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Abstract: Post-stratification is used to improve the precision of survey estimators

when categorical auxiliary information is available from external sources. In natu-

ral resource surveys, such information may be obtained from remote sensing data

classified into categories and displayed as maps. These maps may be based on clas-

sification models fitted to the sample data. Such “endogenous post-stratification”

violates the standard assumptions that observations are classified without error

into post-strata, and post-stratum population counts are known. Properties of

the endogenous post-stratification estimator (EPSE) are derived for the case of

sample-fitted nonparametric models, with particular emphasis on monotone regres-

sion models. Asymptotic properties of the nonparametric EPSE are investigated

under a superpopulation model framework. Simulation experiments illustrate the

practical effects of first fitting a nonparametric model to survey data before post-

stratifying.
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1. Introduction

Post-stratification is a common method for improving the precision of survey

estimators when categorical auxiliary information is available from sources ex-

ternal to the survey. In surveys of natural resources, auxiliary information may

be obtained from remote sensing data, classified into categories and displayed as

pixel-based maps. These maps may be constructed based on classification mod-

els fitted to sample data. Methods used by the US Forest Service in its Forest

Inventory and Analysis program include post-stratification (PS) of the sample

data based on categories derived from the sample data. Such “endogenous post-

stratification” violates the standard post-stratification assumptions that observa-

tions are classified without error into post-strata, and post-stratum population
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counts are known. Breidt and Opsomer (2008) derived properties of the en-

dogenous post-stratification estimator for the case of a sample-fitted generalized

linear model, from which the post-strata are constructed by dividing the range

of the model predictions into predetermined intervals. Design consistency of the

endogenous post-stratification estimator was established under general unequal-

probability sampling designs. Under a superpopulation model, consistency and

asymptotic normality of the endogenous post-stratification estimator (EPSE)

were established, showing that EPSE has the same asymptotic variance as the

traditional post-stratified estimator with fixed strata. Simulation experiments

demonstrated that the practical effect of first fitting a model to the survey data

before post-stratifying is small, even for relatively small sample sizes.

The motivation for studying endogenous post-stratification came from meth-

ods used by the U.S. Forest Service in producing estimators for the Forest Inven-

tory and Analysis (FIA; see Frayer and Furnival 1999). These methods rely on

post-stratification using classification maps derived from satellite imagery and

other ancillary information. Because the FIA data represent a source of high

quality ground-level information of forest characteristics, there is a clear desire

for being “allowed” to use them in calibrating, i.e. estimating, the classification

maps, and hence to apply EPSE in FIA. The results in Breidt and Opsomer

(2008) were considered to provide some “weak justification” for doing so (see

Czaplewski 2010), but the fact that they are restricted to parametric models

limits their applicability in the FIA context, where the methods being used are

often nonparametric in nature (e.g. Moisen and Frescino 2002).

In this paper, we extend the EPSE methodology to the nonparametric es-

timation context. We show here that the superpopulation results obtained for

EPSE by Breidt and Opsomer (2008) continue to hold in this case. We focus

on the case where the underlying model is nonparametric but monotone, which

is the most reasonable scenario in surveys since the model is used to divide the

sample into homogeneous classes. Our theoretical results are valid for a general

class of nonparametric estimators that includes kernel regression and penalized

spline regression.

In the following section we give the definitions of the estimators we propose

in this paper. The asymptotic results are given in Section 3. Section 4 examines
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some of the models and estimators satisfying the outlined conditions, and in

Section 5 we present the results of a small simulation study. The proofs of the

asymptotic results are collected in the Appendix.

2. Definition of the estimator

Consider a finite population UN = {1, . . . , i, . . . , N}. For each i ∈ UN , an

auxiliary vector xi is observed. A probability sample s of size n is drawn from UN

according to a sampling design pN(·), where pN(s) is the probability of drawing

the sample s. Assume πiN = Pr {i ∈ s} =
∑

s:i∈s pN(s) > 0 for all i ∈ UN , and

define πijN = Pr {i, j ∈ s} =
∑

s:i,j∈s pN(s) for all i, j ∈ UN . For compactness

of notation we will suppress the subscript N and write πi, πij in what follows.

Various study variables, generically denoted yi, are observed for i ∈ s.
The targets of estimation are the finite population means of the survey vari-

ables, ȳN = N−1
∑

UN
yi. A purely design-based estimator (with all randomness

coming exclusively from the selection of s) is provided by the Horvitz-Thompson

estimator (HTE)

ȳπ =
1
N

∑
i∈s

yi
πi
.

Post-stratification (PS) and endogenous post-stratification are methods that take

advantage of auxiliary information available for the population to improve the

efficiency of design-based estimators. Following Breidt and Opsomer (2008), we

first introduce some non-standard notation for PS that will be useful in our later

discussion of endogenous PS. Using the {xi}i∈UN
and a real-valued function m(·),

a scalar index {m(xi)}i∈UN
is constructed and used to partition UN into H strata

according to predetermined stratum boundaries −∞ ≤ τ0 < τ1 < · · · < τH−1 <

τH ≤ ∞. Typically, m(·) will be the true relationship between a specific study

variable zi and the auxiliary variable/vector xi. We assume the following additive

error model,

zi = m(xi) + σ(xi)εi, (2.1)

where σ2(xi) is the unknown variance function, and E(εi|xi) = 0,Var(εi|xi) = 1.

Breidt and Opsomer (2008) considered the particular case in which the index

function m(·) is parameterized by a vector, λ. We will write mλ(xi) in that case.
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For exponents ` = 0, 1, 2 and stratum indices h = 1, . . . ,H, define

ANh`(m) =
1
N

∑
i∈UN

y`i I{τh−1<m(xi)≤τh}

and

A∗Nh`(m) =
1
N

∑
i∈UN

y`i
I{i∈s}
πi

I{τh−1<m(xi)≤τh} (2.2)

where I{C} = 1 if the event C occurs, and zero otherwise. In this notation,

stratum h has population stratum proportion ANh0(m), design-weighted sample

post-stratum proportion A∗Nh0(m), and design-weighted sample post-stratum y-

mean A∗Nh1(m)/A∗Nh0(m). The traditional design-weighted PS estimator (PSE)

for the population mean ȳN = N−1
∑

i∈UN
yi is then

µ̂∗y(m) =
H∑
h=1

ANh0(m)
A∗Nh1(m)
A∗Nh0(m)

=
∑
i∈s

{
H∑
h=1

ANh0(m)
N−1π−1

i I{τh−1<m(xi)≤τh}

A∗Nh0(m)

}
yi =

∑
i∈s

w∗is(m)yi, (2.3)

where the sample-dependent weights {w∗is(m)}i∈s do not depend on {yi}, and so

can be used for any study variable.

For the important special case of equal-probability designs, in which πi =

nN−1, we write

Anh`(m) =
1
n

∑
i∈s

y`i I{τh−1<m(xi)≤τh}.

In this case, the equal-probability PSE for the population mean ȳN is

µ̂y(m) =
H∑
h=1

ANh0(m)
Anh1(m)
Anh0(m)

=
∑
i∈s

wis(m)yi,

where the weights {wis(m)}i∈s are obtained by substituting nN−1 for πi in (2.3).

In parametric PS, the vector λ is known. In parametric endogenous PS, the

vector λ is not known and needs to be estimated from the sample {xi, zi : i ∈
s} using, for example, maximum likelihood estimation or estimating equations.

Thus, mλ(xi) is estimated by mλ̂(xi), and the endogenous post-stratification
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estimator (EPSE) for the population mean ȳN is then defined as

µ̂∗y(mλ̂) =
H∑
h=1

ANh0(mλ̂)
A∗Nh1(mλ̂)
A∗Nh0(mλ̂)

=
∑
i∈s

w∗is(mλ̂)yi.

This parametric EPSE was studied in Breidt and Opsomer (2008). We consider

now the case where m(·) is not assumed to follow a specific parametric shape.

Again, m is typically the true regression relationship between a specific study

variable zi and an auxiliary variable/vector xi as in model (2.1).

The estimator µ̂∗y(m) is infeasible, because m(·) is unknown. We can estimate

m(·) from the sample {(xi, zi) : i ∈ s} by nonparametric regression, and in

this article we will explicitly consider both kernel and spline-based methods.

However, results should also apply to other nonparametric and semi-parametric

fitting methods such as regression trees, neural nets, GAMs, etc. Writing m̂

for the nonparametric estimator, the nonparametric endogenous post-stratified

estimator is then defined as

µ̂∗y(m̂) =
H∑
h=1

ANh0(m̂)
A∗Nh1(m̂)
A∗Nh0(m̂)

. (2.4)

For the important special case of equal-probability designs, in which πi =

nN−1, the equal-probability NEPSE for the population mean ȳN is

µ̂y(m̂) =
H∑
h=1

ANh0(m̂)
Anh1(m̂)
Anh0(m̂)

=
∑
i∈s

wis(m̂)yi.

In order to study the properties of this estimator, it is sufficient to consider

the following simpler estimators

Aτ`(m̂) =
1
N

∑
i∈UN

y`i I{m̂(xi)≤τ}

and

A∗τ`(m̂) =
1
N

∑
i∈UN

I{i∈s}
πi

y`i I{m̂(xi)≤τ},

for a generic boundary value τ ∈ {τ0, τ1, · · · , τH}. For equal probability designs
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we write

Anτ`(m̂) =
1
n

∑
i∈s

y`i I{m̂(xi)≤τ}.

The form of these estimators suggests the use of tools from empirical process

theory, which we turn to in the next section.

3. Main results

3.1 Superpopulation model assumptions

Before we explicitly state the model assumptions for studying the NEPSE es-

timator, we need to introduce the concept of bracketing number of empirical

process theory (van der Vaart and Wellner 1996). For any ε > 0, any class G
of measurable functions, and any norm ‖ · ‖G defined on G, N[ ](ε,G, ‖ · ‖G) is

the bracketing number, i.e. the minimal positive integer M for which there exist

ε-brackets {[lj , uj ] : ‖lj − uj‖G ≤ ε, ‖lj‖G , ‖uj‖G < ∞, j = 1, . . . ,M} to cover G
(i.e. for each g ∈ G, there is a j = j(g) ∈ {1, . . . ,M} such that lj ≤ g ≤ uj).

We make the following superpopulation model assumptions. Assumption

3.1.1 gives conditions on the multivariate distribution of covariates {xi}, 3.1.2

assumes equal probability sampling, assumptions 3.1.3 and 3.1.4 specify condi-

tions on the sample fit m̂(·), and assumption 3.1.5 gives moment conditions.

Assumption 3.1.1. The covariates {xi} are independent and identically dis-

tributed random p-vectors with nondegenerate continuous joint probability density

function f(x) and compact support. The function u→ Pr(m(x) ≤ u) is Lipschitz

continuous of order 0 < γ ≤ 1, and

Pr(m(x) ≤ τh−1) < Pr(m(x) ≤ τh)

for h = 1, . . . ,H.

Assumption 3.1.2. The sample s is selected according to an equal-probability

design of fixed size n, with πi = nN−1 → π ∈ [0, 1], as N →∞.

Assumption 3.1.3. The nonparametric estimator m̂(·) satisfies

sup
x
|m̂(x)−m(x)| = o(1), a.s.
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Assumption 3.1.4. There exists a space D of measurable functions that satisfies

m ∈ D, Pr(m̂ ∈ D)→ 1, as n→∞, and∫ ∞
0

√
logN[ ](λ,F , ‖ · ‖2) dλ <∞,

where F = {x→ I{d(x)≤τ} : d ∈ D}.

Assumption 3.1.5. Given [xi]i∈UN
, the study variables [yi]i∈UN

are condition-

ally independent of the post-stratification variables [zi]i∈UN
, and yi | xi are condi-

tionally independent random variables with E(y2`
i | xi) ≤ K1 <∞, for ` = 0, 1, 2.

3.2 Central limit theorem

For ` = 0, 1, 2, define ατ`(m) = E(y`i I{m(xi)≤τ}). We start this section with

a crucial lemma, which shows that Aτ`(m̂) (which is difficult to handle since

it contains the nonparametric estimator m̂(xi) inside an indicator function) is

asymptotically equivalent to E(y`i I{m̂(xi)≤τ} | m̂) +Aτ`(m)− ατ`(m).

Lemma 1. Under Assumptions 3.1.1–3.1.5,

Aτ`(m̂)− E(y`i I{m̂(xi)≤τ} | m̂)−Aτ`(m) + ατ`(m) = op(N−1/2) (3.1)

and

Anτ`(m̂)− E(y`i I{m̂(xi)≤τ} | m̂)−Anτ`(m) + ατ`(m) = op(n−1/2) (3.2)

for ` = 0, 1, 2.

We are now ready to state the main result of the paper.

Theorem 1. Under Assumptions 3.1.1–3.1.5,{
1
n

(
1− n

N

)}−1/2

(µ̂y(m̂)− ȳN ) d→ N(0, Vym),

where

Vym =
H∑
h=1

Pr{τh−1 < m(xi) ≤ τh}Var(yi|τh−1 < m(xi) ≤ τh).



NONPARAMETRIC ENDOGENOUS POST-STRATIFICATION 8

The proofs of both results are deferred to the Appendix.

3.3 Variance estimation

For the estimation of the variance Vym we follow Breidt and Opsomer (2008).

Theorem 2. Define

V̂ym̂ =
H∑
h=1

A2
Nh0(m̂)
Anh0(m̂)

Anh2(m̂)−A2
nh1(m̂)/Anh0(m̂)

Anh0(m̂)− n−1
. (3.3)

Under Assumptions 3.1.1–3.1.5,{
1
n

(
1− n

N

)}−1/2

V̂
−1/2
ym̂ (µ̂y(m̂)− ȳN ) d→ N(0, 1).

The proof can be found in the Appendix.

4. Applying the results

The results in the previous sections are expressed under quite general con-

ditions on the class D and on the estimator m̂. We now give some particular

models for the regression function m and some particular estimators m̂ for which

the conditions are satisfied. The underlying models we consider are at least partly

monotone, which is reasonable in this context because the function m is used to

split the data into homogeneous cells.

4.1 Monotone regression

Let

D = {d : RX → IR : d monotone and sup
x∈RX

|d(x)| ≤ K}

for some K < ∞, where RX is a compact subset of IR. Suppose for simplicity

that the functions in D are monotone decreasing. Then, the class F defined

in assumption 3.1.4 is itself a set of one-dimensional bounded and monotone

functions, and hence we have that

logN[ ](λ,F , ‖ · ‖2) ≤ K1λ
−1
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for some K1 < ∞, by Theorem 2.7.5 in van der Vaart and Wellner (1996). It

follows that the integral in assumption 3.1.4 is finite.

Let m̂ be any estimator of m for which supx∈RX
|m̂(x) −m(x)| = o(1) a.s.

Then, provided the true regression function m is monotone and bounded, we

have that Pr(m̂ ∈ D) → 1 as n → ∞. The estimator m̂ does not need to be

monotone itself, a classical local polynomial or spline estimator does the job.

Hence, Theorem 1 applies in this case. Moreover, the case of generalized mono-

tone regression functions, obtained by using e.g. a logit transformation works as

well. See Subsection 4.4 for more details.

4.2 Partially linear monotone regression

Consider now

D = {RX → IR : (xT1 , x2)T → βTx1 + d(x2) : β ∈ B ⊂ IRk compact,

d monotone, sup
x2∈RX2

|d(x2)| ≤ K},

where RX = RX1 × RX2 is a compact subset of IRk+1. Suppose for simplicity

that all coordinates of an arbitrary x1 ∈ RX1 and β ∈ B are positive. Divide B

into r = O(λ−2k) pairs (βLi , β
U
i ) (i = 1, . . . , r) that cover the whole set B and are

such that
∑k

l=1(βUil − βLil )2 ≤ λ4. Similarly, divide RX1 into s = O(λ−2k) pairs

(xL1j ,x
U
1j) (j = 1, . . . , s) that cover RX1 and are such that

∑k
l=1(xU1jl−xL1jl)2 ≤ λ4.

Let dL1 ≤ dU1 , . . . , dLq ≤ dUq be the q = O(exp(Kλ−1)) ‖ ·‖∞-brackets for the space

of bounded and monotone functions (see Theorem 2.7.5 in van der Vaart and

Wellner (1996)). Then, for each β ∈ B and d monotone and bounded, there exist

i, j and l such that for all (x1, x2) ∈ RX :

`Lijl(x2) := I{βUT
i xU

1j+d
U
l (x2)≤τ}

≤ I{βTx1+d(x2)≤τ}

≤ I{βLT
i xL

1j+d
L
l (x2)≤τ} := uUijl(x2).

It is easy to see that the brackets (x1, x2) → (`Lijl(x2), uUijl(x2)) are λ-brackets

with respect to the ‖ · ‖2-norm. The number of these brackets is bounded by

λ−4k exp(Kλ−1), and hence the integral in assumption 3.1.4 is finite.
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The estimator m̂ can, as in the previous example, be chosen as any uniformly

consistent estimator of m. Then, Pr(m̂ ∈ D) → 1 provided the true regression

function m belongs to D. This shows that Theorem 1 also holds true for this

case.

4.3 Single index monotone regression

Our next example concerns a single index model with a monotone link function.

Let

D = {RX → IR : x→ d(βTx) : β ∈ B ⊂ IRk compact, d monotone, sup
u
|d(u)| ≤ K},

where RX is a compact subset of IRk. The treatment of this case is similar to

that of the partial linear monotone regression model. We omit the details.

4.4 Generalized nonparametric monotone regression

The use of generalized linear models in EPSE was initially discussed in Breidt

and Opsomer (2008), This approach enjoys the benefit of being able to handle

categorical response variables, and has (in many cases) obvious and easily inter-

pretable boundary values. Denote the conditional moments of zi given xi, where

the covariate xi is univariate for ease of presentation, by

E(zi|xi) = µ(xi),Var(zi|xi) = σ2(xi) := V (µ(xi)).

We consider the case when there exists a known monotone link function g(·),
such that g(µ(xi)) = m(xi), following the framework of McCullagh and Nelder

(1989). We can define the quasi-likelihood function Q(µ(x), z) which satisfies

∂

∂µ(x)
Q(µ(x), z) =

z − µ(x)
V (µ(x))

,

as in McCullagh and Nelder (1989). The function m(x) can be estimated non-

parametrically, as suggested by Green and Silverman (1994), and Fan, Heckman,

and Wand (1995), among other authors.

We propose to approximate the function m(x) locally by a pth-degree poly-

nomial m(x) ≈ β0 + β1(x − xi) + · · · + βp(x − xi)p and maximize the weighted
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quasi-likelihood to estimate the function m(x) at each location x on the support

of xi as suggested by Fan, Heckman, and Wand (1995),∑
i∈s

1
πi
Q(g−1(β0 + β1(x− xi) + · · ·+ βp(x− xi)p), zi)Kh(xi − x), (4.1)

where Kh(·) = 1
hK(·/h) and K(·) is a kernel function (for details, see Simonoff

1996, Silverman 1999).

We let (β̂0x, β̂1x, . . . , β̂px) be the minimizer of (4.1). Then, the model fitted

value of m(x) is m̂(x) = β̂0x, and Ê(z|X = x) = g−1(m̂(x)) = g−1(β̂0x). Again,

we could retain the boundary values for variable z, {τ0, τ1, . . . , τH}, and define

A∗Nh`(m̂) similar to (2.2),

A∗Nh`(m̂) =
1
N

∑
i∈UN

y`i
I{i∈s}
πi

I{τh−1<g−1(m̂(xi))≤τh}, (4.2)

for l = 0, 1, 2. Given (4.2), a natural estimator for the population mean ȳN is

the same as (2.4). The verification of assumptions 3.1.3 and 3.1.4 is similar to

the verification in Subsection 4.1 and is therefore omitted.

5. Simulations

The main goal of the simulation is to assess the design efficiency of the

NEPSE relative to competing survey estimators. The simulations are performed

in a setting that mimics a real survey, in which characteristics of multiple study

variables are estimated using one set of weights. We consider several differ-

ent sets of weights for estimation of a mean: the Horvitz-Thompson estima-

tor (HTE) weights {n−1}i∈s, the PSE weights {wis(m)}i∈s, the NEPSE weights

{wis(m̂)}i∈s, and the simple linear regression (REG) weights (e.g. Särndal et al.

1992, equation (6.5.12)). We use H = 4 strata with fixed, known boundaries

τ = (−∞, 0.5, 1.0, 1.5,∞) for PSE and NEPSE. The HTE does not use auxiliary

information; the PSE uses auxiliary information with a known model; the REG

uses auxiliary information with a fitted parametric model, and the NEPSE uses

auxiliary information with a fitted nonparametric model. Specifically, we use a

linear penalized spline with approximate degrees of freedom determined by the

smoothing parameter (Ruppert et al. 2003, §3.13). For comparison, we obtained
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an additional set of weights by fitting a nonparametric model using the entire

finite population. The results from this set of weights are very similar to the PSE

and NEPSE results and are not included in the table.

We generate a population of size N = 1000 with eight survey variables of

interest. The values x1, . . . , xN are independent and uniformly distributed on

(0, 1). The first variable, ratio, is generated according to a regression through

the origin or ratio model (see e.g. Särndal et al. 1992, p.226), with mean 1 +

2(x− 0.5) and with independent normal errors with variance 2σ2x. For the next

six variables (yi), we take their mean functions to be equal to

2
gk(x)−minx∈[0,1] gk(x)

maxx∈[0,1] gk(x)−minx∈[0,1] gk(x)

where

quad: g1(x) = 1 + 2(x− 0.5)2

bump: g2(x) = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2)

jump: g3(x) = {1 + 2(x− 0.5)}I{x≤0.65} + 0.65I{x>0.65}

expo: g4(x) = exp(−8x)

cycle1: g5(x) = 2 + sin(2πx)

cycle4: g6(x) = 2 + sin(8πx).

This means that the minimum is 0 and the maximum is 2 for each of the first

seven mean functions. Finally, the eighth survey variable is

noise: g7(x) = 8.

Independent normal errors with mean zero and variance equal to σ2 are then

added to each of these mean functions. Note that the variance function for

the ratio model is chosen so that, averaging over the covariate x, we have

E[v(x)] = σ2. Thus, the heteroskedastic ratio variable and the remaining seven

study variables all have the same variance, averaged over x.

For given values of σ, we fixed the population (that is, simulated N values

for each of the eight variables of interest) and drew 1000 replicate samples of

size n, each via simple random sampling without replacement from this fixed

population. We constructed HTE and REG weights using standard methods.
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We then computed the ratio of the MSE for each competing estimator to that of

the NEPSE.

In the first simulation experiment, we consider in detail the case in which

the PS variable follows a regression through the origin or ratio model (see e.g.

Särndal et al. (1992), p. 226). We used the ratio variable as the PS variable and

computed PSE weights with known m(x) = 1 + 2(x − 0.5) and NEPSE weights

with (approximately) 2 or 5 degrees of freedom (df) in the smoothing spline.

The weights were then applied to the remaining seven study variables. We also

varied the noise variance (σ = 0.25 or σ = 0.5). With 2 df, the smoothing spline

yields the linear (parametric) fit, and thus corresponds to EPSE. Results for

this case, presented in Table 1, are qualitatively similar to those in Table 1 of

Breidt and Opsomer (2008) (the results are different because the earlier paper

fits regression through the origin instead of simple linear regression, and uses

different signal-to-noise ratios since the mean functions are not scaled to [0,2]).

Note that NEPSE dominates HTE in every case except cycle4 (since NEPSE

does not have enough df to capture the four cycles and so its estimate of the mean

function is oversmoothed and nearly constant) and noise, where NEPSE fits an

entirely superfluous model. REG beats NEPSE for ratio, where REG has the

correct working model, and is slightly better for bump, which is highly linear over

most of its range. REG is also slightly better for cycle4 and for noise. NEPSE

performs far better than REG for all of the other variables.

The effect of changing degrees of freedom in NEPSE is negligible in this

example, since the true model for the PS variable is in fact linear. The effect

of increasing noise variance is quite substantial, bringing the performance of all

estimators closer together, as expected. Finally, NEPSE is essentially equivalent

to the PSE in terms of design efficiency, even for n = 50, implying that the

effect of basing the PS on a nonparametric regression instead of on stratum

classifications and stratum counts known without error from a source external to

the survey is negligible for moderate to large sample sizes.

In the second simulation, we fix n = 100, df ≈ 5, σ = 0.25 and consider four

different PS variables: ratio, quad, bump, and cycle1. Table 2 summarizes the

design efficiency results as ratios of the MSE of the HTE, PSE(4), or REG over

the MSE of the NEPSE(4). Overall, the behavior of the NEPSE is consistent
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(σ = 0.25) (σ = 0.5)

Response NEPSE(4) versus NEPSE(4) versus

Variable df ≈ HTE PSE(4) REG HTE PSE(4) REG

ratio 2 4.98 1.01 0.74 2.19 1.02 0.91

5 4.68 0.95 0.69 2.21 1.03 0.91

quad 2 2.34 1.03 2.56 1.62 1.05 1.75

5 2.29 1.01 2.51 1.50 0.97 1.62

bump 2 3.22 1.00 0.94 1.88 1.00 0.95

5 3.26 1.01 0.95 1.90 1.02 0.96

jump 2 2.19 1.00 1.80 1.40 0.99 1.26

5 2.13 0.97 1.76 1.33 0.94 1.20

expo 2 1.88 0.99 1.17 1.29 1.01 1.07

5 1.88 0.99 1.17 1.28 1.01 1.06

cycle1 2 3.10 1.04 1.56 1.97 1.03 1.26

5 3.04 1.02 1.53 1.96 1.02 1.25

cycle4 2 0.96 1.00 0.92 0.98 1.02 0.95

5 0.98 1.02 0.94 1.00 1.05 0.98

noise 2 0.93 1.00 0.96 0.92 1.00 0.96

5 0.92 0.99 0.95 0.93 1.01 0.97

Table 1: Ratio of MSE of Horvitz-Thompson (HTE), post-stratification on 4 strata
(PSE(4)), and linear regression (REG) estimators to MSE of nonparametric endogenous
post-stratification estimator on 4 strata (NEPSE(4)). Numbers greater than one favor
NEPSE. Based on ratio post-stratification variable in 1000 replications of simple ran-
dom sampling of size n = 50 from a fixed population of size N = 1000. Replications in
which at least one stratum had fewer than two samples are omitted from the summary:
4 reps at df ≈ 2, σ = 0.5 and 33 reps at df ≈ 5, σ = 0.5.

with expectations. NEPSE produces a large improvement in efficiency relative

to the HTE for the variable on which the PS is based, and usually for other

variables as well. NEPSE is as good or better (i.e. MSE ratio > 0.95) than REG

in all but 12 of the 32 cases considered: NEPSE loses out in particular when the

true model is linear or nearly so (bump). The noise variable shows that, when a

variable is not related to the stratification variable, the efficiency is near that of

the HTE (since the stratification is unnecessary).

We also assessed the coverage of approximate confidence intervals computed

using the normal approximation from Theorem 1 and the variance estimator from

Theorem 2. Coverage of nominal 95% confidence intervals, µ̂y(m̂)±1.96{n−1(1−
nN−1)V̂ym̂}1/2, was consistently in the range of 93% to 96%.
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PS Variable Estimator ratio quad bump jump expo cycle1 cycle4 noise

HTE 5.17 2.46 3.48 2.12 2.13 3.31 0.99 0.95

ratio PSE(4) 0.98 1.03 1.02 0.97 1.01 1.02 1.00 1.00

REG 0.71 2.49 0.97 1.70 1.19 1.64 0.90 0.97

HTE 0.97 5.47 1.01 1.53 1.31 0.97 0.98 0.96

quad PSE(4) 1.01 1.00 1.02 1.02 1.04 1.00 1.03 0.99

REG 0.13 5.53 0.28 1.23 0.73 0.48 0.89 0.98

HTE 4.07 1.93 4.13 2.02 2.30 2.70 1.13 0.95

bump PSE(4) 1.27 1.33 0.76 1.07 1.11 0.96 1.05 1.00

REG 0.56 1.95 1.15 1.62 1.29 1.34 1.03 0.97

HTE 2.89 1.01 2.53 1.26 1.35 5.68 1.00 0.97

cycle1 PSE(4) 1.01 1.00 1.06 1.04 0.96 0.92 1.03 1.01

REG 0.40 1.02 0.70 1.01 0.75 2.81 0.91 0.99

Table 2: Ratio of MSE of Horvitz-Thompson (HTE), post-stratification on 4 strata
(PSE(4)), and linear regression (REG) estimators to MSE of nonparametric endogenous
post-stratification estimator on 4 strata (NEPSE(4)). Numbers greater than one favor
NEPSE. Based on four different PS variables in 1000 replications of simple random
sampling of size n = 100 from a fixed population of size N = 1000.
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Appendix

Proof of Lemma 1. The expression on the left hand side of (3.1) equals

N−1
∑
i∈UN

{y`i I{m̂(xi)≤τ} − y
`
i I{m(xi)≤τ} − E[y`i I{m̂(xi)≤τ} | m̂] + E[y`i I{m(xi)≤τ}]}.

Let

H = {(x, y)→ y`I{d(x)≤τ} − y`I{m(x)≤τ}

−E[y`I{d(x)≤τ}] + E[y`I{m(x)≤τ}] : d ∈ D},
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where D is defined as in assumption 3.1.4.

In a first step we will show that the class H is Donsker. From Theorem 2.5.6

in van der Vaart and Wellner (1996), it follows that it suffices to show that∫ ∞
0

√
logN[ ](λ,H, ‖ · ‖2) dλ <∞. (A.1)

From assumption 3.1.4 we know that the class

F = {(x, y)→ y`I{d(x)≤τ} : d ∈ D}

satisfies (A.1) with H replaced by F , and hence the same holds for H itself, since

the three other terms in H do not change its bracketing number.

Let

ĥ(x, y) = y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)
− E

[
y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)∣∣∣ m̂] ,
where (x, y) is independent of the fit, m̂(·). Then

Var
(
ĥ(x, y) | m̂

)
= Var

(
y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)∣∣∣ m̂)
≤ E

[(
y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

))2
∣∣∣∣ m̂]

= E
[
y2`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
= E

[
E
[
y2`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂,x]∣∣∣ m̂]
= E

[
E[y2` | m̂,x]

(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
= E

[
E[y2` | x]

(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
≤ K1 {Pr(m̂(x) ≤ τ,m(x) > τ | m̂)

+ Pr(m̂(x) > τ,m(x) ≤ τ | m̂)} , (A.2)

where K1 is given in assumption 3.1.5. Let ε > 0 be given. By assumption 3.1.1,

F (u) = Pr(m(x) ≤ u) is uniformly continuous, so there exists δ > 0 such that

|u1−u2| ≤ δ implies |F (u1)−F (u2)| < ε. We will show that Pr(m̂(x) ≤ τ,m(x) >



NONPARAMETRIC ENDOGENOUS POST-STRATIFICATION 17

τ | m̂) = op(1). Consider

Pr
(

Pr(m̂(x) ≤ τ,m(x) > τ | m̂) > ε
)

≤ Pr
(

Pr(m̂(x) ≤ τ,m(x) > τ | m̂) > ε, sup
x
|m̂(x)−m(x)| ≤ δ

)
+ Pr

(
sup
x
|m̂(x)−m(x)| > δ

)
≤ Pr

(
Pr(m(x)− δ ≤ τ,m(x) > τ | m̂) > ε

)
+ o(1)

= Pr
(

Pr(m(x)− δ ≤ τ,m(x) > τ) > ε
)

+ o(1)

= I{F (τ+δ)−F (τ)>ε} + o(1) = o(1), (A.3)

by choice of δ, where the second inequality follows from assumption 3.1.3. Simi-

larly,

Pr(m̂(x) > τ,m(x) ≤ τ | m̂) = op(1). (A.4)

For fixed η > 0, λ > 0 consider

Pr
(
N1/2|Aτ`(m̂)− E[y`i I{m̂(xi)≤τ} | m̂]−Aτ`(m) + ατ`(m)| > λ

)
= Pr

N−1/2

∣∣∣∣∣∣
∑
i∈UN

ĥ(xi, yi)

∣∣∣∣∣∣ > λ


≤ Pr

N−1/2

∣∣∣∣∣∣
∑
i∈UN

ĥ(xi, yi)

∣∣∣∣∣∣ > λ,Var(ĥ(x, y) | m̂) < η, m̂ ∈ D


+ Pr

N−1/2

∣∣∣∣∣∣
∑
i∈UN

ĥ(xi, yi)

∣∣∣∣∣∣ > λ,Var(ĥ(x, y) | m̂) ≥ η, m̂ ∈ D


+ Pr (m̂ /∈ D)

≤ Pr

 sup
h∈H,Var(h)<η

N−1/2

∣∣∣∣∣∣
∑
i∈UN

h(xi, yi)

∣∣∣∣∣∣ > λ


+ Pr

(
Var(ĥ(x, y) | m̂) ≥ η

)
+ Pr (m̂ /∈ D)

= d1N + d2N + d3N .

As N →∞, d1N = o(1) as η ↓ 0 by Corollary 2.3.12 in van der Vaart and Wellner
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(1996) and the fact that H is Donsker. Also, d2N = o(1) by the arguments in

(A.2)–(A.4), and d3N = o(1) by assumption 3.1.4. This establishes (3.1), and

similar arguments verify (3.2).

Proof of Theorem 1. Note that ANh`(M) = Aτh`(M) − Aτh−1`(M) and

Anh`(M) = Anτh`(M)−Anτh−1`(M), for M = {m, m̂}. Let

αh`(m) = ατh`(m)− ατh−1`(m) = E[y`i I{τh−1<m(xi)≤τh}].

Then, applying Lemma 1 to two consecutive boundary values, τh−1 and τh, we

have that the difference of the expressions is

ANh`(m̂)− E[y`i I{τh−1<m̂(xi)≤τh} | m̂]−ANh`(m) + αh`(m) = op(N−1/2), (A.5)

and

Anh`(m̂)− E[y`i I{τh−1<m̂(xi)≤τh} | m̂]−Anh`(m) + αh`(m) = op(n−1/2). (A.6)

Given (A.5) and (A.6), the remainder of the proof is very similar to the

corresponding proof in Breidt and Opsomer (2008). We mention highlights of

that proof (in the NEPSE context) and omit much of the detail. Begin by

defining ah = ANh0(m) − Anh0(m) and bh = ANh1(m) − Anh1(m). Calculation

of appropriate covariances shows that ah = Op
(
n−1/2

)
and bh = Op

(
n−1/2

)
. By

arguments similar to those in (A.2),

E
[{

E[y`i I{τh−1<m̂(xi)≤τh} | m̂]− αh`(m)
}2
]

≤ E
[
K1

{
Pr(τh−1 < m̂(xi) ≤ τh,m(xi) > τh | m̂)

+ Pr(τh−1 < m̂(xi) ≤ τh,m(xi) ≤ τh−1 | m̂)

+ Pr(m̂(xi) > τh, τh−1 < m(xi) ≤ τh | m̂)

+ Pr(m̂(xi) ≤ τh−1, τh−1 < m(xi) ≤ τh | m̂)
}]
. (A.7)

We want to show that (A.7) converges to 0 as n → ∞. Note that for a given
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ε > 0,

Pr
(

Pr(τh−1 < m̂(xi) ≤ τh,m(xi) > τh | m̂) > ε
)

≤ Pr
(

Pr(m̂(xi) ≤ τh,m(xi) > τh | m̂) > ε
)

= o(1),

by (A.3). Similar reasoning shows that each of the terms inside the expectation in

(A.7) is op(1). By uniform integrability, (A.7) is o(1). Thus, E[y`i I{τh−1<m̂(xi)≤τh} |
m̂] converges to αh`(m) in mean square, and hence in probability.

Next,

ANh`(m)− αh`(m) = Op

(
N−1/2

)
and Anh`(m)− αh`(m) = Op

(
n−1/2

)
by the central limit theorem. Further note that Anhl(m) and ANhl(m) are Op(1)

by the weak law of large numbers.

Since αh0(m) > 0 by assumption 3.1.1, we have

1
Anh0(m̂)

=
1

αh0(m)
+ op(1). (A.8)

We substitute (A.5), (A.6), and (A.8), and apply the established order results to

show that the NEPSE error,

µ̂y(m̂)− ȳN =
H∑
h=1

{
ANh0(m̂)Anh1(m̂)−Anh0(m̂)ANh1(m̂)

Anh0(m̂)

}
,

can be rewritten as

µ̂y(m̂)− ȳN (A.9)

=
H∑
h=1

{
αh1(m)
αh0(m)

(ANh0(m)−Anh0(m))− (ANh1(m)−Anh1(m))
}

+ op

(
n−1/2

)
,

showing the asymptotic distribution is the same as that obtained when m(·) is

known.

To derive the asymptotic distribution, we apply the central limit theorem to

(A.9) and refer to previously mentioned covariance computations. The limiting

distribution of the NEPSE error is normal with mean zero and the variance is
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approximated by

Var (µ̂y(m̂)− ȳN )

' − 1
n

(
1− n

N

) H∑
h=1

α2
h1(m)
αh0(m)

+
1
n

(
1− n

N

)( H∑
h=1

αh1(m)

)2

+ Var (ȳπ − ȳN )

=
1
n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)
αh0(m)

+ [E(yi)]2 + Var (yi)

}
.

By definition of expectation given an event,

αh1(m)
αh0(m)

= E[yi | τh−1 < m(xi) ≤ τh]

and

E(y2
i ) =

H∑
h=1

αh0(m)
{

Var(yi | τh−1 < m(xi) ≤ τh) + [E(yi | τh−1 < m(xi) ≤ τh)]2
}
,

from which the variance given in Theorem 1 immediately follows.

Proof of Theorem 2. With only notational changes to indicate NEPSE results,

this proof is identical to the corresponding EPSE proof of Breidt and Opsomer

(2008). Note that ANh`(m) P→ αh`(m) and Anh`(m) P→ αh`(m) as n,N → ∞
by the weak law of large numbers, and E[y`i I{τh−1<m̂(xi)≤τh} | m̂] P→ αh`(m) for

` = 0, 1, 2 by the arguments following (A.7). Using equations (A.5) and (A.6),

the expression given for V̂ym̂ in (3.3) converges in probability to

H∑
h=1

αh0(m)

{
αh2(m)
αh0(m)

−
(
αh1(m)
αh0(m)

)2
}

from which the result follows by Slutsky’s Theorem and Theorem 1.
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