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Abstract

Ordinary differential equations (ODEs) are widely used to model physical, chemical and biological processes.
Current methods for parameter estimation are computationally intensive and not suitable for inference and pre-
diction. Frequentist approaches based on ODE-penalized smoothing techniques have recently solved part of these
drawbacks.
In this paper we propose a full Bayesian approach based on ODE-penalized B-splines to jointly estimate ODE-
parameters and state function from linear systems of differential equations. Simulations inspired by pharmacoki-
netic studies show that the proposed method provides comparable results to methods based on explicit solution of
the ODEs and outperforms the frequentist ODE-penalized smoothing approach. We extend the basic model to a
hierarchical one in order to study cases where several subjects are involved. This Bayesian hierarchical approach is
illustrated on real data for the study of perfusion ratio after a femoral artery occlusion.
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1 Introduction

Assume that changes in the states x (t) ∈ Rd of a dynamic system are governed by a set of differential equations:

Dx (t) = f (x, t,θ) , t ∈ [0;T ] (1)

where f is a known function and θ ∈ Rq an unknown vector of parameters.
It is assumed that only a subset J ⊂ {1, . . . , d} of the d state function x are measured at time point tjk, j ∈ J ,
k = 1, . . . , nj with additive measurement error εjk. We denote by yjk = xj (tjk) + εjk the corresponding measurement.
An ordinary differential equation (ODE) system with initial values x (0) = x0 of the output variable has a unique
solution if f is Lipschitz continuous with respect to x.
In this paper, we will consider the case where f is an affine transformation with respect to x ensuring the existence
and uniqueness of the solution of the dynamic system model. We propose a full Bayesian approach to jointly estimate
the ODE parameters θ and the state functions x (t) from {(tjk, yjk) , j ∈ J , k = 1, . . . , nj}.
In the linear ODEs case, an explicit solution is available for (1) and the estimation procedure reduces to a nonlinear
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regression problem. But most of the time, when f is nonlinear with respect to x (t), ODEs do not have explicit solution.
Several methods have been proposed for estimating the parameter θ and the state functions x (t) of ODEs and can be
classified in two parts.
The most commonly used estimation procedures rely on nonlinear least squares (NLS) procedures (Biegler et al., 1986).
First the ODE system is solved numerically given the current estimate of θ and the initial value x (0). Then the numer-
ical solution is compared with the measured responses, suggesting an update of the estimate for θ. Iterations between
computation of numerical approximation of the solution and parameter updating continue until some convergence
criteria for the parameter estimate is met. These NLS procedures have many drawbacks. First it’s time consuming
since a numerical approximation of the state function must be computed for each updated value of the parameter
estimate. Furthermore the accuracy of the parameter estimate is highly dependent on the accuracy of the numerical
integration. Bayesian approaches of these NLS procedures have been proposed in Lunn et al. (2002), but the posterior
distribution of the parameter θ has no closed form when the numerical solution of the ODE has no closed form. The
most troublesome disadvantage of this Bayesian approach is that the reconstruction of the solution of the system of
differential equations is needed at each iteration of the MCMC algorithm.
An alternative procedure was introduced by Varah (1982) that does not require numerical integration for estimating the
parameters involved in the ODEs. The proposed spline smoothing approach is a two-stage procedure. First, each state
function is estimated by a standard spline smoothing method. Then parameter θ is estimated through the minimization
of a criterion that involves the differential equation with the state functions replaced by their spline approximations.
Varah’s approach works well in simple cases but is highly dependent on the spline fit: a poor spline fit can lead to a
poor parameter estimate.
Poyton et al. (2006) and Ramsay et al. (2007) proposed a generalization of Varah’s method by estimating the spline
basis coefficients with an ODE-based penalty and by iterating the two-step procedure. The use of an ODE-penalized
likelihood as fitting criterion is a trade off between fitting the data and solving the ODE. This method converges
quickly and gives less biased and more precise estimates. Moreover, this procedure allows estimating unobserved state
functions. Nevertheless, in this ODE-penalized B-spline approach, two critical points have to be highlighted. The first
point is the delicate choice of the ODE-adhesion parameter that controls the relative emphasis between goodness-of-fit
and solving the differential equation. The second point is the approximation that must be done for the variance of
the parameter estimate. A Bayesian framework of this ODE-penalized B-spline approach was proposed by Campbell
(2007). Based on the idea of parallel tempering, this approach is composed of three components. The first is the
prior distribution for the ODE parameter θ using the ODE-penalty term and prior information about this parameter.
The second component is the use of a sequence of parallel MCMC chains of the ODE-parameter, based on increasing
values of ODE-adhesion parameters. The last component is the estimation of the spline coefficents: knowing the ODE-
parameter and the level of ODE-adhesion parameters, point estimates for the spline coefficients are plugged-in. Thus,
that method is not fully Bayesian.
In this paper, we attempt to develop a fully Bayesian approach to jointly estimate parameters and state functions of
linear ODE models. In Section 2, we first give a brief overview of the generalized profiling estimation procedure for ODE
models. Then we aim at providing a Bayesian framework which can be viewed as a generalization of Bayesian P-splines
models (Lang and Brezger, 2004). Section 3 presents the strategies used to explore the joint posterior distribution
with Markov Chain Monte Carlo (MCMC). Section 4 generalizes the Bayesian ODE-penalized B-spline approach to
multi-subject studies. Section 5 gives the results of some simulations comparing the performance of our approach with
those of traditional methods. Application on real data is given in Section 6. Conclusions and generalizations of the
proposed method are discussed in Section 7.

2 Bayesian Generalized Profiling Estimation for Linear Dynamic Sys-
tems Model

In this section, we first remind the B-spline definition and give an overview of the generalized profiling estimation
procedure for ODE proposed in Ramsay et al. (2007). This methodology may be viewed as a generalization of P-spline
theory (Eilers and Marx, 1996). Then we propose a full Bayesian framework for this method.

2.1 B-spline definition and generalized profiling estimation procedure

To obtain a joint estimation of the vector of parameters θ and of the state functions x (t) governed by the system of
differential equations, Poyton et al. (2006), Ramsay et al. (2007), Cao and Zhao (2008) proposed to use a B-spline basis
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function expansion combined with a penalty related to the system of differential equations.
A B-spline basis of order p is defined using m inner knots τ1 ≤ . . . ≤ τm and two p-multiple knots τ0 and τm+1

corresponding respectively to the lower and the upper bound of the study interval with conditions τ0 < τ1 and
τm < τm+1. These m+ 2 knots are typically placed equidistantly on the time interval of the study.
Each of the K = p+m basis functions consists at most of p polynomial pieces, each of degree (p− 1). These polynomial
pieces joint at most at (p− 1) inner knots with continuous derivatives up to order (p− 2). Figure 1 presents a B-spline
basis of order 4, also called cubic B-splines, with knots at each tenth between 0 and 1.
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Figure 1: Cubic B-splines on [0; 1] for 9 equidistant inner knots.

Denote by Bj (t) the Kj-vector of B-spline basis functions of order p evaluated at time t that is used to approximate
the j-th component of the state function x (t). The approximation x̃j (t) of xj (t) is expressed as a linear combination
of these B-spline basis functions:

x̃j (t) =

Kj∑
k=1

Bjk (t) cjk

= (Bj (t))
T
cj

where Kj = p+mj is the number of B-spline basis functions in vector Bj (t) that is chosen to ensure enough flexibility
to capture the variation in xj (t) (with the possibility to increase the order p or the number mj of inner knots). That
choice for the spline basis has many advantages. First it permits to directly link the initial condition of the state
function (i.e. xj (0)) to the first component of the basis function expansion (i.e. cj1). Note also that tied knots (i.e.
inner knots of order p) on (0, T ) could also be used to deal with discontinuities in xj (t). More details on B-spline
properties are available in de Boor (2001).

Data fitting criterion and fidelity to the ODE

Let εj denote the vector of errors associated to the observed variable yTj =
(
yj1, . . . , yjnj

)
, j ∈ J and let gj (εj |σj)

be the parametric density of these errors conditional on the vector σj . Let σ denote the concatenation of these σj ,
j ∈ J . The data fitting criterion can be taken to be the log-likelihood:

H (c,σ|y) =
∑
j∈J

log (gj (εj |σj))
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where εjk = yjk − (Bj (tjk))
T
cj . In practice, one usually assumes independent Gaussian errors with mean 0 and

standard deviations σj . Then,

H (c,σ|y) =
∑
j∈J

{
−nj log (σj)−

1

2σ2
j

∥∥yj −Bjcj
∥∥2}.

For such objective criterion, the estimation of B-spline coefficients are highly dependent on the number of knots and
their location. If there are too few knots, the approximated functions x̃ (t) will be too smooth and it will not capture
all the available information on the ODE system. If the number of knots is too large, the approximated functions will
capture noisy variation in the data.
To avoid this problem, Ramsay and Silverman (2005) propose to consider a large set of knots and to control the spline
coefficients by adding a model-based-penalty. To do that, for each equation of the differential equation system, a
differential equation operator is introduced:

Lj,θ (x (t)) = Dxj (t)− fj (x, t,θ) , j = 1, . . . , d.

The proximity between the approximation of the output function, x̃j (t), and the solution xj (t) of the corresponding
j-th equation over [0;T ] can be assessed by:

PEN j (x̃) =

∫
{Lj,θ (x̃ (t))}2 dt

where the integration is over an interval of length L which contains all times of measurement. Note that for the linear
differential equation system that we consider here, this j-th penalty term is an homogenous polynomial of degree 2 in
the B-spline coefficients. The full fidelity-to-ODE measure is then given by:

PEN (x̃|γ) =

d∑
j=1

γjPEN j (x̃)

= cTR (θ,γ) c+ 2cTr (θ,γ) + l (θ,γ)

where c =
(
cT1 , . . . , c

T
d

)T
is the vector of all spline coefficients of length K =

∑d
j=1Kj , R (θ,γ) is a K×K supermatrix

that is constructed by placing the corresponding penalty matrices involved in each PENj (x̃), r (θ,γ) is a vector of
length K corresponding to a penalty vector and l (θ,γ) is a penalty constant.
The ODE-adhesion coefficients γj ≥ 0 permit to weight and to control the relative emphasis on goodness-of-fit and
solving the system of differential equations, i.e. to express the confidence that one has in the differential equation
system as description of the dynamic system. For a given vector γ, the spline parameters estimates are implicitly
defined using the current estimate of θ and σ, i.e. as maximizers of the fitting criterion

J (c|θ,σ,γ) =
∑
j∈J

log (gj (εj |σj))−
1

2
PEN (x̃|γ) . (2)

Then, the data fitting criterion J is optimized with respect to (θ,σ). As explained more precisely in Ramsay et al.
(2007), the dependence of J on (θ,σ) is twofold: directly by its definition, but also implicitly through the spline
parameters estimates. Note that, if large values are taken for the γjs, one simply forces the state of the system, x (t),
to be the exact solution of the system of differential equations. At the opposite, if the γjs are small, the penalty term
PEN plays a small role and goodness of fit to the data becomes the leading principle in the estimation of c.

2.2 Bayesian generalized profiling estimation for linear ODE

In terms of likelihood, the penalty PEN (x̃|γ) appears as a term that is substracted from the log-likelihood H. The
penalized function has the following form:

J = H − 1

2
PEN (x̃|γ) .

The same log-posterior is obtained in a Bayesian framework with the following model specification:{
yjk|cj , τj ∼ N

(
(Bj (tjk))

T
cj ; τ

−1
j

)
∀j ∈ J ,∀k ∈ {1, . . . , nj}

π(c|θ,γ) ∝ exp
(
− 1

2

{
cTR (θ,γ) c+ 2cTr (θ,γ) + l (θ,γ)

})
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where τj is the precision of measurment, i.e. τj = 1
σ2
j
.

The penalty from the frequentist penalized likelihood approach translates, in a Bayesian framework, into a prior
distribution for the spline coefficients c. Note that this model specification does not express information about the
initial condition of the state function. If these are available, one could choose to work with the following alternative
model specification: yjk|cj , τj ∼ N

(
(Bj (tjk))

T
cj ; τ

−1
j

)
∀j ∈ J ,∀k ∈ {1, . . . , nj}

π(c|θ,γ) ∝ exp
(
− 1

2PEN (x̃|γ)− 1
2 (c− µc)T Σc

−1 (c− µc)
) (3)

The K-vector µc and the K×K-matrix Σc
−1 are used to translate the information available about the initial condition

of the state function x in the model. Typically, the first component in each µcj , j ∈ {1, . . . , d} of the vector µc =(
µc1

T , . . . ,µcd
T
)T

are fixed to the corresponding initial value xj (0) of the state function. The corresponding precision

in Σc
−1 allows to express uncertainty with respect to this initial condition. In the Section 3, the corresponding prior

distribution (including the normalizing constant) for c will be given and the case where the precision tends to infinity
will be considered in a simple case in Appendix 1.
Further priors are required to have a full model specification, namely for the precision parameters τ = (τj , j ∈ J )

T
,

for the vector γ = (γ1, . . . , γd)
T

of ODE-adhesion parameters and for the vector of ODE-parameters θ. For each τj ,
j ∈ J , the conditional precision of the vector of response yj , it is convenient to take a gamma prior distribution:

τj ∼ G
(
aτj , bτj

)
,∀j ∈ J

The prior of each ODE-adhesion parameter γj , j = 1, . . . , d can also be chosen to be a gamma distribution:

γj ∼ G
(
aγj , bγj

)
,∀j = 1, . . . , d

where G (a, b) is the gamma distribution with mean a/b and variance a/b2. As recommended in Lang and Brezger
(2004) for standard P-splines model, we have two possibilities: either set a equal to 1 and b equal to a small quantity
or set a = b equal to a small quantity. We will opt for the first specification as the corresponding density is finite at 0
(see Jullion and Lambert (2007) for alternatives).
For the vector θ of differential equation parameters, the chosen prior will depend on the context. Let us denote this
prior distribution by π (θ).

2.3 Examples of Dynamic Systems

The two first examples given here are based on models that are used in pharmacokinetics. Pharmacokinetic (PK)
studies are set up to analyze the evolution of drug concentration in plasma over time. With PK compartment models,
the basic idea is that the body can be seen as a system of compartments communicating with each other. Each
compartment corresponds to a tissue or a group of tissues with similar blood flow and uniform drug concentration.
The last example is based on model used to describe the evolution of perfusion ratio after a femoral artery occlusion.

One-compartment model with single IV bolus injection

This model corresponds to an instantaneous injection of a dose D of a drug into the blood. Here it is assumed that
the entire body is assimilated to one central compartment of volume V and that the drug is eliminated at a rate ke.
The differential equation system with the initial condition is:{

dC(t)
dt = −keC (t) ,

C (0) = D
V .

It is also assumed that ke and V are positive quantities. Under this differential equation model, the concentration C (t)
at time t in the central compartment is easily shown to be:

C (t) =
D

V
exp (−ket) .

For this model, we are interested by the estimation of θT = (ke, V ) from a set of observations {(tk, yk) : k = 1, . . . , n}
where:

yk = C (tk) + εk.
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For this one-compartment model with single IV bolus injection, the concentration is approximated by:

C̃ (t) = V −1 (B (t))
T
c

and the differential equation operator is defined by:

Lθ

(
C̃ (t)

)
=

dC̃ (t)

dt
+ keC̃ (t)

=
1

V

{(
B(1) (t)

)T
c+ ke (B (t))

T
c

}
.

The penaly term is then defined by:

PEN = γ

∫ (
1

V

{(
B(1) (t)

)T
c+ ke (B (t))

T
c

})2

dt

=
γ

V 2
cT
(
P 11 + ke

(
P 10 + P 01

)
+ k2eP

00
)
c

= cTR (ke, V, γ) c, (4)

where B(1) (t) corresponds to the vector of first derivative of each component of the vector of B-spline functions B (t)

and P ij =
∫
B(i) (t)

(
B(j) (t)

)T
dt, i, j ∈ {0, 1}.

Two-compartment model with oral dosing

This compartment model arises when drug at dose D is administrated orally in the previous setting. Let Qa (t) denote
the quantity of drug into the stomach (first compartment) at time t. This quantity goes to the plasma with an
absorption rate ka. The drug has concentration Ce (t) in this central compartment of volume V and is eliminated at
rate ke. The differential equation systems is:

dQa(t)
dt = −kaQa (t) ,

dCe(t)
dt = ka

V Qa (t)− keCe (t) ,
Qa (0) = D,
Ce (0) = 0.

For this model, it is supposed that ka, ke and V are positive and that ka > ke (the drug cannot be eliminated more
quickly than it is absorbed). Note that in this setting, only the concentration of the drug in the central compartment
is usually observed.
The analytic solution of this dynamic system is:{

Qa (t) = D exp (−kat) ,
Ce (t) = D

V
ka

ka−ke (exp (−ket)− exp (−kat)) .

Again, one is interested in estimating θT = (ka, ke, V ) from observations {(tk, yk) : k = 1, . . . , n} where:

yk = Ce (tk) + εk

For this two-compartment model with oral dosing, the quantity of drug in the stomach is approximated by Q̃a (t) =

(Ba (t))
T
ca and the concentration of the drug in the central compartment is approximated by C̃e (t) = (Be (t))

T
ce.

For the first differential equation of the system, the corresponding differential equation operator is:

L1,θ

(
Q̃a (t)

)
=

dQ̃a (t)

dt
+ kaQ̃a (t)

=
(
Ba

(1) (t)
)T
ca + ka (Ba (t))

T
ca

6



and the corresponding penalty term is equal to:

PEN1 =

∫ ((
Ba

(1) (t)
)T
ca + ka (Ba (t))

T
ca

)2

dt

= ca
T
(
P 11
aa + ka

(
P 10
aa + P 01

aa

)
+ k2aP

00
aa

)
ca

= ca
TRaca.

The second differential equation operator is defined by:

L2,θ

(
C̃e (t)

)
=

dC̃e (t)

dt
+ keC̃e (t)− ka

V
Q̃a (t)

=
(
Be

(1) (t)
)T
ce + ke (Be (t))

T
ce −

ka
V

(Ba (t))
T
ca

and the second penalty term is equal to:

PEN2 =

∫ ((
Be

(1) (t)
)T
ce + ke (Be (t))

T
ce −

ka
V

(Ba (t))
T
ca

)2

dt

= ce
T
(
P 11
ee + ke

(
P 10
ee + P 01

ee

)
+ k2eP

00
ee

)
ce +

k2a
V 2
ca

TP 00
aaca

−2ce
T ka
V

(
P 10
ea + keP

00
ea

)
ca

= ce
TRece +

k2a
V 2
ca

TP 00
aaca − 2ce

TMeaca.

where P ijαβ =
∫
B(i)
α (t)

(
B

(j)
β (t)

)T
dt, i, j ∈ {0, 1} and α, β ∈ {a, e}.

The global penalty is then defined by:

PEN = γ1PEN1 + γ2PEN2

= cT

(
γ1Ra + γ2

k2a
V 2P

00
aa −γ2 (Mea)

T

−γ2Mea γ2Re

)
c

= cTR (ka, ke, V, γ1, γ2) c. (5)

Perfusion ratio model

The differential equation that models the evolution of the perfusion ratio x (t) (see Section 6 for more details) is:{
dx(t)
dt = −βx (t) + αβ,
x (0) = 0.

It is assumed that α and β are positive quantities. Under this differential equation model, the perfusion ratio x (t) at
time t is shown to be:

x (t) = α (1− exp (−βt)) .

For this model, we are interested by the estimation of θT = (α, β) from the set of observations {(tk, yk) : k = 1, . . . , n}
where

yk = x (tk) + εk.

The perfusion ratio is approximated by x̃ (t) = (B (t))
T
c and the differential equation operator is defined by:

Lθ (x̃ (t)) =
dx̃ (t)

dt
+ βx̃ (t)− αβ

=
(
B(1) (t)

)T
c+ β (B (t))

T
c− αβ.
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The penaly term is then defined by:

PEN = γ

∫ ((
B(1) (t)

)T
c+ β (B (t))

T
c− αβ

)2

dt

= γ
{
cT
(
P 11 + β

(
P 10 + P 01

)
+ β2P 00

)
c− 2cTαβ

(
p1 + βp0

)
+ Lα2β2

}
= cTR (α, β, γ) c+ 2cTr (α, β, γ) + l (α, β, γ) , (6)

where L is the length of the interval of integration, P ij =
∫
B(i) (t)

(
B(j) (t)

)T
dt and pi =

∫
B(i) (t) dt i, j ∈ {0, 1}

2.4 Penalty matrix in a general system of linear differential equations

We have seen in the three previous examples that the overall penalty term is always a quadratic form in the spline
parameters. In this subsection, we give an automatic procedure for constructing of the penalty matrix R (θ,γ), the
penalty vector r (θ,γ) and the penalty constant l (θ,γ).
As we work in the case where the function f is an affine transformation with respect to x, the system of differential
equations can be written as: 

dx1(t)
dt =

∑d
k=1 a1kxk (t) + b1

...
dxd(t)
dt =

∑d
k=1 adkxk (t) + bd

where ajk is the k-th coefficient used in the j-th differential equation. If the state function xk (t) is not involved in the
j-th differential equation, then ajk = 0. Otherwise, it is a given fixed constant or a quantity to be estimated. The term
bj is constant or a quantity to be estimated for the j-th differential equation of the system.
The penalty term for the j-th differential equation is:

PEN j =

∫
{Lj,θ (x̃ (t))}2 dt

=

∫ (
dx̃j (t)

dt
−

d∑
k=1

ajkx̃k (t)− bj

)2

dt

=

∫ (
cTj B

(1)
j (t)−

d∑
k=1

ajkc
T
kBk (t)− bj

)((
B

(1)
j (t)

)T
cj −

d∑
k=1

ajk (Bk (t))
T
ck − bj

)
dt.

Denote by P abjk the matrix and paj the vector defined for all j, k ∈ {1, . . . , d} and a, b ∈ {0, 1} by:

P abjk =

∫
B

(a)
j (t)

(
B

(b)
k (t)

)T
dt,

paj =

∫
B

(a)
j (t) dt.

Then the penalty term for the j-th differential equation is equal to:

PEN j = cj
TP 11

jj cj − cj
T
(
aj1P

10
j1 , aj2P

10
j2 , . . . , ajdP

10
jd

)
c

−cT


aj1P

01
1j

aj2P
01
2j

...
ajdP

01
dj

 cj + cT


aj1aj1P

00
11 aj1aj2P

00
12 . . . aj1ajdP

00
1d

aj2aj1P
00
21 aj2aj2P

00
22 . . . aj2ajdP

00
2d

...
...

...
...

ajdaj1P
00
d1 ajdaj2P

00
d2 . . . ajdajdP

00
dd

 c

+2bjc
T


aj1p

0
1

aj2p
0
2

...
ajdp

0
d

− 2bj

(
p1j

)T
cj + b2jL.
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One can show that the overall penalty term PEN =
∑d
j=1 γjPEN j is equal to:

PEN = cTR (θ,γ) c+ 2cTr (θ,γ) + l (θ,γ) .

The matrix R (θ,γ) is a symetric block matrix of dimension K ×K with (k, l)-th block of dimension Kk ×Kl defined
by:

δk=lγkP
11
kk − γkaklP

10
kl − γlalkP

01
lk +

d∑
i=1

γiaikailP
00
kl

where k, l ∈ {1, . . . , d} and δk=l = 1 if k = l and 0 otherwise. The vector r (θ,γ) is a vector of length K that

corresponds to the concatenation of vectors
(∑d

j=1 γjbjajkp
0
k − γkbkp1k

)
k=1,...,d

. The penalty constant l (θ,γ) is equal

to L
∑d
j=1 γjb

2
j .

3 Posterior distribution and parameter estimation

In this section, we explain how to explore the joint posterior distribution using MCMC techniques.

3.1 Joint posterior distribution

In order to obtain the joint posterior distribution, it is necessary to derive the normalization constant of the prior
distribution of the spline coefficients c in (3). Note that

log (π (c|θ,γ))
.
= −1

2

{
cT
(
R (θ,γ) + Σc

−1) c− 2cT
(
−r (θ,γ) + Σc

−1µc
)

+ l (θ,γ)
}

is composed of two parts. The first corresponds to the log-density of a multivariate normal distribution with mean(
R (θ,γ) + Σc

−1)−1 (Σc−1µc − r (θ,γ)
)

and variance-covariance matrix
(
R (θ,γ) + Σc

−1)−1. The second part is a
constant term independent of c. Therefore, the normalizing constant for the conditional prior density for the spline
coefficients c is:

(det (M1))
1
2 exp

(
1

2
l (θ,γ)

)
exp

(
−1

2
v1

TM1
−1v1

)
,

where v1 = −r (θ,γ) + Σc
−1µc and M1 = R (θ,γ) + Σc

−1.
We remind that J represents the subset of {1, . . . , d} of all indices of observed state functions. Using the model
specification and the normalization constant in the conditional prior for c, one obtains the log joint posterior density:

log (p (c,γ, τ ,θ|y))
.
=

∑
j∈J

{nj
2

log (τj)−
τj
2

∥∥yj −Bjcj
∥∥2}

−1

2

{
cTM1c− 2cTv1 + v1

TM1
−1v1 − log (det (M1))

}
+
∑
j∈J

{(
aτj − 1

)
log (τj)− bτjτj

}
+

d∑
j=1

{(
aγj − 1

)
log (γj)− bγjγj

}
+ log (π (θ))

.
=

∑
j∈J

{nj
2

log (τj)−
τj
2
yTj yj

}
− 1

2

{
v1

TM1
−1v1 − log (det (M1))

}
−1

2
cT (diag (Zj , j = 1, . . . , d) +M1) c+ cT (v1 + vec (zj , j = 1, . . . , d))

+
∑
j∈J

{(
aτj − 1

)
log (τj)− bτjτj

}
(7)

+

d∑
j=1

{(
aγj − 1

)
log (γj)− bγjγj

}
+ log (π (θ))
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where diag (Zj , j = 1, . . . , d) corresponds to a block-diagonal matrix with matrix Zj that is equal to τjBj
TBj if the

j-th state function is observed and the null Kj ×Kj-matrix otherwise. The vector vec (zj , j = 1, . . . , d) corresponds to

the concatenation of vector zj that is equal to τjBj
Tyj if the j-th state function is observed and the null Kj-vector

otherwise.

3.2 Exploring the joint posterior distribution using MCMC

Markov Chain Monte Carlo (MCMC) technique is a powerful method to generate samples from posterior distributions
in a Bayesian framework.

3.2.1 Conditional posterior distributions

From expression (7), one can show that the conditional posterior distribution for the vector c = (c1, . . . , cd)
T

of spline
coefficients is a multivariate normal distribution :

c|γ, τ ,θ,y ∼ N
(
M2

−1v2;M2
−1) ,

where v2 = v1 + vec (zj , j = 1, . . . , d) and M2 = M1 + diag (Zj , j = 1, . . . , d).
For each precision τj , j ∈ J , the conditional posterior is a gamma distribution:

τj |c,y ∼ G

(
nj
2

+ aτj ;

∥∥yj −Bjcj
∥∥2

2
+ bτj

)
.

Unfortunately, the conditional posterior distribution for each ODE-adhesion parameter γj , j = 1, . . . , d is not of a
familiar type. Therefore, a Metropolis-Hastings step was used to generate a random sample of γj from the conditional
posterior distribution. Whatever the prior distribution for θ, the conditional posterior distribution for parameter θ
does not correspond to a common family due to M1, v1. Therefore, a Metropolis-Hastings step was also used to
generate a random sample of θ from the conditional posterior distribution.

3.2.2 Marginal joint posterior distribution for γ, τ and θ

In order to avoid being forced to deal with the strong posterior conditional correlation between the spline coefficients
and the differential equation parameters, the joint posterior distribution can be marginalized with respect to the spline
coefficients. The log of it can be shown to be:

log (p (γ, τ ,θ|y))
.
=

∑
j∈J

{nj
2

log (τj)−
τj
2
yTj yj

}
−1

2

{
v1

TM1
−1v1 − log (det (M1))− v2TM2

−1v2 + log (det (M2))
}

+
∑
j∈J

{(
aτj − 1

)
log (τj)− bτjτj

}
+

d∑
j=1

{(
aγj − 1

)
log (γj)− bγjγj

}
+ log (π (θ))

As M1 = M1 (γ,θ), v1 = v1 (γ,θ), M2 = M2 (γ, τ ,θ,y) and v2 = v2 (γ, τ ,θ,y), the conditional distribution of γ, τ
and θ cannot be identified. Therefore, Metropolis-Hastings steps must be used to generate samples from p (γ, τ ,θ|y).
When the MCMC-chains for parameters γ, τ and θ have converged, one can generate a sample from the conditional
posterior of c if desired, i.e. from the multivariate normal distribution with conditional mean M2

−1v2 and conditional
variance-covariance M2

−1.

3.2.3 Metropolis-Hastings algorithm with adaptive proposals

In order to reduce the rejection rate and to improve the mixing in the exploration of p (γ,θ, τ |y), we use for each
component in γ, τ and θ a Metropolis-Hasting step with adaptive proposals. We use the strategy developed by Cai

10



et al. (2008) which is based on parallel chains and proposal densities built from part of the already available sample
from the posterior distribution.
For the proposal densities, two possibilities are left to the user: either use a mixture of triangular and exponential
distributions or use a mixture of trapezoidal and exponential distributions. The first solution has the advantage to be
simple and fast, but is limited by the acceptance rate (approximately 60%). The second one has an acceptance rate
of about 80% but is slower due to the fact that the weights for the mixture depend on the posterior distribution. In
practice, we use mixture of triangular and exponential distributions since it is less time consuming. More details are
available in Cai et al. (2008).

3.2.4 Re-parametrization of θ using rotation and translation

To accelerate the inference procedure, we also used the strategy proposed by Lambert (2007).
First run the Metropolis-Hastings algorithm with adaptive proposals for a few thousand iterations. Then, reparametrize
the problem by applying a translation and a rotation to the parameter vector θ.
More precisely, denote by S the empirical variance-covariance matrix of the parameter θ evaluated using the first
iterations of the generated chains and θ̄ the corresponding empirical mean vector. We reparametrize the posterior
distribution using β where:

θ = Lβ + θ̄

with L is the lower triangular matrix in the Choleski decomposition, i.e., the matrix L such that S = LLT . Then
we use a Metropolis-Hastings algorithm with adaptive proposals to generate sample from the posterior distribution
for γ, τ and β. A sample of posterior distribution for θ is obtained using the previous formula. As before, when
the MCMC-chains for these parameters have converged, we sample from the conditional posterior of c, i.e. from the
multivariate normal distribution with conditional mean M2

−1v2 and conditional variance-covariance M2
−1.

4 Hierarchical Bayesian Generalized Profiling Estimation for Linear Dy-
namic Systems Model

In this section, we introduce the concept of hierarchical Bayesian generalized profiling estimation for linear dynamic
systems model. This hierarchical approach may be viewed as a simple generalization of the standard approach where
the variability of the individual differential equation parameters is specified.

4.1 Individual system of differential equations

Assume now that states are observed comming from I subjects and that the changes in each state xi (t) ∈ Rd, i =
1, . . . , I are governed by a linear system of differential equations:

Dxi (t) = f (xi, t,θi) , t ∈ [0;Ti] ,

where θi ∈ Rq is the unknown individual vector of ODE-parameters and f a known function, identical for each subject,
that is supposed to be an affine transformation with respect to xi.
It is assumed, as in the standard case, that the same subset J ⊂ {1, . . . , d} of the d states in xi are observed at time
point tijk, i = 1, . . . , I, j ∈ J , k = 1, . . . , nij with measurement error εijk. We denote yijk = xi (tijk) + εijk the
corresponding measurement. As in the standard case, it is assumed that the measurement errors εijk are independent
and distributed according to a Gaussian distribution with mean 0 and with precision τj .

4.2 B-spline basis functions expansion and ODE-penalty

The approximation x̃ij (t) of the j-th state function for the i-th subject is expressed as a linear combination of B-spline
basis functions:

x̃ij (t) = (Bij (t))
T
cij

where Bij (t) is the Kij-vector of B-spline basis functions evaluated at time t and cij
T = (cijk; k = 1, . . . ,Kij) the

Kij-vector of B-spline coefficients.
The total ODE-penalty term is constructed in a three steps procedure. First the j-th penalty term for the i-th subject
is constructed, then the total penalty term for the i-th subject is computed and finally, the overall penalty is obtained
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by summing all the individual penalties.
In the first step, the proximity between the approximation of the state function x̃ij (t) and the solution xij (t) is given
by:

PEN ij (x̃i) =

∫
{Li,j,θi (x̃i)}2 dt,

where Li,j,θi (x̃i) = Dx̃ij (t) − fj (x̃i, t,θi) is the differential equation operator for the j-th state function of the i-th
subject. Then the total penalty term for the i-th subject is given by:

PEN i (x̃i|γ) =

d∑
j=1

γjPEN ij (x̃i)

= ci
TRi (θi,γ) ci + 2ci

Tri (θi,γ) + li (θi,γ) .

The vector ci corresponds to the concatenation of all spline coefficients for the i-th subject. The matrix Ri (θi,γ),
the vector ri (θi,γ) and the constant li (θi,γ) are constructed in the same way as the penalty terms presented in the
standard case (see Section 2.4). As the same function f is common to all the systems of differential equations, the
same ODE-adhesion parameter γ is used for all the individual penalties. Finally, the overall penalty term is the sum
of all individual penalties:

PEN (x̃) =

d∑
i=1

PEN i (x̃i|γ)

= cTR (θ1, . . . ,θI ,γ) c+ 2cTr (θ1, . . . ,θI ,γ) + l (θ1, . . . ,θI ,γ)

where c is the vector of all spline coefficients and R (θ1, . . . ,θI ,γ) is a block diagonal matrix with the individual
penalty matrices Ri (θi,γ) on its diagonal, r (θ1, . . . ,θI ,γ) concatenates the individual penalty vector ri (θi,γ) and
l (θ1, . . . ,θI ,γ) is the sum of all individual penalty constants.

4.3 Bayesian hierarchical model

The Bayesian model is similar to the one used in individual approach, but with an additional specification: the inter-
individual variability of the ODE parameters and the prior distributions of the population paramerters has to be
specified. 

yijk|cij , τj ∼ N
(

(Bij (tijk))
T
cij ; τ

−1
j

)
p (c|θ1, . . . ,θI ,γ) ∝ exp

(
− 1

2

{
PEN + cTΣc

−1c− 2cTΣc
−1µc

})
γj ∼ G

(
aγj ; bγj

)
τj ∼ G

(
aτj ; bτj

)
θi|θ,Pθ ∼ Nq

(
θ;Pθ

−1)
θ ∼ π (θ)

Pθ ∼ Wq

(
V −1; r

)
The vector µc and the matrix Σc

−1 are used to express the possible uncertainty on the initial condition of the
state functions. As in the standard approach, we have to note that the prior distribution for the spline coefficients
is composed of two parts. The first corresponds to a multivariate Gaussian distribution with mean M1

−1v1 and
variance-covariance matrix M1

−1 where v1 = Σc
−1µc − r (θ1, . . . ,θI , γ) and M1 = R (θ1, . . . ,θI ,γ) + Σc

−1 and the
second part corresponds to a term independent of c. Therefore, the normalizing constant

(det (M1))
1/2

exp

(
1

2
l (θ1, . . . ,θI ,γ)

)
exp

(
−1

2
v1

TM1
−1v1

)
,

has to be used to obtain the joint posterior distribution.
The prior distributions for the ODE-adhesion parameter γ and for the precision of measurement τ are the same as those
used in the standard approach. The inter-individual variability is expressed using a standard choice: it is supposed
that each individual ODE-parameter θi is distributed according to a multivariate Gaussian distribution with mean θ
and precision matrix Pθ. The prior distribution for the mean population parameter θ is here specified by π (θ). Note
that, if this prior distribution is a multivariate Gaussian distribution, then it corresponds to a conditional conjugate
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prior distribution. The precision matrix Pθ characterizes the variability of the individual ODE-parameters about the
mean population ODE-parameter θ. The prior distribution for this precision matrix Pθ is specified by a Wishart
distribution. There, V corresponds to the prior expected value for the variance-covariance matrix of the random effects
and r quantifies the confidence in that specific value, large values of r translating a large prior confidence. Note that
r has to be grather than q.
The strategy used to generate a sample from the joint posterior distribution is similar to the one used in the standard
approach, see Section 3.2.
First, one can show that the conditional posterior distribution for the vector c is a multivariate Gaussian distribution
with mean M2

−1v2 and variance-covariance matrix M2
−1 where:

v2 = v1 + vec (vec (zij ; j = 1, . . . , d) ; i = 1, . . . , I)

M2 = M1 + diag (diag (Zij ; j = 1, . . . , d) ; i = 1, . . . , I) .

The Kij-vector zij is equal to τjBij
Tyij if the state function xij (t) is observed and the null vector otherwise. The

Kij ×Kij-matrix Zij is equal to τjBij
TBij if the state function xij (t) is observed and the null matrix otherwise.

Then, the joint posterior distribution is marginalized with respect to the spline coefficients c. The aim is to get rid of the
inconvenient posterior conditional correlation between the generated spline coefficients and the individual differential
equation parameters. One can show that the log of this marginal joint posterior distribution is equal to:

log (p (τ ,γ,θ1, . . . ,θI ,θ,Pθ|y))
.
=

1

2

I∑
i=1

∑
j∈J

{
nij log (τj)− τjyijTyij

}
−1

2

{
v1

TM1
−1v1 − log (det (M1))− v2TM2

−1v2 + log (det (M2))
}

+

d∑
j=1

{(
aγj − 1

)
log (γj)− bγjγj

}
+
∑
j∈J

{(
aτj − 1

)
log (τj)− bτjτj

}
+
I

2
log (det (Pθ))− 1

2

I∑
i=1

(θi − θ)
T
Pθ (θi − θ)

+ log (π (θ))

+
r − q − 1

2
log (det (Pθ))− 1

2
tr (V Pθ)

In that marginal joint posterior distribution, only the conditional posterior for the precision matrix Pθ is of a familar
type:

Pθ|θ1, . . . ,θI ,θ,y ∼ Wq

(V +

I∑
i=1

(θi − θ) (θi − θ)
T

)−1
; r + I

 .

The other conditional posterior distributions cannot be identified: Metropolis-Hastings steps with adaptive proposals
have been used in practice to generate samples from p (τ ,γ,θ1, . . . ,θI ,θ|Pθ,y). If desired, when the MCMC-chains
for parameters τ , γ, θ1, . . . ,θI , θ and Pθ have converged, one can generate a sample from the conditional posterior
distribution of c.

5 Simulation study

In this part, we perform some simulations on the first two examples presented in Section 2.3. The aim is to compare
the performances of different estimation strategies.

5.1 Preliminary remarks

In order to compare the proposed Bayesian general profiling estimation (BGPE) method, the frequentist general profiling
estimation (FGPE) method (Ramsay et al., 2007), the standard Bayesian (BES) and frequentist (FES) methods using
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the explicit solution to the system of differential equations, it is necessary to explain how the initial conditions of the
state functions were specified in each case.
For the FGPE method, the first component of each vector of splines coefficients cj , j = 1, . . . , d is fixed to the initial
condition of the corresponding state function. The other spline parameters are estimated using criterion J , see Eq. (2),
modified in order to take into account that the first component is fixed. A search grid is done for each ODE-adhesion
parameter γ, starting from small values and gradually increasing. The selected γ corresponds to the minimizer of the
BIC criterion. Note that the method proposed in Ye (1998) was used to compute the number of effective parameters
at each grid point. Concerning the BGPE method, the model described in Section 2.2 is used (i.e. including µc
and Σc

−1). The precision parameters in Σc
−1 corresponding to the initial condition of the state function in µc is

set to infinity in order to force equality of the approximation of the state function to the initial condition at t = 0.
For the BGPE and BES methods, the posterior mean, 80% and 95% credibility intervals and the posterior empirical
variance-covariance matrix of PK parameters are estimated from the generated chains. For the FGPE method, the
variance-covariance matrix of the estimated parameter is calculated using the approximation given in Ramsay et al.
(2007). Confidence intervals at 80% and 95% levels are computed using Gaussian quantiles. For the FES method, the
variance-covariance matrix of the parameter estimates is based on the hessian matrix and confidence intervals at 80%
and 95% levels are computed using gaussian quantiles.

5.2 One-compartment model with single IV bolus

Data

Each sample corresponds to 21 measurements made on a single subject at equidistant time points between 0h and 1h.
At each time point tk, the concentration yk is generated using the explicit solution of the one-compartment model with
single IV bolus injection and some measurement error:

yk =
D

V
exp (−ketk) + εk

where D = 20mg, ke = 5h−1, V = 5L and ε ∼ N
(
0;σ2

)
. We consider three different values for the standard deviation

σ: σ = 0.1, 0.3 and 0.5. These three levels correspond to a low, medium and large level of noise in the data measurement.
For each configuration, 1000 datasets were generated.

Models

For the FGPE and the BGPE methods, the concentration C (t) of drug is approximated by C̃ (t) = 1
V (B (t))

T
c using

a 5-order B-spline expansion with inner knots at each tenth between 0 and 1.
For the FGPE method, the first spline coefficient c1 is fixed to the dose D. PK-parameters ke and V , the spline
coefficients c2:K and precision τ of measurements are estimated by minimizing the criterion presented in Eq. (2).
For the BGPE approach, the following Bayesian model is considered:

yk|c, τ, V ∼ N
(

1
V (B (tk))

T
c; τ−1

)
∀k ∈ {1, . . . , n}

π (c|γ, ke, V ) ∝ exp
(
− 1

2

(
cTM1c− 2cTv1

))
γ ∼ G (aγ ; bγ)
τ ∼ G (aτ ; bτ )

π (ke, V ) ∝ I {ke > 0, V > 0}

where M1 = R (ke, V, γ) + Σc
−1 and v1 = Σc

−1µc (see Eq. (4) for the specification of R (ke, V, γ)). The first
component of µc is set equal to D and the corresponding precision in Σc

−1 to 1012. The other components in µc and
Σc
−1 are null.

For the FES and BES methods, the concentration of drug has an explicit expression: C (t) = D
V exp (−ket). For the

FES method, PK-parameters ke and V and precision τ of measurements are estimated by maximizing the likelihood.
For the BES approach, we consider the following Bayesian model: yk|τ, ke, V ∼ N

(
C (tk) ; τ−1

)
∀k ∈ {1, . . . , n}

τ ∼ G (aτ ; bτ )
π (ke, V ) ∝ I {ke > 0, V > 0}
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Simulation results

Table 1 summarizes the results of the simulation study. It gives estimation for the relative bias (in percent), the
coverage probabilities at level 80% and 95% and the root mean squared error for volume V and constant of elimination
ke for the three different values of σ for the FGPE, FES, BGPE and BES methods.
For volume V , the relative bias seems to be the same for all methods. For medium and large value of σ, BGPE and BES
methods slightly over-estimated it. For the FES, BGPE and the BES approaches, root mean squared error for V are
similar, suggesting a smaller variability in Bayesian estimates. For the FGPE method, the number of outliers for the
relative error is high, especially for σ = 0.5 that is translated in a larger RMSE. The estimated coverage probabilities
for FGPE are well below nominal values, whereas for other approaches, the nominal levels are almost reached: this
may be due to the approximation of the variance of the parameter estimate that is made in the FGPE approach.
Whatever σ, the relative bias for the constant of elimination ke is small for all four methods except for BGPE and
BES when σ = 0.5 (relative bias superior at 5%). RMSE for BES and BGPE approaches is similar to the FES one
suggesting again a smaller dispersion of the Bayesian estimates. The root mean squared error in the FGPE approach is
markedly larger than in other approaches essentially due to a large number of outliers. Coverage probabilities for FES
and BES credible regions are in agreement with their nominal values. For BGPE and FGPE approaches, the estimated
coverage probabilities are larger than expected, especially for FGPE approach.

15



σ
=

0.
1

(τ
=

1
0
0
)

σ
=

0.
3

(τ
≈

1
1.

1
1
)

σ
=

0.
5

(τ
=

4
)

R
B

C
P

80
%

C
P

9
5
%

R
M

S
E

R
B

C
P

8
0
%

C
P

9
5
%

R
M

S
E

R
B

C
P

8
0
%

C
P

9
5
%

R
M

S
E

V = 5L

F
G

P
E

-0
.0

43
.3

58
.4

0
.1

1
0
.1

4
2
.1

6
0
.3

0
.3

3
1
.0

4
4
.0

5
8
.5

0
.5

6

F
E

S
-0

.0
77

.0
9
3
.8

0
.1

0
0
.1

7
9
.1

9
2
.6

0
.3

0
0
.5

7
9
.0

9
2
.8

0
.5

0

B
G

P
E

0.
1

7
8
.7

9
5
.2

0
.1

0
0
.8

8
0
.9

9
3
.9

0
.3

1
2
.9

8
0
.1

9
4
.1

0
.5

6

B
E

S
0.

1
7
8
.9

9
5
.6

0
.1

0
0
.9

8
1
.2

9
4
.2

0
.3

1
2
.9

8
0
.1

9
4
.6

0
.5

5

ke = 5h−1

F
G

P
E

-0
.2

94
.6

99
.2

0
.3

0
-0

.8
9
3
.7

9
8
.9

0
.6

1
-2

.4
9
0
.7

9
7
.3

1
.0

2

F
E

S
0.

2
7
7
.6

93
.4

0
.1

6
0
.4

7
8
.1

9
3
.1

0
.4

9
1
.7

7
8
.4

9
2
.8

0
.8

3

B
G

P
E

0.
4

84
.7

97
.4

0
.1

7
2
.3

8
5
.0

9
7
.1

0
.5

2
7
.3

8
2
.9

9
6
.7

0
.9

8

B
E

S
0.

3
7
9
.0

9
4
.9

0
.1

6
1
.6

8
0
.8

9
4
.2

0
.5

0
5
.3

7
9
.5

9
5
.1

0
.9

0

T
ab

le
1:

O
n

e-
co

m
p

ar
tm

en
t

m
o
d

el
w

it
h

IV
b

ol
u

s
-

R
el

a
ti

ve
b

ia
s

in
p

er
ce

n
t

(R
B

),
es

ti
m

a
te

d
co

ve
ra

g
e

p
ro

b
a
b

il
it

y
(C

P
)

a
t

le
v
el

8
0
%

(C
P

8
0
%

),
9
0
%

(C
P

%
)

an
d

ro
ot

m
ea

n
sq

u
ar

ed
er

ro
r

(R
M

S
E

)
fo

r
F

G
P

E
,

F
E

S
,

B
G

P
E

a
n

d
B

E
S

m
et

h
o
d

s
fo

r
th

e
th

re
e

d
iff

er
en

t
le

v
el

s
o
f

st
a
n

d
a
rd

d
ev

ia
ti

o
n
σ

.
E

st
im

a
te

d
co

ve
ra

ge
p

ro
b

ab
il

it
ie

s
in

b
ol

d
ch

ar
ac

te
rs

ar
e

in
li

n
e

w
it

h
th

ei
r

n
o
m

in
a
l

va
lu

es
.

16



5.3 Two-compartment model

Data

Each sample corresponds to 81 measurements made on a single subject at equidistant time points between 0h and 2h.
At each time point tk, the concentration yk is generated using the explicit solution of the two-compartments model
with oral dosing and some measurement error:

yk =
D

V

ka
ka − ke

(exp (−ketk)− exp (−katk)) + εk

where D = 20mg, ka = 8h−1, ke = 2h−1, V = 1L and ε ∼ N
(
0;σ2

e

)
. We consider three different cases for the standard

deviation σe: σe = 0.3, 0.6 and 0.9. These three levels correspond to low, medium and large levels of noise in the data
measurement. In each configuration, 1000 datasets were generated.

Models

For the FGPE and the BGPE methods, we approximate the quantity Qa (t) of drug in the stomach by Q̃a (t) =

(Ba (t))
T
ca and the concentration Ce (t) of drug in the central compartment by C̃e (t) = (Be (t))

T
ce using a 5-order

B-spline expansion with inner knots at each tenth between 0 and 2.
For the FGPE method, the first spline coefficient ca1 is fixed to the dose D and ce1 is fixed to 0. PK-parameters ka,
ke and V , the spline coefficients ca2:Ka

and ce2:Ke
and precision τ of measurements are estimated by minimizing the

criterion J presented in Eq. (2).
The Bayesian model of the BGPE approach is:

yk|ce, τe ∼ N
(

(Be (tk))
T
ce; τ

−1
e

)
∀k ∈ {1, . . . , n}

π (c|γ1, γ2, ka, ke, V ) ∝ exp
(
− 1

2

(
cTM1c− 2cTv1

))
γ1 ∼ G (aγ1 ; bγ1)
γ2 ∼ G (aγ2 ; bγ2)
τe ∼ G (aτe ; bτe)

π (ka, ke, V ) ∝ I {ka > ke > 0, V > 0}

where M1 = R (ka, ke, V, γ1, γ2) + Σc
−1 and v1 = Σc

−1µc (see Eq. (5) for the expression of R (ka, ke, V, γ1, γ2)). The
first component of µc is set equal to D, the (Ka + 1)-th component of µc to 0 and the corresponding precision in Σc

−1

to 1012. The other components in µc and Σc
−1 are set to zero.

For the FES and BES methods, the concentration of drug in the central compartment has an explicit expression:
Ce (t) = D

V
ka

ka−ke (exp (−ket)− exp (−kat)). For the FES method, PK-parameters ka, ke and V and precision τe of
measurements are estimated by maximizing the likelihood. For the BES approach, we consider the following Bayesian
model:  yk|τe, ka, ke, V ∼ N

(
Ce (tk) ; τ−1e

)
∀k ∈ {1, . . . , n}

τe ∼ G (aτe ; bτe)
π (ka, ke, V ) ∝ I {ka > ke > 0, V > 0}

Simulation results

Table 2 summarizes results the simulation study. It gives relative bias, the coverage probabilities at level 80% and 95%
and root mean squared error for the constant of absorption ka, the constant of elimination ke and the volume V for
the three different values of σe for the FGPE, FES, BGPE and BES methods.
For the constant of absorption ka, in term of relative bias, all methods perform equally well when the level of noise
is low. For large levels of noise, FGPE approach performs poorly: the relative bias is slightly positive with dispersion
greater than for other methods (see root mean squared error). Coverage probabilities of the estimators are in agreement
with the nominal values, except for the FGPE approach where it tends to be lower than the targeted value: this could
be due to a bad approximation of the variance of the estimate, a bad choice of the distribution of estimator and possible
adverse selection of the ODE-adhesion parameters.
For the constant of elimination ke, performances are similar for the four methods in term of RMSE. Like in the first
simulation study, some bias is introduced by the Bayesian methods. It is compensated by a smaller dispersion of
the estimators. Coverage probabilities for FES, BGPE and BES approaches are similar and in agreement with their

17



nominal values. For the FGPE approach, the estimated coverage probabilities are below nominal value.
For the volume V of the central compartment, all methods perform equally in term of RMSE. BGPE and BES
approachs under-estimate a little the volume. This result was expected due to the fact that the volume and the
constant of elimination are negatively correlated. For the FGPE approach, estimated coverage probabilities are again
below nominal levels. Again, for FES, BGPE and BES approaches, estimated coverage probabilities are almost in
agreement with their nominal values.
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6 Application

6.1 Data

Arteriogenesis is important for the prevention and the recovery of tissue ischemia caused by arterial occlusive disease.
Several studies can be made to study this phenomenon. In one of them (van Weel et al., 2007), ischemia on the left
hind limb of mice was induced by electrocoagulation of the left common femoral artery proximal to the bifurcation
of superficial and deep femoral artery. The blood flow was measured at baseline, directly after the femoral artery
occlusion and over the 28 next days on the two hind limbs. The perfusion ratio x (t) is expressed as the ratio of the
ischemic to the non-ischemic blood flow.
In the study of van Weel et al. (2007), 113 mice were enrolled. We focuss on the specific C57BL/6 mice’s group
to illustrate the Bayesian generalized profiling estimation for ODE in the hierarchical case. In this specific group,
perfusion ratio was measured 6 times over a 28 days period in 12 mice after a femoral artery occlusion (see Fig. 2).
Originally, this dataset was analised using a nonlinear model that assumes an exponential approach to an asymptote
whose differential equation model and explicit solution are presented in Section 2.3.
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Figure 2: Ischemic/non-ischemic perfution ratio.

6.2 Model

The perfusion ratio xi (t) for the subject i is approximated by x̃i (t) = (B (t))
T
ci using 5-order B-spline expansion

with 57 equidistant knots between 0 and 28 days. Note that the same B-spline basis is used for all the subject and
that only the spline coefficients are subject-specific. The Bayesian model used to analyze this data is:

yik|ci, τ ∼ N
(

(B (tik))
T
ci; τ

−1
)

∀i ∈ {1, . . . , I} ∀k ∈ {1, . . . , n}
π (ci|γ, α, βi) ∝ exp

(
− 1

2

(
ci
TMi1ci − 2ci

Tvi1
))

γ; τ ∼ G
(
1; 10−8

)
lα; lβ ∼ N

(
0; 108

)
lβi|lβ, τlβ ∼ N

(
lβ; τ−1lβ

)
∀i ∈ {1, . . . , I}

τlβ ∼ G
(
1; 10−8

)
where Mi1 = R (α, βi, γ) + Σci

−1 and vi1 = −r (α, βi, γ) + Σci
−1µci (see Section 2.3 for the expression of matrix

R (α, βi, γ) and vector r (α, βi, γ)). We fix the first component of each µci to 0.25, i.e. to the empirical mean of the
ischemic/non-ischemic perfusion ratio measured just after the surgery on all the mices except those from the group
C57BL/6 and the corresponding precision in Σci

−1 to 64, i.e. to the inverse of the empirical variance of the same
measured perfusion ratio. The other components in µci and Σci

−1 are set to zero. This choice allows us to express
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the fact that the artery was probably not completely occluded just after the surgery.
The model was selected from four possible models considering parameters lα and lβ either as a fixed parameter or as
a random effect using the penalized deviance information criterion (Spiegelhalter et al., 2002).

6.3 Results

For the Metropolis-Hastings algorithms with adaptive proposals, we generate 10 parallel chains (10 parallel chains is
the minimum recommended in Cai et al. (2008) in the case of mixture of triangular and exponential distributions for
the adaptive proposals), with 1000 MCMC iterations and discard the first 300 realizations. We use this first sample to

reparametrize the problem by applying a translation and a rotation to the parameter vector θ = (lα, lβ)
T

. Then 7500
MCMC iterations were generated and 5000 were discarded. Figure 3 (resp. figure 4) shows traces and histograms of
σ = 1/

√
τ , log10 (γ) and τlβ (resp. log (α) and log (β)). For each parameter chains, the Gelman-Rubin statistic was

computed and was less than reference value 1.05 suggesting convergence of the MCMC algorithm.
Table 3 reports the posterior mean, 2.5%, 50% and 97.5% quantile of the ODE parameters, precision of measurement
and ODE-adhesion parameter. The posterior 2.5% quantile for the parameter lα seems to mean that the perfusion
ratio will tend to a value above 1 after the surgery. The posterior probability that lα is greater than 0 is virtually equal
to 1 : arteriogenesis seems to have occurred. The increase of the perfusion ratio is defined, in the log scale, by lα+ lβ.
This increase is subject-specific due to the individual parameters lβi. The precision τlβ of random effect suggests a
high variability of the recovery of the ischemia.
Figure 5 shows in (a) the estimated perfusion ratio with 95% credibility sets for the subject 8, in (b) the credibility
interval for the posterior predictive distribution of the perfusion ratio for the same subject, in (c) the mean population
perfusion ratio with 95% credibility sets and in (d) the credibility interval for the posterior predictive distribution of
the mean population perfusion ratio. To obtain figure 5 (a), the conditional mean x̃8 (t) of the perfusion ratio for the
subject 8 is reconstructed on a grid of time for each realization of the posterior distribution of the spline coefficients for
this subject. Then, at each point of the grid of time, 2.5%, 50% and 97.5% quantiles are computed. On the same grid of
time, the posterior preditive distribution of the perfusion ratio is computed by sampling from a Gaussian distribution
with mean x̃8 (t) and variance τ−1 at each realization from the posterior distribution. Figure 5 (b) is then obtained
by reporting the 2.5%, 50% and 97.5% quantiles as function of the time. For the population figures 5 (c) and (d),
the procedure is the same as above but we have first to sample from a multivariate Gaussian distribution with mean
M1

−1v1 and variance M1
−1 to obtain a sample of the posterior distribution of the mean population spline coefficients.

For each mice, the posterior probability that individual mean perfusion ratio is greater than 1 is higher 0.95, except for
subject 12 where this probability is around 0.8. At the end of the study, i.e. at 28 days, the posterior probability that
the mean population perfusion ratio is greater than 1 is higher than 0.95. The 95% credibility interval of the posterior
predictive distribution is (0.82; 1.49) and the posterior predictive probability that a perfusion ratio is higher that 1
after 28 days is equal to 0.8: this suggests recovery of mice from group C57BL/6 in 80% of the case after 28 days.

7 Discussion

We have presented a full Bayesian model based on ODE-penalized B-spline approach to jointly estimate the state
functions and parameters of a system of affine differential equations. Simulations suggest that the proposed Bayesian
ODE-penalized B-spline approach is superior of the frequentist one in term of estimation of the ODE parameters,
coverage probabilities and prediction. It also provides similar results to the frequentist and Bayesian approach based
on the explicit solution to the ODE.
We have also seen that the basic Bayesian ODE-penalized B-spline approach was simply extended to a hierarchical
setting only by specifying the inter-individual variability of the ODE parameters. This hierarchical model offers the
advantage to fit individual state functions for each subject.
The possible use of prior information on the ODE parameters and on the precision of measurement is a definite
advantage. The proposed Bayesian model also enables to include uncertainty with respect to the initial condition of
the state functions. This was not the case in the corresponding frequentist approach where the initial condition must
either be fixed or estimated.
Contrary to the frequentist approach, the selection of the ODE-adhesion parameter is now automatic and does not
depend on the choice of a specific criterion (e.g. BIC) or on the strategy used to compute the number of effective
parameters: the selection of the ODE-adhesion parameter is include directly in the model.
In addition, as we work in a Bayesian setting, uncertainty measures are readily available through the credibility sets
computed from the MCMC chains: the variance of parameter estimates is no more to approximate and confidence
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Figure 3: Traces and histograms for σ, log10 (γ) and τlβ

Figure 4: Traces and histograms for log (α) and log (β)
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Parameters Mean 2.5% quantile 50% quantile 97.5% quantile
log10 (γ) 7.740 6.388 7.834 8.565

τ 38.50 25.515 38.043 54.545
lα 0.179 0.104 0.177 0.260
lβ -2.122 -2.467 -2.122 -1.782
τlβ 13.806 2.347 9.330 53.041
lβ1 -2.033 -2.603 -2.034 -1.465
lβ2 -2.372 -2.798 -2.371 -1.943
lβ3 -2.401 -2.888 -2.400 -1.922
lβ4 -2.081 -2.541 -2.084 -1.617
lβ5 -1.934 -2.498 -1.949 -1.282
lβ6 -1.978 -2.482 -1.979 -1.468
lβ7 -1.826 -2.370 -1.831 -1.253
lβ8 -2.083 -2.582 -2.089 -1.556
lβ9 -1.988 -2.391 -1.991 -1.568
lβ10 -2.053 -2.503 -2.055 -1.575
lβ11 -2.096 -2.586 -2.097 -1.612
lβ12 -2.611 -3.148 -2.611 -2.083

Table 3: Estimated parameters with credibility sets
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Figure 5: (a): Credibility interval for the perfusion ratio for subject 8. (b): Credibility interval for the posterior
predictive distribution of perfusion ratio for subject 8. (c): Credibility interval for the mean population perfusion ratio.
(d): Credibility interval for the posterior predictive distribution of perfusion ratio
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intervals no more depend on the choice of a specific quantile.
Some extensions are desirable. The Bayesian ODE-penalized B-spline approach assumes that the error distribution
is Gaussian with homogeneous variance. The case where the variance of the Gaussian error distribution is non-
homogeneous has to be considered. It corresponds to cases where the variance of the error depends on time and/or on
the state function that is measured. In the case where the error term depends on the state function, the marginalization
of the joint posterior distribution with respect to the spline coefficients will be difficult. Therefore, it will be complicated
to get rid of the inconvenient posterior correlation between the generated spline coefficients and the differential equation
parameters.
The assumption of Gaussian error distribution is most of the time inappropriate and other distributions (such as
truncated Gaussian, gamma or lognormal distribution) should be investigated. The choice of other distributions will
be again challenging as the marginalization of the joint posterior distribution with respect to the spline coefficients will
be no more feasible.
Before applying parameter estimation procedure, one has also to care about the design. Attention should be given
to the choice of experiemental design to avoid poor parameter estimation and thus unreliable results. Optimal design
are based on criteria that involve the Fisher information matrix (FIM). Actually, to construct this matrix, one has to
approximate the solution of the ODE using a first order Taylor series expansion (in the affine case as well as in the
nonlinear ODE case). Using the ODE penalized B-spline approach, the FIM will not require a Taylor expansion, but
design optimality criterion will continue to depend on a priori value of the parameters involved in the model.
Finaly, in this paper, only systems of affine differential equations have been considered but a large part of the ODE
models are nonlinear. These nonlinear cases are more challenging in the sense that the derivation of the prior distribution
(and therefore the posterior distribution) of the spline coefficients will be more complicated than the multivariate
Gaussian distribution we got in the affine case.

Appendix 1 - Prior distribution for the spline parameters

In order to understand the limite case in the prior distribution for the spline parameter, we will consider the simpliest
dynamic system, namely the exponential decline problem:{

dx
dt (t) = −θx (t)
x (0) = x0

In this case, the penalty matrix R (θ, γ) has a simple expression:

R (θ, γ) = γ
(
P 11 + θ

(
P 10 + P 01

)
+ θ2P 00

)
where P ij =

∫
B(i) (t)

(
B(j) (t)

)T
dt, i, j = 0, 1.

The additional elements in the prior distribution for the spline parameters are:

µc
T = (x0, 0, . . . , 0)

Σc
−1 =


τx0

0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


As explained in Section 3, the prior distribution for the spline parameters is here a multivariate normal distribution

with mean µc,prior =
(
R (θ,γ) + Σc

−1)−1 Σc
−1µc and variance-covariance matrix Vc,prior =

(
R (θ,γ) + Σc

−1)−1.
For the variance-covariance, a block matrix decomposition is usefull to study the limited case:

Vc,prior =

(
R1

1 + τx0
R2:m

1

R1
2:m R2:m

2:m

)−1
=

(
s−1D −s−1D R

2:m
1

(
R2:m

2:m

)−1
−
(
R2:m

2:m

)−1
R1

2:ms
−1
D

(
R2:m

2:m

)−1
+
(
R2:m

2:m

)−1
R1

2:ms
−1
D R

2:m
1

(
R2:m

2:m

)−1
)
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where sD = R1
1 + τx0

−R2:m
1

(
R2:m

2:m

)−1
R1

2:m.

Note that, when τx0
tends to infinity then V tends to

(
0 0

0
(
R2:m

2:m

)−1 ).

The precision τx0
has therefore influences on each block of the variance covariance matrix. Furthermore, when τx0

tends to infinity, the limit of the variance-covariance matrix proves that the first component c1 of the spline parameters
is fixed (variance is equal to zero and the correlation with the other spline parameters c2:m is null).
Using the same block matrix decomposition, the expression of the mean of the prior distribution of the spline parameters
is:

µ =

(
s−1D τx0

x0

−
(
R2:m

2:m

)−1
R1

2:ms
−1
D τx0

x0

)

Note that, when τx0 tends to infinity then µ tends to

(
x0

−
(
R2:m

2:m

)−1
R1

2:mx0

)
.

The first component of the mean of the prior distribution tends to x0 (main objective) when τx0
tends to infinity. It

is also important to note that the other component of this prior mean depend on the initial condition x0 and on the
differential equation.
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