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Abstract

We focus on the performances of tree-structured wavelet estimators belonging to a large
family of keep-or-kill rules, namely the Vertical Block Thresholding family. For each estima-
tor, we provide the maximal functional space (maxiset) for which the quadratic risk reaches
a given rate of convergence. Following a discussion on the maxiset embeddings, we identify
the ideal estimator of this family, that is the one associated with the largest maxiset. We
emphasize the importance of such a result since the ideal estimator is different from the
usual (plug-in) estimator used to mimic the performances of the Oracle. Finally, we confirm
our theoretical results through extensive numerical experiments.
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1 Introduction

Wavelet methods are known to be powerful in nonparametric estimation of functions. Indeed,
the information of a function is localized in a few large wavelet coefficients for a wide range of
function classes. This is the key-point to understand why hard and soft thresholding methods
perform well. These methods introduced by Donoho and Johnstone (12) consist in estimating
the function by using the empirical wavelet coeflicients which are larger than a chosen threshold
value. In particular, these estimators were shown to be near optimal over Besov spaces while they
are adaptive for the regularity parameter (see Donoho and Johnstone (12; 13)). As mentioned by
Autin (3) such thresholding rules are elitist in the sense that small empirical wavelet coefficients
are not used in the reconstruction of the function.

Recent developments in wavelet thresholding have shown that elitist procedures can be outper-
formed in both theoretical and practical way by methods which refine the choice of the wavelet
coefficients to be used in the reconstruction. This refined choice makes use of information from
neighbored coefficients, e.g., block thresholding methods (see among others Cai (8), Autin (3; 5))
or impose that the empirical coefficients used for the reconstruction of the signal are arranged
over a rooted connected tree (see Baraniuk (7), Cohen et al. (9), Autin (1)). We denote the
latter as Tree Structured Wavelets (TSW) estimators. Interest in TSW already appeared in the
works of Donoho (13) and Engel (14), (15). In particular they pointed out the connection be-
tween TSW and CART. Actually, TSW benefit from interest in various literature ranging from
data compression to image processing and statistics where, in the context of curve denoising,
they have already shown their potential compared to fully nonlinear methods (see among others
Jansen (18), Lee (19), Autin (4), Freyermuth et al. (16)). However, this paper is not in the line
to compare TSW to other well established methods. Its aim is rather to emphasize an important
aspect about the selection of the ideal procedure among a 'natural’ family of TSW estimators.
The family of estimators that we will consider includes as special cases two popular TSW esti-
mators, the CART-like estimator obtained by model selection (see Donoho (13) and Engel
(14)) and the Hard Tree estimator (see Autin(4))).

The Figures 1-4 show an example of a reconstruction of the Blip function using these methods
(defined in Section 3) and the associated wavelet coefficient magnitudes (the darker the larger
the coefficient magnitude).
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Figure 1: True function. Figure 2: Noisy data.
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Figure 3: CART-like estimator. Figure 4: Hard Tree estimator.

Looking at the positions of the large wavelet coefficients in the Figure 1, we notice a hierarchi-
cal structure between them. In particular, there are large wavelet coefficients that persist across
scales at the location of the singularity. The two methods of reconstruction give estimators in the
Figures 3 and 4 which appear to be close to the target function. Note that the sets of empirical
wavelet coefficients used by the two methods are embedded (see Proposition 3.1). In particular,
the cardinality of the set of empirical coefficients used in the reconstruction of the CART-like
estimator (Figure 3) is smaller than the one of the Hard Tree (Figure 4), quantitative results
of section 6 support this remark. These facts will be discussed and interpreted throughout the

paper.

Donoho (13) proves that estimation under tree constraints can be solved by a CART-like al-
gorithm. A Tree-Oracle estimator is obtained after a recursive-per-level method based on the



comparison of the ls-mean of vertical blocks of the true wavelet coefficients with the standard
deviation. This is the best possible tree-structured estimator minimizing the Lo—risk which is
unknown in practice but its performances can be mimicked by plugging-in observed values of
the wavelet coefficients and adjusting the threshold value upwards to account for the noise. This
estimator is proven to be near-minimax and to perform well in practice. However, in this paper,
adopting the maxiset approach, we show that we should not compare local ¢;-norms of empirical
wavelet coefficients with the threshold but rather local £o-norms.

To reach this goal, we first introduce in Section 3 a general family of TSW estimators so-
called Vertical Block Thresholding (VBT) which includes the two previous estimators as special
cases. Then, we compute the set of all the functions well estimated by each estimator in that
family. Namely, we consider the maxiset approach introduced by Cohen et al (10). Its basics
are presented in Section 4. This theory is applied in Section 5 to find the ideal estimator of the
VBT family, that is the one for which the set of well-estimated functions is the largest functional
space. The main result of our paper is expressed in Theorem 5.1 and its Corollary 5.1. Section
6 proposes numerical experiments to confirm the superiority of the ideal estimator using as a
benchmark the informative results obtained by the Tree-Oracle estimator. Finally after brief
conclusive remarks in Section 7, Section 8 presents the proofs of our main results.

2 Model and background

2.1 Wavelet setting and model

Let us consider a compactly supported wavelet basis of Lo([0,1]) with V' vanishing moments
(V' > 0) which has been previously periodized

{gzﬁ,?/}jk7j eN,ke{0,...,27 — 1}} Examples of such bases are given in (11). Any function
f € L2([0,1]) can be written as follows:

co 27—1

F=0a0+> > Ot (1)

=0 k=0

The coefficient a and the components of § = (ij)jk are respectively the scaling/wavelet co-
efficients of f. They correspond to the La-scalar products between f and the scaling/wavelet
functions ¢ and ;.

We consider the sequential version of the Gaussian white noise model: we dispose of observations
of these coefficients which are assumed to be realizations of independent random variables:

a = a+é€,
0, = Ok + i, (2)

where ¢, & are i.i.d. N(0,1),0 < e < % is supposed to be the noise level, and where the sequence
(ij)j7 « 18 sparse, meaning that only a small number of large coefficients contain nearly all the
information about the signal. That motivates the use of keep-or-kill estimators, for which we
recall the hard thresholding estimator:

fs=ao+ > Oty (3)

(3,k)eS



where S = { (4, k)30 < j < j50 < < 2 |d50
'large’ wavelet coefficients (in the sequel, by "large’ coefficients, we understand those which belong
to S). Here,

> /\5} forms an unstructured set of indices of

e A\, =mey/log(e7t), me(0,00],

e j is the integer such that 2772 < A2 < 2177» (0 < X\ < 1). Here, jy, is the finest level up
to which we consider the empirical wavelet coefficients to reconstruct the signal f.

This term by term thresholding does not take into account the information that give us the
clusters of wavelet coefficients that we observed in the Figure 1. But this knowledge has the
practical application that, on the one hand, we would not use in the reconstruction a large
isolated wavelet coefficient because it is not likely to be part of the signal; on the other hand, a
small coefficient in the neighborhood of large coefficients would be kept. This motivates the use
of refined thresholding methods such as the tree-structured wavelets (Autin (1) and Baraniuk
(7)) which we describe in the next section.

2.2 Tree-structured wavelet estimators

Tree-structured wavelet (TSW) estimators are based on the hierarchical interpretation of the
wavelet expansion (1). The periodized wavelets {wjk}jk are arranged over a nested multiscale
structure such that the support of each 1), contains the supports of 141 2 and ¥ 11 2k+1. This
induces a hierarchy among the wavelet coeflicients which can be represented over a binary tree
rooted in (0,0) (see Figure 5). Hence, at the location of a singularity in the signal, we observe
the persistence of large wavelet coefficients over all scales (see Figure 1).

Therefore, considering the wavelet coefficients as a multiresolution sequence provides additional
information which we aim to benefit from by imposing a tree/hereditary constraint. The hered-
itary constraint requires that the set of non zero wavelet coeflicients after thresholding forms a
connected rooted subtree. In other words, it cannot include an empirical wavelet coefficient unless
all its parents (defined in equation (4) below) are large.

We denote as 7; the binary tree of depth J for which the nodes are the couples of indices
((j,k),0<j < J keA{0,...,27 —1}) (see the Figure 5). For any couple of indices (j, k), follow-
ing Engel (15), we define the set which contains:

e its parents
P k) ={0G —m, [k/2™]); m=0,....j}, (4)

where [2] denotes the smallest integer smaller than or equal to z;
e its children

C(1,k)={(,k),G+1,2k),(j+1,2k+1),...,

5
(G+m2 k) ..., (G+p2"t —1); p=0,1,...}. ®)

Note that to each node of indices (j, k) correspond 2i'~J children at levels j’ (j <j < J)and
7 + 1 parents.
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Figure 5: Binary tree of depth J.

Remark 2.1. When using smooth wavelets, the presence of an edge ’generates’ several large
wavelet coefficients at each scale, due to the overlapping supports of the wavelets. This idea is
the leitmotiv of block thresholding methods (intra-scales), but could also be applied to TSW. In
such a case, the heredity constraint would mean that the parents have more than two children
(see Baraniuk (7), Averkamp and Houdré (6)). In this paper, we consider the situation where the
parents have two children and therefore, we naturally associate binary trees to wavelet coefficient

sequences.
Let us now introduce the definition of a tree-structured estimator in our setting.
Definition 2.1. We call tree-structured estimator of a signal any keep-or-kill estimator
fr=ao+ Y Ot
(4,k)ET
where the set of the indices T satisfies the hereditary constraint formulated in Engel (1), that
is, if (j, k) is in T then all its parents are in T .

In the sequel we denote by |7| the cardinality of any tree 7. Analogously to the hard threshold-
ing estimator defined in (3), we only use the empirical wavelet coefficients on levels smaller than

Ixe-

Donoho (13) used the Oracle approach to propose a tree-structured near optimal estimator. His
idea was to find a tree-structured estimator which mimics the optimal risk R.(f) only attained

by the "Tree-Oracle", that is

Re(f)=_ min  Elff —fl3= min | > 05+ (TI+1)],

fr TET, = e \GhET



where the minimum is taken over all the tree-structured estimators. Donoho (13) showed that
the solution of this optimization problem under a tree constraint has an inheritance property
and therefore can be solved by a CART-like algorithm applied to the true wavelet coefficients
using € as the threshold value. In the sequel 7© stands for the set of coefficients selected by the
Tree-Oracle. In practice, fo = a¢+ E(j7k)€70 éjkwjk is not available. Donoho (13) proposed to

consider the estimator fcart which minimizes the empirical complexity, that is

feart = _arg min Z k + A2 (T +1)
fr. TCT, \ et

Furthermore it was shown that the risk of fc(m is of the same order as the optimal risk up to a
logarithmic term. Precisely, there exists a constant K > 0 not depending on € such that for any
f € Lo([0,1]): R

E|l feart — flI3 < Klog(e " )Re(f).

3 Vertical Block Thresholding Estimators

Let us now define a general Vertical Block Thresholding (VBT) estimator fp, 1<p< o as
follows:

Definition 3.1 ((\,p)-VBT-method). For given A > 0, p > 1 and any set of real numbers
(ij,() <J<in0<k< 2j) we define the sets of indices, E;(0, \), for any (j,k), iteratively as
follows:

e Forj=jx—1 and for any k,

Eir(0,A) {G.R)}Y i 1056 > A,
Ei(0,X) = 0  otherwise.

o Forany0<j<jx—1 and any k, we put

Fir(0.2) = {5 k)} U {Ej41w (0, 0): (4. k) € P(5 + LK)}

Then
Ei(0,N) = F@.N)  if |0/ Fr@, Ny > A,
Ei(0,\) = 0  otherwise,
where
1/p
1
10/ Fi@ My = | 777+ > 105" for 1 <p < oo,
#ERON) G sneFon
10/ Fir(0, Mo = 101 |.

@, k’)G}'ykw A)



For any real valued p € [1, 00] let us consider the estimator which is associated with the (A, p)-
VBT-method:

fo = frr=ado+ Z 0515 (6)

(4,k)eTP

_ a¢+229}k1{ wmin ||é/fjfk/<é,Ae>||p>Ae}wjk,

foragian (4",k")EP(4,k)

where 7P is the set of coefficients used in the reconstruction following the VBT method based
on {,-norms.

We encourage the reader to check that for p = 2 (resp. p = c0) the estimator fp is the CART-like
estimator (resp. the Hard Tree estimator). These estimators have an interesting interpretation
using the terminology of wavelet thresholding. At each node (j, k), we consider the coefficient
at (j, k) and those which survive the previous step (i.e., at scale j + 1). They form a connected
subtree F;i (6, \) of C (4, k) rooted to (j, k). The decision to keep-or-kill this block of coefficients
depends on its £,-mean which is compared with the threshold A.. We remark that unlike other
block thresholding methods there is no need for controlling the size of the blocks by any additional
parameter.

From now on, we will study the performance of these VBT estimators to address the following
question: is the f5-norm the best choice to consider among fp estimators (1 < p < 00)? In the
next sections we use the maxiset approach to prove that the answer is NO.

Define the Vertical Block Thresholding family (VB7T.) as
VBT, = {f,, 1<p< oo}

At first glance, as 1 < p < oo is real-valued, this family of estimators VB7, seems to be uncount-
able. But it is not since the estimators are clearly tree-structured. More precisely,

Proposition 3.1. For any 1 <p <g,
1. TP and T? constitute trees of indices,
2. TP C T4,

3. T is the smallest tree (in terms of cardinality) which contains all “large’ empirical coef-
ficients.

According to the previous proposition, we deduce that VBT, is a family of tree-structured esti-
mators associated with embedded trees. The larger p, the bigger tree.

4 Maxiset approach

In this section we recall the maxiset approach. The maxiset point of view has been proposed
by Cohen et al. (10) to measure the performance of estimators. For a given estimator f and a
chosen sequence v = (v¢) tending to 0 when e goes to 0, this approach consists in providing the
set of all the functions (maxiset) for which the rate of convergence of the quadratic-risk of fis
at least as fast as v .



In this setting, the functional space G will be called maxiset of f for the rate of convergence v if
and only if the following property holds:

sup v 'E|lf — fl3 <00 <= feG.
0<6<%

From now on we shall adopt the following notation:
M (f,(v)e) =
Note that, if f reaches the minimax rate v on a functional space F, then F C MS(fE, (Ve)e)-

Hence, the maxiset approach appears to be more optimistic than the minimax one. The following
scheme illustrates this idea.

1)

|

PROCEDURE f;

Figure 6: Maxiset and Minimax

The maxiset setting allows to compare efficiently different estimation procedures. This approach
lies on the fact that the larger the maxiset, the better the procedure. Following Kerkyacharian
and Picard (20; 21), this way to measure the performance of procedures is often successfully
applicable to discriminate procedures that are equivalent in the minimax sense, and to give
theoretical explanations for some phenomena observed in practice (see Section 6).

5 Main results

5.1 Functional spaces: definitions and embeddings

In this paragraph, we characterize the functional spaces which shall appear in the maxiset study
of our estimators. Recall that, for later use of these functional spaces, we shall consider wavelet
bases with V' vanishing moments.

Definition 5.1. Let 0 <u < V. We say that a function f belongs to the space By . if and only

if:
sup 227¢ Z Z G?k < oo.

J>0 i>J k



Besov spaces naturally appear in estimation problems (see Autin (3) and Cohen et al. (10)).
These spaces characterize the functions for which the energy of wavelet coefficients on levels
larger than J (J € N) is decreasing exponentially in J. For an overview of these spaces, see
Hérdle et al. (17).

We provide here the definition of a new function space which is the key to our results:

Definition 5.2. Let 0 <r <2 and p > 1. We say that a function f belongs to the space W, if
and only if:

Jx—1

sup A2 Z ZHJQ-,CI{ min |0 / Fje (0,0, < )\} < 00.
=0 k

0<A<1 (4" k") EP(4.k)

First, note that the larger r, the larger the functional space; second, in contrast to weak Besov
spaces (see Cohen et al. (10) for an explicit definition) which appear in the maxiset results for
hard and soft thresholding estimators, the spaces W,.,, (0 < r < 2) are not invariant under per-
mutations of wavelet coefficients within each scale. This property makes them able to distinguish
functions according to the "clustering properties" of their wavelet coefficients. These functional
spaces are real enlargements as suggested by our following Proposition 5.1.

Proposition 5.1. For any 0 < s <V, and any p > 2
B CW_2 )

= 7 113 0P’

Our following Proposition 5.2 shows that, for the same parameter r (0 < r < 2), the functional
spaces Wy, (p > 1) are embedded. The larger p the larger W, ,. Moreover, in Theorem 5.1, the
intersections of function spaces appearing in equation (9) below are shown to be directly related
to the maxisets of the estimators fp € VBT..

Proposition 5.2. For any 1 < p < q and any 0 < r < 2, we have the following embeddings of
spaces:

W’f’.,p g Wr,qa (8)

and, for any u < ﬁ,

Bg,oo N W ,2 ,C,_ Bg,oo N Wi (9>

2 .
TF2s 1525

5.2 Maxiset results

In this paragraph we provide the maximal space (maxiset) of any fp € VBT . associated with

_4s
the rate Ae™** (s > 0) which corresponds to the classical minimax rate over Besov space B3 .,
in the regular case (see Hérdle et al (17)). For the following theorem we recall the form of our

thresholds A, = m ey/log(e~1).

Theorem 5.1. Let s > 0 and p > 1. For any m > 6v/2, we have the following equivalence:

—_4s ~ s
sup Ae T E|f, — fll} <oo <= feBE NW
0<e<%

2
T§2s P’

that is to say, using the maxiset notation:

10



MS(f,,(\FT)) = BEZ nW_

T32s P

Note that these maxisets are large functional spaces since from Proposition 5.1 we deduce

that the functional space BQHE N W1+22 p contains the functional space B3 , for any 0 < s <V
and any p > 2. This explains why the maxiset approach is more optimistic than the minimax
one (see Figure 6); there exists functions not in B3 ., that are estimated by fo at the minimax

rate for instance, according to equation (9).

We now state the main result of the paper through the following corollary.

Corollary 5.1. Let A. = m e\/log (e 1), with m > 6v/2 , then fs is the ideal estimator in the
maziset sense among the VBT . family.

Proof. Theorem 5.1 establishes the maxiset associated with any estimator fp built with the
(Ae,p) —VBT method. According to (8) of Proposition 5.2 we deduce that the maxisets of these
estimators are embedded and that the largest maxiset is the one associated with f., (Hard Tree

estimator).
O

Although f> was shown to be very powerful by using the Oracle approach (see Donoho (13)), foo
is better in the maxiset sense. This result is interpretable as the necessity to keep all empirical
wavelet coefficients larger than A, in the reconstruction. Missing some of them has a huge
maxiset-cost which corresponds to the exclusion of many functions estimated at the same rate.
Moreover this suggests to include not only all the ’large’ empirical wavelet coefficients but also
some well chosen small ones. Autin (3) already underlies this important issue through what he
calls cautious rules.

6 Numerical experiments

This section proposes numerical experiments to check whether the theoretical results can be
confirmed in a practical setting. We first introduce the notations of the nonparametric model we
are dealing with:

Y;=f(@/N)+o(, 1<i<N, ¢ areiid N (0,1). (10)

We refer the reader to the classical literature (e.g., Tsybakov (22)) for details about the equiva-
lence between this nonparametric regression model and the sequence model given by equation (2).
We only recall that the noise level € is such that e = \/"—ﬁ

Since the previous asymptotic theory does not use the characteristics of the wavelet functions
we just consider Daubechies 8 Least Asymmetric wavelets. The choice of the threshold value
is also a crucial issue, nevertheless, we again choose to stick to a classical choice by using the
universal threshold value for all these estimators, i.e., A=62N1 log N. We follow a standard
approach to estimate o by the Median Absolute Deviation (MAD) divided by 0.6745 over the

wavelet coefficients at the finest wavelet scale J — 1 (see e.g., Vidakovic (23)).
We generate the data sets from a large panel of functions often used in wavelet estimation

studies (Antoniadis et al. (2)) with various Signal to Noise Ratios SNR = {5,10, 15,20} and
sample sizes N = {512,1024, 2048}. We compute the Integrated Squared Error of the estimators

11



fp, p € {1,2,5,10,00} at the m-th Monte Carlo replication (ISE(™ (fp), 1 <m< M) as

follows:
o5 (8) = (1 () =4 ()

i=1

M
The Mean ISE is MISE (fp) = ﬁ Z ISE™) (fp) and its standard error is SE (fp) =
m=1

1
M™2 615p(4,)-
In this context we are particularly interested in comparing the results of the estimators for p = 2
with p = oco. In addition to that, we propose to test the null hypothesis: Hj : MISE(fg) =
MISE(f+) against the alternative: Hy : MISE(fy) # MISE(fs) using the Wilcoxon Signed-
Rank test for paired samples. Therefore, we can choose the number of Monte Carlo replications
M in order to ensure that the power of the test at level I-error of 5% is about 80% to detect a
difference in means of about 1% of MISE(fs).
There are numerous connections between keep-or-kill estimation and hypothesis testing, see e.g.
Abramovich et al. (1). We will get an interesting insight into these methods by computing the
number of false positives/negatives (i.e., type I/II errors). To do so, we compare the set of indices
of wavelet coefficients kept by each estimators (7P) and by the Tree-Oracle (7©) with the set of

indices of the keep-or-kill Oracle estimator S© = {(j, k);0<j<irn;0<k<2;]0, > ﬁ}

In addition, we give in Tables 1 and 2 the size (number of nodes) of the trees.

The results suggest similar behavior for different values of N and SNR. To keep clear the pre-
sentation of the results, we only report those for N = 1024 and SNR = 10 in Tables 1-2 and
summarize the MISE results in Figure 7.

15
|
+
>

10

MISE(107)
S/

S
o+

step wave blip blocks bumps  heavisine  doppler angles parabolas tss spikes corner

Figure 7: MISE of (A, p)-VBT estimator for five different values of p for estimating various
functions with a SNR equal to 10.

Comparing the MISE of fz with foo we observe the optimality of the latter for most of the test
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functions with sometimes important improvements, up to 16% for the function ’doppler’. In the
other cases, the loss of foo against fg remains under 7%. More than that, for many of these
functions we have a monotone decrease in the MISE as the value of p increases, reflecting the
embeddings of the maxisets of the VBT . estimators (see Section 5).

Looking at the number of false positives/negatives, we can check that foo allows to reduce
the number of false negatives with a comparatively small increase in the number of false pos-
itives yielding its good performances in terms of MISE. Comparing the results to those of the
Tree-Oracle we observe that there are potentially huge improvements achievable by reducing the
number of false negatives. Indeed, the number of active coeflicients of the Tree-Oracle estimators
(see Section 2.2), |79] is about 25% to 110% larger than |7o|.

f1 [ f2 [ fs [ fio [ foo [ Tree-Oracle
Function: Step
MISE 15.06 | 14.52 | 13.60 | 13.15 | 12.80 4.45
False positives 0.01 0.01 0.02 0.07 0.60 1
False negatives | 22.27 | 21.62 | 20.51 | 19.93 | 19.20 2
Size 19.73 | 20.39 | 21.51 | 22.14 | 23.41 41
Function: Wave
MISE 4.99 4.98 4.92 4.87 4.79 1.37
False positives 8.01 8.01 8.01 8.05 8.38 8
False negatives | 29.34 | 29.25 | 28.87 | 28.52 | 27.70 0
Size 26.67 | 26.76 | 27.14 | 27.52 | 28.68 56
Function: Blip
MISE 3.31 3.25 3.12 3.05 3.06 1.39
False positives 0.00 0.00 0.00 0.04 0.73 0
False negatives | 14.77 | 14.58 | 14.19 | 13.94 | 13.52 0
Size 19.24 | 19.42 | 19.82 | 20.10 | 21.21 34
Function: Blocks
MISE 8.56 8.08 7.66 7.44 7.10 2.30
False positives 3.32 3.90 4.61 5.04 5.62 9
False negatives | 68.65 | 67.33 | 65.64 | 64.49 | 62.63 1
Size 50.67 | 52.57 | 54.97 | 56.55 | 58.99 124
Function: Bumps
MISE 3.20 3.12 3.06 3.01 2.93 0.97
False positives 1.02 1.08 1.42 1.69 2.09 5
False negatives | 66.95 | 66.40 | 65.48 | 64.64 | 63.10 2
Size 74.07 | 74.69 | 75.94 | 77.04 | 78.99 143
Function: Heavisine
MISE 2.82 2.74 2.59 2.50 2.47 1.26
False positives 0.01 0.01 0.01 0.06 0.95 0
False negatives | 13.12 | 12.90 | 12.45 | 12.16 | 11.61 3
Size 9.88 10.11 | 10.56 | 10.90 | 12.34 20

Table 1: MISE (10™%), number of false positives/negatives and average size of the tree (number of non
zero empirical wavelet coefficients in the estimator).
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fi [ f [ fs [ fio0 [ foo [ Tree-Oracle
Function: Doppler
MISE 5.02 4.77 4.38 4.14 4.03 2.23
False positives 2.93 3.08 4.75 6.00 7.45 11
False negatives | 22.88 | 22.60 | 21.72 | 21.11 | 20.57 5
Size 32.05 | 32.47 | 35.04 | 36.89 | 38.88 58
Function: Angles
MISE 2.80 2.80 2.80 2.80 2.87 1.32
False positives 0.01 0.02 0.07 0.14 0.82 1
False negatives 9.93 9.93 9.88 9.84 9.72 0
Size 19.08 | 19.09 | 19.18 | 19.30 | 20.10 30
Function: Parabolas
MISE 3.52 3.52 3.53 3.54 3.72 1.54
False positives 1.01 1.01 1.02 1.08 1.99 2
False negatives 7.66 7.66 7.64 7.62 7.51 0
Size 14.35 | 14.35 | 14.38 | 14.46 | 15.48 23
Function: time.shift.sine
MISE 2.32 2.32 2.32 2.33 2.45 1.09
False positives 0.01 0.01 0.01 0.06 0.86 0
False negatives 5.56 5.56 5.56 5.55 5.51 0
Size 17.45 | 17.45 | 17.46 | 17.51 | 18.36 23
Function: Spikes
MISE 1.77 1.54 1.47 1.44 1.41 0.62
False positives 0.84 1.00 1.02 1.05 1.31 1
False negatives | 20.37 | 19.27 | 18.55 | 18.11 | 17.55 1
Size 37.47 | 38.73 | 39.47 | 39.94 | 40.76 57
Function: Corner
MISE 0.85 0.85 0.85 0.86 0.91 0.44
False positives 0.00 0.00 0.01 0.06 0.92 0
False negatives 6.44 6.44 6.44 6.43 6.35 1
Size 13.56 | 13.56 | 13.56 | 13.63 | 14.57 19

Table 2: MISE (10™%), number of false positives/negatives and average size of the tree (number of non
zero empirical wavelet coefficients in the estimator).

7 Conclusions

In this paper we introduced the family of the Vertical Block Thresholding estimators. We
studied their performances under Ls-risk using the maxiset approach, and we identified the
ideal procedure, that is the one obtained from the (A, 00)-VBT-method. The main message of
this paper is that the ideal estimator is different from the classical one obtained by plugging-in
empirical quantities in the Tree-Oracle which corresponds to the estimator built from the (A, 2)-
VBT-method. Indeed, compared to the latter one, the ideal estimator is able to reconstruct a
larger number of functions at the minimax rate.

It is important to emphasize that we compared both theoretically and numerically all these
estimators for a fixed value of A\. We have chosen to use the universal threshold value for the
numerical experiments although it is known to be too conservative in practice, simply in order
to use the most standard choice for our comparisons.

Our theoretical and numerical results emphasize the importance of reducing the number of false
negatives while maintaining the number of false positives. In addition, the numerical experi-
ments which implement the Tree-Oracle estimator show us the important potential in reducing
the amount of false negatives. To do so, using these methods, we should either consider more
complex hereditary constraints or allow lower threshold values. Indeed, large threshold values
lead to suboptimal estimation of the localized structure in the underlying curve. It would be
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more convenient to use a minimum risk threshold rather than the universal threshold (cf. Jansen
(18)) but, when used with hard thresholding, the estimate often shows unappealing visual arti-
facts (spurious bumps) due to large wavelet coefficients at fine resolution scales generated from
the random noise (“false positives"). In this context, and as part of future research, we expect the
vertical block thresholding algorithms also for p < co to be powerful as they adaptively keep-or-
kill blocks of coefficients even if they contain coefficients larger than the threshold value. Hence,
the control of false positives is not only achieved by the threshold value but by the algorithm
too. The conclusive words for the present results is that practical application would require to
optimize simultaneously over the parameter p and over the threshold value.

8 Proofs

8.1 Proof of Proposition 3.1

The proofs of 1. and 3. are obvious. To prove 2., we first notice that from Definition 3.1 it is ob-
vious that the sets £;5(6, ) and F;; (6, A) depend on p. For notational convenience, we suppress
the dependence on this parameter in the paper except for this proof as it is a crucial aspect to
consider. Then we need the following Lemma 8.1.

Lemma 8.1. Let 1 <p<g<oo, A>0and 0 := (ij,O <ji<in0<k< 2j) be a sequence of
real numbers. Then the following embedding property holds for any couple of indices (j,k):

Proof. We prove property (12) by level-recurrence arguments on £, (6, A, o).
The case j = j, — 1 is easy to check for any k.
If j = jx — 2 then, for any 0 < k < 27,

fjk(ea /\7p) = fjk(aa )‘7 q)
When comparing the norms ||.|[, and ||.||4, one gets

16/ Fin@. Ap)llp = 110/ Fie(0, A q)llp
< ||0 / fjk(eaAaQ)H‘I'

Hence (|0 / Fr(0, A, p)llp > A =110 / Fj1(0, A, q)llq > A
It implies that &5 (0, A\, p) C E;x(6, A, q).

Suppose now that property (12) holds at a level j + 1 such that 0 < j < jy — 1 and for any
0 <k <27, Then, for any 0 < k < 27

Let us set Fjx(6, X, ¢) = Fjx(0, X, p) U Fjx(6, X, ¢) \ Fjx(6, A, p). Since
gjk(ev /\’ .) € {[2)7 ij(ev >\a .)} )

property (12) clearly holds if £;x(6,,q) = Fjr(6, A, q). We only have to prove the property
for the case £j(0, A, q) = 0, i.e. when ||0 / Fjr(0,X,q)|l; < A. Note that, because of the
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(Ae; @)-VBT-method, ||0 / Fjr(0, A, q) \ Fjr(0, A, p)|lq > A. Therefore,
AL >0 Fir(0, X, q)l2

Fir (0, X,
=GR Bl
Fin(0, ). q) = #F51(0, ),
+ 1 #y-qj)k(ei éf( 2 1 F550.2,0)\ Ful0 A )

So
o > #F5k(0, 2 p) #Fii(0, A @) — #Fi(0, A, p)
o #F]k(ea)‘7q) #]:]k(ea)HQ)
and A > ||0 / Fjr(0, A, p)|lg - When comparing norms ||.||, and ||.||; one gets

So &k (0, A, p) = 0 that is to say Ex(0, A, p) C Ex(0, A, q).
We conclude that property (12) holds at level j. This ends the proof.

10/ Fix(6, A )G + A,

O

Corollary 8.1. Let 1 <p<qg<oo, A >0 and 0 := (ij,() <J<in0<Ek< Qj) be a sequence
of real numbers. Then, for any couple of indices (j, k), the following property holds:

16/ Fir(0: X a)llg < A= 110 / Fju(0, A p)llp < A (13)
Proof. Because of the (A, e)-VBT-method, property (13) holds if and only if
gjk(97 )‘7 q) = @ — 5jk(9a Aap) = @

This statement is a consequence of Lemma 8.1.

The proof of Proposition 3.1 is then deduced from the corollary above. O

8.2 Proof of Proposition 5.1
Proof. According to (8) of Proposition 5.2, it suffices to state the embedding for the case p = 2.

Let f € B3 . There exists C' > 0 such that, for any j € N, the wavelet coefficients of f satisfy:
03 <C 270
k

Fix 0 < A < 1. Let j s be the integer such that 277*= < ATF% < 217ixs. Notice that Irs < Ja
and that:

62,1 i 0/ Fins (0, )2 < A
S af, min 16/ FuN] <

J<jir k

< D Z%l{ , Join ||9/fj/kf<e,A>29}+ I
or (7' ,K)EP(j.k) A
J<ix,s k >ine K

< 2j%,s)\2+02—28jx,5

< CATE,
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Hence

sup ATTHE Z Z ik {( fk’r?elggk)ue/f'k/(e Mz < /\}

1
0<A< i<ix k

that is to say, f € W1+22S 9-

8.3 Proof of the maxiset results

In this section, we first provide technical lemmas which shall be used to prove the maxiset result
established in Theorem 5.1. Then we prove Proposition 5.2 and Theorem 5.1.

8.3.1 Technical lemmas and their proof

Lemma 8.2. Let 0 < r < 2 and let f belong to the space B ﬂ Wy p. Then:

1 —1Jx—1
T 1 — NG
sup A [0g</\>} ZZ {(j/k;nég(mlw/fgk(97k)|p>A}<00

0<A<1
2-r
Proof. Let f € By, N W;. . Then its wavelet coeflicients satisfy:

sup2 2 ]Zﬁjk < 00,
jeN

grx—1
sup A" 2 Z Z { min || / Fi (0, N)]p < )\} < 0.

A>0 (5',k")EP(5,k)

For any n € N, we denote by j» , the smallest integer such that

Q*jx,n < ()\21+n)2.

1

1 —1Jdx—
> Ar 1 Y 1 (7] f/ / 9 )\ >\
p<rc1 {Og ()\)} 2 {(1’ B 18/ Ty 6Nl }

j=0
1 -1 ix—1
= sup X\ |log{ < 122" < min 0/ Fin (0, ) <>\21+"}.
e s ()] X S a0/ £ 0,00 <

For any n € N, the number of wavelet coefficients under interest is clearly smaller than the num-
ber of leaves (j,k) and their parents of the (A, p)-VBT-method satisfying [0;x] > A2" and A2" <

min 0/ Farer (0, M), < X2, So
(j,,k,)ep(j’ml\ [ Firw (0, N)]lp <

: 1 2 .
"log | T 2" i < attn
o ¥ fls ()] XS a0 /000 < 020}

0<A<1 neN j=0
1 Jx—1
< sup A |log( = +1) 1< |0,%] > A2 A2" < min 0 ) Firr (0, </\21+”}.
< o s (5)] PIDIDWEDE(D om0 Fe @) <
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For any n € N, the leaves (j, k) with level j < jx, are the same as the ones got from the (A2",p)-

VBT-method satisfying G kn)ni%( o 16/ Fjonr (8, 22™)||, < A2"T™. Moreover the number of such leaves
3"k EP(,

is smaller than or equal to the number of wavelet coefficients 6, with absolute value strictly larger than

A2™ and such that min 0/ Fin (0,227, < A2, So
(37 K EP (k) 16/ Fjene( M <

1 ix—1 -
T = . n, n P < n
sup A [log (A)} E E E G+1) {\HJk\ > A2"; A2" < » kglep(] . N0 / Firnr (0, M)l < A2 }

0<A<1

neN j=0
1 Jkn 1
< sup N |log( ¢ 13 0;5] > A2 0 ) Fjn (0, 22" <A21+"}
< s [ (D] S om0 5002, <
+ osup X705 (Z 41—“>
0<A<1 i E g
= A+ B.
Since f € W, p,
Jan—
A = sup N2 qi-n 0 { min 0 | Fipr (0, 22117 S)\QH"} < 00.
Sup NP Z DO g 0810/ Fri 05240,
neN 7=0
Since f € 82 :,one has B < co. This ends the proof.

O

Lemma 8.3. Let 0 < A < 1, 1 < p < o0, (J,k) be a couple of indices and 0 be a sequence of
wavelet coefficients. The two following properties are equivalent:

i) 110/ Fir(®, Mllp > A

ii) There exists a tree T rooted at (j, k) such that:

# D bwl” > N if1<p<oo,
(u,v)eT

max |6 > A ifp=o
(WJ)ETI ol fp

Proof. We only prove the equivalence property for any 1 < p < oo since the proof for the case
p = oo is analogous.

i) = i)
Choose 7 = Fj1(6, A). From i) one gets

27 5 l0ul =10/ Fulo Nl > W

(u,v)eT

Hence i) is satisfied.
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Assume that there exists a subtree 7 rooted at (j, k) such that
1
7 S 1wl > N
(uv)eT

and consider the tree Fj;(6,\) obtained with the (A, p)-VBT-method. The proof is trivial if
T = Fjr(6,)). Otherwise, when looking at the possible different nodes (j’, k") between 7 and
Fir(60,)), one has:

o if Fy:=Fji(0,\)\ T # 0, due to the nature of the (A, p)-VBT-method

1
L Z |0uv|p > )\pv
#‘7:0 (u,v)EFo

o if 7y :=T \ Fjr(0, ) # 0, due to the nature of the (X, p)-VBT-method

1

—_— § Ouw|? < AP,
T | uv =
#To (u,v)€To

Therefore, since F;;(0,\) = (Fo UT) \ 7o, we deduce that

1
e O 8wl =18/ Fir6 N> A
#fjk(e’ )\) (u,v)EF;1(0,X)

So i) is satisfied. This ends the proof. O
Lemma 8.4. Let A > 0, (05.3,0 <j<in0<k< 2]’) and (9533,0 <j<in0<k< 2j) be two
sequences of real numbers. Suppose that the following property holds:
3('K') such that [|0@ | Fi (02 ,2))], > 2
and |0/ Fye (0D N, < A
Then there exists (57, k) such that 0 < j7 < jx, 0 < k" <29 and

2 1
105 — 050 > A,

Proof. Suppose that for any (57, k”) such that 0 < 57 < jix, 0 < k” < 27 one has

2 1
0% — 050 < . (14)
Then
1/p
1 1
- - 02 S R Z lo|P
1 (0(2) Z ‘ uv L. (0(2) uv
#]:J k (9 72)\) (U,U)ij/k/(9(2)72)\) #fj k (9 72)\) (U,U)E.Fjlk/(e(z),Q)\)
1/p
1 P
< S Z o) _ g2
- 1 (0(2) uv uv
#-7:] k (9 ,2)\) (4,0) EF, 11 (0 22)
< A
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So

1

—_— oL > AP,
— >l

#F i (02, 2)) ()T (0 23)

Hence, since 7 := fjrk/(ﬁ(z), 2)) is a tree rooted at (j’, k), when using Lemma 8.3 one gets

1
100/ Fi (0D N)|p = —— > 0D P > AP,
e (00 v
#-7:] k (9 ,/\) (u,v)efj/k/(ml)J\)

9(1)

050 < < x0< k< 29).

O

Thus, this ends the proof by contradiction with the assumption on the sequence (

8.3.2 Proof of Proposition 5.2

LetO<s<Vandu<ﬁ.

(8) The embedding property is a direct consequence of 2. of Proposition 3.1.

(9) The large inclusions are due to (8). To prove the strict embedding we construct a function
which belongs to By ., DW%M but not to W_=_ ,. The main idea to construct such a function

1+2s°
is to ensure that f.. uses all the coefficients up to the finest scale and that f, thresholds the
finest scale. To do so, we put non zero coeflicients at each odd scales j and, within each scales,
only one non zero coefficient over two. Hence, the ¢, norm of the first block of coefficients, i.e.,

Fjy—1,k is lower than the threshold. In other words fg sets a whole scale of coefficients to zero
whereas fo, keeps them. Now formally, let us consider the function h with wavelet coefficients
(0jk) ;. satisfying:

Oir = 9-% if j and k are odd and 0 < k < 2(j 4+ 1) 2%25,
01 = 0 otherwise.

This function % belongs to the space By . N WH%,DO but does not belong to the space W_=_ ,,

T+2s°

which we show now.

Proof. For any level j large enough
27 -1 , Ny
S <[z ]2 = (o <o
k=0

Hence h € By .. Moreover h € W_2_ _ since it is clear that
’ T+2s°

ga—1
sup A2 Zﬁf-kl{ min |0 / Fj (0, N ]|oo < )\} =0.

-~ -
0<A<1 " (4", k")EP(5,k)
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But

291
o XS g i 1) Fe0 01 22}

0<A<1 (5',k")EP(5,k)

Y

sup {jﬂm - 1} A2 9=t
0<A<1
> sup ja—1
0<A<1
= +00.

Hence h ¢ W_a o O

8.3.3 Proof of Theorem 5.1

Here and later, we shall denote by C' a constant which may be different from line to line.

Proof. =

~ _4s
Suppose that, for any 0 < e < 1, E|/f, — f[|3 < C Ad™>. Then,
> Z < Elf,— fII3
J2Jxe

4s
O NI+
€
25
C2- 1+525-7>\e.

IAIA

s
T+2s
So f € 32700 . Moreover

s g
- Ae Ae
i S Lt — < — <
(3) EZEijkl{(J i 8] Fe0. ) < b S A dak

J=0 k

A T I+2
n o= (3)

T 1+2s .
) Elf, - I3
c,

with

a

Jae—1
E 62,1 i 0 ) Firr (0,2 |l < Ae
3 [ {U,’kgﬂelg(m / Fr B A < }]

j=0 &

INIA
w‘y

A = (%) Zza 130/ € PO / Frur0, 50l < 5 and 18/ Fyo G0 > A}

k

Jxe—1
. T € )\e
< oty zejm(wjk 01> 5 )
: —_4s nz2
< O N\ TS
7n2_
< oas !
< C.
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The last inequalities require Lemma 8.4 and m > 44/2 to hold.

Now

>\e T I+2s 5
n = (3) S8
k

IN

IN

The last inequality holds since we have already proved that f € B;fé . When combining the
bounds of Ay, As and A3 one deduces that f € W_2

+2s P*

<—

Suppose that f € B, ”25 n W 2 The quadratic risk of the estimator fp can be decomposed as
follows:

Jxe—
.
BIF, 11§ = e +EZZ of a0/ F <0

Ixe —

E -0 i 0 ) Firr (0,2 |, > Ae
+ZZ (O -opn{ | min 10/ F G0 A
+ZZ@

JZdxe

B +B2+B3.

Since f € Bgﬁ? N Wﬁ p and due to Lemma 8.4

Jre—1
B E Z Ze;,;{ Comin |0/ Fie (0,0, gAE}

(37, k") EP(,k)

Jre—
< 1 9 51 Lot 9 2)\‘E < 2)\6
< Z S0, i, 10 Fw 02000 <2
) _ Jxe—2 A
+0 2T poine 3T N g2 (|9jk — 0] > )\e)
j=0 k
—4s . m?2
e <A2+25+2“f )
_4s
< oA
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as soon as m > 24/2.

By using Lemmas 8.2, 8.4 and the Cauchy-Schwarz inequality

B, - z ZE[ o= ] min 10/ Fpe@l > 0}

(4", k")EP(3,k)
B Jxe A A
< ey, kr{ggjk)|e/fj/k/<9,2>||p>2}
Jae—
Lo Z ZPW (|9Jk— 0% >>
< C <)\§+25 ;&)

< C (AiQ +/\3%1>

4s
< oAE,

as soon as m > 6v/2. Since f € Bl“*

2,00

Bs :e—l—zz

JZJxe

< € +C27T§sj*‘
4s

< C AT,

When combining the bounds of By, Bs and B3 one deduces that

__4s A~
sup A TE[f, — f”% < 0.
O<e<%

This ends the proof. O
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