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Abstract

We propose a method for high dimensional curve clustering in the presence of inter-
individual variability. Curve clustering has longly been studied especially using splines
to account for functional random effects. However splines are not appropriate when
dealing with high-dimensional data and can not be used to model irregular curves such
as peak-like data. Our method is based on a wavelet decomposition of the signal for
both fixed and random-effects. We propose an efficient dimension reduction step based
on wavelet thresholding adapted to multiple curves and using an appropriate structure
for the random effect variance, we ensure that both fixed and random effects lie in the
same functional space even when dealing with irregular functions that belong to Besov
spaces. In the wavelet domain our model resumes to a linear mixed-effects model that
can be used for a model-based clustering algorithm and for which we develop an EM-
algorithm for maximum likelihood estimation. The properties of the overall procedure
are validated by an extensive simulation study. Then we illustrate our method on mass
spectrometry data and we propose an original application of functional data analysis on
microarray CGH data. Our procedure is available through the R package curvclust

which is the first publicly available package that performs curve clustering with random
effects in the high dimensional framework.
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1. Introduction

Functional data analysis has gained increased attention in the past years, in particular
in high-throughput biology with the use of mass spectrometry. This method is used to
characterize the protein content of biological samples by separating compounds according
to their mass to charge ratio (m/z). Among different technologies Matrix Assisted Laser
Desorption and Ionization, Time-Of-Flight (MALDI-TOF) mass spectrometry is one the
most used and has become standard to improve proteomic profiling of diseases as well
as clinical diagnosis.

Dedicated methods have been developed to analyze such data for differential analysis,
supervised classification and clustering (Hilario et al., 2006). Up to now the functional
setting has mostly been developed for differential analysis (Morris et al., 2008). One
central element is the modeling of the inter-individual variability by using functional
random effects, since subject-specific fluctuations are known to be the largest source
of variability in mass-spec data (Eckel-Passow et al., 2009). In this paper we focus
on the non supervised task which consists in finding groups of individuals whose pro-
teomic landscape is similar. Surprisingly the clustering task received less attention, and
is mainly based on hierarchical clustering on the set of peaks detected across spectra
(Bensmail et al., 2005; Morris et al., 2010). However such method is known to depend
heavily on the peak detection method and has the strong dis-advantage to neglect the
inter-individual variability whereas this information should be central for subgroup dis-
covery. Thus our main focus in this paper is modelling and clustering curves of this type
in a functional mixed model framework.

When dealing with curve clustering in the presence of individual variability, a pi-
oneer work is based on a spline decomposition of the signal (James and Sugar, 2003)
which resumes to a linear mixed effect model on which clustering and low-dimensional
representation can be performed. However splines show two main drawbacks: i) they are
inappropriate when dealing with functions that show peaks and irregularities, ii) they
require heavy computational efforts and so are not adapted to high dimensional data.
On the contrary, wavelet representations appear to be a natural framework to consider
such irregularities through the sequence space of (usually sparse) Besov representation.
Recent works have been done about estimation and inference in the functional mixed
effects framework based on a wavelet decomposition approach. A fully Bayesian ver-
sion has been proposed by Morris and Carroll (2006), with non-parametric estimates
of fixed and random effects as well as between and within-curve covariance matrix esti-
mates to accomodate a wide variety of correlation structures. In addition, Antoniadis
and Sapatinas (2007b) propose a study of both estimation and inference in a frequentist
framework.

In this paper we use a wavelet representation for both fixed and random effects to
perform model-based clustering. Such strategy has been considered by Antoniadis et al.
(2008) and by Ray and Mallick (2006) without random effects for image clustering and
for the analysis of time course experiments respectively. We use a similar approach
and we extend it by adding functional random effects. Inter-individual variability in
the wavelet domain is modeled using results of Antoniadis and Sapatinas (2007b) but
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accomodates a broader range of correlation structure. In particular we allow within curve
correlation to vary over groups and positions. Then we propose a two-step procedure
which involves a dimension reduction step and a clustering step based on the EM-
algorithm. We also propose a model-selection criterion that accounts for the inter-
individual variability, and we define a rigorous simulation framework for curve clustering.
Our method is implemented within the R package curvclust which is the first available
software dedicated to this task. In a first application, we illustrate our method on the
mass spectrometry data first published in Petricoin et al. (2002).

Then our last contribution is to extend the use of functional models to another
type of high throughput data which are Comparative Genomic Hybridization (CGH)
data. The CGH array technology is used to map copy number imbalances between
genomes by hybridizing differentially labeled genomic DNAs on a chip. Fluorescence
ratios are usually analyzed using change-point models to detect segments that correspond
to homogeneous regions on the genome in terms of copy number. Clustering patients
based on their CGH profiles is very promising and has been successfully used to identify
molecular subtypes of cancer. However clustering CGH profiles based on a segmentation
has the same drawbacks that clustering mass spectra based on detected peaks: results
depends on the segmentation methods. Moreover the inter-individual variability has
never been investigated in this type of data, whereas it is likely to represent an important
part of the variability of the data especially for cancer profiles. We use the breast
cancer data of Fridlyand et al. (2006) that have already been analysed for non-supervised
clustering by Van Wieringen et al. (2008). We show the interest of functional random
effects for these type of and we discuss the impacts in terms of analysis and design for
copy number studies.

2. Functional Clustering modeling using wavelets

2.1 Presentation of the model

We observe n curves Yi(t) over M equally spaced time points t = (t1, . . . , tM ) in [0, 1],
with M = 2J for some integer J and we model these data by the linear functional model
of the form:

Yi(t) = µi(t) + Ei(t), Ei(t) ∼ N (0, σ2E). (1)

In the following we will use notation Yi(t) = [Yi(t1), . . . , Yi(tM )]. In the functional
clustering setting we suppose that individuals are spread among L unknown clusters of
prior size π`, ` = 1, . . . , L, and we denote by ζi` the indicator variable that equals 1 if
the ith individual is in the `th group. Given {ζi` = 1}, model (1) becomes

Yi(t) = µ`(t) + Ei(t), (2)

where µ`(t) is the principal functional fixed effect that characterizes cluster `. To handle
subject-specific random deviations from the cluster average curve we introduce random
functions Ui(t) that are modelled as centered Gaussian processes not necessarily station-
ary but independent from Ei(t). Then given {ζi` = 1}, model 2 becomes

Yi(t) = µ`(t) + Ui(t) + Ei(t), Ui(t) ∼ N (0,K`(s, t)) (3)

3



Once defined in the functional domain, the classical approach is to convert the original
infinite-dimensional clustering problem into a finite-dimensional problem using a func-
tional basis representation of the model. At this step James and Sugar (2003) propose a
spline-based representation of model (3) with individuals observed at sparse sets of time
points like in longitudinal data. Our procedure is more adapted to high dimensional
data thanks to the computational efficiency of wavelets, unlike splines that require ma-
trix inversions whose complexity increases with the density of the design. Moreover, as
we will see below, the wavelet representation allows us to account for a wider range of
functional shapes than splines, thanks to their connection with Besov spaces.

Using a wavelet representation of this model allows us to characterize different types
of smoothness conditions assumed on the response curves Yi(t) by the mean of their
wavelet coefficients. Moreover wavelet representations are sparse for a wide variety
of functional spaces, which is crucial when dealing with high dimensional data. This
property will be central while performing dimension reduction. Briefly, we are working
with an orthonormal wavelet basis

{φj0k(t), k = 0, 1, . . . 2j0 − 1;ψjk(t), j ≥ j0, k = 0, . . . , 2j − 1}

generated from a father wavelet φ and a mother wavelet ψ of regularity r, (r ≥ 0). In
this basis the response curve Yi(t) has the following decomposition:

Yi(t) =

2j0−1∑
k=0

c∗i,j0kφj0k(t) +
∑
j≥j0

2j−1∑
k=0

d∗i,jkψjk(t).

In practice we use the Discrete Wavelet Transform (DWT) which can be performed
thanks to Mallat’s fast algorithm with O(M) operations only. We denote by W the
(M ×M)-matrix containing filters of the chosen wavelet basis. The resulting scaling
and wavelet coefficients ci = [ci,j0k](k) and di = [di,jk](jk) of the individual curves are
empirical coefficients. They are related to their continuous counterparts c∗i,j0k and d∗i,jk
by: ci,j0k ≈

√
Mc∗i,j0k and di,jk ≈

√
Md∗i,jk. Moreover, without loss in generality we

assume that j0 = 0. When applying the DWT to model (3) we have

WYi(t) = Wµ`(t) + WUi(t) + WEi,

which resumes to a linear mixed-effect model in the coefficient domains such that

ci = α` + νi + εi

di = β` + θi + εi.

(α`,β`) stand for the scaling and wavelet coefficients of the fixed average curve µ`(t),
and (νi,θi) are the scaling and wavelet random coefficients of Gaussian process Ui(t)
such that [

ν
θ

]
∼ N

([
0
0

]
,G =

[
Gν 0
0 Gθ

])
,
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and ε ∼ N (0, σ2εI) ⊥ (ν,θ)′, with σ2ε = σ2E/M . Note that the model we present could
be extended to more general functional mixed models

Yi(t) = Xiµ`(t) + ZiUi(t) + Ei,

hence our method can be used for the clustering of functional data based on linear fixed
and random functional effects. For the sake of simplicity the derivation of our method
is restricted to the case X = I, Z = I.

2.2 Besov spaces and specification of the variance of random effects

The strength of the wavelet representation is that it allows us to handle very diverse
shapes of curves among which curves with irregularities that lie in particular Besov
spaces. Besov spaces consist of functions that have a specific degree of smoothness.
Roughly speaking, for a Besov space Bs

p,q[0, 1], parameter s indicates the number of
function’s derivatives, where their existence is required in a Lp-sense, q allowing finer
control of the function’s regularity. For a detailed study of Besov spaces, we refer to
Donoho and Johnstone (1998). When dealing with functional mixed-effect models, the
difficulty is that if the fixed-effect curve µ`(t) is supposed to belong to some Besov space,
then the subject-specific deviations arising from the random functions Ui should be
controled so that Ui belongs to the same functional space. As proposed by Abramovich
et al. (1998) and more specifically by Antoniadis and Sapatinas (2007b) in the context
of functional mixed-models, this goal is achieved by controlling the exponential decrease
of the variances of the random wavelet coefficients such that:

Gθ = Diag
jk

(
2−jηγ2θ

)
, ∀j ∈ {j0, . . . , J}, k ∈ {0, . . . , 2j − 1}.

This control requires the introduction of parameter η which is associated with the
regularity of process Ui(t). Abramovich et al. (1998) state that given a mother wavelet
ψ of regularity r, where max(0, 1p −

1
2) < s < r and given that µ`(t) ∈ Bs

p,q[0, 1], then:

Ui(t) ∈ Bs
p,q[0, 1] a.s. ⇐⇒

{
s+ 1

2 −
η
2 = 0 if 1 ≤ p <∞ and q =∞,

s+ 1
2 −

η
2 < 0 otherwise.

At last it can be necessary to allow variance γ2θ to depend on both scale and position
(γ2θ,jk) as pointed by Morris and Carroll (2006). Similarly the model can be enriched by

considering a cluster-specific random effect variance γ2θ,` or γ2θ,`jk. This modelling can
be very powerful to consider different types of random functions Ui.

2.3 Dimensionality reduction

Wavelet representations are sparse for a wide class of functional spaces which makes
their use very efficient when dealing with high dimensional data. In the case of a single
curve, shrinkage estimation and hard thresholding have been developed to set to zero
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the wavelet coefficients whose absolute value is below the threshold σ̂
√

2 logM . The es-
timator σ̂ is usually given by the median absolute deviation (σ̂MAD) of empirical wavelet
coefficients at the finest resolution level divided by 0.6745. In this case, thresholding
has the double advantage to reduce dimensionality and to ensure good reconstruction
properties. Then in this step σε is estimated with the average of the n robust estimates.
In the framework of curve clustering, our goal is to reduce the dimensionality of the
problem to handle heavy datasets and not to find the optimal reconstruction rule. With
this in mind we follow the strategy proposed by Antoniadis et al. (2008) and we first
perform an individual denoising in order to keep coefficients which contain individual-
specific information. This is done by applying non-linear wavelet hard thresholding of
the coefficients di via an universal threshold as described in Donoho and Johnstone
(1994).

Then caution should be taken for the estimation of the noise measurement error.
Firt we consider the average of the n robust estimates since we have many observed
curves. Then the variance of the observations is V(dijk) = 2−jηγ2θ + σ2ε due to the
mixed model structure. Consequently its estimation would require estimates of both
parameters σ2ε and γ2θ . This can be easily done when the individual labels are known.
Then provided that estimation of parameters σ2ε and γ2θ are available, the same threshold
could be simply extended with the level dependent variance. Otherwise, this estimation
is a difficult task when individual labels are unknown since it leads to estimate variance
from samples with different and unknown means. Thereby we suggest to use σ̂MAD in
our procedure even in the framework of mixed models. In this case σ̂MAD estimates the
global variance at the finest resolution level which is equal to

V(diJk) = 2−Jηγ2θ + σ2ε ' σ2ε . (4)

Note that using a level dependent thresholding that considers random effects would
lead to greater variance estimate and hence to a greater dimensionality reduction. How-
ever this estimation is not possible in the non-supervised setting since the group-spectific
means are unknown a priori. Moreover simulations showed that the difference was neg-
ligible (not shown). Finally we take the union set of wavelet coefficients that survived
thresholding (Antoniadis et al., 2008). This method removes coefficients that are ze-
ros for all individuals, and hence which are non informative regarding to the clustering
goal. Note that we do not use the second reduction step proposed by Antoniadis et al.
(2008) that consists in using a truncation procedure based on a Neyman test to increase
the sparsity (Fan, 1996). In this step they test whether, for each wavelet coefficient in
the representative union, its expectation across the curves remains constant against the
assumption that its expected behavior differs among curves. It makes sense since in
their case the curves are pixel-wise intensity curves in image segmentation. This image
structure induces a coherence between adjacent pixels that makes consecutive differences
sparse (see Antoniadis et al. (2008) for more details).
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3. Parameter estimation and model selection

3.1 An EM algorithm for Maximum Likelihood estimation

Once projected in the wavelet domain, the clustering model resumes to a standard
clustering model with additional random effects whose variance is of particular form.
Thus parameters are estimated by maximum likelihood using the EM algorithm. Both
label variables ζ and random effects (ν,θ) are unobserved and the complete data log-
likelihood can be written such that:

logL
(
c,d,ν,θ, ζ;π,α,β,G, σ2ε

)
= logL

(
c,d|ν,θ, ζ;π,α,β, σ2ε

)
+ logL (ν,θ|ζ; G)

+ logL (ζ;π) .

This likelihood can be easily computed thanks to the properties of mixed linear
models such that:[

ci
di

]∣∣∣∣ [ νiθi
]
, {ζi` = 1} ∼ N

([
α` + νi
β` + θi

]
, σ2εI

)
.

The EM algorithm provides the posterior probability of membership to cluster `, τi`
which is updated such that:

τ
[h+1]
i` =

π
[h]
` f

(
ci,di;α

[h]
` ,β

[h]
` ,G

[h] + σ
2[h]
ε I

)
∑

p π
[h]
p f

(
ci,di;α

[h]
p ,β

[h]
p ,G[h] + σ

2[h]
ε I

) ,
with f() the probability density function of the Gaussian distribution. Moreover, using
Hendersons trick we get the linear prediction of the random effects such that:

ν̂
[h+1]
i` =

(
ci −α[h]

`

)
/
(

1 + λ[h]ν

)
θ̂
[h+1]

i` =
(
di − β[h]

`

)
/
(

1 + 2jηλ
[h]
θ

)
with (λν , λθ) = (σ2ε/γ

2
ν , σ

2
ε/γ

2
θ ). As for the maximization part, it provides the estimators

of the mean curve coefficients

α
[h+1]
` =

n∑
i=1

τ
[h]
i`

(
ci − ν̂ [h]i`

)
/N

[h]
` ,

β
[h+1]
` =

n∑
i=1

τ
[h]
i`

(
di − θ̂

[h]

i`

)
/N

[h]
` ,
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with N` =
∑

i τi`. Moreover, the EM algorithm provides a ML estimator of the random
effect variance such that:

γ
2[h+1]
θ =

1

n(M − 1)

∑
ijk`

2jητ
[h]
i`

(
θ̂2ijk`

[h]
+

σ
2[h]
ε

1 + 2jηλ
[h]
θ

)
,

γ2[h+1]
ν =

1

n

∑
i`

(
ν̂2i00`

[h]
+

σ
2[h]
ε

1 + λ
[h]
ν

)
.

As last point, we mention that η can be estimated by maximization of the likelihood
using the golden search section algorithm Kiefer (1953) rather than gridded optimization,
and the EM algorithm can be speeded-up using the vector-ε algorithm as proposed by
Kurodaa and Sakakiharab (2006).

3.2 Choosing the number of clusters using a BIC

We propose to choose the number of clusters using the framework of penalized likeli-
hoods. In the following we use notations mL[γ2],mL[γ2` ] for clustering models with L
groups with constant and heterogeneous variances respectively. We first use the Bayesian
Information Criterion and we select the dimension that maximizes

BIC(mL[γ2]) = logL
(
c,d; π̂, α̂, β̂, Ĝ, σ̂2ε ,mL[γ2]

)
− |mL[γ2]|

2
× log(N).

This classical criterion is a penalized version of the observed-data log-likelihood where
|mL[γ2]| is the number of free parameters of a model with L clusters, with |mL[γ2]| =
|α|+ |β|+ |G|+ |π| − 1 + |σ2ε | = (M + 1)L+ |G|, the dimension of G depending on the
variance structure of the random effects.

When considering mixed models, it is likely that the prediction of the random ef-
fects provides information regarding the number of clusters to select. In order to use
information from hidden variables we propose to derive an Integrated Classification Like-
lihood criterion in the spirit of Biernacki et al. (2000). The ICL criterion is based on
the integrated likelihood of the complete data:

logL(c,d,ν,θ, ζ|mL[γ2` ]) = logL(c,d|ν,θ, ζ,mL[γ2` ]) + logL(ν,θ|ζ,mL[γ2` ]) + logL(ζ|mL[γ2` ]).

For the first term we use a BIC-like approximation such that:

−2 logL(c,d|ν,θ, ζ,mL[γ2` ]) ' NM log RSS(c,d|ν,θ) + (ML+ 1)× log(N),

with RSS(c,d|ν,θ, ζ) the Residual Sum of Squares defined such that:

RSS(c,d|ν,θ, ζ) =
∑
i`

ζi` ‖ci − α̂` − νi`‖2 +
∑
i`

ζi`

∥∥∥di − β̂` − θi`∥∥∥2 .
Then we derive the integrated log-likelihood of the random effects. We assume a non-

informative Jeffrey prior for the variance parameters such that g(γ2ν,`|ζ,mL[γ2` ]) ∝ 1/γ2ν,`.
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Using notations N` =
∑N

i=1 ζi` and RSS`(ν, ζ) =
∑N

i=1 ζi`ν
2
i,`, we get:

−2 logL(ν|ζ,mL[γ2` ]) '
∑
`

N` log RSS`(ν, ζ)− 2
∑
`

log Γ

(
N`

2

)
.

Similarly for the detail coefficients we get:

−2 logL(θ|ζ,mL[γ2` ]) ' (M − 1)
∑
`

N` log RSS`(θ, ζ)− 2
∑
`

log Γ

(
N`(M − 1)

2

)
.

Finally for the classification term a Dirichlet prior is assumed for g(π|mL) and the
corresponding integrated likelihood is approximated such as

logL(ζ|mL[γ2` ]) '
L∑
`=1

N` log(N`/N)− (L− 1)

2
log(N).

The last step of this derivation is to replace hidden variables by their predictions
provided by the EM algorithm. Random effects (ν,θ) are replaced by their BLUP (ν̂, θ̂),
and label variables ζ are replaced by their conditional expectation τ . Put together we
obtain the following integrated classification likelihood criterion (ICL):

− 2

N
× ICL(mL[γ2` ]) = M log RSS(c,d|ν̂, θ̂, τ )

+
∑
`

π̂`

(
log RSS`(ν̂, τ ) + (M − 1) log RSS`(θ̂, τ )

)
− 2

N

∑
`

{
log Γ

(
N̂`

2

)
+ log Γ

(
N̂`(M − 1)

2

)}

− 2

L∑
`=1

π̂` log(π̂`) +
(M + 1)L

N
× log(N).

4. Simulations and Comparison of methods

4.1 Definition of a general simulation framework

In this Section we propose to define a unified framework for synthetic data generation for
functional mixed models and functional clustering models. Using this unified strategy
different methods can be fairly compared based on appropriately simulated data. First
we properly define the Signal to Noise Ratio (SNR) in the functional domain. The SNR
is defined as the ratio of signal power to the power of the measurement noise corrupting
the signal. In our case, the power of the signal is defined such as:

lim
T→∞

1

T

∫ −T
2

T
2

∑
`

π`E
[
|µ`(t) + Ui(t)|

]2
dt =

1

M

L∑
`=1

π`

2j0−1∑
k=0

α2
j0k` +

∑
j≥j0

2j−1∑
k=0

β2jk`


+ 2j0γ2ν +

2j0(1−η)γ2θ
1− 2(1−η)

.
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The derivation of such formula is given in the Appendix. Hence we need to control two
terms: SNRµ that accounts for the power of the fixed effects:

SNR2
µ =

1

Mσ2E

L∑
`=1

π`

2j0−1∑
k=0

α2
j0k` +

∑
j≥j0

2j−1∑
k=0

β2jk`

 ,

and the power of the random effect. For this purpose we introduce parameter

λU = σ2E/

(
γ2ν +

γ2θ
1− 2(1−η)

)
,

using an analogy with the λ parameter used in the EM algorithm. When performing
simulations, SNRµ usually lies in {0.1, 1, 3, 5, 7} and λU varies in {1/4, 1, 4} such that
small values of λU indicate an important variance for the random effects. In practice we
also choose γ2ν = γ2θ .

To build fixed effects for simulations we generalize the approach described in Amato
and Sapatinas (2005) which uses the well-known synthetic functions Blocks, Bumps,
Heavisine and Doppler originally proposed by Donoho and Johnstone (1994). We
choose L fixed effects for each synthetic function classes with the following expressions
for t ∈ [0, 1] and ` = 1, . . . , L

µBlocks` (t) = 10
11∑
r=1

(
1 +

1

2
h`rsgn(t− v`r)

)
,

µ
Bumps
` (t) =

11∑
r=1

h`r/

(
1 +
|t− vr|
w`r

)4

,

µHeavisine` (t) = 4 sin(4πt)− sgn(t− v`1)− sgn(v`2 − t),

µ
Doppler
` (t) =

√
t(1− t) sin

(
2.1π/(t− t`0)

)
,

where for Blocks and Bumps v`r are the locations of the jumps chosen ramdomly in [0, 1],
h`r are the heights of the jumps and w`r are the width of the bumps. As for Heavisine,
v`1, v

`
2 stand for the locations of the two discontinuities and for Doppler t`0 is the phase

randomly chosen in [0, 1].

Once parameters (SNRµ, λU, {µ`(t)}`) have been chosen (ie values for σ2E , γ
2 and

α`,β` are deduced), our simulation procedure is performed in the wavelet domain such
that realizations of centered Gaussian distribution with variance 2−jηγ2 are added to the
fixed effect coefficients to account for inter-individual variability. Then Gaussian noise
with variance σ2ε = σ2E/M is added to account for measurement errors. This unified
method ensures that both fixed and random effects lie in the same Besov space, as
mentionned earlier, and observed signals Yi(t) can be recovered using the inverse DWT.
An example of such simulated data is given in Figure 1.
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4.2 Simulation Design and indicators of performance

Since too many configurations could be explored using simulations, we propose to fix
the number of individuals at n = 50, the number of groups at L = 2, the length of the
signals at M = 512, and parameter η is set to 2. Then the simulation design explores the
following configurations: SNRµ ∈ {0.1, 1, 3, 5, 7}, λU ∈ {1/4, 1, 4}, π ∈ {0.1, 0.25, 0.5},
each simulation being repeated 50 times. In terms of methods, we compete functional
clustering models with or without mixed effects (FCMM/FCM, Functional Clustering
Mixed Model/Functional Clustering Model), and we consider (or not) the dimension
reduction method based on the union of coefficients. We compare these 4 methods to
the functional clustering mixed model based on splines as proposed by James and Sugar
(2003) whose R code is available on the web page of the authors 1. Our purpose is to
highlight the benefit of using wavelets when dealing with high dimensional data.

The performance of the clustering procedures are compared using the Empirical Error
Rate (EER) defined by

EER =
1

n

n∑
i=1

L∑
`

I{ζ̂i` 6= ζi`},

where ζ̂i` is the predicted class for individual i and ζi` is the true class. This criteria
ranges from 0, for which no classification error is made to 1 which means that all indi-
viduals are misclassified. We finally consider the speed of execution of each procedure.

4.3 Clustering performance

Figure 2 presents the variations of the Empirical Error Rates according to SNRµ and
to the strength of the random effect (a small λU indicates a strong random effect). A
general comment is that the Functional Clustering Mixed Model (FCMM) outperforms
all methods in terms of EER compared with the Functional Clustering Model (FCM)
and Splines. FCMM has two main advantages. First the modeling of functional random
effects leads to a better identification of the informative structures in terms of clustering.
Table 1 clearly shows that FCMM is the best method to estimate the variance of the
residuals contrary to FCM that provides over-estimates (which leads to poor clustering
performance).

Then dimension reduction increases the performance of FCMM by removing coef-
ficients that are not informative with respect to clustering. This is not true for the
Functional Clustering Model (FCM) for which dimension reduction increases the EER.
This trend can be explained by the bad estimation of the error’s variance when random
effects are not considered in the model. The selection of the coefficients that all survived
thresholding leads to worst estimators in the case of FCM but the impact is moderate
on the FCMM (Table 1).

Our last point concerns the time of execution of each method. When dealing with
high dimensional data, it is crucial to propose methods that show reasonnable computa-

1. http://www-bcf.usc.edu/~gareth/
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tional time. Table 1 clearly shows that using wavelet-based Functional Clustering Models
gives the best execution times, and even when random effects are considered, time of
execution remains moderate (less than 10 minutes for n = 50 individuals and M = 512
positions). Splines are known to be poorly efficient in terms of computational efficiency.
This issue becomes critical when dealing with functional models with many individuals.
The size of our simulated datasets was the upper limit that could be analyzed by Splines,
in particular due to memory constraints. To this extent, our R package curvclust is
the only freely available software that performs curve clustering with functional random
effects within a reduced amount of time in high dimension.

5. Applications

5.1 Mass Spectrometry data

We first consider a SELDI-TOF mass spectrometry dataset issued from a study on ovar-
ian cancer (Petricoin et al., 2002). The sample set includes serum profiles of 162 subjects
with ovarian cancer and 91 non-cancer control subjects. Each serum profile consists of
15154 recorded intensities corresponding to distinct m/z values. This data set was
produced by the Ciphergen WCX2 protein chip. It is available through the Clinical Pro-
teomics Programs Databank (http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp,
ovarian dataset 8-7-02). Before clustering, raw data are background corrected using
a quantile regression procedure, and spectra are aligned using a procedure based on
wavelets zero crossings (Antoniadis et al., 2007a). Then the ovarian cancer dataset is
made of 8192 intensities within the range of m/z ratio [1500,14000], ratios below 1500
being discarded due to the effects of matrix. We compete wavelet-based functional clus-
tering models on these data considering different random effect structures. Procedures
are applied in a non supervised framework to retrieve the known labels (cancer/control)
and comparisons are based on empirical error rate estimates (EER, Table 2). Note that
the spline-based procedure of James and Sugar (2003) could not be applied on these
data because of their too high dimensionality.

The first result is that empirical error rates are high for all methods and that the
introduction of random effects slightly decreases the EER whatever the random effect
structure (from 38% to ∼ 25%). To investigate the origins of such modest performance,
we also performed clustering based on group-wise aligned spectra instead of global align-
ment (which should be done in the unsupervised context). Results are striking: when
spectra are aligned according to known labels model m2[γ

2
jk] results in one mismatch

only (EER=0.4%). This results leads to the following conclusions. First spectra align-
ment is a challenge when performing subgroup discovery, and the task is much more
difficult compared with supervised clustering for which labels are known. Indeed inaccu-
racy in spectra alignment could lead to artificial differences in individual serum profiles
which decreases the performance of clustering. A promising (but challenging) perspec-
tive would be to perform clustering and alignment simultaneously. Moreover as wavelets
have been shown to perform best for peak-detection/alignment (Yang et al., 2009), our
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wavelet-based procedure for clustering would be a good starting point to integrate both
strategies.

Then a second result is that best clustering performance are provided by a functional
clustering mixed model for which the random effect has a covariance structure that
depends on both scale and location (γ2jk). This implies that inter-individual variations
occur at specific ranges of m/z values, which reinforces the importance of correct spectra
alignment. Interestingly, only an important proportion of variance terms are close to
zeros which would make the BLUPs sparse if dimension reduction was performed on
random effects. Unfortunately, the task is difficult in the non-supervised setting since
BLUPs can not be computed without the knowledge of group-specific means (which
would be possible in the supervised setting). Thus dimension reduction for clustering
using mixed functional model remains challenging and still needs to be investigated.

5.2 Comparative Genomic Hybridization data

In this last application we consider the clustering of breast-cancer tumors based on
their copy number aberration profiles measured by array-based Comparative Genomic
Hydridization (Fridlyand et al., 2006). Array CGH is a widely used technology that en-
ables the characterization of genome-wide chromosomal aberrations using the microarray
technology. Many statistical methods have been developed to analyze these data (van de
Wiel et al., 2011). They are mainly based on segmentation methods to retrieve segments
of homogeneous copy number along the genome.

Clustering individuals based on their CGH profiles is a very challenging issue and
has already been considered to identify new subtypes of tumors (Chin et al., 2007).
For now, subgroup discovery is mainly performed using hierarchical clustering based
on segmentation results (Van Wieringen et al., 2008). However the inter-individual
variability has never been quantified in these data, contrary to mass spectrometry for
instance. Thus using our method for clustering with the Haar basis (piece-wise constant
basis) is a way to perform subgroup discovery by considering random effects. In the
Fridlyand et al. (2006) paper, the authors identified 3 main subtypes of breast cancer
that differ with respect to level of genomic instability. Interestingly, Van Wieringen et al.
(2008) re-analyzed the data and do not mention much correspondance between the two
clustering results. Moreover, they discovered much more subgroups and noticed that
“the samples in the study could be more heterogeneous than previously implied”.

We also find more subgroups than the original study, with 5 clusters selected by
ICL (2 by the BIC). First, this shows the power which is gained when considering the
random effect in the selection step. Then we were able to identify the 1q/16p subtype
on the complete dataset (with 1 mismatch). This subtype was identified in the first
study (Fridlyand et al., 2006) but not by other clustering methods (Van Wieringen
et al., 2008) whereas it is associated to the best patient outcome. Since 2 of the 3
identified clusters in the original paper concern ER positive tumors, we also performed
our method on this subset of patients and retrieve the 1q/16p subtype without mismatch.
In this classification, one cluster was made of 3 tumors (S0041, S0041, S1519) also
identified as similar in the original paper. As a last resul Table 3 indicates that the
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estimated signal to noise ratio is low and the impressive strength of the random effect
(λ̂U ∼ 10−4) also indicates that the inter-individual variability is ultra-high in these
data. As a consequence, finding clusters with biological significance will require rather
hundreds/thousands of patients compared with 55 in the original study.

6. Conclusion

In this work we provide a methodology for model-based clustering of functional data in
the presence of inter-individual variability. Our method is based on a wavelet decompo-
sition of the signal and on a mixture model that integrates random effects. We illustrate
the power of such an approach in two different fields of high-throughput biology using
our package curvclust, and we show the potentialities of functional models on array
CGH data. Overall, random effects allow us to properly model the variance structure of
the data, and to exhibit the high proportion of variance due to inter-individual variabil-
ity. This part is usually omitted in high-throughput modelling. First perspective will
concern the generalization of our approach to the supervised setting. Finding biomark-
ers has received enormous attention in the past years, with moderate success due to the
lack of reproducibility. Our study in the non-supervised framework shows that the inter-
individual variability is important in these data, which may be one explanation of the
difficulty to find reliable markers. Integrating random effects in the supervised setting
may produce more moderate results, but at least they would be more representative of
the biological variability. Finally methodological perspectives of this work will mainly
concern dimension reduction. The task is difficult in the non-supervised setting and the
illustration on MS data shows that dimension reduction should be performed for fixed
and for random effects which remains challenging. This would provide a better repre-
sentation of the signal by thresholding coefficients with poor information, and would
increase the speed of the estimation algorithm that is sensitive to the number of selected
coefficients, which is of central interest of high dimensional data.
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7. Appendix

7.1 Derivation of the signal power

Considering compactly supported functions on [0, 1] and a centered Gaussian process for
Ui(t), the mean power of the signal is derived such that:

lim
T→∞

1

T

∫ −T
2

T
2

∑
`

π`E
[
|µ`(t) + Ui(t)|

]2
dt =

∑
`

π`

∫ 1

0
|µ`(t)|2dt+

∑
`

π`

∫ 1

0
E
[
Ui(t)

2
]
dt.

Using the law of the conservation of energy, the power of the fixed effects is:

∑
`

π`

∫ 1

0
|µ`(t)|2dt =

1

M

L∑
`=1

π`

2j0−1∑
k=0

α2
j0k` +

∑
j≥j0

2j−1∑
k=0

β2jk`

 .

As for the power of the random effects it is derived using the orthonormality of wavelet
basis

∫ 1

0
E[Ui(t)

2]dt =

∫ 1

0
E

2j0−1∑
k=0

νij0kφj0k(t) +
∑
j≥j0

2j−1∑
k=0

θijkψjk(t)

2dt

=
2j0−1∑
k=0

γ2ν +
∑
j≥j0

2j−1∑
k=0

2−jηγ2θ

= 2j0γ2ν +
2j0(1−η)γ2θ
1− 2(1−η)

.
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Figure 1: Example of simulated curves with varying SNRµ and λU (One curve per clus-
ter).
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Figure 2: Variation of the Empirical Error Rate (EER) for different estimation meth-
ods: Functional Clustering Mixed Model (FCMM), Functional Clustering
Model (FCM), with or without dimension reduction (‘union’), and Splines.
In columns different intensities for the variance of the random effect are con-
sidered: λU = 0.25/1/4 for a strong/mild/small random effect. In rows are
considered different shapes for the mean curve of each group (Haar, Bumps,
Heavisine, Doppler).
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Bias TOE
SNR2

µ 0.1 1 3 5 7 0.1 1 3 5 7

Haar -2.57 -2.66 -2.96 -3.02 -2.99 2.3 2.4 2.3 2.4 2.3
FCM Bumps -2.50 -2.69 -2.93 -2.93 -2.93 2.6 2.5 2.6 2.5 2.5

Heavisine -2.15 -2.17 -3.22 -4.30 -2.50 2.8 2.7 2.7 2.7 2.8
Doppler -2.73 -3.07 -3.32 -3.33 -3.33 2.9 3.2 3.1 3.2 3.2

Haar -12.93 -11.33 -9.42 -9.38 -8.89 0.4 0.4 0.5 0.5 0.5
FCMu Bumps -12.98 -11.11 -13.46 -11.98 -11.93 0.5 0.5 0.5 0.5 0.5

Heavisine -11.62 -10.20 -10.07 -12.05 -15.68 0.5 0.5 0.5 0.5 0.5
Doppler -14.75 -13.14 -11.33 -8.59 -7.87 0.5 0.5 0.5 0.6 0.6

Haar 0.11 0.05 -0.01 -0.01 -0.00 16.0 16.1 15.6 15.8 16.0
FCMM Bumps 0.09 0.04 0.01 0.01 0.01 16.1 16.3 15.2 15.3 15.4

Heavisine 0.10 0.09 0.08 0.03 0.02 16.4 16.2 16.0 16.4 15.9
Doppler 0.08 0.01 -0.02 -0.02 -0.01 17.5 17.4 17.5 16.4 17.0

Haar -0.11 -0.06 0.03 0.06 0.05 6.9 7.1 7.6 7.6 7.6
FCMMu Bumps -0.10 -0.04 -0.08 -0.08 -0.05 6.7 6.7 6.8 6.7 6.7

Heavisine -0.10 -0.10 -0.18 -0.21 -0.19 7.1 7.3 6.8 6.8 6.8
Doppler -0.18 -0.06 -0.04 -0.16 -0.11 7.3 7.1 7.3 7.8 7.9

Haar . . . . . 25.5 26.2 23.0 23.6 22.3
Spline Bumps . . . . . 23.3 26.6 22.0 21.2 21.7

Heavisine . . . . . 24.2 21.6 21.8 22.4 22.3
Doppler . . . . . 33.2 32.4 24.2 24.8 24.2

Table 1: Relative bias of the estimator of the error variance: (σ2 − σ̂2)/σ2, and average
time of execution in minutes for different models on simulated data (n = 50 in-
dividuals, M = 512 positions). FCM, functional clustering model, FCMM func-
tional clustering mixed model. FCMu/FCMMu: functional clustering (mixed)
models based on the union of coefficients for dimension reduction. Programs
were run on a cluster of 2 octo-bicore Opteron 2.8Ghz and 2 octo-quadcore
Opteron 2.3GHz.

m2 m2[γ
2] m2[γ

2
` ] m2[γ

2
jk] m2[γ

2
jk`]

global alignment 38 24 24 23 23
group alignment 20 21 22 0.4 36

Table 2: Empirical Error Rates (in percent) for the Petricoin et al. (2002) data for
different models: functional clustering without random effects, 2 groups (m2),
functional clustering with random effect with different variance structures for
the random effect: constant m2[γ

2], group m2[γ
2
` ], scale-position m2[γ

2
jk], or

group-scale-position dependent m2[γ
2
jk`].
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Complete dataset

cluster ID ŜNR
2

µ λ̂U

1 2.1e-4 3.9e-04
2 2.3e-3 3.8e-05
3 1.3e-3 6.4e-04
4 (1q/16p) 1.5e-3 1.3e-04
5 9.3e-4 4.3e-05

ER+ dataset

cluster ID ŜNR
2

µ λ̂U

1 2.1e-3 2.2e-04
2 7.8e-3 1.9e-05
3 1.1e-2 3.8e-05
4 (1q/16p) 4.4e-3 4.4e-04

Table 3: Estimated SNR2
µ and λU for the breast tumor dataset of Fridlyand et al. (2006).
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