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We first wish to congratulate the authors for this insightful and inspiring review on

copulas, and in particular on extreme value and tail copulas. In this comment we would

like to discuss briefly an outlook on two possible extensions of the ideas put forward in

this review. The first one is on the influence of covariates, and the second one is on the

exploration of insurance data that are subject to right censoring.

1 Covariates

Consider the data on the Danish fire insurance claims: (X1, X2), with X1 the loss to

buildings and X2 the loss to contents. Kendall’s tau is significantly greater than zero and

there is a positive dependence between the two variables X1 and X2. Suppose now that

there is also information on some covariate Z and that we observe data on (X1, X2, Z). For

example, Z could be a continuous covariate representing e.g. the age of the building, or a

categorical variable representing the type of building (public building, housing, industry,

∗I. Van Keilegom acknowledges financial support from IAP research network P6/03 of the Belgian

Government (Belgian Science Policy), and from the European Research Council under the European

Community’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement No. 203650.
†N. Veraverbeke acknowledges financial support from IAP research network P6/03 of the Belgian

Government (Belgian Science Policy), and from research grant MTM 2008-03129 of the Spanish Ministerio

de Ciencia e Innovacion.

1



...), or the insurance company. Then the dependence structure between X1 and X2 may

vary with the value z of the covariate Z and we could think of plotting Kendall’s tau as a

function of z. Formally we can introduce the joint and marginal distributions of (X1, X2),

conditionally on Z = z. According to Sklar’s theorem we then have a conditional copula

Cz given by

Cz(u1, u2) = P (F1z(X1) ≤ u1, F2z(X2) ≤ u2),

where

F1z(x1) = P (X1 ≤ x1|Z = z)

and

F2z(x2) = P (X2 ≤ x2|Z = z).

This conditional copula will be unique provided F1z and F2z are continuous. The first

paper mentioning the extension of Sklar’s theorem to the conditional case is Patton (2006).

He studied financial time series with dependence structure varying in time.

When Z is a continuous covariate, nonparametric estimators of the conditional cop-

ula have recently been studied in Veraverbeke, Omelka and Gijbels (2010) and Gijbels,

Veraverbeke and Omelka (2010). The estimators are similar to those in formulas (3) and

(4) in the paper, but the weights 1/n are replaced by a sequence of weights {wni(z, gn)}
(i = 1, . . . , n) that smooth over the covariate space (where gn is an appropriate bandwidth

sequence). The conditional copula estimators can then be used to obtain conditional as-

sociation measures that can be expressed as functionals of the former. For example, a

conditional version of Kendall’s tau can be constructed.

In the context of semiparametric estimation we mention that the pseudo maximum

likelihood method of Genest, Ghoudi and Rivest (1995) given in Section 2.1 has recently

been considered for conditional copulas. If Cθ is a parametric family of copulas, then the

conditional copula is considered to be Cθ(z), where θ(·) is now a function of the observed

value z of Z. This has been studied in the case of known marginals by Acer, Craiu and

Yao (2010) and in the case of estimated marginals by Abegaz, Gijbels and Veraverbeke

(2010).

An interesting further line of development is the consideration of covariates Z that are

in fact curves, or more generally Z is a functional covariate taking values in some infinite

dimensional space. We refer to the influential monograph of Ferraty and Vieu (2006) for

more details.

The message of this section is that the strength of dependence between two or more

variables may vary according to the value of an observed covariate, and that this should

be taken into account. It would be interesting to study the nonparametric estimation

of a conditional copula, when the copula is an extreme value or tail copula. These two
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particular types of copulas require special attention, since the nonparametric estimators

proposed by Veraverbeke, Omelka and Gijbels (2010) are not necessarily extreme value

or tail copulas by construction. To the best of our knowledge, this has not been studied

so far in the literature, and we would like to hear the authors’ thoughts on this.

2 Censored data

Incomplete data are often encountered when analyzing insurance data. We focus here on

right censored data, although left truncated data are also common (think e.g. of claims

that are not reported to the insurance company because the amount of the claim does not

exceed the deductible amount). Suppose X is the loss for a single claim. In practice, each

claim will have a policy limit Y , i.e. the maximal claim amount insured by the company,

which is specific to each contract. When the amount of the claim exceeds the policy limit

(i.e. when X ≥ Y ), the loss variable will be right censored. More precisely, for a data set

of n insurance claims one observes pairs (Ti,∆i) (i = 1, . . . .n), where Ti = min(Xi, Yi),

Xi is the ith loss, Yi the associated policy limit, and

∆i = I(Xi ≤ Yi) =

{
1 if Xi ≤ Yi (uncensored claim)

0 if Xi > Yi (censored claim).

A lot of research has been done to extend procedures for completely observed data to

censored data, but only very little work has been done for censored data in the context

of extreme value analysis. The difficulty is that when no parametric assumptions are

made on the distribution of X, the right tail of this distribution will be poorly estimated

due to the presence of right censoring. This problem is well known in survival analysis,

and often complicates the data analysis substantially. In the context of extreme value

analysis, this problem is even more problematic, since there are only few data available in

the tail. Two important papers that deal with this problem are Beirlant, Guillou, Dierckx

and Fils-Villetard (2007) and Einmahl, Fils-Villetard and Guillou (2008). In these papers

estimation of the extreme value index and of the extreme values is considered based on

the product limit estimator of Kaplan and Meier (1958), which is the nonparametric

maximum likelihood estimator under right censoring.

Suppose now that we have a vector (X1, X2) of insurance claims, and that X1 and X2

are both subject to censoring by variables Y1 and Y2, respectively. The dependence struc-

ture between X1 and X2 could then be expressed by means of a copula. Nonparametric

copula estimators could be built from a bivariate Kaplan-Meier estimator for the joint

distribution of X1 and X2 and univariate Kaplan-Meier estimators for the marginals. To

the best of our knowledge this has not been considered yet.
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On the other hand, when the copula is assumed to belong to a parametric family of

copulas, Wang and Wells (2000) considered the estimation of this copula, extending the

work of Genest and Rivest (1993) to bivariate censored data. Denuit, Purcaru and Van

Keilegom (2006) revisited their estimator and applied it to insurance data, for which one

variable is subject to right censoring and the other one is completely observed. This sit-

uation is encountered when e.g. X1 represents the loss of a claim (subject to censoring),

and X2 represents the allocated loss adjustment expenses (ALAE’s, in short) on a single

claim (not subject to censoring). Here ALAE’s are expenses made by an insurance com-

pany, such as lawyers’ fees and claims investigation expenses. Expensive claims generally

need some time to be settled and induce considerable costs for the insurance company.

Actuaries therefore expect some positive dependence between losses and their associated

ALAE’s, i.e. large values for losses tend to be associated with large values for ALAE’s. It

would be interesting to investigate interval estimation and goodness-of-fit tests based on

the proposed estimator.
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