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Abstract

Based on data in the form of a two-way contingency table “Regions × Activities”, the con-

cepts of specialization and of concentration are naturally based on the analysis of the conditional

distributions, or profiles. The natural tool for measuring the degrees of specializations are pro-

vided by discrepancies, more precisely distances or divergences, among distributions: between

profiles and a uniform distribution for absolute concepts, between profiles and the correspond-

ing marginal distribution for the relative concepts or between the joint distribution and the

product of the marginal distributions for the global concept. This is the approach of stochastic

independence that conducts the analysis in terms of stochastic independence between activities

and regions and the global discrepancy is viewed as a measure of row-column association. This

paper presents the results of an extensive analysis of the numerical values of measures derived

from this approach and from other approaches widely used in the literature. A main conclusion

of this analysis is that although the different measures under consideration display rather similar

numerical behavior, differences of ranking about the degree of specialization among activities,

among regions or among countries call for a particular care when interpreting the numerical

results.
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1 Introduction

For a given country, let us consider regions labeled i ∈ I = {1, ..., I}, and activities labeled j ∈
J = {1, ..., J}. For each pair (i, j) ∈ I × J , we observe the number of employees, let Nij . Thus we

obtain a two-way I × J contingency table N = [Nij ] that in turn also produces row, column and

table totals:

Ni· =
∑J

j=1
Nij ; N·j =

∑I

i=1
Nij ; N·· =

∑I

i=1

∑J

j=1
Nij =

∑J

j=1
N·j =

∑I

i=1
Ni·. (1)

Two types of issues are considered in this paper, namely the concentration of the activities within

regions and the specialization of the regions in term of the activities. Thus, the contingency table

N = [Nij ] is to be analyzed in terms of profiles, or relative frequencies, characterizing regions and

activities, namely:

• region i may be characterized by the profile (or conditional distribution) of the i-th row:

p~j|i = (p1|i, · · · , pj|i, · · · , pJ|i) pj|i =
Nij

Ni·
(2)

to be compared with the global row profile (or marginal distribution):

p·~j = (p·1, · · · , p·j , · · · , p·J ) p·j =
N·j

N··
(3)

• similarly, activity j may be characterized by the profile (or conditional distribution) of the

j-th column:

p~i|j = (p1|j , · · · , pi|j , · · · , pI|j) pi|j =
Nij

N·j
(4)

to be compared with the global column profile (or marginal distribution):

p~i· = (p1·, · · · , pi·, · · · , pI·) pi· =
Ni·

N··
(5)

Three types of analysis should be distinguished:

• analysis of the spread of the activity specific (p~i|j) and of the region specific (p~j|i) profiles. For

categorical variables, the spread of the frequency distribution may be characterized, among

others, through entropy or through average absolute deviations. Note that the entropy may

be viewed as a divergence (for more details on f -divergence: see Csiszár 1967) with respect to

the uniform distribution;

• analysis of the divergence or distance between the activity specific profile and the marginal

(or country) region profiles, d(p~i|j | p~i·) or between the region specific profile and the marginal

activity profile, d(p~j|i | p·~j). Here χ2 and Kullback-Leibler divergences or Hellinger distance

are used as tools for evaluating a discrepancy between two distributions;
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• a global analysis of the country in terms of a divergence, or a distance, between the actual

distribution and the closest distribution reflecting independence, namely pi· p·j , i.e. the global

analysis focuses the attention on d([pij ] | [pi· p·j ]), where pij = Nij/N··

The economic geography literature on the industrial concentration of activities and on regional

specialization is vast and the use of words is not completely standardized. In Table 1 we adopt some

conventions as close as possible to largely spread uses.

Table 1: Some conventional definitions

Technique Measured concept

Spread of p~j|i Regional specialization

Spread of p~i|j Localization or industrial concentration

d(p~j|i | p·~j) Relative regional specialization

d(p~i|j | p~i·) Relative localization or relative industrial concentration

d([pij ] | [pi· p·j ]) Global specialization

Heuristically, regional specialization, is a feature of the activities distribution in a region (p~j|i),

and a region is said to be specialized if a few activities have a large share. This may be the case, for

instance, when an activity is considerably larger than other ones. Relative regional specialization of

a specific region shows up when an area has a greater proportion of a particular activity than the

proportion of that activity in the whole territory. In other words, relative regional specialization

compares an area share of a particular activity with the activity share at the country level, and is

accordingly measured through a discrepancy d(p~j|i | p·~j), thus relatively to the marginal distribution

p·~j . The same presentation can also be made for industrial concentration and for relative industrial

concentration.

In order to introduce the concept of global specialization, imagine the following (artificial) exper-

iment. Draw randomly one employee from the N·· ones in activity and classify the drawn employee

into region and activity. The probability of drawing an employee from the cell (i, j) is evidently pij .

In this framework, the absence of global specialization may be approached as that of stochastic in-

dependence between the row and the column criteria. This suggests to measure the degree of global

specialization through a statistic that might be used for testing independence in a contingency table.

Thus, global specialization may be viewed as a particular form of association between the region and

the activity variables. This approach may be called “a stochastic independence model approach”.

This is the object of this paper.

We focus attention on the global specialization within a discrete space, i.e. a space partitioned

into a finite number of regions. In the framework of the contingency table N = [Nij ], the label i
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of the regions is arbitrary and reflects neither spatial contiguity nor distance among regions. In a

sense, this analysis is “spaceless” and motivated by policy making rather than by spatial diffusion

issues. When the country is treated as a unique continuous space, the basic data refer to points in

the country and the interest is focused on designing a stochastic process, such as a marked point

process, in order to represent locally diffusion issues. With this last approach, motivation is more

oriented toward modeling and explaining the observed spatial structure. The continuous approach

is not developed in this paper.

The object of this paper is to compare numerically measures of relative and global specialization,

some in the framework of the stochastic independence model, others in different frameworks. The

underlying question of these comparisons is to evaluate how far these measures are mutually coherent

and quantify a same concept. We also check whether these measures operate a same ranking of

specializations among activities, among regions or among countries. A heuristic conclusion of our

analysis is that the investigated measures are reasonably coherent but that the possible differences

of ranking require some care at the stage of interpretation.

The order of presentation is a follows. We introduce global measures of specialization in next

Section. The general presentation is followed by to numerical applications, one on argentinean data

and another one on a comparison between Argentina, Brazil and Chile. Section 3 consider the

issue of grouping regions or activities in the framework of Modifiable Areal Unit Problem (MAUP).

This Section is completed with a numerical application that analyzes the grouping of argentinean

regions and activities. Section 4 presents some concluding remarks about the stochastic independence

approach and the other approaches, and conclusions.

2 Global measures of specialization

2.1 An overview

When defining degrees of global specialization, one possible strategy consists in first defining a

regional index, characteristic of a region, and thereafter aggregate the regional indices into a global

one, characteristic of the country. Conversely, one may start by first defining a global index of

the country and thereafter decomposing it into regional components. This distinction is useful

when trying to give structure to a set of measures of global specialization. Note also that from a

stochastic independence point of view, which is essentially symmetric, the role of the regions and of

the activities may be permuted, leading by so-doing to different classes of problems of interest.

The well established Local Quotient is defined for each cell (i, j) as follows:

LQij =
Nij/Ni·

N·j/N··
=

Nij/N·j

Ni·/N··
=

NijN··

Ni·N·j
=

pij

pi· p·j
=

pj|i

p·j
=

pi|j

pi·
(6)
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The second and the third terms of (6) correspond to “relative risk” or “excess risk” in epidemiology,

while the fourth term corresponds to the usual “cross-product ratio” of the 2×2 sub-table constructed

around Nij . The last three terms express the same concepts through proportions, i.e. independently

of N·· representing the size of the country. This local quotient reveals the following feature of activity

j in region i:

LQij = 1 no specialization

> 1 over-specialization

< 1 under-specialization (7)

where the “no-specialization” corresponds to the row-column independence in the contingency table

N = [Nij ]. The last two equalities in (6) stresses the point that the specialization is an issue

concerning the global structure at the country level: thus the absence of specialization of a cell

(i, j) means that, relatively to the distribution in the country, activity j is not over-(nor under-)

represented in region i and that region i is not over-(nor under-) represented for the activity j.

Thus, “local” points to the fact that LQ is localized in a cell (i, j).

Among the most often used measures of independence between rows and columns of the contin-

gency table N, to be used as measures of global specialization, we shall focus the attention on the

following three:

dχ2(N) =
∑

i

∑

j

pi·p·j(LQij − 1)2 χ2 − divergence, or inertia (8)

=
∑

i

∑

j

pi·(pj|i − p·j)
2

p·j
=

∑

i

∑

j

p·j(pi|j − pi·)
2

pi·

dKL(N) =
∑

i

∑

j

pi· p·j LQij log(LQij) Kullback-Leibler divergence (9)

=
∑

i

∑

j

pi· pj|i log

(

pj|i

p·j

)

=
∑

i

∑

j

p·j pi|j log

(

pi|j

pi·

)

dH(N) =
1

2

∑

i

∑

j

pi· p·j (
√

LQij − 1)2 Hellinger-distance (10)

=
1

2

∑

i

∑

j

(
√

pi· pj|i − √
pi·p·j)

2 =
1

2

∑

i

∑

j

(
√

p·j pi|j − √
pi·p·j)

2

These measures deserve some comments:

• As should be expected, these formulas display symmetry between regions and activities, as is

the concept of stochastic independence.

• Among different equivalent forms, displaying the role of the local quotients LQij has been first

privileged. These measures may therefore be viewed as a global measure of the discrepancy

between the different LQij and 1. Alternatively, these global measures may also be viewed
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as distances or divergences between the actual distribution embodied in the contingency table

N and the closest distribution reflecting stochastic independence, namely the product of the

marginal distributions, as is typically done when testing for stochastic independence. Equiv-

alently they aggregate distances or divergences between the different conditional distributions

and the corresponding marginal distributions.

• Hellinger’s measure is symmetric between the two measures, corresponding to the actual con-

tingency table and to the relative independent measure, and is accordingly a distance whereas

the χ2 and KL measures are (non symmetric) f-divergences.

• Each measure is given in the form of a double sum and may accordingly be decomposed as

an average of the distances, or divergences, between the conditional distributions and the

corresponding marginal distributions, relatively either to the regions or to the activities. More

specifically we have:

dχ2(N) =
∑

i

pi·





∑

j

(pj|i − p·j)
2

p·j



 =
∑

j

p·j

[

∑

i

(pi|j − pi·)
2

pi·

]

(11)

dKL(N) =
∑

i

pi·





∑

j

pj|i log

(

pj|i

p·j

)



 =
∑

j

p·j

[

∑

i

pi|j log

(

pi|j

pi·

)

]

(12)

dH(N) =
1

2

∑

i

pi·





∑

j

(
√

pj|i − √
p·j)

2



 =
1

2

∑

j

p·j

[

∑

i

(
√

pi|j − √
pi·)

2

]

(13)

Thus these three measures of specialization accept a similar decomposition:

dω(N) =
∑

i

pi· dω(p~j|i | p·~j) =
∑

j

p·j dω(p~i|j | p~i·) ω ∈ {χ2,KL,H} (14)

In other words, each of these global measures appears as an average of the relative regional

specializations d(p~j|i | p·~j), or of the relative localizations d(p~i|j | p~i·).

Note. We use a slightly incoherent notation: dω(N) is a short-hand notation for d([pij ], [pi·p·j ])

that does not make explicit the two distributions [pij ] and [pi·p·j ] conforming the divergence,

whereas for instance in dω(p~j|i | p·~j) we make the relevant distributions explicit.

• In the literature, the region specific indexes dω(p~j|i | p·~j) have also been called the relative

specialization of region i whereas the activity specific indexes dω(p~i|j | p~i·) have also been

called relative concentration of activity j. Thus (14) tells us that for the three measures,

the properly weighted average of the regional specialization or of the industrial concentration

provide a same measure of global specialization. This feature would induce Bickenbach and

Bode to consider the global measure of specialization dω(N) as measures of polarization in

(2006) or of localization en (2008 and 2010).
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• Bollen and Long (1993) summarize a number of desirable properties for such measures but

recognize that no single measure meets them all, moreover not all researchers would even

agree with all these properties.

• This paper focuses the attention on descriptive measures of global specialization but does not

consider issues concerning sampling or asymptotic properties in view of an eventual statistical

inference.

The literature on economic geography has proposed of wealth of measures of industrial concen-

tration, of regional specialization or of global specialization, often not in the present framework

of stochastic independence. A large class of these proposals are based on Lorenz curves and Gini

indices. In Appendix A, details are given on a Gini index of relative regional specialization GIi and

of relative industrial concentration GIj . In Appendix A are also given details on another class of

indices based on absolute deviations and due to Krugman. They provide other indices of relative

regional specialization SKi or of relative industrial concentration SKj . These indices may also

be aggregated into measures of global specialization by means of weighted averages, either on the

relative regional specialization:

GIreg =
∑

i

pi· GIi (15)

SKreg =
∑

i

pi· SKi (16)

or on the relative industrial concentration

GIact =
∑

j

p·j GIj (17)

SKact =
∑

j

p·j SKj (18)

Because these measures are not developed in the symmetric framework of stochastic indepen-

dence, the global measures based on regions and activities do not coincide:

GIreg 6= GIact (19)

SKreg 6= SKact (20)

2.2 Application to argentinean data

Scope of this application

In order to better understand which aspects of global specialization are captured by each of the

three measures, we conduct a diversified investigation of the numerical behaviour of these measures

evaluated in a specific case.
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We want to examine different issues. Firstly, when considering the profiles of the activities, or

of the regions, relatively to their corresponding marginal (country-wide) distribution, how much

are associated the measures of relative concentration, or of relative specialization? This question

may be answered by a graphic representation of these measures or by evaluating correlations among

them. But this question also raises another one. These measures are subject to different ranges

of variation: the unit interval for dH or bounded intervals for dχ2 or dKL. A comparison of their

behaviour is therefore easier if they are transformed into measures with similar, or identical, range of

variation. Some transformations are considered but a uniform standardization, to the unit interval

for instance, is not feasible because their maximum values depend on the dimensions of the table, I

and J , or on extreme values. A graphic representation of these measures, along with some of their

transformations, reveals sometime linear sometime non-linear associations.

Observing, and hopefully explaining, these differences of behaviour is one way for better in-

terpreting these measures. Other issues are: when considering the different measures of relative

concentration or of relative specialization, do these measures provide a same ordering of the activi-

ties, or of regions? When evaluating the global degree of specialization for different countries, is the

ordering the same for each measure?

It should stressed but these issues basically regard the interpretation of the numerical values

of these measures and their comparability among different activities, different regions or different

countries. Moreover, we also want to compare the numerical behaviour of dH , dχ2 and dKL with

that of Gini and of Krugman indices.

The data

The original data concerns the employees in the manufacturing sector and are obtained from of the

Economic Census made by the National Institute of Statistic and Censuses of Argentina (INDEC-

1994: 1,083,928 employees). The spatial units or regions are the political-administrative jurisdictions

called departments (462 out of 523 after eliminating those without employees in the manufacturing

sector).

The activity classifications refers to the first 2 digits of the International Standard Industrial Clas-

sification (ISIC Rev.3.1) of manufacturing activities (http://unstats.un.org/unsd/cr/registry/

regcs.asp?Cl=17&Lg=1&Co=D). They are 22 activities after grouping the divisions 36 (Manufacture

of furniture; manufacturing n.e.c.) and 37 (Recycling).

The final data used in this application are obtained by regrouping the 22 activities into 17 and

the 462 regions into 35. The regrouping was made from an automatic grouping procedure on large

two-way contingency tables based on hierarchical clustering and correspondence analysis (HCCA),

aimed to obtain a “Best Collapsed Table” with low level of information loss vis-à-vis the degree of

specialization in the original data (see more in Haedo 2009).
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Findings

Appendix B shows the 35 × 17 contingency table N of the data along with the rows and columns

totals Ni·, N·j with their proportions; we complete the table by providing the regions and activities

measures of relative regional specialization dω(p~j|i | p·~j), and of relative industrial concentration

dω(p~i|j | p~i·), and conclude the table by the global measures of specialization dω(N), where ω ∈
{χ2,KL,H} (Tables 9 and 10).

Let us look at the numerical values of the three measures of global specialization:

dχ2(N) = 1.6532; dKL(N) = 0.3176; dH(N) = 0.0713. (21)

As they are measured on different scales, their numerical values are difficult to interpret except dH

that takes values in the unit interval. Thus, only the numerical value of dH can be compared with

Gini’s and Krugman’s coefficients that are also valued in the unit interval.

We obtain:

GIreg = 0.3262; GIact = 0.3495; SKreg = 0.2963; SKact = 0.3041. (22)

As will be confirmed in the sequel, dH systematically gives a lower value of global specialization.

Also, the numerical value of the region based and of the activity based are different by very close.

Moreover, Gini’s and Krugman’s coefficients also take different but neighbouring values.

In order to compare the numerical values of all indices, a possible solution could be: take a

statistical view to evaluate the asymptotic distribution (or an approximation of the small sample

distribution by means of a resampling procedure) and compute the critical alpha corresponding to

a test of independence. Each would have a same asymptotic, or approximate, distribution uniform

on [0 1]. Take 1 − critical alpha as a comparable measure of association.

We do not take this way because is not appropriate for the later developments and rather take

alternative ones. Gibbs and Su (2002) and Reiss (1989) have proposed the following transformations:

log(1 + dχ2) and 4dH , respectively, in order to provide them with a range approximately close to

that of dKL. The transformed measures become

log(1 + dχ2(N)) = 0.4238; dKL(N) = 0.3176; 4dH(N) = 0.2852. (23)

These transformed measures have close but not identical values and suggest a low level of spe-

cialization in Argentina, in view of the value of dH . Later, in next subsection 2.3, we discuss the

relative position of Argentina with respect to other countries. The transformation (23) ensures a

similar range, namely around the interval [0 4], for the three measures; but this interval is approx-

imately true only. In particular, it is known that the maximum value of dχ2 depend on both I

and J . Cramer (1946) shows that the maximum possible for dχ2 is min{I − 1, J − 1} and may be

obtained only if I = J ; this issue motivated the proposition of Cramer, namely Cdχ2 =
dχ2

min(I−1,J−1)
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when proposing measures of association in contingency tables; for more information see for instance,

Bishop, Fienberg and Holland (1975), Everitt (1977) or Agresti (2002). Another difficulty is that

there is no such range for dKL. A simple, but not totally satisfactory proposal consist in normal-

izing dχ2 and dKL to the interval [0 1], just as dH . In principle, any strictly increasing function

R+ → [0 1] may do the job but the simplest one might be:

Ndχ2 =
dχ2

dχ2 + 1
; NdKL =

dKL

dKL + 1
. (24)

The results, namely Ndχ2(N) = 0.6231 and NdKL(N) = 0.2410 suggest that the transformations

(24) are not satisfactory for making the values of dχ2 , dKL and dH easily comparable.

Let us now have a closer look at the decomposition of the global measure into activity specific

and region specific measures according to (16), as given in Tables 9 and 10. In Figure 1, respectively

Figure 2, we have ranked the 17 activities, respectively the 35 regions, in ascending order of dH and

plotted together the three transformed measures.

Figure 1: Level of relative industrial concentration (dω(p~i|j | p~i·)) of transformed measures

Two features should be noticed:

• the numerical value of the three modified measures display low dispersion for values under 1

but higher dispersion otherwise, for the region specific as well for the activity relative measures;

• the ranking between regions, or activities, is modified each time one of the curves display a

descending piece; clearly the three rankings are similar but some discrepancies are noticeable.

Notice that these discrepancies show up for low as well as for high values of the measures.

Later on, we come back to the issue of the stability of the ranking.

Let us have a look on the graphic behaviour of the normalized measures Ndχ2 and NdKL

compared with GI and SK, relatively to dH , in Figure 3 for the relative industrial concentration

11



Figure 2: Level of relative regional specialization (dω(p~j|i | p·~j)) of transformed measures

and in Figure 4 for the relative regional specialization. All these curves take values in the unit

interval. These figures correspond to Figures 1 and 2 that were concerned with the three transformed

measures. We now notice that the five measures have roughly a similar behaviour although Ndχ2 is

the least similar. Moreover, the curves relative to the industrial concentrations, in Figure 3, display

more coherence than those relative to regional specializations in Figure 4.

Figure 3: Level of relative industrial concentration (dω(p~i|j | p~i·)) of normalized measures

In order to get a deeper insight into the meaning of these measures, we examine the joint

behaviour of 8 measures: the first 3 measures (dχ2 , dKL and dH), the transformed log(1 + dχ2), the

normalized version Ndχ2 and NdKL, and the Gini and Krugman coefficient GI and SK. We first

examine their numerical values by means of (pairwise) correlations (Table 2) and of pairwise scatter

diagrams (Figure 5). Next we perform a similar analysis on the ranks in Table 3 and 6. These tables

12



Figure 4: Level of relative regional specialization (dω(p~j|i | p·~j)) of normalized measures

and figures provide the results on regional specialization under the main diagonal and the results on

industrial concentration above the main diagonal.

Table 2: Correlations between relative regional specialization (dω(p~j|i | p·~j)-under the main diagonal)

and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal) measures

(I=35, J=17)

Item p~i·

p
·
~j

dχ2 dKL dH log(1 + dχ2) Ndχ2 NdKL GIj SKj

p~i·

- - - - - - - - - -

p
·
~j

- - −.2933 −.4373 −.4603 −.5462 −.7481 −.6461 −.5692 −.3673

dχ2 −.1793 - - .9551 .9301 .8671 .5482 .7891 .8011 .8281

dKL −.4062 - .8101 - .9921 .9471 .7141 .9241 .9311 .9171

dH −.4551 - .6491 .9601 - .9201 .6961 .9191 .9521 .9381

log(1 + dχ2) −.4601 - .7411 .9531 .8891 - .8671 .9681 .8971 .8101

Ndχ2 −.6361 - .4072 .7841 .8131 .8771 - .9051 .7861 .6081

NdKL −.5741 - .5271 .9021 .9361 .9281 .9561 - .9601 .8621

GIi −.5751 - .4801 .8821 .9521 .8631 .9071 .9801 - .9461

SKi −.4501 - .5101 .8881 .9671 .8171 .8181 .9351 .9721 -

1Significant at level 0.01 (two-sided)

2Significant at level 0.05 (two-sided)

3Not significant

Each time we also consider the association with the relevant marginal profiles pi· (first column)

and p·j (first row) and notice a systematic negative association between the marginal profiles and

the relative measures. Both the Table 2 and the Figure 5 however show that in absolute values

their association is the weakest one for dχ2 but the strongest one for Ndχ2 . This systematically

negative association shows that smaller sectors or smaller regions are expected to be relatively more
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specialized, as an effect of size. The scatter diagrams and the absolute values of the correlation show

however that their association is globally weak, in particular because the largest regions and the

largest sectors are essentially outlying data for this association.

Figure 5: Dispersion between relative regional specialization (dω(p~j|i | p·~j)-under the main diagonal)

and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal) measures

(I=35, J=17)

Let us now turn to the associations among the 8 measures. All pairwise correlations are positive

and significantly high. There is no clear indication that the transformed version log(1 + dχ2) or

the normalized version Ndχ2 or NdKL tend to substantially increase those correlations but some

are surprisingly high: most with dH and with NdKL, particulary between dH and dKL, and also

between GI and dKL.

Notice also that the correlations among the measures of relative industrial concentration behave

in an essentially similar way as those of relative regional specializations. The scatter diagrams, in

Figure 5, show however that most of these associations are non-linear, calling for more care when

interpreting coefficients of linear association. But the linearity of the relationships of SK with dH ,

NdKL and GI, and of Ndχ2 with GI is noteworthy.
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Table 3: Ranking correlations between relative regional specialization (dω(p~j|i | p·~j)-under the main

diagonal) and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal)

measures (I=35, J=17)

Item p~i·

p
·
~j

dχ2 dKL dH GIj SKj

p~i·

- - - - - - -

p
·
~j

- - −.7551 −.6181 −.6081 −.5122 −.3733

dχ2 −.7951 - - .9171 .8241 .7181 .5542

dKL −.8461 - .9591 - .9171 .8871 .7891

dH −.8511 - .8541 .9721 - .9511 .8381

GIi −.8611 - .8931 .9641 .9871 - .8951

SKi −.7861 - .8421 .9381 .9771 .9751 -

1Significant at level 0.01 (two-sided)

2Significant at level 0.05 (two-sided)

3Not significant

A last aspect should also be checked, namely the stability of the ranking. This aspect may be

viewed as non-parametric approach (see also Slottje 1990). This is examined in Table 3 by means

of Spearman’s rank coefficient and in Figure 6 by means of scatter diagrams among ranks. Here,

the rows and columns relative to log(1 + dχ2) are redundant with those relative to dχ2 . The same

redundancy is also true for normalized versions of dχ2 and dKL. Again the correlations, in Table

3, are uniformly high and the correlations with respect to the marginal profiles are higher than in

Table 2. But now the behaviour among the ranks relative to the activities (above the main diagonal)

have less associations than those relative to the regions (under the main diagonal), comforting what

was previously noticed.

As a first conclusion, the high rank correlation among all the measures considered so far comfort

the overall coherence of these measures but the possible modifications among the ranking should be

considered as a signal that these measures should be interpreted with care and, in no cases, should

be viewed as objective and definitive measures of specialization. Finally, some peculiarities of dχ2

might be attributed to the fact that dχ2 is based on squared differences that tend to overweight

extreme cases and this feature is sweetened by the log transformation.

2.3 Comparison between Argentina, Brazil and Chile

The aim of this subsection is to compare the overall degree of specialization of Argentina, Brazil and

Chile using the measures described above, based on employment data of the local government entities

of lower level. We analyze the evaluated measures with a particular attention to the dramatically

different dimensions of the contingency tables of each country, due to the difference on the number

of regions.
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Figure 6: Ranking dispersion between relative regional specialization (dω(p~j|i | p·~j)-under the main

diagonal) and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal)

measures (I=35, J=17)

The regional units are the political-administrative jurisdictions called departments (#523), mu-

nicipalities (#5,138) and communes (#342) for Argentina, Brazil and Chile respectively. The final

number of regional units (after eliminating those without employees in the manufacturing sector)

are 462, 5,138 and 249 for Argentina, Brazil and Chile, respectively. It is noteworthy that both

regions of Brazil and Chile refer to the local government entity while those of Argentina refer to

the cadastral divisions. Thus, from an administrative point of view, Argentina’s divisions are not

directly comparable with those of Brazil and Chile, although in some cases their boundaries coincide

with those of the municipalities.

The data related to the employees in the manufacturing sector were obtained from of the Na-

tionals Economic Census made by the National Institutes of Statistics and Censuses of Argentina

(INDEC-1994: 1,083,928 employees), Brazil (IBGE-1998: 6,018,445 employees), and Chile (INE-

2005: 446,613 employees), respectively. The data of Chile refer to the firms with 5 or more employ-

ees.

As in Section 2.2, the activity classifications refers to the first 2 digits of the International

Standard Industrial Classification (ISIC Rev.3.1) of manufacturing activities (22 activities after

grouping the divisions 36 and 37).

Table 4 shows a summary of the results obtained from the proposed measures of global special-

ization and the number of cells of each contingency table.
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Table 4: Summary of the results

Measure Argentina Brazil Chile

dχ2 (N) 2.1580 3.1345 3.4363

dKL(N) 0.5049 0.7420 0.8870

dH(N) 0.1300 0.1894 0.2600

GIreg 0.4621 0.5595 0.6017

GIact 0.4880 0.5925 0.6358

SKreg 0.3625 0.4521 0.5079

SKact 0.3980 0.4856 0.5897

#of cells
10,164 113,036 5,478

(462x22) (5,138x22) (249x22)

While the absolute values of these measures lie on different scales, the global measures of spe-

cialization show that Chile has a higher level of specialization, followed by Brazil and Argentina,

respectively for all proposed global measure. Thus, this ranking does not depend on the selected

measure of global specialization and does not depend on the number of cells. There is an extensive

literature on the comparison of contingency tables with different sizes (see for e.g. van der Heijden

et al. 1996, Lauritzen 2002, and Agresti 2002), but the present results are found relatively stable

among these measures. Moreover, a similar stability is revealed in different simulations developed

for this purpose (not shown in this paper) following extreme scenarios, not only referring to the

dimension of the contingency tables but also to different levels of global specialization.

Once again, although dH , GIreg, SKreg, GIact, and SKact operate on a same range of variation,

namely the unit interval, we systematically observe a same ranking, namely dH < SKreg < SKact <

GIreg < GIact, with rather substantial differences among these three measures. Also to be noticed,

the fact that the ranking among the three countries for each measures and the ranking among the five

measures for each country remain exactly the same. Comparing these results with those of subsection

2.2, we observe that Gini’s coefficient are systematically higher than Krugman’s coefficients and that

in both cases activity based coefficients are higher than, but close to, region based coefficients. Note

also that, in the case of Argentina, all coefficients are lower than in this application. This is due to

the fact that, as already mentioned, the contingency table used in subsection 2.2 is a collapsed table

of that used in this application, implying a loss information to be considered in next section.
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3 Grouping of Regions or Activities

3.1 The MAUP problem

Different levels of aggregation, of either region or activities, typically imply different measures of

specialization. As already noticed for the case of concentration (see e.g. Krugman 1991b and Anas,

Arnott and Small 1998), the reason for these differences lies in the nature and balance of the centrifu-

gal and centripetal force systems acting in different geographical scales. This problem is known as

the “Modifiable Areal Unit Problem” (MAUP), which refers to the role of the geographical partition

used (for more details, see Yule and Kendall 1950; Openshaw 1984; Arbia 1989; Amrhein 1995 and

Unwin 1996). The arbitrariness of geographical boundaries gives rise to two different manifestations,

namely aggregation and scale, and any statistical measure based on spatial aggregates is sensitive

to the scale and aggregation problems. As same issue is also raised for the aggregation of activities.

The Figure 7 illustrates these problems. This example shows that, by observing a geographical

distribution through regional aggregates, we would be in fact observing two separate phenomena

which are matched in an unpredictable way with respect to: i) the actual distribution of objects in

the space, and ii) the partition considered (for a formal argument, see e.g. Arbia 2001).

Figure 7: A continuous space distribution of firms (a) and three discretized versions of it. Figures

(b) and (c) illustrate the aggregation problem. Figures (b) and (d) illustrate the scale problem

Likewise, and to illustrate the effects of the partition for specialization, Figure 8 shows that with

a same distribution of firms in the space, it is possible to find specialization and the absence of

specialization, respectively. In this example, the total geographical area could represent a country,

polygonal subdivisions would correspond to regions, points to firms, and the orange and blue colors

to two different economic activities.
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Figure 8: Effects of the spatial partition on specialization. Figure (a) reveals a low (or not) level of

specialization and Figure (b) a high level

Therefore, it is important to note that the arbitrariness of partitions plays a key role in capturing

the effects mentioned previously, and becomes potentially more dangerous the more unequal become

the elements of it in terms of area. Arbia (1989) and Arbia and Espa (1996) discuss the distortions

due to scale and aggregation and the possibilities of constructing optimal partitions of the space.

One debatable issue is whether the boundaries between the discrete spatial (or sectoral) units should

be such that they conform geographical areas (or sectoral activities) that are homogeneous in terms

of their characteristics of interest, or such that the spatial (sectoral) units define areas (or activities)

with distinctively different characteristics.

In the sequel, we focus the attention on evaluating the impact of grouping regions and/or activities

on the measures of specialization.

3.2 Groupings

One way of dealing with the MAUP problem is to obtain a better grasp of the consequences of

grouping regions and/or activities. Such is the object of this section.

Let us operate a partition of the I regions into M “grouped regions”, to be called “g-regions”

for the ease of exposition. Thus:

I = {1, 2, · · · , I} =

M
⋃

m=1

Im Im ∩ Im′ = ∅ (m 6= m′) #(Im) = Im

∑

m

Im = I (25)

Using q to denote probabilities on the space of the g-regions, we define:

qm· =
∑

i∈Im

pi· qm|j =
∑

i∈Im

pi|j (26)

q~m· = (q1·, · · · , qm·, · · · , qM ·) q~m|j = (q1|j , · · · , qm|j , · · · , qM |j) (27)

Furthermore:

pi|m =
pi·

qm·
1I{i∈Im} pi|j,m =

pi|j

qm|j
1I{i∈Im} (28)
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The KL-divergence enjoys of a characteristic feature, namely to accept a decomposition relative

to a grouping of the rows, or of the columns, providing a result similar to a decomposition of the

variance made of the sum of a “within” term and a “between” term. This decomposition is well-

known in the literature on information theory and has been widely used in spatial economics, see for

instance Shorrocks (1980, 1982 and 1984), Mori, Nishikimi and Smith (2005), Brülhart and Traeger

(2005), among others.

Indeed, starting with the second term of (12), we successively obtain:

dKL(N) =
∑

j

p·j

[

∑

i

pi|j log

(

pi|j

pi·

)

]

(29)

=
∑

j

p·j

[

∑

m

qm|j log
qm|j

qm·

{

∑

i∈Im

pi|j,m

}

+
∑

m

qm|j

{

∑

i∈Im

pi|j,m log
pi|j,m

pi|m

}]

=
∑

j

p·j

[

dKL(q~m|j | q~m·) +
∑

m

qm|j dKL(p~i|j,m | p~i|m)

]

(30)

In (29), the KL-measure of specialization is viewed, as a general result, as a weighted average of

industrial concentration, namely dKL(p~i|j | p~i·) in (14), whereas in (30) each of the activity measures

is decomposed relatively to a partition of the regions into a “Between” term and a “Within” term,

namely:

• Between:
∑

j p·j dKL(q~m|j | q~m·), this is a weighted average of the activity specific measures

of the specializations among the g-regions;

• Within:
∑

j

∑

m p·jqm|j dKL(p~i|j,m | p~i|m), this is a (doubly) weighted average of the activity

specific measures of the specializations among the composing regions of each g-regions;

• Global = Between + Within.

Two polar cases are of interest. Suppose first that M = 1, i.e. that all the regions of the country

are grouped into a unique g-region, thus the country itself. In this case, the Between g-regions term

vanishes and in the Within g-regions term the weighted average has only one term with qm|j = 1

and the sum
∑

i∈Im
is equivalent to

∑

1≤i≤I . Conversely, when M = I, each g-region has exactly

one region and the Within g-regions term vanishes because each dKL(p~i|j,m | p~i|m) would represent

a divergence between two degenerate one-point distributions whereas in the Between g-regions term

dKL(q~m|j | q~m·) coincides with dKL(p~i|j | p~i·) in (14).

Similarly to the analysis of variance, the ratio (Between/Global) may be interpreted as a measure

of how far an aggregation criterion maintains the Global degree of specialization, the other ratio

(Within/Global), measuring how far does an aggregation decrease the specialization. Heuristically,

the ratio (Between/Global) may be seen as a measure of association between specialization and the
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criterion of aggregation; remind that in the limit case of aggregation into a unique region, the Between

term would annihilate. But another polar case would be obtained by aggregating identical, or very

similar, regions. This would produce the within term to annihilate, or to decrease substantially.

Thus, the ratio Between/Global may also be interpreted as a measure of the homogeneity of the

aggregated regions. This feature is a central argument for constructing the “Best Collapsed Table”

in Haedo (2009).

The two polar cases suggest the following issue. Let us compare the effects of two nested parti-

tions; thus let the partition given in (25) along with a finer partition:

I = {1, 2, · · · I} =

M ′
⋃

m′=1

Im′ Im′
1
∩ Im′

2
= ∅ (m′

1 6= m′
2) #(Im′) = Im′

∑

m′

Im′ = I

M < M ′ ∀m′ ∃m : Im′ ⊂ Im (31)

We may evaluate the sign of the changes in the between-term and in the within-term by refining

successively each member of the coarser partition leaving its other members unaffected. The preced-

ing reasoning shows that this refinement increases the between term and eventually decreases the

within term, the limit being obtained in the case M = I.

The same analysis can be repeated when grouping activities instead of regions. Thus we now

consider a partition of the activities into L g-activities:

J = {1, 2, · · · , J} =

L
⋃

l=1

Jl Jl ∩ Jl′ = ∅ (l 6= l′) #(Jl) = Jl

∑

l

Jl = J (32)

Using r to denote probabilities on the space of the g-activities, we define:

r·l =
∑

j∈Jl

p·j rl|i =
∑

j∈Jl

pj|i (33)

r·~l = (r·1, · · · , r·l, · · · , r·L) r~l|i = (r1|i, · · · , rl|i, · · · , rl|i) (34)

Furthermore:

pj|l =
p·j
r·l

1I{j∈Jl} pj|i,l =
pj|i

rl|i
1I{j∈Jl} (35)

We may now repeat the decomposition of the KL-measure of specialization relatively to a group-

ing of activities. Indeed, starting with the first term of (12), we successively obtain:

dKL(N) =
∑

i

pi·





∑

j

pj|i log

(

pj|i

p·j

)



 (36)

=
∑

i

pi ·





∑

l

rl|i log
rl|i

r·l







∑

j∈Jl

pj|i,l







+
∑

l

rl|i







∑

j∈Jl

pj|i,l log
pj|i,l

pj|l











=
∑

i

pi ·

[

dKL(r~l|i | r·~l) +
∑

l

rl|i dKL(p~j|i,l | p~i|l)

]

(37)
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Similarly to what has been observed for the regions, the two polar cases of interest now become:

aggregating all activities into only 1 (i.e. L = 1) let the between g-activities term vanish and the

within g-activities term be equal to the global measure whereas the finest partition, i.e. L = J , let

the within g-activities term vanish and the between g-activities term be equal to the global measure.

As a final remark, aggregating regions into large ones, or aggregating activities, for instance by

using less digit classification, always decreases the global measure of specialization because it only

retains the between term and neglect the within term of the global measure before aggregation.

Moreover, the coarser is the aggregation, the lower is the specialization. This remark may be viewed

as a formal explanation of the impact of aggregation in the discussion of the MAUP problem.

The measures dχ2 and dH accept the same decomposition relative to a grouping of the regions

(rows) or of the activities (columns), but at difference from dKL(N) their decompositions are not

exact and have residuals to be denoted as Rχ2(N) and RH(N), respectively. Thus, for the decom-

position relative to a grouping of the regions, we obtain:

dχ2(N) =
∑

j

p·j

[

dχ2(q~m|j | q~m·) +
∑

m

qm|j dχ2(p~i|j,m | p~i|m)

]

+ Rχ2(N) (38)

dH(N) =
∑

j

p·j

[

dH(q~m|j | q~m·) +
∑

m

qm|j dH(p~i|j,m | p~i|m)

]

+ RH(N) (39)

And similarly for a grouping of activities.

3.3 Application to grouping of argentinean regions and activities

In next section, we examine the impact of grouping regions and/or activities. Thus, a natural

question is raised: is the impact of these groupings on the degree of specialization similar for the

three global measures?

We use again the same data as in section 2.2 and analyze the impact, on global specialization, of

regrouping regions or activities by evaluating numerically the terms of the decomposition (30), (38)

and (39), and the corresponding terms for the activities.

We first consider an arbitrary aggregation of regions by assembling the first 10 regions into a

unique one (representing .7520 of the global employment), leaving the other regions as singletons in

the aggregated partition. We analyze the numerical results from the following perspective:

(i) when decomposing the global measure of specialization with respect to an aggregation, how

important are the residual terms for dχ2 and dH , knowing that there is no residual for dKL?

(ii) does the ratio (Between/Global) strongly or weakly depend on the measure dχ2 , dKL or dH?

Table 5 presents the numerical results for the aggregation of regions in the following order:
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line 1: the 3 global measures, as given in (21);

line 2: the sum of the between and the within term;

line 3, 4 and 5: the between, within and residual terms;

line 6: the ratio of the residual term with the global term;

line 7 and 8: the ratio of the between term with the global term as given in lines 1 and 2.

Table 5: Arbitrary grouping of 10 first regions

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.6406 0.3176 0.0717

3 Between 1.2631 0.2107 0.0468

4 Within 0.3775 0.1069 0.0249

5 Residual 0.0126 0.0000 -0.0004

6 % Residual on dw(N) 0.76 0.00 -0.60

7 % Between on dw(N) 76.40 66.35 65.69

8 % Between on dw(N) Grouping 76.99 66.35 65.30

We notice the following features. Firstly, in this application the residual terms are never sub-

stantial, namely less than 1% of the global measure (lines 5 and 6). But this residual term may

be positive (for dχ2) or negative (for dH). Secondly, the information provided by the ratio (Be-

tween/Global), lines 7 and 8, is not identical but fairly robust with respect to the 3 measures (dχ2 ,

dKL or dH). This may be viewed as an indication that the (arbitrary) regroupment of 35 into 26

regions modifies significantly, but not dramatically, the global degree of specialization; one reason

may be that the aggregation has been operated on fairly homogenous regions and fairly large re-

gions with a percentage of the total employment ranging from 0.77% to 32.02% and dH ranging

from 0.0189 to 0.1646; as the 10 aggregated regions cover more than 75% of the total employment,

the remaining 25 regions are of smaller dimension.

Let us now consider another (arbitrary) partition by regrouping the last 10 regions. These are

mostly small regions (representing between 0.05% and 0.51% of the total employment) with high

specialization due their small sizes with dH ranging from .2262 to .6971. Together these 10 regions

represent only 2.69% of the total employment. We now observe, in Table 6, that the residual part is

considerably bigger than in Table 5 from 0.76% to 21.91% for dχ2 and from 0.60% to 3.72% for dH ,

with the same sign as in Table 5. The share of the between term, in line 8, increase considerably

for the three measures from around 70% to around 90%. Notice however that for dχ2 the between

term decreases but its share, taking into account the inflated residual term, increases. This results

shows that aggregating small regions into a unique one does affect only midly the global level of

specialization, at variance from aggregating large regions.
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Table 6: Arbitrary grouping of 10 last regions

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.2909 0.3176 0.0739

3 Between 1.2088 0.2911 0.0663

4 Within 0.0821 0.0265 0.0076

5 Residual 0.3622 0.0000 -0.0027

6 % Residual on dw(N) 21.91 0.00 -3.72

7 % Between on dw(N) 73.12 91.65 93.08

8 % Between on dw(N) Grouping 93.64 91.65 89.74

We now consider an arbitrary aggregation of activities by assembling the first 5 activities into a

unique one (representing 40.92% of the global employment), leaving the other activities as singletons

in the aggregated partition. The results are presented in Table 8 in the same format as in Table

7. We notice that in this second application the residual terms are substantially higher than in the

first application with 15% and 5% of the global measure and the signs are the same as in the first

application, positive for dχ2 and negative for dH . The three ratios of the terms (Between/Global)

are different in value but with a similar order of magnitude. In both applications the ratio relative

to dKL has a value intermediary between those relative to dχ2 and to dH , once the effect of the

residual term has been taken into account, i.e. line 8 rather than 7.

Table 7: Arbitrary grouping of 5 first activities

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.4005 0.3176 0.0750

3 Between 1.0513 0.2250 0.0509

4 Within 0.3492 0.0925 0.0240

5 Residual 0.2527 0.0000 -0.0037

6 % Residual on dw(N) 15.28 0.00 -5.16

7 % Between on dw(N) 63.59 70.86 71.48

8 % Between on dw(N) Grouping 75.06 70.86 67.97

We now turn to another arbitrary partition of the activities, by regrouping the last 5 activities.

The percentages of the global employment range from 0.086% to 6.82%; together they represent

13.04% of the total employment. The values of dH range from 0.0970 to 0.2165. Let us now compare

the results in Table 7 and 8. For dχ2 and dH , the residual share remains at a similar level with the

same sign. The share of the Between term, in line 8, considerably increases. Tables 7 and 8 display
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the fact that when regrouping 5 smaller activities, representing 13% of the total employment, the

global measure of specialization is less affected than by regrouping 5 larger activities, representing

41% of the total employment.

Taking on overview of these 4 exercises of regrouping we notice that:

• the share of the residual terms are always substantially lower for dH than for dχ2 ;

• the sign of the residual terms is systematically positive for dχ2 and negative for dH ;

• the share of the Between terms, after taking into account the residual term (i.e. line 8 of the

Table) is smaller when aggregating larger regions, or activities, than when aggregating smaller

ones.

Table 8: Arbitrary grouping of 5 last activities

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.3591 0.3176 0.0747

3 Between 1.2622 0.2825 0.0653

4 Within 0.0969 0.0351 0.0095

5 Residual 0.2941 0.0000 -0.0035

6 % Residual on dw(N) 17.79 0.00 -4.87

7 % Between on dw(N) 76.35 88.95 91.59

8 % Between on dw(N) Grouping 92.87 88.95 87.33

4 Discussions and conclusions

4.1 The stochastic independence approach in a nutshell

Based on data in the form of a two-way contingency table “Regions × Activities”, the concepts of

specialization and of concentration are naturally based on the analysis of the conditional distribu-

tions, or profiles, p~j|i for the regional specializations or p~i|j for the industrial concentrations. The

natural tools for measuring the degrees of specializations are provided by discrepancies d(· | ·), more

precisely distances or divergences, among distributions: between profiles and a uniform distribution

for absolute concepts (d(p~j|i | [ai = I−1]) or d(p~i|j | [bj = J−1])) that represent the spread of a

distribution on categorical variables, between profiles and the corresponding marginal distribution

(d(p~j|i | p·~j) or d(p~i|j | p~i·)) for the relative concepts or between the joint distribution and the

product of the marginal distributions d([pij ] | [pi· p·j ]) for the global concept. This is the approach
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of stochastic independence that conducts the analysis in terms of stochastic independence between

activities and regions and the global discrepancy is viewed as a measure of row-column association.

The relative and the global concepts may be written in terms of the local quotients LQij only;

thus the local quotient is a local indicator of association at the level of the cell (i, j) in the contingency

table.

As the concept of stochastic independence is naturally symmetric between the activities and the

regions, the global concept of specialization is uniquely defined, at variance from concepts developed

in other frameworks that construct global measures of specializations by aggregating activity specific

or region specific measures of specializations and eventually obtain different global measures of

specialization. So is the case for Gini’s and Krugman’s indices.

4.2 A mathematical digression

The discrepancies dχ2 , dKL and dH have been widely used in several chapters of mathematical

statistics. Another distance is also widely used; this is the L1-distance based on the absolute

deviations among probabilities

dL1
(N) =

∑

i

∑

j

|pij − pi· p·j |

=
∑

i

∑

j

pi·p·j |LQij − 1|

=
∑

i

pi·





∑

j

∣

∣pj|i − p·j
∣

∣





=
∑

j

p·j

[

∑

i

∣

∣pi|j − pi·

∣

∣

]

(40)

This distance of equivalent to the distance of total variation and has been widely used in par-

ticular for the analysis of robustness in mathematical statistics. It has also been used in economic

geography. Moreover, dL1
(N) enjoys the same representations, in terms of local quotients, and the

same decompositions as those given in Section 2.1. Because, in the present problem, the marginal

probabilities are always strictly positive, both I and J are always finite and the range of variation

is bounded by 2, its behaviour is essentially the same as dH ; this is the reason for not adding dL1
in

our numerical evaluations.

4.3 On other approaches

Different approaches of global specialization have been envisaged in the economic literature, devel-

oped in frameworks that do not rely on stochastic independence.

Many relative measures are also based on the well-known Hoover-Balassa Local Quotient coeffi-

cient LQij , also known as Location quotient. The analysis of the discrepancy between the activity
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specific profile and the marginal (or country) region profile, d(p~i|j | p~i·), or between the region spe-

cific profile and the marginal activity profile, d(p~j|i | p·~j), may be divided into those based on Gini

coefficient and Krugman index (e.g. Krugman 1991a, Kim 1995, Amiti 1998, Duranton and Puga

2000, Hallet 2000, Brülhart 2001, Dohse, Krieger-Boden and Soltwedel 2002, Midelfart-Knarvik,

Overman, Redding and Venables 2002, Lafourcade and Mion 2003, Rossi-Hansberg 2005, Aiginger

and Rossi-Hansberg 2006, Bickenbach and Bode 2006 and 2008, and many others), those based

on Shannon’s relative entropy or Generalized entropy (GE), also called relative Theil index (Theil

1967), and those based on the Coefficient of Variation (CV) (e.g. Aiginger and Davies 2001, Brülhart

and Träger 2005, Bickenbach and Bode 2006 and 2008, and many others). It is interesting to notice

that dL1
has been attributed as a variant of Relative Mean Deviation (RMD) of Krugman index in

Bickenbach and Bode 2006 and 2008.

The proposals based on the Lorenz curve (Lorenz 1905), which is a graphical representation

of the spread of a distribution derived from cumulative functions (see Appendix A) raise several

difficulties: i) measures of concentration concern univariate distributions whereas the problems of

concentration and of specialization concern a two-way contingency table; thus a common feature of

these alternative measures is to analyze specialization by aggregating univariate properties, most

often by aggregating over the regions some regional index of specialization, or by aggregating over

activities some index of spatial dispersion (concentration) of each activities; and ii) originally they

were designed for numerical variables. The adaptation of the Lorenz curve, and Gini index, to the

case of categorical variables, such as activity or region, is obtained by ordering the (arbitrary) labels

according to the ascending order of the local quotient; this implies a different ordering for each

region and for each activity. These different orderings make the interpretation of the average Gini’s

coefficient difficult. The global index GIreg has been called a specialization coefficient where GIact

has been called a coefficient of industrial concentration. The fact that in general GIreg 6= GIact (see

subsections 2.2 and 2.3) raises an issue of interpretation, particularly for the approach of stochastic

independence that considers the regions and the activities interchangeably.

The Gini coefficient is based on the mean of the industrial structure distribution. This means it

implicitly lends greater weight to the middle structure classes, which makes it more resistant vis-à-vis

the underestimation of very high and very low employment structures. For these same attributes,

the Gini coefficient has been criticized as tending to underestimate the amount of inequality (owing

to the lower weight of values on the edge of the distribution). For more details see Atkinson (1983)

and Lernan and Yitzhaki (1989).

As mentioned before, the local quotient LQij accepts a double reading in terms of the special-

ization within region i (row-reading) or in terms of the specialization within activities j (column-

reading). This fact induces a unique concept of global specialization in terms of association, symmet-

rically between activity and region. This unicity is indeed reflected by the measurements developed
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within the stochastic independence approach. Other approaches typically produce different global

values by aggregating either region specific or activity specific measures; as a matter of fact, the

difference between such pairs of measurements are minor and should be considered as unnecessary

noises that should be attributed to a particular device of measurement and that jeopardize a clear

understanding of the global concept of specialization. Given the categorical nature of the variables

activity and region, the concepts of concentration and of specialization are naturally cast in terms

of discrepancy between a distribution of interest (conditional or joint) and a reference distribution.

Reference to a uniform distribution characterizes absolute measures of specialization whereas refer-

ence to the relevant marginal distribution characterizes relative measures of specialization. This is

natural as far as absolute and relative specialization correspond to different problems of interest, in

particular from the point of view policy making. Other reference distributions may however be more

difficult to interpret and be eventually questionable but debating this issue falls out of the scope of

this paper.

4.4 Final remarks

The approach of the stochastic independence has clarified the ideas (of, at least, these authors!).

Table 1 has been a substantial step in this direction. Clarifying the ideas avoids catching attention on

irrelevant issues but does by no means imply solving all problems! The field of spatial specialization

very often involves the analysis of contingency tables with an extreme heterogeneity of the marginals,

i.e. the ratios (maxj p·j)/(minj p·j) or (maxi pi·)/(mini pi·) may be extremely high, or of sizes

of cells (i, j). This heterogeneity raises issues on the robustness of the measurement and on the

interpretation of international comparisons. The application of subsection 2.3 and the Section 3 on

the impact of grouping provide hints on questions that quite clearly deserve further the attention.

Recently, Tajar (2003, Chapter 6), developed a representation of a two-way contingency table

by means of copula, to be called a uniform representation of a discrete bivariate distribution. Inter-

estingly enough, the construction is based on log-linear model for bivariate discrete variable where

the first order interaction is determined by the cross-product ratio, or local quotient. This analysis

opens potentially interesting avenues for a different approach to specialization from the point of view

of region-activity association.
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Université catholique de Louvain (B).

Theil, H. (1967), Economics and Information Theory. Amsterdam: North-Holland.

31



Tjøstheim, D. (1996). Measures and tests of independence: a survey. Statistics 28: 249-284.

Unwin, D. (1996), GIS, spatial analysis and spatial statistics. Progress in Human Geography 20:

540-551.

van der Heijden, P., Mooijaart, A., and Takane, Y. (1994), Correspondence analysis and

contingency table models in correspondence analysis in the social sciences. In M. Greenacre

and J. Blasius (eds.). Correspondence Analysis in the Social Sciences. London: Academic

Press.

Xu, Kuan (2003), How has the literature on Gini’s index evolved in the past 80 years? Dalhousie

University, Economics Working Paper.

Yule, U., and Kendall, M. (1950), An Introduction to the Theory of Statistics. London:

Charles Griffin.

32



Appendix A: Gini and Krugman indexes

Many indexes commonly used throughout the economic literature to describe the phenomenon of

regional specialization and industrial concentration, are based on the Lorenz curve (Lorenz 1905).

The Lorenz curve is a graphical representation of the spread of a distribution based on the cumulative

functions. More explicitly, for a numerical variable X, the Lorenz curve is represented on the unit

square [0 1]
2

with a coordinate system made of the functions FX(x), the cumulative distribution

function, and µX(x), the relative mean function:

FX(x) =
∑

uj≤x

fX(uj) or

∫ x

0

fX(u)du;

µX(x) =

∑

uj≤x ujfX(uj)
∑∞

0 ujfX(uj)
or

∫ x

0
ufX(u)du

∫ ∞

0
ufX(u)du

.

The points on the main diagonal represent individuals with a value x such that the proportion

of individuals with a value of X lower or equal to x is the same as of their corresponding proportion

of the overall average. Thus, a distribution where each individual is characterized with a same value

x would be represented by the main diagonal. The area between the main diagonal and the Lorenz

curve may accordingly be interpreted as a graphical representation of the spread of the distribution.

The Lorenz curve has been originally developed for a univariate numerical variable. Two issues

are at stake in the following extension of Gini index (Gini 1912) to the characterization of the

relative regional specialization: the simultaneity of two dimensions, namely region and activity, and

the categorical feature of these two variables for which there is no natural order as in the case for

numerical variables.

For a given region i, the activities may be ordered in increasing order of the local quotient:

LQi,ji(1) < LQi,ji(2) < ... < LQi,ji(k) < ... < LQi,ji(J) (41)

where ji is a permutation of {1, ..., J} different for each region i. Finally we construct the coordinates

of the unit square through the increasing sequences of the following cumulative functions:

P
(i)
·ji(1)

< P
(i)
·ji(2)

< ... < P
(i)
·ji(k) < ... < P

(i)
·ji(J)

and

P
(i)
ji(1)|i

< P
(i)
ji(2)|i

< ... < P
(i)
ji(k)|i < ... < P

(i)
ji(J)|i

where P
(i)
·k =

∑

a≤k p·ji(a) and P
(i)
k|i =

∑

a≤k pji(a)|i, respectively. Thus, P
(i)
·ji(k) represents the propor-

tion of the country cumulative employment of the activities that, in region i, have a local quotient

lower or equal to that of the k-th activity upon the ordering given in (41) and P
(i)
ji(k)|i represents the
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similar proportion, now relatively to the region i only. We now construct, for region i, a curve, con-

necting by linear interpolation the points with coordinates P
(i)
·ji(k) and P

(i)
ji(k)|i. A region i where each

activity has a unit local quotient is represented by the main diagonal. The actual curve of a region

i will not cross the main diagonal because of the ordering (41). The actual curve may accordingly

to be considered as a Lorenz curve and the area between the curve and the main diagonal may be

interpreted as a graphical representation of specialization.

The relative Gini specialization coefficient of region i, GIi, is constructed geometrically as the

ratio (area between the Lorenz curve and the main diagonal, say A/area under the main diagonal),

or equivalently 1-(area under the Lorenz curve, say B/area under the main diagonal) (Fig. 9 where

area α = [P
(i)
·k − P

(i)
·k−1] × 1

2 [P
(i)
k|i + P

(i)
k−1|i]).

Figure 9: Lorenz curve for specialization

As the area under the main diagonal is equal to 1/2, we obtain:

GIi = 1 −
∑

1≤k≤J

(

P
(i)
·k − P

(i)
·k−1

)(

P
(i)
k|i + P

(i)
k−1|i

)

(42)

where P
(i)
·0 = P

(i)
0|i = 0. This is only a geometric presentation of Gini coefficient. Lerman and

Yitzhaki (1989), Osberg and Xu (2000) and Xu (2003) provide an interesting overview of alternative

presentations and their respective merits.

GIi takes values in the range [0 1], i.e. a value 0 means that a region has the same activity shares

as those of the whole country, while a value 1 denotes the limit case of extreme relative specialization

for a region with a unique activity, the share of which is infinitely small in the country.

The same construction may be considered for each activity in order to construct a relative

industrial concentration coefficient

GIj = 1 −
∑

1≤r≤I

(

P
(j)
r· − P

(j)
r−1·

)(

P
(j)
r|j + P

(j)
r−1|j

)

(43)

where P
(j)
0· = P

(j)
0|j = 0, under an activity-specific reordering of the regions:
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LQij(1),j < LQij(2),j < ... < LQij(r),j < ... < LQij(I),j . (44)

The index SKi proposed by Krugman (1991a) is a measure of regional specialization or industrial

concentration, expressed as half of the Relative Mean Deviation (RMD) based on the Manhattan

distance (see for more details Kendall and Stuart 1963). The relative version of this index captures

the gap between the activity structure of region i and the average of the activity j structure of the

other regions. It is defined as:

SKi =
1

2

∑

j

| pj|i − p·j | (45)

where

p·j =

∑I
m 6=i Nmj

∑I
m 6=i

∑

j Nmj

(46)

The SKi index takes a zero value if the activity structure of region i is identical to the average of

the other regions. Given the normalization used here, the maximum value of SKi is equal to 1 when

the activity structure of one region differs completely from the rest of the country.

The index for relative industrial concentration is constructed similarly:

SKj =
1

2

∑

i

| pi|j − pi· | (47)

where

pi· =

∑J
l 6=j Nil

∑

i

∑J
l 6=j Nil

(48)
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Appendix B: Tables of argentinean data

Table 9: Argentinean data (1)

P
P

P
P

P
P

PP
Region

Activity
1 2 3 4 5 6 7 8 9 10 11 12

1 28,919 272 4,238 7,104 2,106 1,977 2,577 22,108 601 9,003 21,385 3,299

2 3,819 6 1,496 6,779 424 258 479 1,750 4 2,147 3,300 384

3 50,279 1,280 25,655 14,639 17,799 5,731 9,574 9,431 1,348 29,783 119,628 10,942

4 3,825 0 279 613 157 199 846 521 170 4,463 5,127 352

5 16,261 0 1,818 1,377 1,152 1,494 2,709 1,458 511 4,054 17,944 7,958

6 6,157 0 809 317 118 442 219 514 1,778 2,991 3,012 804

7 8,487 0 1,336 675 5,311 658 878 419 26 2,025 4,789 885

8 2,791 1,977 55 54 18 208 61 80 2 68 2,436 356

9 47,042 0 2,053 3,096 2,932 2,072 1,960 3,397 65 6,113 39,813 4,345

10 15,456 0 978 1,644 2,470 2,368 925 2,559 327 1,199 14,123 2,491

11 8,323 0 64 225 77 602 491 1,364 0 651 3,526 725

12 12,516 0 164 253 290 1,630 202 494 39 248 3,645 1,307

13 3,188 11 332 571 481 673 185 300 0 519 2,328 6,243

14 31,462 0 128 458 417 874 61 606 0 411 3,804 528

15 851 0 193 3,255 289 149 1 151 0 4 827 61

16 1,409 0 732 140 59 120 462 200 784 639 2,125 454

17 18,929 12 8,856 1,338 856 930 594 1,799 0 814 6,340 1,842

18 1,375 0 6 34 4,568 23 0 40 0 5 117 30

19 388 0 2 63 5 248 0 11 1,118 786 436 44

20 6,737 0 72 2,654 334 298 89 474 0 165 4,655 497

21 8,372 0 29 73 49 3,195 223 536 0 322 2,158 591

22 2,509 0 6,917 518 540 427 30 318 1 28 1,291 581

23 476 0 2 88 5 32 136 131 0 25 468 4,668

24 1,069 3 54 16 0 171 2,011 59 0 613 597 152

25 1,411 0 99 177 2,239 109 0 205 0 10 328 261

26 4,657 0 0 0 1 24 0 20 0 3 75 48

27 408 0 19 9 5 2,715 1,563 24 0 49 211 215

28 1,426 11 11 27 23 1,907 0 88 0 189 462 46

29 332 961 35 6 178 40 1 40 0 127 59 18

30 108 0 0 20 0 798 0 2 0 0 36 27

31 180 0 1,913 7 7 80 0 10 0 345 103 62

32 85 0 0 0 0 20 0 2 0 1,147 22 25

33 415 3 632 4 5 481 0 50 0 16 198 83

34 24 477 0 0 0 3 0 0 0 0 20 4

35 485 0 224 24 1 164 0 76 0 85 827 61

N·j 290,171 5,013 59,201 46,258 42,916 31,120 26,277 49,237 6,774 69,047 266,215 50,389

p·~j 0.2677 0.0046 0.0546 0.0427 0.0396 0.0287 0.0242 0.0454 0.0062 0.0637 0.2456 0.0465

dχ2 (p~i|j | p~i·) 0.3625 59.8952 1.8482 1.8675 2.9312 3.7377 2.0062 1.3557 9.7915 0.6328 0.1499 2.5095

dKL(p~i|j | p~i·) 0.1546 2.8511 0.5262 0.4437 0.5727 0.5833 0.3892 0.4407 1.3626 0.2533 0.0851 0.4716

dH(p~i|j | p~i·) 0.0376 0.5331 0.1283 0.0953 0.1233 0.1043 0.0897 0.0978 0.3039 0.0699 0.0236 0.0889
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Table 10: Argentinean data (2)

P
P

P
P

P
P

PP
Region

Activity
13 14 15 16 17 Ni· p~i· dχ2 (p~j|i | p·~j) dKL(p~j|i | p·~j) dH(p~j|i | p·~j)

1 1,747 2,271 1,318 2,557 872 112,354 0.1037 0.6112 0.1982 0.0433

2 68 281 114 587 21 21,917 0.0202 1.8948 0.4870 0.1025

3 12,232 5,490 3,892 25,779 3,556 347,038 0.3202 0.1380 0.0727 0.0189

4 550 142 53 282 55 17,634 0.0163 0.7436 0.2753 0.0661

5 1,297 233 456 3,642 206 62,570 0.0577 0.2266 0.0978 0.0246

6 658 74 221 791 419 19,324 0.0178 1.4528 0.2960 0.0610

7 244 134 12 543 261 26,683 0.0246 0.7784 0.2522 0.0584

8 39 8 57 167 4 8,381 0.0077 11.8685 0.9283 0.1646

9 2,899 931 180 7,550 1,119 125,567 0.1158 0.1490 0.0857 0.0246

10 1,875 490 404 25,526 799 73,634 0.0679 1.2604 0.3673 0.0787

11 109 27 16 491 10 16,701 0.0154 0.4207 0.2396 0.0716

12 40 18 20 468 60 21,394 0.0197 0.7144 0.3571 0.0981

13 42 7 22 164 22 15,088 0.0139 3.1200 0.6900 0.1403

14 423 28 10 426 50 39,686 0.0366 1.4241 0.6328 0.1683

15 21 8 26 81 0 5,917 0.0055 6.3716 1.1579 0.2359

16 13,022 5 281 1,328 60 21,820 0.0201 9.9012 1.4830 0.2749

17 175 295 210 1,832 484 45,306 0.0418 0.6022 0.2491 0.0627

18 4 1 0 1 0 6,204 0.0057 12.8803 2.0079 0.4362

19 810 6 4 1 1,093 5,015 0.0046 13.7846 1.6876 0.3436

20 111 29 4 653 127 16,899 0.0156 0.5702 0.2708 0.0768

21 334 8 2 263 19 16,174 0.0149 1.5169 0.5287 0.1365

22 47 47 5 366 40 13,665 0.0126 4.0248 0.8928 0.1873

23 4 5 4 65 17 6,126 0.0057 11.5757 1.8579 0.3713

24 0 41 1 28 2 4,817 0.0044 6.7694 1.0841 0.2266

25 2 0 0 54 1 4,896 0.0045 4.7676 0.9956 0.2243

26 0 0 0 0 0 4,828 0.0045 2.4799 1.1556 0.3738

27 1 1 1 11 0 5,232 0.0048 12.1284 2.0210 0.4202

28 1 1 12 65 2 4,271 0.0039 6.4580 1.1002 0.2286

29 0 0 0 15 2 1,814 0.0017 60.1717 2.3845 0.3575

30 0 0 1 0 2 994 0.0009 21.5243 2.4656 0.5016

31 0 1 0 0 2 2,710 0.0025 8.4426 1.6892 0.3839

32 0 0 0 0 0 1,301 0.0012 11.2352 2.1474 0.5071

33 3 1 0 8 0 1,899 0.0018 3.5439 0.9519 0.2262

34 0 0 0 0 0 528 0.0005 175.4862 4.5909 0.6971

35 0 0 3,379 215 0 5,541 0.0051 36.8669 2.2439 0.3552

N·j 36,758 10,583 10,705 73,959 9,305 1,083,928

p·~j 0.0339 0.0098 0.0099 0.0682 0.0086

dχ2 (p~i|j | p~i·) 5.8657 0.4719 19.1844 1.3368 2.9976 d
χ2 (N) =1.6532

dKL(p~i|j | p~i·) 0.8976 0.2827 1.2530 0.4345 0.4386 dKL(N) =0.3176

dH(p~i|j | p~i·) 0.1766 0.0896 0.2165 0.1035 0.0970 dH (N) =0.0713
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