yj(E) − Yj(C)]/n, the sum extending from j = 1 to n. Rubin’s solution is often called

the potential outcome (or response) approach, the two potential outcomes being in this simple case

Yj(E) and Yj(C) for each j. The causal effect may differ from one individual to the other; thus a

‘typical’ causal effect (Rubin’s own term) is obtained as above by taking the average (or any other

summary measure) of the individual causal effects.

In the actual world, one never observes at the same time for the same individual both Y (E)

and Y (C). People are assigned or experience either E or C but not both at the same time, i.e.

not the fact and its counterfact. Rubin has nevertheless shown that randomization and matching

are two approaches measuring the causal effect in experimental and observational studies, though

randomization cannot often be used in the social sciences and perfect matching is hardly possible
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in practice. In many actual situations in observational research, the assignment of units to the case

and control groups is often prone to selection bias. Thus the likelihood of treatment on the one

hand and of the outcome on the other hand are not independent. In this case, one must control as

best as possible for the assignment factors which have an impact on the outcome. Clearly the actual

challenge for the researcher is to ensure that that ‘all relevant factors’ have been controlled for.

The counterfactual basis of Rubin’s potential outcome framework raises some important episte-

mological issues, which we have discussed in another paper to which the reader is referred (Russo,

Wunsch and Mouchart, 2010). The first two issues are quite often discussed in the literature. One

concerns the soundness of the counterfactual approach given that the counter-fact is not observed,

thus resulting in a lack of sound empirical basis. The other concerns the alternative between a coun-

terfactual model measuring effects of causes and other models concerned instead with the causes of

effects, the counterfactual model being ill-suited for searching for the causes of an effect. The next

two issues concern the concepts that back up the experimental method and which are subsumed by

the counterfactual model: manipulation and randomization. Though useful of course, neither is nec-

essarily required for inferring causal relations. Our arguments hinge on the idea that manipulation

(contra the view of counterfactualist theorists) is not the methodological (nor the epistemological)

basis of causal analysis.

This can be seen analysing different readings of an equation of the type Y = βX + ǫ. It is

important to notice that such an equation can be given a variational and a manipulationist reading.

Let us explain further. At bottom, this equation is read thus: variations in the putative cause X are

accompanied by variations in the putative effect Y . How much Y varies in response to the variation

in X is quantified by the parameter β. The manipulationist reading is then derived from this basic

variational reading as follows. In an experimental setting, manipulations on X make X varying, such

that Y varies accordingly. In a controlled experiment, therefore, co-variations in X and Y are due

to manipulations, unlike in observational studies. However, for causal inference it is not necessary

that X has been manipulated. It could well be, as is typically the case in observational studies in

social science, that statements about co-variations are based on calculated statistical correlations

between the variables. In such cases causal inference has to be supported by further considerations

about structural stability, exogeneity, possible confounders, the chosen recursive decomposition and

background knowledge. Differently put, we are in a position of making causal inference even in the

absence of manipulation, provided that the model is deemed structural, to the best of our knowledge.

The next issue deals with complex mechanisms. Even in seemingly simple situations one has to

face an issue of multiple causes and multiple effects, involving more than one mechanism at a time.

In practice, it is usually not sufficient, to come back to our example, to compare Jones taking the

aspirin to Jones not taking the aspirin. One must control for the factors possibly confounding the

relationship between aspirin and headache. The two Jones should be matched on all the relevant
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covariates which could lead to confounding. However if there are many covariates including latent

ones, as is most often the case in social sciences, it will often be impossible to match on all these

covariates. Finally, our last argument makes a critical assessment of the simplistic analogies and

parallelisms that have oft been made between the counterfactual model developed in statistics and

the counterfactual analysis of causation developed by philosophers. The former, although based on

individual-level data, is generic, whilst the latter is single-case, that is it concerns a particular causal

relation taking place in a given time and place.

Following the arguments developed in Russo, Wunsch and Mouchart (op. cit.), our conclusion is

that though counterfactual questions can help the researcher in drawing causal connections, coun-

terfactuality per se cannot serve as the basis for inferring causal relations.

5 Discussion and conclusion

Structural modelling, in the way it has been presented in this paper, aims to provide an approach

to causal explanation of social phenomena. We made the effort to go beyond structural modelling

intended as a mere statistical machinery and we attempted to provide a view on modelling, that is a

scientific procedure that goes from data collection and hypothesis formulation to statistical testing

and interpretation of results. Of course the implementation of scientific procedures, no matter how

well and clearly defined, is easier said than done. Structural modelling may indeed be hard to put

in place and is not immune from criticisms.

Many scientists remain sceptical about the practical usefulness of structural modelling, even

if they recognise that “understanding and identifying causal mechanisms is, perhaps, the primary

driving force of science” (Holland, 2001, p. 224). For Holland, for instance, the danger lies in the

fact that almost ‘anything’ can be considered as a cause “because we are just talking rather than

doing”, i.e. setting up ‘treatments’ or ‘interventions’ (Holland 2001 p. 225). Actually, a causal

mechanism does not appear from nowhere. Nor does it necessarily result from adding more and

more variables to the predictive set (Sobel, 2000). As we have argued in this paper, a structural

model should be based on the best available knowledge one has of the field; all postulated relations

should be accounted for. In particular, to avoid loss of exogeneity the model should incorporate

those variables deemed to be responsible for possible assignment bias.

The structural modelling framework also has its problems, of course. First of all, known con-

founders can be incorporated into the model only upon the condition that indicators of these con-

founders are available in the data set. In many situations, especially when one uses secondary data

(i.e. data collected by others), no information is available for some of the variables in the model.

Confounding bias may not be avoidable then, though in some cases omitted variable bias can be

controlled for by fixed effects regression or by instrumental variables regression (Stock and Watson,
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2003). Unknown latent confounders may however still bias the results.

A second issue relates to the temporal ordering of variables. In many cases, the observation

window is too wide to observe the exact ordering of the events in time. Depending on the length

of the window, it is not always possible to state if the putative cause occurred before or after the

effect. For example, if migration and occupational change are recorded on a yearly basis in the

data set, one does not know on an annual basis whether migration has occurred before or after

occupational change, if both have happened during the year. To illustrate further, let us take

the example of commercial contracts. Consider the typical situation in the tour-operator market.

Suppose that the tour-operator, acting as a price setter, prints in January a catalogue for the coming

season. If the price is not altered within the year, the quantity observed on an annual basis may

be assumed to have been contracted by a price-taker demand side, and the price construed as an

exogenous factor of the demand. But if the price is modified, say around Easter time, annual data

will not allow disentangling the demand from the supply, even under a price-taker demand, as long

as different quantities have been contracted under different prices and the price changes have been

operated under the pressure of the demand. Recursivity of the decomposition is jeopardized in these

examples, as causes and effects appear to be simultaneous.

Another issue concerns invariance or stability. It will often be difficult, in the social field, to

repeat the research on comparable populations, in order to check if the results remain invariant under

changes of context, even if the reference population is well-defined. For example, it has been shown

(Laplante and Flick, 2010) that cohabitation and health patterns are drastically different between

Quebec and Ontario, two neighbouring provinces in Canada with rather similar populations. Very

often, results differ from one study to another, and it will usually hardly be possible to determine if

this is due to an inadequate model, insufficient data, or differential contexts.

Moreover, structural modelling requires reliable prior information on the putative recursive de-

composition of the data matrix. A major drawback is that in many cases one only has a scant

knowledge of the underlying mechanism. Some of the sub-mechanisms thus remain black boxes

and, in this situation, several alternative models may fit the data equally well. It is then difficult

to discriminate between alternatives that equally account for the same data set. In this case, a

good descriptive analysis or exploratory data analysis might be more useful than poor structural

modelling.

Yet another danger is that because background knowledge plays a central role, it might be

given too much weight. But background knowledge is not meant to be infallible nor immutable.

Instead, background knowledge has to be the bridge between established knowledge and establishing

knowledge. Established scientific knowledge is (and ought to be) used to formulate the causal

hypothesis and to evaluate the plausibility of results on theoretical grounds. But causal analysis

also participates in establishing new knowledge by proposing new conceptual frameworks and testing
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them against new data or new interpretations of existing data. This reflects the idea that science is

far from being monolithic, discovering immutable and eternal truths. If the model fits the data, if the

relations are sufficiently invariant and congruent with background knowledge, then we can say, to the

best our knowledge, that we modelled a causal mechanism that explains a given social phenomenon.

But what if one of these conditions fails? A negative result may trigger further research by improving

the modelling strategies, or by collecting new data, thus leading to new discoveries that, perhaps,

discard background knowledge.

Actually, these various criticisms should be evaluated from three perspectives. Firstly, poor

knowledge of the underlying structure, or the lack of consensus about it, should remind us that

causality attribution is only relative to a well-specified structural model: if the modelling procedure

is weak, causal attribution is weak too. Secondly, an analysis confined to statistical associations (such

as correlations etc. ) does not allow causal attribution. Statistical associations and regularities are

surely an essential ingredient for building a structural model but, we insist, causality can only be

relative to a structural model. Thirdly, a major role of structural modelling, in particular of the

recursive decomposition, is precisely to tentatively provide a structure in a world where apparently

‘everything depends upon everything’, and consequently ‘almost everything is a cause’, which would

lead to a situation where no action is possible or where effects of treatments are not identifiable.

What is the contribution of a structural modelling approach to causal attribution? Firstly, a

structural approach can deal, within a same framework, both with the effects of causes and with

the causes of effects. Secondly, the specification of the recursive decomposition allows distinguishing

and ordering the various sub-mechanisms within a global one. From this, exogenous variables can

eventually be given a causal interpretation.

And what are the implications of a structural modelling approach for the practicing scientist?

In such an approach, the quality of the results crucially depends upon the quality of the process

of model building and model testing. Thus, from the very start, the scientist should make the

causal hypotheses explicit until s/he obtains a recursive decomposition in agreement with all the

available background knowledge. Then the scientist should carefully check for structural stability,

or invariance, of each component of the recursive decomposition and try to condense the latter as

much as possible. Finally, the scientist should take into account the possible non-observability of

some of the relevant variables and evaluate its impact, in the resulting model, on exogeneity and on

the identifiability of the parameters of interest.
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