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Summary

In statistics, one is often confronted with the analysis of correlated data. The

amount of information in such data depends on the correlation among the observations.

A general concept is derived, the effective sample size, as a way to quantify the amount

of information in such data. It is defined as the sample size one would need in an

independent sample to equal the amount of information in the actual correlated sample.

This concept has the advantage of general applicability and provides important insight

into the setting of correlated data. For example, using the concept of the effective

sample size, it is seen that the amount of information is not always infinite, but rather

that there exists a limit of information in some situations. Also, the effective sample

size can be used as a building block in the construction of a novel degrees-of-freedom

determination method for a scaled Wald statistic. The performance of the proposed

method is investigated through a simulation study.
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1 Introduction

The size of a sample is a very important measure for the amount of information available

in the data. In the simplest situation of independent continuous data, the sample size

is defined as the number of individuals in the study and the information is proportional

to the sample size. For binary data, the information is proportional to the sample size,

and for, possibly censored, survival data, the information is proportional to the number

of events. Here, information is used in the precise mathematical sense as defined in, for

example, Cox (1974). However, as soon as one ventures away from independence, there

is considerable uncertainty as to how to define the sample size except in a number of

well understood cases, mostly in a multivariate normal setting (Johnson and Wichern,

1992). At first sight, if several measurements are taken for each independent unit, one

could take the number of individuals or the number of measurements as the sample

size. While the first approach underestimates the amount of information, the second

approach overestimates it. The reason is that the amount of information depends on

the correlation among the observations. Such considerations are important to determine

the degrees of freedom, an essential component when selecting an appropriate null

distribution for a variety of hypothesis tests. The best known examples include the t,

F , and U tests, and their corresponding distributions.

Several methods to estimate the appropriate number of degrees of freedom needed

for these tests are available. The best known methods for continuous data are the

Satterthwaite-type approximations (Satterthwaite, 1941) and the Kenward-Roger method

(Kenward and Roger , 1997). Satterthwaite’s degrees of freedom are obtained by match-

ing moments with those of a χ2-distribution, and using an approximation of the denom-

inator based on a Taylor expansion (Giesbrecht and Burns, 1985). Kenward and Roger

proposed a scaled Wald statistic, based on an adjusted covariance estimate, which ac-

counts for small-sample bias and incorporates the extra variability arising from the esti-

mation of the variance-covariance matrix. They show that the small-sample distribution

can be approximated well by an F -distribution with denominator degrees of freedom,
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obtained by a multivariate moment-matching argument, to properly capture the inter-

nal stochastic structure of the estimated covariance matrix, of which Satterthwaite’s

approximation is a univariate special case. In case of binary data, one typically uses the

residual number of degrees of freedom, defined as the number of measurements minus

the number of parameters to be estimated, or switches to an asymptotic method. While

acceptable in large samples of independent data, such an approach generally overstates

the number of degrees of freedom, with associated p-values that then are too small.

Here, we will derive a generic concept, the effective sample size, loosely defined

as the sample size one would need if repeated measures were independent, to equal

the information in the actual sample of correlated data. This concept will be derived

and formulated in Section 3. It has the advantage of general applicability and provides

important insight in the setting of correlated data. Also, the effective sample size can

be used, of course with due adaptation, as a component of a novel degrees of freedom

determination method. In subsequent sections, we illustrate how the effective sample

size can be used in a simple testing situation. The specific cases of normally distrib-

uted repeated measures with either compound-symmetric or auto-regressive covariance

structures will be considered in detail. Simulations will assess the method’s performance,

primarily in terms of test size, and compare it to Satterthwaite’s method (Satterthwaite,

1941) and to the technique of Kenward and Roger (Kenward and Roger , 1997).

We organize this paper as follows. In Section 2 we introduce the case studies which

we use to illustrate the proposed ideas. In Section 3 we explain the concept of the

effective sample size, which yields nice insight in the analysis of correlated data, such

as the information limit, which is discussed in Section 4. Also, we discuss how the idea

of the effective sample size can be used as a method to approximate the number of

degrees of freedom in a scaled Wald test. In Section 6, a simulation study exploring the

behavior of the proposed method is shown. The case study is analyzed in Section 7. A

discussion follows in Section 8.
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2 Applications

We motivate and illustrate the ideas in three different, generic settings.

2.1 Cancer of the Ovaries

Our methods will first be illustrated using data from a meta-analysis of two large multi-

center trials in advanced ovarian cancer (Ovarian Cancer Meta-Analysis Project, 1991).

The trials contain 411 and 382 patients, respectively. The survival time (in years) of

individual patients are available in these trials. The endpoint of interest is the log-

arithm of survival, defined as time (in years) from randomization to death from any

cause. The full results of this meta-analysis were published with a minimum follow-up

of 5 years in all trials (Ovarian Cancer Meta-Analysis Project, 1991). The dataset was

subsequently updated to include a minimum follow-up of 10 years in all trials (Ovarian

Cancer Meta-Analysis Project, 1998).

We consider the random intercepts model:

Tij = β0 + bi + εij ,

where Tij is the log-survival time of individual j in trial i. The random intercepts bi are

used to account for the correlation within a trial, and are assumed to follow a normal

distribution with mean zero and variance τ2. It is further assumed that the residual

error εij is independently normally distributed with mean zero and variance σ2. We

are interested in testing the null hypothesis H0 : β0 = 0. It should be noted that

this example is different from a typical longitudinal study, since here only two trials

contribute independent information. It will be shown that different estimation methods

for the degrees of freedom may lead to severe differences in the resulting p-values.

2.2 The National Toxicology Program Data

The National Toxicology Program (NTP) develops scientific information about poten-

tially toxic chemicals that can be used for protection of public health and prevention

of chemically induced diseases. The study considered in this example was performed
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to investigate the effects of Ethylene glycol (EG) on the developing fetus. Price et

al (1985) describe a study in which timed-pregnant CD-1 mice were dosed by gavage

with EG in distilled water. Dosing occurred during the period of major organogenesis

and structural development of the foetuses (gestational days 6 through 15). The doses

selected for the study were 0, 750, 1500, or 3000 mg/kg/day, with 25, 24, 23, and 23

timed-pregnant mice randomly assigned to each of these dose groups, respectively. For

each viable fetus, the birth weight is recorded, since this is an important indicator of

toxicity.

We consider a generalized linear mixed model:

Yij = β0 + b0i + β1di + εij , (1)

where Yij is the birth weight of fetus j in litter i and di is the treatment dosage for

dam i. Further, litter-specific intercepts bi are used to account for the clustering of

foetuses within litters. They are assumed normally distributed with mean zero and

variance τ2. Further, the residual error εij is independently normally distributed with

mean zero and variance σ2. In this example, it is of interest to test for a dose effect:

H0 : β1 = 0.

2.3 The Rat Data

The data from this example resulted from a randomized longitudinal experiment (Ver-

donck et al , 1998), in which 50 male Wistar rats were randomized to either a control

group or one of the two treatment groups, where treatment consisted of a low or high

dose of the testosterone inhibitor Decapeptyl. The treatment started at the age of 45

days, and measurements were taken every 10 days, starting at the age of 50 days. Of

interest was skull height, measured as the distance (in pixels) between two well-defined

points on X-ray pictures taken under anesthesia. Some rats have incomplete follow-up

because they did not survive anesthesia.

Let Yij denote the response taken at time tj, for rat i. Similar as in Verbeke

and Molenberghs (2000), we model subject-specific profiles as linear functions of t =
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ln(1 + (Age − 45)/10):

Yij = β0 + bi + β1tij + εij. (2)

Here, β0 is the average response at the time of randomization, while β1 is the average

slope in the three different treatment groups. Further, the bi are rat-specific intercepts,

representing natural heterogeneity between rats, relative to baseline values. They are

assumed to be zero-mean normally distributed with variance τ2. The residual error

terms εij are independently normally distributed with zero mean and variance σ2. In

this example, we are interested in testing the linear time trend

H0 : β1 = 0.

In contrast with the previous example, where a cluster-specific effect is tested, here we

test for a subject-specific effect.

3 The Effective Sample Size

In this section, the general concept of the effective sample size is explained. Let Yij be

the jth measurement for the ith individual, i = 1, . . . , N, j = 1, . . . , ni. Consider the

general Gaussian linear model of the form

Y i ∼ N(X iβ,V i),

with Y i = (Yi1, . . . , Yini)
′ the ni dimensional vector with all measurements for subject i,

Xi a ni × p design matrix, β a p× 1 vector of unknown parameters, and V i a general

ni × ni covariance matrix. The design matrix may contain both an intercept as well as

subject-specific covariates. V i can be left unstructured or assumed to be of a specific

parametric form.

The amount of information in the data to estimate a fixed-effects parameter can

now be represented conveniently by the number of independent measurements one would

need to reach the same amount of information. We define this as the effective sample

size Ñ . We estimate the effective sample size by comparing the variance of a specific
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parameter β, with the variance of this parameter under independence. The fixed-effects

parameter β can be estimated as (Laird and Ware, 1982):

β̂ =

(
N∑

i=1

X ′
iV

−1
i Xi

)−1 N∑

i=1

X ′
iV

−1
i Y i.

This is an unbiased estimate for β if the mean of the response is correctly specified, even

if the variance Vi is misspecified. The variance of β̂, provided Vi is properly specified,

is equal to

V̂ar
(
β̂
)

=
( N∑

i=1

X ′
iV

−1
i Xi

)−1
.

Under the assumption of an independent sample, this variance would be estimated as

Ṽar
(
β̂
)

=
( N∑

i=1

X ′
iW

−1
i Xi

)−1
,

with Wi a diagonal matrix. By assuming that the variance under independence is equal

to the true variance, we have that the effective sample size is equal to

Ñ =
N∑

i=1

[
J ′

ni

(
W

−1/2
i ViW

−1/2
i

)−1
Jni

]−1
=

N∑

i=1

(
J ′

ni
C−1

i Jni

)−1
,

with Ci the correlation matrix and Jni an ni × 1 vector consisting of ones. Derivation

of this expression is given in Appendix A. Note that it is valid for both an intercept

and a subject-specific covariate, since, by equating the variances, the subject-specific

covariate xi drops from the equation. These considerations also indicate the definition

is specific for the parameter being considered. It can be more general, for individual-

and/or measurement-specific covariates, to

Ñ =
N∑

i=1

(
X ′

iW
−1
i Xi

)−1/2(
X ′

iV
−1
i Xi

)(
X ′

iW
−1
i Xi

)−1/2
.

Note that this expression is valid for the intercept and depends on the design, through

the design matrix Xi.

3.1 Compound-symmetry Structure

We specialize the idea of the effective sample size to the simple but important context

of a continuous response Y on a set of measurements j which are grouped in a cluster
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i of size n. Assume the random-intercepts model

Yij = β + bi + εij , (3)

where bi and εij are normally distributed with mean zero and variance τ2 and σ2,

respectively. In this case, we have that Vi = τ2Jn + σ2In. The regression parameter β

can be estimated as (Laird and Ware, 1982):

β̂ =
1

Nn

N∑

i=1

n∑

j=1

Yij

and the variance of β̂ equals

V̂ar
(
β̂
)

=
σ2 + nτ2

Nn
. (4)

Assuming that measurements are independent, we would have that Wi = (σ2 + τ2)In

and the variance of β̂ would equal

Ṽar
(
β̂
)

=
σ2 + τ2

Nn
. (5)

The effective sample size ñ can be calculated by equating (4) and (5):

σ2 + nτ2

Nn
=

σ2 + τ2

Nñ
,

yielding

ñ =
n

1 + ρ(n − 1)
, (6)

with ρ = τ2/(τ2 + σ2).

In general, when cluster sizes are not equal, the correction required for the effective

sample size is different for different cluster sizes. Thus, the effective sample size Ñ for

the entire sample equals
∑

i ñi, yielding

Ñ =
∑

i

ni

1 + ρ(ni − 1)
. (7)

In Table 1, the effective sample size for clusters of size n = 5 is presented for

different correlations ρ. For example, if ρ = 0.2 then the information obtained from
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Table 1: Effective sample size for a cluster of size n with correlation ρ, calculated under the

CS-model and under the AR(1)-model.

ρ n ñ(CS) ñ(AR(1)) ρ n ñ(CS) ñ(AR(1))

0 5 5 5 0.5 1 1 1

0.2 5 2.8 3.7 0.5 2 1.33 1.33

0.4 5 1.9 2.7 0.5 5 1.67 2.33

0.6 5 1.5 2.0 0.5 10 1.82 4

0.8 5 1.2 1.4 0.5 100 1.98 34

1 5 1 1 0.5 ∞ 2 ∞

n = 5 measurements on the same individual is similar to what would be obtained

from 2.8 independent measurements. There are some interesting special cases. When

measurements are independent within a cluster (ρ = 0), the effective sample size equals

Ñ =
∑

i ni, the total number of measurements. In case the measurements within a

cluster are perfectly correlated (ρ = 1), the effective sample size equals the number

of clusters, since Ñ =
∑

i
ni
ni

= N . Further, Table 1 shows the effective sample size

for different cluster sizes (n) and within-correlation ρ = 0.5. The effective sample

size increases very slowly with growing cluster size. This will be discussed further in

Section 4.

Note that above derivations are valid for non-negative correlations. The effective

sample size is positive only, and hence well-defined, for correlations ρ > −1/(n − 1).

Thus, our argument can be used for mildly negative correlation, down to this bound.

Negative correlations are fully acceptable in case one merely seeks a marginal interpre-

tation of model 3. Values below this bound do not correspond to valid distributions any

longer. Notwithstanding this, when a fully hierarchical interpretation is adopted, then

negative correlation is not allowable (Verbeke and Molenberghs, 2000).
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3.2 Some Other Covariance Structures

Let us consider the effective sample size for some other correlation structures as well.

When the independence correlation structure applies, the effective sample size reduces

to

Ñ =
N∑

i=1

ni,

as would be expected.

A first-order autoregressive model, assuming that the covariance between two mea-

surements Yij and Yik is of the form σ2ρ|k−j|, has an effective sample size

Ñ =
n − (n − 2)ρ

1 + ρ
N.

In Table 1, the effective sample size for clusters of size n = 5 is presented for various

correlations ρ, as well as for a cluster of different size n but fixed correlation ρ = 0.5.

For example, if ρ = 0.2, then the information obtained from n = 5 measurements on

the same individual is similar to what would be obtained from 3.7 independent mea-

surements, which is larger than the effective sample size when a compound-symmetry

structure would apply. When ρ = 0 the effective sample size reduces to the number of

measurements. When ρ = 1 the effective sample size is equal to the number of clusters.

In the special cases that n = 1, n = 2, ρ = 0 and ρ = 1, the CS and AR(1) cannot be

distinguished, and hence also the effective sample sizes for both settings are the same.

Finally, note that the effective sample size increases faster with growing cluster sizes,

as compared with the compound symmetry structure.

Next, assume the following linear three-level model:

Yijk = β0 + ui + vij + εijk,

where β0 is a fixed-effects parameter, ui is a random effect at the third level (i =

1, . . . , N), uij is a random effect at the second level (j = 1, . . . , J), and εijk is an

error term (k = 1, . . . ,K). All random terms in the model are assumed to be mutually

independent and normally distributed: ui ∼ N(0, σ2
u), vij ∼ N(0, σ2

v), and εijk ∼
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N(0, σ2
ε ). In this case, the effective sample size is equal to

Ñ =
N∑

i=1

J∑

j=1

K∑

k=1

1
(njni − 1)ρ1 + (ni − 1)ρ2 + 1

,

with ni the number of individuals in group i, nj the number of measurements on subject

j, ρ1 and ρ2 the intra-class correlations within a group and within a subject, respectively.

3.3 Contrast Parameter

Thus far, the effective sample size for the overall mean parameter was calculated for

different covariance structures. Here, we will focus rather on a contrast. Consider the

following random-intercepts model:

Yij = β0 + β1xij + bi + εij ,

where bi and εij are normally distributed with mean zero and variances τ2 and σ2,

respectively. Consider the simple setting where there are 2 measurements for each

individual i, i.e., j = 1, 2. The covariate xij can be either measurement- or individual-

specific. When assuming independence among the fixed effect parameters, the effective

sample size for β1 is equal to

Ñ =
(

1 +
(xi0 − xi1)2

(x2
i0 + x2

i1)
τ2

σ2

)
.

N

1 + (2 − 1)ρ
. (8)

In case the covariate xij is individual-specific, (8) reduces to

Ñ =
N

1 + (2 − 1)ρ
,

which is equal to the effective sample size for the overall mean parameter, which is in line

with intuition. Then, once again, the higher the correlation among the measurements,

the smaller the effective sample size will be. However, when xij is measurement-specific

with, for example, xi0 = 0, xx1 = 1, such as in a pre-test post-test design, the parameter

β1 becomes a contrast parameter, and the effective sample size reduces becomes

Ñ =
N

(1 + (2 − 1)ρ)(1 − ρ)
.
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When the correlation is ρ = 0, the effective sample size for the contrast parameter is

equal to 1, ρ = 0.5 yields an effective sample size of 3, and when measurements are

perfectly correlated, i.e., ρ = 1, the effective sample size reaches infinity, meaning that

one pair of measurements corresponds to the asymptotic situation of perfect knowledge

about the contrast. Thus clearly, and again in line with intuition, for a contrast para-

meter, the larger the correlation in the data is, the larger the amount of information

about this contrast will be.

4 Information Limit

Let us now focus on a mean parameter. When data are independent, more measurements

yield more information, and such information grows unboundedly with sample size,

an intuitive and well-known result. This is important since this implies that a better

accuracy can be obtained by gathering more data. It is worth considering whether this

is also the case for correlated measurements. We see that in terms of the effective

sample size a larger sample size is needed with correlated data to achieve the same

accuracy as compared with independent data. The larger the sample size, the more

information and the better the accuracy. In some situations, however, there is a limit to

this information. For example, when measurements within a cluster are exchangeable,

the information limit equals

lim
ni→∞

ni

1 + ρ(ni − 1)
=

1
ρ
. (9)

This implies that, when a compound-symmetry structure applies, there is a maximum

amount of information. Only when observations are independent (ρ = 0), is this limit

reached. For example, when ρ = 0.2, the limit is equal to 5; hence a cluster can never

contribute more information for the fixed-effects parameters than would be obtained

from 5 independent measurements. Similarly, when ρ = 0.5, a cluster cannot contribute

more information than from 2 independent measurements. This implies that there are

no conventional asymptotic arguments possible for n → ∞ in such cases.
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In contrast to the compound symmetry structure, the information limit is infinite

when observations follow an AR(1) covariance structure, since

lim
ni→∞

ni − (ni − 2)ρ
1 + ρ

= ∞, (10)

Thus, depending on the covariance structure, the amount of information is different.

This is an important feature of CS and AR(1) models, which needs to be considered

when designing experiments. The contrast between (9) and (10) is dramatic in this

respect.

5 Degrees of Freedom in Wald Tests

When comparing a Wald test statistic with a normal distribution, the variance of the

parameter of interest is known. However, typically, the variance of β̂ is derived from

an estimate of the variance-covariance matrix V . In this way, approximate Wald-type

tests for parameters β can easily be constructed. Since the standard errors are obtained

by replacing the variance components by their ML or REML estimates and therefore

underestimate the true variability in β̂, one often uses t- or F -distributions, where the

denominator degrees of freedom need to be estimated from the data. Several methods

are available for estimating the appropriate number of degrees of freedom needed for

the specific t- or F -test: Satterthwaite’s approximation (Satterthwaite, 1941), and the

Kenward and Roger (Kenward and Roger , 1997) approximation. Note that these meth-

ods are only fully developed for the case of linear mixed models and related multivariate

normally based models. In the analysis of longitudinal data, subjects contribute inde-

pendent information, which results in numbers of degrees of freedom which are typically

large enough, whatever estimation method is used, to lead to very similar p-values. How-

ever, for parameters about which there is very little information, the different estimation

methods for degrees of freedom may lead to severe differences in the resulting p-values.

An important example is when a small number of clinical trials, all encompassing a large

number of patients, are combined into a meta-analysis, i.e., N small and ni large.
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Suppose that inference is to be made about a single parameter β from the fixed-

effects structure. The Wald statistic, taking the form

T =
β̂√

V̂ar(β̂)
, (11)

can be used to test the null hypothesis H0 : β = 0. Here, a novel method to test whether

a significant effect exists, is proposed, with the effective sample size an important

building block in the degrees of freedom approximation of a scaled Wald test. It is

assumed that a scaled form T ∗ = λT of the T -statistic follows a t-distribution with

ν degrees of freedom, where λ and ν are unknown quantities. This is similar to the

method proposed by Kenward and Roger, where a scaled form of the F -statistic is used.

Derivation of the scale factor λ follows from matching the first two moments of T ∗

with the moments of a t-distribution, leading to

λ2 =
ν

(ν − 2)V (T )
, (12)

with V (T ) the variance of the t-statistic T . The variance V (T ) can be approximated

by use of the multivariate delta method. Derivation of V (T ) is given in Appendix B.

The degrees of freedom ν are calculated from the data, by assuming that it is equal

to the degrees of freedom for a similar but independent set of data. Note that the

degrees of freedom in an independent data set are given by the sample size minus the

number of parameters to be estimated in the fixed-effects structure. If we denote the

effective sample size, as derived in Section 3, by Ñ and the numbers of parameters to

be estimated in the fixed effects structure as `, then we have

ν = Ñ − `. (13)

For the random-intercepts model with a compound-symmetry structure, this leads

to

λ2 =
ν

(ν − 2)V (T )
where ν =

N∑

i=1

ni

1 + (ni − 1)ρ
− `, (14)

which are straightforward to compute.
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The major difference between the proposed method, and Satterthwaite’s or Kenward-

Roger’s method, is that in the latter methods the degrees-of-freedom are calculated di-

rectly from approximating the distribution for the Wald tests of the individual parameter

estimates. The proposed method is more general, in the sense that the concept of the

effective sample size is not restricted to a normally distributed response.

Note that the scaled Wald test is defined only when the degrees of freedom are

larger than 2, since the variance of the t-distribution is infinite otherwise. Therefore,

in case the calculated degrees of freedom are less than 2, no scaling is applied to the

test statistic. This is similar to the Kenward-Roger methodology as implemented in the

SAS procedure MIXED. Furthermore, a lower bound of 1 on the degrees of freedom is

assumed in the Kenward-Roger methodology.

6 A Simulation Study

A simulation study was conducted to explore the behavior of the method as proposed

in previous sections, and to compare the proposed methodology with (i) the unadjusted

test, which uses the t-distribution with the number of measurements minus the number

of estimated parameters as the degrees of freedom, (ii) the Satterthwaite method and

(iii) the Kenward-Roger method. Three different settings were used. We present the

results from each of these in turn.

6.1 Interest in Mean of Exchangeable Correlated Data

In a first simulation study, we generate data from compound symmetry model (3) with

an unbalanced design and study the t−test for the overall mean. We vary the mean

cluster size, number of clusters, and the intra-class correlation ρ = τ2/(σ2 + τ2) to

investigate the performance of the proposed method in different situations.

For each setting, 10, 000 sets of data are simulated from the compound symmetry

model, with zero mean, and for each set the fixed effects are estimated together with

the REML variance estimates of the variance components. Tables 2 and 3, display the
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Table 2: Simulation Study (part 1). Mean of Exchangeable Correlated Data: mean estimated

effective sample size (Ñ) and mean of scale parameter (λ), and observed size of nominal 5%

Wald t-test from the simulation study. (Unadj: unadjusted; Satterth: Satterthwaite; KR:

Kenward-Roger; effSS: effective sample size.)

Nr. Mean Observed Size

clusters cluster size ρ Ñ λ Unadj Satterth KR effSS

10 4 0.2 19.77 1.02 11.0 5.5 5.5 5.0

0.5 10.69 1.09 13.0 5.4 5.4 4.3

0.8 6.07 1.26 11.9 4.7 4.7 3.7

10 3 0.2 16.07 1.05 12.9 7.5 7.5 7.3

0.5 9.66 1.20 16.2 6.0 6.0 4.9

0.8 5.66 1.73 17.0 5.1 5.0 2.8

10 2 0.0 18.16 1.05 3.7 3.4 3.4 3.4

0.2 16.72 1.05 5.3 4.6 4.7 4.6

0.5 14.02 1.06 6.6 5.0 5.0 5.2

100 4 0.2 230.13 1.00 4.9 4.6 4.6 4.7

0.5 153.24 1.00 5.0 4.9 4.9 5.0

0.8 115.92 1.01 5.1 4.9 4.9 4.9

100 3 0.2 191.53 1.00 5.6 5.4 5.4 5.5

0.5 140.31 1.00 5.5 5.3 5.3 5.3

0.8 112.53 1.01 5.4 5.2 5.2 5.2

100 2 0.2 147.29 1.00 5.5 5.3 5.3 5.3

0.5 122.75 1.01 5.8 5.6 5.6 5.6

0.8 107.39 1.01 5.6 5.4 5.4 5.4

observed size of a nominal 5% t-test, using an unadjusted t-test, the Satterthwaite test,

and the Kenward-Roger test. Also, we show the observed size of the proposed effective

sample size t-test, together with the average effective sample size and the average scale

factor which was used in the proposed scaled Wald test.

In a typical longitudinal setting, the number of clusters is larger than the number
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of observations. Simulation results where data are generated under such a setting are

presented in Table 2. The behavior of the proposed method is generally quite good,

with an observed size close to the nominal level. The proposed method is comparable to

the Satterthwaite and Kenward-Roger method. Note also that the effective sample size

decreases with increasing intra-class correlation. The scale parameter is always close

to 1. When the number of clusters is large, all methods perform equally well since all

approximate t-statistics are close to each other.

In a typical meta-analytic setting, as in the first example, one encounters a small

number of clusters (trials) combined with a large sample size within clusters (number

of patients per trial). Table 3 presents the results of such a simulation study. In most

settings, the proposed method works well. However, when both the correlation is large

and the number of clusters is very small, the proposed method tends to deteriorate. Note

that this is the situation where there is very little information in the data. Also, when

we have only 2 clusters and each clusters contains about 10 to 100 observations, it is

observed that the scale-parameter can become infinite, especially when the correlation

is large. This is due to the infinite variance of a t-distribution when the number of

degrees of freedom is smaller then 2. This might occur in situations when there is only

a very small amount of information in the data, with an effective sample size smaller

then 3.

6.2 Interest in the Mean of AR(1)-Correlated Data

Next, we consider a longitudinal study with a balanced design and an AR(1) correlation

structure. Again, interest is in a test for the overall mean of the response. Various

settings for cluster size, number of clusters and correlation are considered and results

are summarized in Table 4

Also in this setting, the proposed method works very well. Note that the effective

sample size under the AR(1) model is much higher when compared to its counterpart

under compound-symmetry, in line with our theoretical developments. Thus, the same

number of measurements leads to a different amount of information, owing to a differ-
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Table 3: Simulation Study (part 2). Mean of Exchangeable Correlated Data: mean estimated

effective sample size (Ñ) and mean of scale parameter (λ), and observed size of nominal 5%

Wald t-test from the simulation study. (Unadj: unadjusted; Satterth: Satterthwaite; KR:

Kenward-Roger; effSS: effective sample size.)

Nr. Mean Observed Size

clusters cluster size ρ Ñ λ Unadj Satterth KR effSS

4 400 0.2 49.56 0.95 14.7 5.4 5.4 5.1

0.5 15.96 1.05 14.8 5.3 5.3 4.8

0.8 6.89 1.23 15.1 5.4 5.4 4.6

2 400 0.2 118.70 0.92 31.0 6.8 6.8 6.4

0.5 57.42 1.12 32.0 4.2 4.2 4.0

0.8 29.38 1.10 31.9 4.6 5.2 4.0

4 100 0.2 42.18 0.96 14.6 5.3 5.3 4.9

0.5 14.83 1.06 14.8 5.1 5.1 4.4

0.8 6.97 1.23 14.8 5.0 5.0 4.2

3 100 0.0 255.93 0.98 4.0 3.4 3.4 3.4

0.2 45.31 0.94 18.7 5.5 5.5 2.9

0.5 17.75 1.11 18.8 4.9 4.9 1.4

0.8 7.73 1.61 18.3 4.9 4.9 1.0

2 100 0.0 169.43 0.98 3.5 3.2 3.2 3.2

0.2 56.53 0.99 27.9 11.0 11.0 11.0

0.5 31.45 1.18 29.5 7.5 7.5 7.5

0.8 16.93 1.09 29.9 5.7 5.7 5.7

4 10 0.2 19.89 1.02 10.7 5.6 5.6 5.3

0.5 10.88 1.10 12.9 5.0 4.9 4.2

0.8 6.21 1.26 12.9 4.7 4.7 3.9

3 10 0.0 27.00 1.03 4.32 3.7 3.7 3.8

0.2 16.04 1.05 12.1 6.8 6.8 6.6

0.5 9.67 1.21 16.0 5.8 5.8 4.8

0.8 5.64 1.74 16.9 4.8 4.8 2.6

2 10 0.0 17.23 1.05 4.2 3.7 3.7 3.7

0.2 12.09 1.20 14.6 10.5 10.5 10.7

0.5 8.65 1.30 22.2 12.2 13.2 12.2

0.8 5.80 1.12 26.2 9.3 9.3 11.1
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Table 4: Simulation Study. Mean of AR(1)-Correlated Data: estimated effective sample

size (Ñ) and scale parameter (λ), and observed size of nominal 5% Wald t-test from the

simulation study. (Unadj: unadjusted; Satterth: Satterthwaite; KR: Kenward-Roger; effSS:

effective sample size.)

Nr. Mean Observed Size

clusters cluster size ρ Ñ λ Unadj Satterth KR effSS

3 10 0.2 22.98 1.02 7.0 4.7 5.2 4.8

0.5 13.53 1.05 8.4 4.7 5.9 4.8

0.8 7.12 1.13 11.7 4.9 6.4 3.9

10 3 0.2 25.20 1.02 6.7 5.2 5.4 5.5

0.5 17.76 1.04 6.9 5.1 5.5 5.0

0.8 12.68 1.06 7.1 4.9 5.3 4.1

3 100 0.2 203.02 1.00 6.0 5.6 5.7 5.7

0.5 103.35 1.00 6.2 5.4 5.8 5.6

0.8 37.06 1.01 6.7 5.2 5.7 5.2

100 3 0.2 235.07 1.00 6.0 5.8 5.9 5.9

0.5 167.67 1.00 6.0 5.8 5.9 5.9

0.8 122.63 1.00 5.9 5.7 5.7 5.6

ence in correlation structure. Recall that, while the information limit for the compound

symmetry covariance structure is finite, it is infinite for the AR(1) correlation structure.

We also see that the scale parameter λ is virtually 1 when the cluster size is large or

when the number of clusters is large.

6.3 Interest in a Dose Parameter

In this simulation, we generate data from the model

Yij = β0 + β1di + bi + εij ,

for i = 1, . . . , N , j = 1, . . . , ni, bi ∼ N(0, τ2), εij ∼ N(0, σ2), and di = 0, 1 depending

on whether the unit belongs to the control or active dose group. For each setting, 5000
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Table 5: Simulation Study. CS-Correlated Data: estimated effective sample size (Ñ) and

scale parameter (λ), and observed size of nominal 5% Wald t-test from the simulation study

for intercept and dose parameter. (Unadj: unadjusted; Satterth: Satterthwaite; KR: Kenward-

Roger; effSS: effective sample size.)

Nr. Mean Observed Size

Effect clust clust size ρ Ñ λ Unadj Satterth KR effSS

Dose 20 10 0.2 75.42 1.00 6.1 4.9 4.9 5.1

0.33 52.61 1.01 6.5 5.1 5.1 5.3

0.5 37.90 1.02 6.4 5.0 5.0 5.1

10 5 0.2 29.95 1.02 7.0 4.5 4.5 4.7

0.33 23.22 1.02 7.6 5.0 4.8 5.3

0.5 18.06 1.04 7.9 5.0 4.8 5.1

Int. 20 10 0.2 75.42 1.00 5.6 4.2 4.2 4.5

0.33 52.61 1.01 5.7 4.4 4.4 4.6

0.5 37.90 1.02 5.8 4.4 4.4 4.7

10 5 0.2 28.95 1.01 6.9 4.5 4.5 4.7

0.33 23.22 1.02 7.4 4.7 4.6 4.9

0.5 18.06 1.04 7.7 4.7 4.6 4.8

sets of data are simulated from this compound symmetry model, and for each set the

fixed effects are estimated together with the REML variance estimates of the variance

components. The results are displayed in Table 5.

We observe a very good behavior of the effective sample size method, in line with

Satterthwaite and Kenward-Roger, and oftentimes slightly outperforming these. All of

these three methods are definitely superior to the unadjusted approach.
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7 Analysis of Applications

7.1 Cancer of the Ovaries

The mean log-survival time is estimated to be 0.7906 (s.e. 0.1726). The residual error

degrees of freedom, equal to the number of individuals minus the number of parameters

to be estimated, equals 792, resulting in p < 0.0001 for the t-test corresponding to

the null hypotheses of one-year survival. The correlation of individuals within a trial is

estimated to be 0.038. This correlation should be accounted for in the analysis, and

has a huge effect on the degrees of freedom. Both Satterthwaite and Kenward-Roger

estimate the degrees of freedom equal to 1, resulting in a p = 0.1368. Thus, our

previous conclusions on the one-year survival do no longer hold. Finally, we estimate

the effective sample size based on the estimated correlation and the sample sizes of

the two trials, as 49. As a result, the scaled t-test, with scale parameter 0.30, has 48

degrees of freedom, resulting in a p-value of 0.173.

Further, it should be noted that, due to the correlation (ρ = 0.038) in the trials, a

trial cannot obtain more information to estimate the mean parameter as corresponds to

about 26 independent measurement.

7.2 The National Toxicology Program Data

The EG data contain 111 dams with a total of 1368 foetuses. The dose-effect on fetal

birth weight is estimated as −0.2099 (s.e. 0.017). The intra-class correlation equals

0.61. In this setting, all methods for the approximation of the degrees of freedom yield

p < 0.0001. However, the estimated degrees of freedom are very different. The residual

degrees of freedom equal 1366, Satterthwaite degrees of freedom are estimated as 105,

Kenward-Roger degrees of freedom are 105, and the effective sample size degrees of

freedom is amount to 171. Based on the effective sample size, we can show that the

asymptotic information limit for this setting equals 182.35.
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7.3 The Rats Data

In the rats data, the effect of time is estimated as 0.1934 (s.e. 0.0059). The residual

degrees of freedom are 250. The Satterthwaite and Kenward-Roger method estimate

the degrees of freedom as 214, while the effective sample size equals 98.48. All methods

result in a significant t-test statistic, with p < 0.0001.

8 Concluding Remarks

We have introduced the concept of effective sample size. It is, broadly speaking, the

sample size needed in independent data, to retrieve the amount of information obtained

from a dependent sample. In a number of cases, such as the linear mixed model or

clustered binary data, the expressions are simple and insightful.

The concept of effective sample size has led us to two important ramifications. First,

an information limit can be constructed: the amount of information retrieved from a

subject or cluster, when the cluster size goes to infinity. For example, it is finite for the

compound-symmetry case, while it is infinitely large under AR(1) assumptions. Second,

the effective sample size concept can be employed to construct an alternative degrees-

of-freedom calculation method. For the Gaussian case, it is similar in behavior to the

well-established, time-honored Satterthwaite and Kenward-Roger methods. This, rather

than replacing these methods, our approach adds intuition and insight. Importantly,

unlike Satterthwaite and Kenward-Roger, our method can also be applied in important

non-Gaussian settings, such as clustered binary data.

Other promising application of the effective sample size are in sample size calcu-

lations and in the use of information criteria (Faes et al , 2004). Use of the effective

sample size in non-Gaussian settings is topic of current research.
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Appendix A: Derivation of Effective Sample Size

For simplicity, we focus on a Gaussian response. The information contributed by a

subject i, regarding the estimation of a fixed effects parameter β, is contained in the

variance Var
(
β̂
)
:

V̂ar
(
β̂
)

=
( N∑

i=1

X ′
iV

−1
i Xi

)−1
.

In case the experiment was conducted with independent measurements on each individ-

ual, the corresponding quantity would be:

Ṽar
(
β̂
)

=
( N∑

i=1

X∗′
i W−1

i X∗
i

)−1
,

with Wi a diagonal matrix and X∗
i a ñ × p design matrix. Equating both yields

( N∑

i=1

X ′
iV

−1
i Xi

)−1
=
( N∑

i=1

X∗′W−1
i X∗

i

)−1
,

satisfied by

X ′
iV

−1
i Xi = X∗′W−1

i X∗
i , (15)

for all i = 1, . . . , N . Under the assumption of a homogeneous covariance structure, the

diagonal matrix Wi is equal to Var(Yi)Iñi
. Thus, the right hand side of (15) can be

written as

X∗′W−1
i X∗

i =
1

Var(Yi)
X∗′Iñi

X∗
i . (16)

If xi is the value in the design matrix Xi, corresponding to the parameter β, then (16)

can be written as xiJñi
, with Jñi

an ñi × 1 vector consisting of ones only. Thus, we

have that

x2
i J

′
ni

V −1
i Jni =

x2
i

Var(Yi)
J ′

ñi
Iñi

Jñi
,

or

ñi = J ′
ni

( Vi

Var(Yi)

)−1
Jni . (17)

If the variance-covariance matrix is not homogeneous, then (17) can be extended to

ñi = J ′
ni

(
Wi

−1/2ViWi
−1/2

)−1
Jni .
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As a result

Ñ =
N∑

i=1

J ′
ni

(
Wi

−1/2ViWi
−1/2

)−1
Jni .

Appendix B: Derivation of V(T)

We are interested in the variance of the test-statistic T :

V̂ar(T ) = V̂ar


 β̂√

V̂ar(β̂)


 .

Let us derive this in the context of a compound-symmetry model. The parameters in

this model are (β, σ2, τ2). Use the delta method, to calculate the variance of T :

V̂ar (T ) =
(

∂T
∂β

∂T
∂σ2

∂T
∂β

)
V̂ar(β, σ2, τ2)




∂T
∂β
∂T
∂σ2

∂T
∂β


 ,

with derivatives equal to:

∂T

∂β
=

1√
V̂ar(β)

,

∂T

∂σ2
= − β

2
(
V̂ar(β)

)3/2

∂V̂ar(β)
∂σ2

,

∂T

∂τ2
= − β

2
(
V̂ar(β)

)3/2

∂V̂ar(β)
∂τ2

.

Since the variance of β̂ in the compound-symmetry model is equal to

V̂ar(β̂) =

(
N∑

i=1

ni

σ2 + niτ2

)−1

,

the derivatives of V̂ar(β̂) equal:

∂V̂ar(β̂)
∂σ2

=
(
V̂ar(β̂)

)2
(

N∑

i=1

ni

(σ2 + niτ2)2

)
, (18)

∂V̂ar(β̂)
∂τ2

=
(
V̂ar(β̂)

)2
(

N∑

i=1

n2
i

(σ2 + niτ2)2

)
. (19)
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Note that, if all samples sizes are equal, i.e., ni ≡ n, (18) and (19) reduce to

∂V̂ar(β̂)
∂σ2

=
1

Nn
,

∂V̂ar(β̂)
∂τ2

=
1
N

.

As a result, we obtain

∂T

∂β
=

1√
V̂ar(β̂)

,

∂T

∂σ2
= −

β̂

√
V̂ar(β̂)

2

(
N∑

i=1

ni

(σ2 + niτ2)2

)
,

∂T

∂τ2
= −

β̂

√
V̂ar(β̂)

2

(
N∑

i=1

n2
i

(σ2 + niτ2)2

)
.

Finally, we assume that β and (σ2, τ2) are uncorrelated, such that the variance of the

test statistic is equal to:

V̂ar(T ) = 1 +
(

∂T

∂σ2

)2

V̂ar(σ2) +
(

∂T

∂τ2

)2

V̂ar(τ2) + 2
(

∂T

∂σ2

)(
∂T

∂τ2

)
Ĉov(σ2, τ2)

= 1 +

(
β2V̂ar(β)

4

)


(
N∑

i=1

ni

(σ2 + niτ2)2

)2

V̂ar(σ2)

+

(
N∑

i=1

n2
i

(σ2 + niτ2)2

)2

V̂ar(τ2)

+2

(
N∑

i=1

ni

(σ2 + niτ2)2

)(
N∑

i=1

n2
i

(σ2 + niτ2)2

)
Ĉov(σ2, τ2)

}
.

In general, we have that

V̂ar(T ) = 1 +

(
β̂2

4V̂ar(β̂)3

)
V̂ar

[
V̂ar(β̂)

]
,

with

V̂ar
[
V̂ar(β̂)

]
=

∑

l

(
∂V̂ar(β̂)

∂σl

)2

Var(σl) +
∑

l

∑

k 6=l

(
∂V̂ar(β̂)

∂σl

)(
∂V̂ar(β̂)

∂σk

)
Ĉov(σl, σk)

and
(

∂V̂ar(β̂)
∂σl

)
= V̂ar(β̂)2

(
N∑

i=1

X ′
iV

−1
i

∂Vi

∂σl
V −1

i Xi

)
.
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