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Zero-inflated Cox regression with a detection limit.

Roel Braekers1 and Paul D. Markel2

Abstract

In some clinical, environmental or industrial trials, fixed-detection limits can result in a positive response variable

that is type I left-censored. It is common to assume in this setting that this response variable has an absolute

continuous distribution. However we notice that the number of censored observations is often larger than expected

under this assumption. Furthermore we also want to investigate the influence of several covariates on this response

variable. To solve these issues, we introduce in this paper a zero-inflated Cox regression model in which we assume

a zero-inflated distribution for the underlying response variable of interest. We model the conditional probability

of having a zero value for the response, a failure, by a logistic regression model. For the non-zero part of the

response variable we use a Cox regression model. Subsequently, we present a joint model comprising a logistic

regression used with the censoring indicator as a response variable plus an ordinary Cox regression model for

right censored data used with the subgroup of uncensored observations. We note that this implies that the

asymptotic theory for the logistic and Cox regression model remains valid in this zero-inflated Cox regression

model. Afterwards we apply this model to a practical study of ethanol-induced anesthesia in genetically-selected

mice and compare the results with a parametric Logistic-Weibull model.

Keywords: Cox regression, fixed detection limit, left censoring, mixture.

1 Introduction

In some clinical, environmental or industrial trials, the primary interest is in a positive random variable

such as a CD4+ count in AIDs research, a concentration of a toxic chemical compound in a river-system

or in a industrial solution, . . . . However we note that there are often difficulties in measuring this

positive variable. For example, if we measure the concentration of a chemical compound, the measuring

apparatus might not give a correct result below a certain fixed limit due to technical limitations. In this

case, the positive random variable is censored below a fixed detection limit and represents a distribution

of type I left-censored observations. Several methods have been proposed in the literature to handle this

type of data. In parametric modeling, both a likelihood method and (multiple) imputation method are

used to find estimates for the parameters of a model (Hughes (1999), Lyles et al. (2001), Thiébaut and

Jacqmin-Gadda (2004)). For nonparametric models, the Kaplan-Meier estimator for right-censored data

was used after the time-axe was reversed (Blackwood (1991), She (1997)).
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In this paper, we study a phenomenon often occurring with type I left-censored data; namely, we notice

that the amount of censored observations below the detection limit is larger than what we expect if the

positive variable has an absolute continuous distribution. A possible explanation of this phenomenon

is given in a following example. In a clinical study of ethanol-induced anesthesia (sleep time) in mice,

some subjects do not fall asleep. However, due to the fixed detection limit resulting from the assessment

method in this study, it was not possible to distinguish between subjects who did not fall asleep and those

that slept only a very short time, i.e., below the detection limit. The group of censored observations

consists in this case of two different groups of individuals. There is a group of subjects that did not show

any response, i.e., non responders or failures. In contrast, there is a group of subjects with a very small

positive response, i.e., responders or success. To model this excess of censored observations, we assume

in this paper that the underlying positive variable of interest has a zero-inflated mixture distribution as

follows

Y ∼ FY (y) = π + (1 − π)Fc(y)

where π is a positive probability of having a response equal to zero and Fc is a positive absolute continuous

distribution for a response strictly larger than zero. We regard the individuals which have a non-zero

response for the variable as responders or success. While the individuals with a response equal to zero

are referred to as non responders or failures. Due to the fixed detection limit, we note that we cannot

fully discriminate between these groups since all the non-responders are censored observations but not

all censored observations are non-responders.

The structure of this article is as follows: In Section 2, we introduce mathematically a zero-inflated Cox

regression model with a zero-inflated distribution of the response variable with covariates. Furthermore

we show in this section how this zero-inflated Cox model is equivalent to a joint model of a logistic

model on the censoring indicator and an ordinary Cox regression model on the subgroup of uncensored

observations. Afterwards, in Section 3, we illustrate this model on a practical data set of ethanol-induced

sleep time in mice. In Section 4 we give some conclusions about our results and some indications about

future research.

2 Methodology

In this section, we introduce a zero-inflated semiparametric Cox regression model for left-censored data

under a fixed detection limit. Let us denote by Y a positive response variable of interest. We assume

that this variable has a zero-inflated mixture distribution with a positive probability of having a value

equal to zero and with a continuous distribution for the non-zero part. Furthermore we assume that this

response variable depends on two group of covariates Z and X which may have covariates in common.

The conditional distribution of the response Y is given by

FY |Z,X(y|z,x) = P (Y ≤ y|Z = z,X = x) = π(z) + (1 − π(z))Fc|X(y|x) (1)

where Fc|X is a continuous conditional distribution for the non-zero part of the response Y and π(z) is

the probability for a failure.

However, in a variety of studies, the response variable Y is not observed fully due to a fixed detection

limit d > 0. This variable is only observed when it exceeds the detection limit. For observed data, we

have the following variables

T = max(Y, d) and δ = I(Y ≥ d)
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where T is the maximum of the response variable and the detection limit, and δ indicates whether the

response is greater than the detection limit. Using (1), we find that the conditional distribution for the

observed variable T is given by

FT |Z,X(t|z,x) =

{

0 , t < d

π(z) + (1 − π(z))Fc|X(t|x) , t ≥ d
.

Sofar, we did not specify how the probability π(z) of having a zero-response depends on the covariates Z

or how the conditional distribution Fc|X for the success depends on the covariates X. In the literature,

mostly parametric models are considered for each of these quantities (Moulton and Halsey (1995), Taylor

et al.(2001)). However in this paper we only partly follow this trend. For the probability π(z) for a

failure, we assume a parametric logistic regression model

Logit π(z) = γt
Z (2)

where γ is the vector of coefficients for the different covariates Z. On the other hand, for the conditional

distribution function Fc|X of the non-zero part of the response, we use a Cox regression model (Cox

(1972)) to model this distribution and assume that the conditional hazard function has the following

form

λc(t|x) =
fc|X(t|x)

F̄c|X(t|x)
= λ0(t)e

βt
X (3)

where λ0(t) is an unknown baseline hazard function and the vector β is a vector of coefficients for the

covariates X. In this expression fc|X is the conditional density function of the non-zero part of the

response Y . We can rewrite the conditional distribution function in this model as

Fc|X(t|x) = 1 − e

−eβt
x

t
∫

0

λ0(s)ds

.

To estimate the different parameters in this model, we construct a maximum likelihood function. There-

fore, let (T1, δ1,Z1,X1), . . . , (Tn, δn,Zn,Xn) be a sample of the observed variables (T, δ,Z,X). Hereby

Zi and Xi are the vectors of covariate values for individual i. Before we assemble the likelihood function,

we first derive the conditional sub-distributions for the (un)censored observations. We have that

P (T ≤ t, δ = 1|Z = z,X = x) = P (max(Y, d) ≤ t, Y ≥ d|Z = z,X = x)

=

{

0 , t < d

P (d ≤ Y ≤ t|Z = z,X = x) , t ≥ d

=

{

0 , t < d

(1 − π(z))(Fc|X(t|x) − Fc|X(d|x)) , t ≥ d

and

P (T ≤ t, δ = 0|Z = z,X = x) =

{

0 , t < d

π(z) + (1 − π(z))Fc|X(d|x) , t ≥ d

We note that the conditional sub-distribution of the uncensored observations is a continuous distribution

and the conditional sub-distribution of the censored observations is degenerate at the detection limit d.

From these quantities, we construct the likelihood function of (1) which is given by

L =
n
∏

i=1

[

∂

∂t
P (T ≤ t, δ = 1|Z = zi,X = xi)

∣

∣

∣

∣

t=ti

]δi

[P (T ≤ d, δi = 0|Z = ziX = xi)]
1−δi

3



=

n
∏

i=1

[

(1 − π(zi))fc|X(ti|xi)
]δi
[

π(zi) + (1 − π(zi))Fc|X(d|xi)
]1−δi

After filling the models (2) and (3) in the likelihood, we get

L =

n
∏

i=1

[

(1 − π(zi))λc(ti|xi)F̄c|X(ti|xi)
]δi
[

π(zi) + (1 − π(zi))Fc|X(d|xi)
]1−δi

=
n
∏

i=1













λ0(ti)e
βt

xie

−eβt
xi

ti
∫

0

λ0(s)ds

1 + eγtzi













δi












eγt
zi + 1 − e

−eβt
xi

d
∫

0

λ0(s)ds

1 + eγtzi













1−δi

.

Taking the logarithm, we get the loglikelihood

l =

n
∑

i=1

δi



log(λ0(ti)) + βt
xi − eβt

xi

ti
∫

0

λ0(s)ds − log(1 + eγt
zi)



 (4)

+

n
∑

i=1

(1 − δi)






log






eγt

zi + 1 − e

−eβt
xi

d
∫

0

λ0(s)ds






− log(1 + eγt

zi)






.

In this expression we estimate the cumulative baseline hazard by a nonparametric step function. Let

0 = U0 < U1 < . . . < Uk denote the distinct uncensored lifetimes, we assume that the baseline hazard is

constant between these values and define an estimator for the cumulative baseline hazard as

t
∫

0

λ̂0(s)ds =

k
∑

j=1

λjI(Uj ≤ t).

By the fixed detection limit, we note that the smallest uncensored observation has a lifetime greater or

equal than the detection limit. Since the sub-distribution of the uncensored observations is a continuous

distribution, we assume that all observed uncensored lifetimes are strictly greater than the detection

limit. This is the case for most of the data sets. However this greatly simplifies the loglikelihood

function because the integral in the contribution of a censored observation is zero. Therefore the log

likelihood follows:

l =

n
∑

i=1

δi



log





k
∑

j=1

λjI(Uj = ti)



+ βt
xi − eβt

xi

k
∑

j=1

λjI(Uj ≤ ti) − log(1 + eγt
zi)





+

n
∑

i=1

(1 − δi)
[

γt
zi − log(1 + eγt

zi)
]

.

To find the λj ’s in this expression, we differentiate this loglikelihood and solve the score equations.

∂l

∂λj

=
n
∑

i=1

δi











I(Uj = ti)
k
∑

j=1

λjI(Uj = ti)

− eβt
xiI(Uj ≤ ti)











= 0, j = 1, . . . , k
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⇔ λj =

n
∑

i=1

δiI(Uj = ti)

n
∑

i=1

δieβtxiI(ti ≥ Uj)
, j = 1, . . . , k

In the loglikelihood function, this gives the following profile loglikelihood, depending only on the param-

eters γ and β

l(γ, β) =

n
∑

i=1

δi









log









k
∑

j=1

n
∑

i=1

δiI(Uj = ti)

n
∑

i=1

δieβtxiI(ti ≥ Uj)









+ βt
xi − eβt

xi

k
∑

j=1

n
∑

i=1

δiI(Uj = ti)

n
∑

i=1

δieβtxiI(ti ≥ Uj)
I(Uj ≤ ti)









+ log

n
∏

i=1

[

eγt
zi

1 + eγtzi

]1−δi [

1

1 + eγtzi

]δi

.

We note that this profile loglikelihood splits in two parts l(γ, β) = l1(γ) + l2(β) where

l1(γ) = log

n
∏

i=1

(

eγt
zi

1 + eγtzi

)1−δi (

1

1 + eγtzi

)δi

is the loglikelihood of an ordinary logistic regression model with the indicator 1−δi as response variable.

On the other hand, the second part of the loglikelihood function is equal to

l2(β) =
n
∑

i=1

δi









log









k
∑

j=1

n
∑

i=1

δiI(Uj = ti)

n
∑

i=1

δieβtxiI(ti ≥ Uj)









+ βt
xi − eβt

xi

k
∑

j=1

n
∑

i=1

δiI(Uj = ti)

n
∑

i=1

δieβtxiI(ti ≥ Uj)
I(Uj ≤ ti)









= log

n
∏

i=1









eβt
xi

k
∑

j=1

n
∑

i=1

δiI(Uj = ti)

n
∑

i=1

δieβtxiI(ti ≥ Uj)









δi

−

n
∑

i=1

δi

which is, up to a constant, the partial likelihood of an ordinary Cox regression model for right-censored

data when applied on a subgroup of uncensored observations.

This result has several appealing implications. Firstly, the asymptotic theory of the logistic regression

model and the Cox regression model apply in this zero-inflated Cox regression model. Therefore we

have that the parameter estimates in either part of the zero-inflated Cox regression model are consistent

estimates and are asymptotically normal-distributed. Because the profile likelihood comprises two sep-

arate parts, the parameter estimates in the logistic regression model are independent of the parameter

estimates in the Cox regression model. A second consequence of this result is that we can use existing

software programs to find the different parameter estimates in this zero-inflated Cox regression model.

Before we end this section we notice that we observe in cure rate models for right-censored data a similar

situation in which an large amount of censored observations have a long observed survival time (Kuk

and Chen (1992), Sy and Taylor (2000), Peng and Dear (2000)). However in these models as well as in

the model presented here, the interest lies on modeling the conditional hazard function. Therefore it is

not possible to find the present model by reversing the time-axes in a cure rate model.
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3 Example: Modeling ethanol-induced anesthesia (sleep time).

In this section, we illustrate the zero-inflated Cox regression model with a practical study of ethanol-

induced anesthesia (sleep time) in genetically-selected strains of mice described by Markel et al. (1995).

The original study includes two parental inbred strains, their isogenic F1 population and a genetically-

segregating F2 population derived by crosses of F1 mice, and had as primary goal to study the genetic

influence on sleep time. In addition, this data set has a repeated measurement design where mice are

tested at two different times. In this example we only consider the observations of the first test session

for the segregating F2 mouse population. From Markel et al. (1995), we learn that the mice were injected

intraperitoneally with a 4.1 g/kg dose of ethanol. Afterwards each mouse was placed on its back and

was considered anesthetized if it did not right itself within 1 min. Therefore we use 1 min as detection

limit. After a mouse awoke from an ethanol-induced challenge, it’s duration of sleep time was recorded

in minutes. Due to the breeding process of the test mice it is possible that some mice were ”immune”

for ethanol and would not fall asleep or slept only a very short time. In this example, we consider the

influence of the following covariates on sleep time: sex, albinism (which is a binary variable indicating

whether the mouse was albino), trial day, weight at trial 1, and an interaction between sex and albinism.

We selected these covariates by a forward selection criteria and found that they were significant in the

logistic part or the hazard part of the zero-inflated Cox regression model. The parameter estimates and

their standard error are given in Table 1.

Semi-parametric Parametric

Zero-inflated Cox model Logistic-Weibull model

Logistic part

Intercept -4.1675 (1.6995) -1.1232 (1.6377)

Sex 0.8651 (0.5202) 0.4708 (0.5201)

Albinism 1.5661 (0.4741) 1.8197 (0.4736)

Sex*Albinism -1.7203 (0.7413) -2.1802 (0.7814)

Trial day -0.0015 (0.0011) -0.0020 (0.0011)

Weight 0.0473 (0.0708) -0.0769 (0.0706)

Hazard part

Intercept -8.5053 (0.3826)

Sex -0.0139 (0.0910) -0.0181 (0.0908)

Albinism 0.0927 (0.1043) 0.0503 (0.1042)

Sex*Albinism -0.0108 (0.1480) 0.0406 (0.1476)

Trial day 0.0019 (0.0002) 0.0018 (0.0002)

Weight -0.0426 (0.0135) -0.0428 (0.0135)

Scale 1.8709 (0.0455)

Table 1: The estimates for the different covariates in the zero-inflated Cox model and the parametric

logistic-weibull model. Standard errors are given in brackets

In the same table we also give a parametric Logistic-Weibull model to compare with the zero-inflated Cox
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Figure 1: The baseline cumulative hazard function for the Zero-inflated Cox and the Logistic-Weibull

model

regression model. As we saw in the methodology, the zero-inflated Cox regression model assumes that

the baseline hazard is zero before the smallest uncensored observation. Consequentially, the probability

for a value of sleep time between zero and the detection limit is also zero. All censored observations are

considered in this model as a result of a failure for the sleep time. In the parametric Logistic-Weibull

model, we assume that the baseline hazard comes from a Weibull distribution. The probability for a non-

zero censored value of the sleep time has, in this case, an expression which depends on the parameters

of the Weibull baseline hazard and is non-zero. Unlike in the zero-inflated Cox regression model the

loglikelihood of the parametric model does not simplify and we have to estimate the parameters by

maximizing expression (4).

We notice in Table 1 that in both the zero-inflated Cox model and the parametric Logistic-Weibull

model, the same covariates have a significant effect in the logistic and the hazard part of each model.

In the logistic part of the models, an albino mouse has a significant higher probability on having a zero

value for the sleep time than a non-albino mouse. Furthermore we note that the gender of a mouse

also has a significant effect in this part, through it’s interaction with albinism. We see that a female

albino mouse has a lower probability on non-sleep than a male mouse. The other covariates do not have

a significant effect in the logistic part of both models. For the hazard part of each model, we see that

only the covariates Trial day and Weight before the first test session have a significant influence on the

hazard. The estimate for the parameter of Trial day is positive which indicates that the hazard increases

when the study progresses. This data set was collected over a period of 3 years and such an increasing

hazard likely indicates that the investigators became more skilled and were better able to assess sleep

time in these mice. Therefore, the observations for sleep time became shorter as the studied progressed.

For the other significant variable Weight, we have in both models a negative sign that indicates the
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hazard decreases for heavier animals which means a longer sleep time for these animals. This conclusion

is expected since the effective dose of ethanol that is administered to each animal, was based on the

weight that the animal had the day before the test session. Therefore heavier mice received a larger

effective dose.

In Table 1, we also see that the estimates for the different covariates are almost the same in the zero-

inflated Cox model and in the parametric Logistic-Weibull model. Initially, we would not expect this

because, as stated before, we assumed that the baseline cumulative hazard is zero before the first

uncensored observation in the zero-inflated Cox model; this is not the case for the parametric Logistic-

Weibull model. In Figure 1, we plotted the baseline cumulative hazard functions for both models and

see that they are almost the same for small values of sleep time. So, from the data we notice that

the cumulative baseline hazard in the parametric model is almost zero for small times which explains

why there is not much difference here between the zero-inflated Cox model and the parametric Logistic-

Weibull model. This also explains why the estimates for the covariates do not differ greatly.

4 Conclusion

In this paper we investigated why in some clinical, environmental or industrial studies with type I

left-censored data, the number of censored observations is larger than what we expect if we assume an

absolute continuous distribution for the underlying positive variable of interest. To accommodate for this

problem and to study the influence of covariates on the response variable, we introduced a zero-inflated

Cox regression model. In this model, we assumed that the probability of having a zero response is

modeled through a logistic regression. Furthermore we assumed that the hazard of the non-zero part of

the response follows a Cox regression model. In constructing this model, the likelihood splits into one part

containing the parameters describing the logistic regression model and into another part containing the

parameters of the Cox regression model. This results in attractive implications, both in the theoretical

and practical sense. Separating the likelihood into two parts, the asymptotic theory of both the logistic

regression model and the Cox regression model apply such that the parameter estimates in the zero-

inflated Cox regression model are consistent estimates and are asymptotically normally-distributed. A

practical implication of the split in the likelihood is that we can use existing software to attain the

different parameter estimates in the zero-inflated Cox regression model. In the example, we have applied

this regression model in a practical data analysis on a ethanol-induced sleep time study in mice. We

note that albinism is the main covariate in the logistic part of the model while Trial Day and Weight

have a large influence on the hazard part of the zero-inflated Cox regression model.
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