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Abstract

One important aspect of data-mining of microarray data is to discover the molecular
variation among cancers. In microarray studies, the number n of samples is relatively
small compared to the number p of genes per sample (usually in thousands). That
is a considerable challenge in the context of survival prediction. This naturally calls
for the use of a dimension reduction procedure together with the prediction one. In
this paper, the question of survival prediction in such a high dimensional setting
is addressed. We propose a new method combining Partial Least Squares (PLS)
and Ridge penalized Cox regression. We review the existing methods based on PLS
and (or) penalized likelihood techniques, outline their interest in some cases and
theoretically explain their sometimes poor behavior. Our procedure is compared
with these other methods. The performance of the resulting procedures is illustrated
on two real data sets.

Availability: R codes are available upon request.
Keywords: Cox model, dimension reduction procedure, microarray data, partial
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1 Introduction

Microarray technology generates a vast amount of data by measuring, through the
hybridization process, the levels of virtually all the genes expressed in a biological
sample. One can expect that knowledge gleaned from microarray data will contribute
significantly to advances in fundamental questions in biology as well as in clinical
medicine.

In survival analysis, survival times as time to cancer recurrence or death due to
cancer are studied. The main goal is to predict the time to event (survival time)
using the gene expressions as covariables. One first difficulty to study time to event
outcome results from right censoring during patient follow-up since some patients
may still be event-free. Such observations are said to be right-censored; for these
patients, we only know that the time to event is greater than the time of last follow-
up. So standard regression techniques cannot be applied since the event is not
observed for all samples. We consider here only the methods that use the proportional
hazard model introduced by Cox [4] to link the survival time to gene expressions.
However, the Cox proportional hazard model is usually applied in situation where
the number of samples, n, greatly exceeds the number of covariates, p. In microarray
studies, n is relatively small compared to the number p of genes, usually in thousands
(p >> n). In addition, gene expressions data are often highly correlated. That is a
considerable challenge in the context of survival prediction.

Similar data structures have been encountered in the field of chemometrics. The
method of Partial Least Squares (PLS, [25, 15, 9]) has been found to be a useful
dimension reduction technique as well as Principal Component Regression (PCR,
[14]) (see [7] for a statistical view of PLS and PCR). In the context of microarrays, the
purpose of PCR or PLS is to produce orthogonal tumor descriptors that reduce the
dimension to only few gene components (super-genes). But the dimension reduction
for PCR is achieved without regard to the response variable and may be inefficient.

Nguyen and Rocke [16] propose to apply PLS directly to the survival data and use
the resulted PLS components in the Cox regression model to predict survival time.
However, their procedure does not handle the censoring aspect properly. There exist
some other extensions that try to take into account this fact. In [18], the authors
reformulate the Cox model as a Poisson model for the censored indicator variable.
Then they use the PLS algorithm developed by [13] in the generalized linear model.
The reformulation as a Poisson regression increases the dimension of the problem
and in high dimensional data this algorithm may fail to converge (see [12]). We do
not also consider this approach.

In Bastien [2], the standard PLS method is modified by replacing the linear
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regression step by Cox regression to determinate the PLS components. The first
component is obtained by a weighted sum of centered expression values. Next, these
expression values are regressed against the PLS components and the residuals are
used for building the next component (in a similar fashion). The procedure is re-
peated until all the components are constructed. Li and Gui [12] propose a similar
approach. The difference stands in the choice of the weights.

To deal with the high-dimensional problem, another approach consists in penaliz-
ing the Cox’s Partial log-likelihood. In [8, 22], the authors propose to use the Ridge
penality in order to both stabilize the statistical problem and remove numerical de-
generacy due to multicollinearity: a so-called Ridge penalty is subtracted from the
Cox’s Partial log-likelihood. Note that this method is not a dimension reduction
technique. Indeed all explanatory variables are allowed into the regression model.
Indeed all the genes contribute, which can inhibit and degrade the performances of
the prediction rules.

In this paper, we compare several dimension reduction and/or regularization
methods for the Cox model. These methods are: Ridge Cox, Cox PCR, both PLS
methods for the Cox model proposed by Li and Gui [12] and Bastien [2], Cox Lasso
[21]. In addition, we extend the PLS method to Cox regression in a similar way to
the extension to generalized linear model proposed by [6]. To do that, the idea is
to substitute the survival time in the input of PLS by a continuous-valued pseudo-
response variable whose expected value has a linear relationship with the covariates.
The limiting pseudo-response variable in the Iteratively Reweighted Least Squares
(IRLS) algorithm used to compute the maximum Cox’s Partial log-likelihood seems
to be a good candidate. Unfortunately, in the present situation “small n, large p”,
IRLS no longer works since the limiting pseudo-response variable is, in norm, infi-
nite. The idea developed here is to penalize with a Ridge penalty the Cox’s partial
log-likelihood criterion in order to constrain the pseudo-response variable to be finite.
Our procedure combines a Ridge penalty step and a PLS step and the output of the
dimension reduction step is incorporated in the Cox regression step.

This paper is organized as follows. The Methods section is the methodological
part of this paper. It contains a description of the Cox regression. We then recall
the Ridge Cox’s partial log-likelihood method and derive a weighted PLS algorithm
in order to address the dimension reduction in heteroscedastic models. We then
introduce an extension of PLS to survival time data based on the Ridge penalty.
We focus on the method of Li and Gui [12] and that of Bastien [2]. We show that
both methods can be described by the same algorithm. The difference between both
approaches lies in the choice of some weights. Applications to survival prediction
using gene expression data are presented in the Numerical results section.
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2 Methods

2.1 Cox model for survival data

We consider the usual survival data setup. Let (T1, . . . , Tn) be independent survival
times, and (U1, . . . , Un) be censoring times. We observe the p-dimensional vectors of
covariates X1, . . . , Xn. The right censored survival time is given by T̃i = min(Ti, Ui).
We denote by ∆i = 1I(Ti ≤ Ui) the indicator of event and τ the study cutoff
time. In the survival data setup, we observe n i.i.d. copies (T̃i,∆i, X i) of (T̃ ,∆, X),
i = 1, . . . , n. We denote by (Ni, i = 1, . . . , n) the corresponding counting processes:
Ni(t) = 1I(Ti ≤ t,∆i = 1). In the microarray gene context, X1, . . . , Xn are the
expression levels of p genes and (T1, . . . , Tn) are the survival times such as time to
cancer recurrence or death due to cancer.

We consider the following Cox regression model for the hazard function,

αXi
(t) = α0(t) exp(XT

i β),

where β is the p-dimensional vector of parameters and α0 is a baseline hazard func-
tion. Let us note that this model does not contain any intercept term since the
multiplicative term λ0(t) may contain this term.

To estimate the parameters vector β, one usually maximizes the Cox’s Partial
Log-likelihood (PL) given by

ln(β) =
n∑
i=1

∫ τ

0

log
eX

T
i β

Sn(β, s)
dNi(s)

where Sn(β, s) =
∑n

j=1 1I(Tj ≥ s) exp(XT
j β).

Note that the likelihood does not change when a constant is added to the covari-
ates. Therefore, there is no need to center the covariates in this context. In the sequel,
we need some additional notations. Expression levels of the p genes for the n mi-
croarray samples are collected in a n×p data matrix X = (xij), 1 ≤ i ≤ n, 1 ≤ j ≤ p.
The entry xij is the expression level of the variable “gene” j in the microarray sample
i, and the i-th row Xi,· is the vector of a gene expression profile for sample i. The
vector T̃ is the n-dimensional vector of the right censored survival time and ∆̃ the
corresponding vector of the indicator of event.
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2.2 Maximum PL estimate and Iteratively Reweighted Least
Squares (IRLS)

We say that the PL estimate exists if there exists β ∈ Rp of finite norm which is
a maximizer of the concave partial log-likelihood `n. Hence, such an estimate is a
solution to the normal equation XT ζ(β) = 0, where ζ(β) is defined by

ζ
k
(β) =

∫ τ

0

n∑
i=1

(δi,k − wk(β, s))dNi(s), (1)

with δi,k being the Kronecker symbol and the wk(β, s) being weights equal to

exp(XT
k β)1I(Tk ≥ s)

Sn(β, s)
.

For a reference, see for instance [17]. Here, we just add the fact that the data are
only observed in the interval [0, τ ].

If X is full column-rank, the solution, when exists, is unique. In such a case, the
estimate is usually computed as the limit of a converging Newton-Raphson sequence;
this algorithm is known as the Iteratively Reweighted Least Squares (IRLS, see [10]).
Let W(β) be the n× n matrix with entries given by

Wl,l′ =

∫ τ

0

n∑
i=1

wl(β, s)(δl,l′ − wl′(β, s))dN̄i(s). (2)

Each iteration divides into two steps,

z (t) = Xβ(t) +
[
W(t)

]−1
ζ, (3)

β(t+1) =
(
XTW(t)X

)−1
XTW(t)z (t), (4)

where W(t) is a shorthand notation for W(β(t)). The algorithm IRLS can thus be
considered as an iterative weighted least square regression of a Rn-valued pseudo-
variable z (t) onto the columns of X.
When X is not full column-rank, the parameter is not identifiable and the PL esti-
mate is not unique when exists; applying the above iterations (3-4) by replacing the
inverse matrix (4) with the Moore-Penrose pseudo-inverse, yields the parameter es-
timate which is of minimal norm among all the solutions. In practice, in the present
statistical framework n << p, n = rank(X) and the minimal norm solution verifies
for all 1 ≤ i ≤ n, ζi(β) = 0; it is thus of infinite norm and the PL estimate do not
exist. This calls for regularization methods such as Ridge penalty.
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2.3 Ridge penalty and RIRLS

There exist several studies that propose to use the Cox model with quadratic penalty
to predict survival time based on gene expression data (see [8, 22]). The Ridge

estimator β̂
R

is defined as the (unique) maximizer of the penalized likelihood

l∗n(β) = ln(β)− 0.5λβTβ,

where λ > 0 is the shrinkage parameter. The estimator β̂
R

always exists, is unique
and is computed as the limit of a Newton-Raphson sequence. We denote by RIRLS
(T̃ , ∆̃, τ,X, λ) (shorthand notation for Ridge-IRLS) this algorithm. It consists in
replacing in IRLS, the weighted regression (4) by a weighted Ridge regression

β(t+1) = (XTW(t)X + λIp)
−1XTW(t)z (t),

where z (t) is built as in (3) and Ip denotes the identity matrix of size p × p. The
parameter λ controls the amount of shrinkage in the data and can be chosen by
cross-validation.

2.4 Weighted Partial Least Squares (WPLS)

Partial Least Squares (PLS) is both a tool for linear regression and a tool for dimen-
sion reduction [25, 15, 9]. Let y ∈ Rn be a response vector, X be a n×p data matrix
and W be a positive definite n × n matrix. PLS defines κ W-orthogonal scores
(tk)1≤k≤κ, linear combinations of the columns of X and performs a W-weighted least
squares regression of y on (t1, · · · , tκ). This yields the decomposition

y = q1t1 + · · ·+ qκtκ + f
κ+1

= Xβ̂
PLS,κ

+ f
κ+1

where the residual term f
κ+1

is W-orthogonal to the vectors (t1, · · · , tκ). Note that
we do not consider the intercept term in this decomposition since it does not appear
in the Cox regression model. Contrary to classical dimension reduction methods
(such as Principal Component Regression), the scores depend on the response vector
y; roughly speaking, given (tk)1≤k≤l, tl+1 is the linear combination of the columns
of X, i.e. is on the form tl+1 = Xc, which is the most informative on the residual
response variable f

l+1
, when information is defined in terms of the weighted covari-

ance |Cov(
√
WXc,

√
Wf

l+1
)| (
√
W denotes the square root matrix of W) [9]. While

the maximal number of PLS scores κmax can be lower than rank(X), in practice,
it is often equal to rank(X). Helland [9] shows that the WPLS regression applied
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with κ = κmax is nothing more than the Weighted Least Squares regression. In the
literature, PLS is usually derived with W = I, the identity matrix; we detail here
the algorithm in the weighted case.

1. E0 = X; f
0

= y.

2. For k = 1, · · · , κ,

tk = Ek−1(Ek−1)
T
Wf

k−1.

if k < κ,

qk = tTkWf
k−1/(t

T
kWtk),

f
k

= f
k−1 − qktk,

Ek = Ek−1 − tktTkWEk−1/(tTkWtk).

Hereafter, this procedure is denoted by WPLS (y,X,W, κ). If X is full column-rank,

this algorithm determines an unique estimate β̂
PLS,κ

satisfying y − f
k+1

= Xβ̂
PLS,κ

;
if X is not full column-rank, the procedure above yields the minimal norm vector
among all the vectors verifying y − f

k+1
= Xβ.

2.5 Ridge Partial Least Squares for Cox model (RCoxPLS)

A direct application of PLS to Cox regression model seems to be intuitively un-
appealing because PLS does not handle the censoring aspect of the survival data
properly. In order to extend PLS to Cox regression model, we want to replace the
censoring data vector of T̃ with a pseudo-response variable whose expected value has
a linear relationship with the covariates. This extension stands in the same spirit as
in Fort and Lambert-Lacroix ([6]). The pseudo-response variable z∞ at convergence
of (R)IRLS algorithm verifies this condition and is thus our candidate: it can be writ-

ten z∞ = Xβ̂
R

+ε, where, conditionally to β̂
R

being the true value of the parameter,
ε is a centered vector of covariance matrix (W∞)−1. The main advantage of choosing
z∞ instead of, for example, the pseudo-variable at convergence of IRLS - which has
the linear structure too- is that this allows the combination of a regularization step
and of a dimension reduction step. In addition, this extension is always well-defined:
recall indeed that in some cases, the PL maximum estimate does not exist so that
the pseudo-variable ’at convergence’ of IRLS is of infinite norm.
As a consequence, we propose a new procedure which combines Ridge penalty - the
regularization step - when n > p and PLS - the dimension reduction step - and so
called Ridge-Cox-PLS (RCoxPLS). Let λ be some positive real constant and κ be
some positive integer. RCoxPLS divides in two steps:
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1. (a) if p ≤ n, (z∞,W∞)←− IRLS(T̃ , ∆̃, τ,X);

(b) if p > n, (z∞,W∞)←− RIRLS(T̃ , ∆̃, τ,X, λ);

2. β̂
PLS,κ

←−WPLS(z∞,X,W∞, κ).

The first step builds a continuous response variable z∞ for the input of PLS, the
“dispersion matrix” of which is [W∞]−1. This explains the call, in the second step, for
a weighted PLS procedure with weight W∞. RCoxPLS depends on two parameters,
λ and κ. They can be selected by cross-validation.

The procedure, presently derived in Rp, can be equivalently derived in Rr where
r = rank(X) ≤ n. To that goal, compute UDVT the singular values decomposition
(svd) of X and collect the first r columns of UD in Xred = (UD)·,1:r so that Xβ =

Xredθ for some θ ∈ Rr. It is readily seen that RCoxPLS (see [8] for the PL with Ridge
penalty part and [6] for the PLS part), run by replacing X by Xred and yields an

estimate θ̂
PLS,κ

uniquely related to β̂
PLS,κ

by β̂
PLS,κ

= V·,1:rθ̂
PLS,κ

. So when n << p,

we can replace the huge matrix X with p columns by the much smaller matrix Xred

with n columns, and fit the same model in the smaller space. All aspects of model
evaluation, including cross-validation, can be performed in this reduced space. That
is of computational importance.

2.6 Comparison with other approaches

2.6.1 Principal components Cox regression

The Principal components Cox regression (PCRCox) uses a principal components
analysis to summarize the gene expressions by few linear combinations. These first
κ principal components are then included in a multivariate Cox regression model.
The parameter κ can be selected by cross-validation. As RCoxPLS, PCRCox is a
dimension reduction method but this reduction is achieved without regard to the
response variable.

2.6.2 Partial Least Squares approaches

We present two other approaches (see [2] and [12]) to extend PLS to Cox model
regression. Both extensions can be regrouped in the following algorithm.

algorithm 1 1. Put E1 = X and compute the regression coefficients β̂1
j in the
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Cox regression on E1
·,j for each variable E1

·,j, j = 1, . . . , p. Compute

t1 =

p∑
j=1

w1,jβ̂
1
jE

1
·,j,

where w1,j are weights to be precised later.

2. For k = 2, · · · , κ, put Ek = Ek−1 − tkt
T
kE

k−1/(tTk tk). For each j = 1, . . . , p,

compute the regression coefficient β̂kj weighting Ek
·,j in the Cox regression on

t1, . . . , tk−1, and Ek
·,j. Compute

tk =

p∑
j=1

wk,jβ̂
k
jE

k
·,j,

where wk,j, k = 2, · · · , κ− 1 are weights to be precised later.

Once the κ PLS components are determined, a Cox regression model with covari-
ates t1, . . . , tκ is fitted. Both algorithms differ in the choice of the weights wkj. In [12],
algorithm “Partial Cox regression” (PartialCox) consists in applying the Algorithm
1 with

wkj =
V are(E

k
·,j)∑p

m=1 V are(E
k
·,m)

,

where V are denotes the empirical variance. Let us note that in [12], the covariables
are centered. However, this does not affect the results since the intercept term is not
included in the Cox regression model.

In [2] approach, Algorithm 1 is applied with weights defined by

wkj =
1∥∥∥β̂k∥∥∥

2

.

This procedure is called “PLS-Cox Algorithm” (PLSCox). In [2], another difference
with the Algorithm 1 stands in the p Cox regression. At each step, the Cox regressions
are computed on t1, . . . , tk, and X·,j instead of t1, . . . , tk, and Ek

·,j. But Ek
·,j is equal

to X·,j minus its orthogonal projection on t1, . . . , tk, so the regression coefficients
weighting X·,j or Ek

·,j are the same.
These both procedures depend on parameter κ that can be selected by cross-

validation.
When the number of variables exceeds by far the number of observations, as it

is the case with gene expression, these algorithms become computer-intensive and
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technical problems may arise. As we have seen, PLS linear regression algorithm
is invariant under orthogonal transformation of the X, so PLS based on the Xred

(or equivalently on the X principal components) is equivalent to PLS based on X.
That is of computational importance. But this invariance property of PLS linear
regression does not hold for these extensions of PLS to Cox model regression. In
both papers [2] or [12], the authors propose alternative algorithms by using svd even
if these algorithms are not invariant under this transformation. In the next section,
we present results of both versions of Algorithm 1, with and without svd. We call
svdPartialCox and svdPLSCox these new versions.

Let us note that in the standard case (p < n) and in the Gaussian regression,
the PLS method leads to the same estimator as the ordinary least squares when the
PLS components number is equal to p. We have the analogous result for the Cox
regression model when considering RCoxPLS. On the other hand, this property does
not stand for the extensions proposed by [2] or [12].

2.6.3 Lasso method

The Cox Lasso method was proposed by [21]. Although the first goal of this method is
to select a few covariates among a huge amount, it can also be used as a regularization
method. This procedure shrinks the regression coefficients in a similar manner as
Ridge regression but uses the absolute values instead of the squared values. The Cox

Lasso estimator β̂
Lasso

is defined as the maximizer of the penalized likelihood

l∗n(β) = ln(β)− λ
p∑
j=1

|β
j
|,

where λ > 0 is the shrinkage parameter. Penalizing with the absolute values involves
that a number of the estimated coefficients will become exactly equal to 0. That
means that the Lasso is a variable selection method. The parameter λ can be chosen
by minimization of the Bayesian information criterion or by cross-validation. In this
study we use the Cox Lasso method and the cross-validation implemented in the R
package penalized.

Table 1 summarizes the properties of these tested methods.

3 Numerical results

In this section we compare all the previous methods by considering applications to
survival prediction from gene expression data. Note that all these methods are not
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RCoxPLS PartialCox svdPartialCox PLSCox
1 1 pκ nκ pκ
2 yes no no no
3 yes no - no

svdPLSCox RCox PCRCox Lasso
1 nκ 1 1 1
2 no no yes no
3 - yes - no

Table 1: Summary of the properties of the tested methods. 1. How many times does
the Cox PL need to be maximized in the procedure ? 2. Does the procedure coincide
with the classical Cox estimator in the classical case n < p and when κ = p ? 3. Does
the procedure retrieve the same estimator when working on the svd transformation
instead of the initial matrix?

invariant by standardization of the design matrix but the impact of the standard-
ization is negligible. In this study we present the results for design matrix without
standardization.

3.1 Data

Two real data sets were used to compare the presented procedures. Firstly, the
well-known breast cancer data set by Van’t Veer et al. [23] was used to compare
the methods. Several versions of the data exist, we used those described in [24]. It
consists of expressions of 24885 genes of 295 patients. Like in [24], the number of
genes has been reduced to 5057 using the Rosetta error model (genes with p-values
less than 0.001 in 45 of the 295 samples were removed). The rate of censoring for
this data set is 64%.

The second data set is the so-called DLBCL data set presented in [19]. Expres-
sions profile of 7399 genes were collected for each individual of a 240 sample. As in
[12], we applied a nearest neighbor technique to estimate the missing values. The
missing value is replaced by the average of the 8 nearest neighbors according to the
Euclidian distance. The rate of censoring for this data set is 57.5%.

3.2 Assessing prediction methods

There exist many ways to assess the performance of the survival prediction in the
Cox model: time dependent ROC curves ([12]), likelihood ratio test statistics and/or
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its associated p-value, R2 criterion and Brier score [24], variance of the martingale
residuals [1]. In this paper, we choose to consider

• the R2 criterion based on deviance dev = −2(ln(β̂) − ln(0)), and R2 = 1 −
exp(dev/n)

• the variance of the martingales residuals Ni(τ)− eXT
i β̂Λ̂(β̂, τ), where Λ̂(β, .) is

the Nelson-Aalen estimator of
∫ .
0
λ

• the integrated R2 criterion based on the Brier score defined by

BS(t) =
1

n

n∑
i=1

 Ŝ(t|X i)
2I
(
T̃i ≤ t,∆i = 1

)
Ĝ(T̃i)

+
(1− Ŝ(t|X i))

2I
(
T̃i > t

)
Ĝ(t)


R2
BS(t) = 1− BS(t)

BS0(t)
,

iRBS =
1

max T̃i

∫ max T̃i

0

R2
BS(t)dt.

Here, Ĝ denotes the Kaplan-Meier estimator of the censoring variables Ui and Ŝ(t|X i)

the survival estimator defined by Ŝ(t|X i) = exp(−eXT
i β̂Λ(β̂, t)), BS0 is the Kaplan-

Meier estimator based on the T̃i,∆i (corresponding to a prediction without covari-
ates). The criterion iRBS has already been used in [3], for instance. Note that BS(t)
and R2

BS(t) are piecewise constant functions of the time t. The integral in iRBS is
then simply calculated in summing up the product of the values on each interval by
the length of each interval.

We perform re-randomization study i.e. an out of sample analysis on 100 random
subdivisions of the data set into a learning set and a test set. We choose a test set
size equal to one third of the data (2:1 scheme of [5]). Each subdivision yields a test
set error rate for each predictor; boxplots are used to summarize these error rates
over the runs.

3.3 Hyper-parameters choice

The optimal number of PLS or PCR components is selected by choosing the value
of κ in the range {1, 2, . . . , 6} by a 5-fold cross validation on each of the 100 training
sets. That is, each training set is splited five fold into a test set with size equal to one
fifth of the data and a learning set size equal to four fifth of the remaining data. We
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retain the value of κ which minimizes the mean of variance of the martingales resid-
uals over these 5-fold cross validation. This is also employed for the regularization
parameter λ for RCox for 60 log10-linearly spaced points in the range [10−3; 104]. For
RCoxPLS, the κ in {1, 2, . . . , 6} value and λ for 6 log10-linearly spaced points in the
range [10−3; 102] are simultaneously determined by this cross validation method. An
alternative would be to choose first the optimal Ridge parameter, and in a second
step, the number of components, but this latter procedure appeared to be not very
stable. In particular the λ values does not have the same order for RCoxPLS and
for RCox. The Lasso parameter is selected by a 5-fold cross validation (by using the
optL1 in the package penalized) in the range [10−3; 10] (resp. [10−3; 70]) for the
first (resp. second) data set.

3.4 Results and discussion

Tables 2 and 3 present means and standard deviations (in brackets) for breast can-
cer data and for the DLBCL data over the 100 splits of the following quantities.
For all methods that use a PLS step and for PCRCox we give the mean number
of selected components κ. For Ridge and Lasso type procedures, the mean value
of the shrinkage parameters λ is given. The mean CPU time of corresponding to
the hyper-parameters research (CPU1) and the one corresponding to the procedure
itself (CPU2) are presented. Finally we give the 3 performance indicators for the 8
procedures: RCoxPLS (our), RCox (Ridge Cox without dimension reduction step),
PCRCox (Cox fit on PCA components of the design matrix), PartialCox (Li and Gui’s
approach, with and without svd), PLSCox (Bastien’s approach, with and without
svd) and Cox Lasso. Since no real effect of the standardization can be observed on
the results, we only present here the results without standardization. Figures 1 and
2 give boxplots associated with the 3 performance indicators. Small values of the
variance of martingale residuals and high values of R2 indicators indicate a good
performing method.

For the Breast Cancer data set, we can see that around 1 or 2 components are
necessary to summarize the information to predict the survival times. Note that
RCoxPLS only needs one component on average like PCRCox, whereas the other
methods need 2 on average. Note also that RCox usually chooses very high values of
λ, whereas RCoxPLS chooses reasonable values. The CPU times show that the hyper-
parameters research represents a very large part of time of calculation with respect to
the procedures themselves. In particular, this time is quite important for the Ridge
parameter (RCox and RCoxPLS). Note also that using the svd improve the time of
calculation for PartialCox and PLSCox. In terms of performance, one can see that
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Figure 1: Breast Cancer data: box-plots of variance of the martingale residuals, R2

criterion based on the deviance and integrated R2 based on the Brier score over 100
cross-validation splits. The second figure is the first one zoomed on, after removing
the extreme values of PLSCox and of RCox. (PC for PartialCox and PLSC for
PLSCox)
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Figure 2: DLBCL data: box-plots of variance of the martingale residuals, R2

criterion based on the deviance and integrated R2 based on the Brier score over 100
cross-validation splits. The second figure is the first one zoomed on, after removing
the extreme values of PLSCox and of Ridge. (PC for PartialCox and PLSC for
PLSCox)
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PartialCox and PLSCox (with or without svd) produce less stable results, since they
produce more outliers and wider boxplots, especially as far as the iRBS indicator is
concerned. The RCoxPLS seems to give comparable performance to PCRCox, RCox
and Lasso, except as far as the residuals-based indicator is concerned, for which it is
slightly worse.

For the DLBCL data set, the results are similar to the first data set in terms
of choice of the hyper-parameters, except that PLSCox with svd needs only one
component, like RCoxPLS and PCRCox. The CPU time for the research of hyper-
parameters in RCoxPLS is now better than both RCox and PCRCox. One can see
that PartialCox and PLSCox (with or without svd) perform poorly with respect to
the other methods, especially as far as the variance of the martingale residuals is
concerned. RCox seems again to produce a lot of outliers for this indicator, which
calls for a dimension reduction step. For this data set also, RCoxPLS performs
roughly as well as PCRCox and Lasso.

4 Conclusion

In this work, we compared 8 dimension reduction and/or regularization methods for
survival data in the presence of a great amount of regressors with respect to the
number of individuals, a case which typically arises in gene expression data. In par-
ticular, we present a combination of a Ridge Cox regression and a PLS procedure
that appears to compete quite well with the previous PLS methods. More precisely,
the latter method seems better in performance than PartialCox and PLSCox, two
methods adapting the PLS algorithm for the Cox model. RCoxPLS performs compa-
rably to PCRCox and RCox, but it is faster to compute in some cases (in the DLBCL
case, for instance). Note furthermore, that RCox produces a lot of extreme values,
probably due to a too high value of its hyper-parameter, choosen by cross-validation.

As mentioned by a referee, an interesting problem linked to this one would be
to consider the added value of gene expression data with respect to clinical ones.
Nevertheless, this would require to consider an iterative procedure like suggested
by [11] in the Gaussian case, and it is not clear whether it will be possible for the
PartialCox and PLSCox procedures. Therefore, a great work would be needed, that
is out of the scope of this paper and that we left for future research.
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