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The logistic-transform for bounded outcome scores

Emmanuel Lesaffre†∗, Dimitris Rizopoulos†, Spyridoula Tsonaka†

Abstract

The logistic transform, originally suggested by Johnson [9], is applied to analyze
responses which are restricted to a finite interval, so-called bounded outcome scores.
Examples of bounded outcome scores are often standardized to lie in the interval [0,1]
and can be found in many research areas. Here, we look at a popular measure in drug
compliance research, i.e., the proportion of days the patient has correctly taken a drug
and an ADL score, the Barthel index, often used in stroke trials. However, the fact
that the score can be 0 or 1 complicates matters. Therefore, a latent score is assumed
on (0,1) with a logistic-normal distribution. This approach is examined in the case
when the bounded outcome score is a proportion and when it can be considered as a
coarse version of a score on (0,1). The usefulness of our approach for clinical trials
will be shown for the two-group comparison. A simulation study evaluates the perfor-
mance (Pr(type I error) and power) of our approach for various distributions on [0,1]
in comparison with the two-sample Wilcoxon test. Finally, our approach is illustrated
on data from a recent compliance-enhancing clinical trial (THAMES study) conducted
in Belgium and on the outcome (Barthel index) of a stroke trial (ECASS-1 study) com-
paring the effect of placebo and a thrombolytic on patients with an acute ischemic stroke.

Key words: Bounded outcome scores, logistic-transform, compliance, Barthel index.

1 Introduction

Bounded outcome scores are measurements that are restricted to a finite interval, which can

be closed, open or half-closed. Examples of bounded outcome scores can be found in many

medical disciplines. For instance, in compliance research one measures the proportion of days

that a patient correctly takes his/her drug, hereafter denoted as pdays. Another example is
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the Barthel-index which is an Activity on Daily Living (ADL) scale which (in one version)

has a minimal value of 0 (death or completely immobilised) to 20 (able to perform all daily

activities independent) and which jumps with steps of 1. This scale is often used in stroke

trials to measure the recovery of a patient in practical terms after an acute stroke.

Typically, bounded outcome scores show a variety of distributions, from unimodal to J-

and U -shaped. This peculiar shape of the distribution often necessitates the use of non-

parametric methods, like the Wilcoxon test (see Lesaffre et al. [15]). Alternatively, one may

consider a discretized version of the score and use statistical methods for categorical data, see

e.g., Whitehead [23]. While non-parametric tests are often as powerful as parametric tests,

possibilities to do on statistical modelling, e.g., when covariate-adjustment is envisaged, are

limited. On the other hand, reducing the score to a binary variable invariably reduces the

efficiency of the comparison. Hence, a parametric method using the original scores would be

welcome.

Here, we explore the use of the logistic-transform first suggested by Johnson [9] to model

the distribution of bounded outcome scores. One problem, however, is that most outcome

scores are defined on a closed interval while the logistic transform assumes an open interval.

This problem could be resolved by assuming a latent variable on (0,1) which gives rise to an

observed score taking values on [0,1].

In Section 2 we indicate the usefulness of the logistic transformation for clinical research

with bounded outcome scores. In the next section we present methods for fitting distributions

on [0,1] assuming latent scores which have a logistic-normal distribution on (0,1). In Section

4 we will look at other distributions than the logistic-normal distribution. In Section 5 a

simulation study evaluates the performance (Pr(type I error) and power) of our approach for

various distributions on [0,1] in comparison with the two-sample Wilcoxon test. In Section 6

we illustrate our method first on pdays, the primary endpoint of the THAMES study, a recent

compliance-enhancing intervention study performed in Belgium. In this case the bounded

outcome score is a proportion. Secondly we re-analyze the primary endpoint (Barthel index)

of the ECASS-1 study, an early placebo-controlled randomized clinical trial evaluating the

effect of a thrombolytic drug on patients with an acute ischemic stroke. In this case we assume

that the bounded outcome score is a coarsened version of a latent score on (0,1). Finally, in

Section 7 we summarize our results and make some suggestions for further research in this

area.
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2 The logistic transformation and its application to clin-

ical research

Johnson [9] suggested the logistic transformation Z = α + β log
(

U−a
b−U

)
where U is a score on

the interval (a, b). The aim of Johnson was to achieve standard normality. In the case of

proportions a = 0 and b = 1. Here we take α = 0 and β = 1 and assume that the logistic

transformation achieves a normal density N(µ, σ2). In general, when Z has density f(z) ≡
f(z; θ) then U has as density g(u) ≡ g(u; θ) = f(logit(u)) 1

u(1−u)
, where logit(u) = log

(
u

1−u

)
.

When Z ∼ N(µ, σ2), then U has a logistic-normal distribution, denoted by LN(µ, σ2) and

θT = (µ, σ2). While the normal density is certainly most important to us, transformations

to other distributions like the t-distribution and the logistic distribution are also of interest

here.

The logistic-normal distribution can have very different shapes depending on the choice

of µ and σ2. In Figure 1, we show the different shapes of the logistic-normal distribution,

from a unimodal distribution to a J- and U -shaped distribution. Of course similar shapes

appear when transformation to a t- or logistic distribution is envisaged. Hence, the logistic

transformation is very well suited to model a variety of distributions on (0,1). A similar

property holds for the Beta family, but Aitchison and Begg [1] indicate that the logistic-

normal distribution is richer and can approximate any Beta density to a sufficient degree.

It is clear that when the bounded outcome scores have a logistic-normal distribution then

the analysis can be done on the z-scale using classical statistical analyses assuming a Gaussian

distribution. For instance, when comparing the effect of a new treatment versus a standard

treatment at the end of the study a simple unpaired t-test can be used on the z-values, instead

of a non-parametric test on the u-values. Further, a 95% confidence interval can be obtained

for the true difference ∆ (> 0) between the two treatments on the z-scale. An interpretation

of ∆ in a particular case is given in the following paragraph.

The logistic transformation is also a useful tool for sample size calculations in a clinical

trial with a bounded outcome score U as primary endpoint. Most sample size calculations

assume the location-shift alternative. Namely, it is assumed that under H0 the density of the

primary endpoint is g0(u) and that under Ha this density is shifted to, say the right with

an amount ∆ (> 0). But with a bounded outcome score U the location-shift alternative is

most often not an option because of the boundaries at 0 and 1. This lead Lesaffre and De

Klerk [14] to estimate the necessary sample size by modelling historical data on pdays, the

proportion of days the patient correctly takes his/her drug, by a mixture of two Beta densities
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and assuming a different effect of the intervention treatment on the two subpopulations of

patients (represented by the two beta densities). Alternatively, if the distribution of U under

the null- and alternative hypothesis is logistic-normal, one could postulate the location-shift

alternative on the transformed (e.g., normal) scale. That is, we assume that the distribution

of Z under H0 is N(µ, σ2), while under the alternative it is N(µ + ∆, σ2)). If the logistic

transformation yields on the z-scale a logistic distribution, then the effect-size ∆
σ

can be

interpreted as a log-odds ratio for the cumulative distributions on the z-scale, i.e.

∆

σ
= log

(
F0(z)/(1− F0(z))

F∆(z)/(1− F∆(z))

)
, (1)

where F0(z) is the cumulative logistic distribution under H0 and F∆(z) the cumulative logistic

distribution under Ha. In this respect, we obtain a generalisation of the proportional odds

model for ordinal data described by McCullagh [16] to continuous data, see also Whitehead

[23]. Further, because of the monotone transformation from U to Z, the same property must

hold for U . Namely, (1) also holds when replacing F0(z) and F∆(z) by the corresponding

cdf’s of U , i.e., G0(u) and G∆(u), respectively. Unfortunately, this result does not hold for

the normal distribution. Nevertheless, for the transformed normal distributions, it is easily

seen that the proportion of individuals better off with the new treatment than with the control

treatment is equal to P∆ = Φ
(

∆
σ
√

2

)
and because the logistic transformation is monotone the

same property holds on the original scale. Hence, using the location-shift alternative on the

transformed scale allows to rank different alternatives easily because ∆1 < ∆2 implies that on

the original scale the distribution under the first alternative hypothesis is stochastically smaller

than under the second alternative hypothesis. Hence, power and sample size calculations are

relatively easy since they can be done on the transformed scale. Further, a 95% C.I. for P∆

can be obtained using the Delta Method when estimates for ∆, σ and their covariance matrix

are available.

The logistic transformation is also useful in statistical modelling of bounded outcome

scores on (0,1). Indeed, the logit regression model

log

(
U

1− U

)
= xT β + σZ, (2)

with Z ∼ N(0, 1) has been used in various applications (see e.g., [10]). We would argue

that this feature is one of the major advantages of our approach, especially in clinical trial

applications when baseline covariates need to be taken into account.

Despite the attractiveness of working on the transformed scale, in practice bounded out-

come scores often lie in the closed interval [0,1] implying that the logistic transform is not

possible. A way out to this problem is to assume a latent bounded score on (0,1) which is
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coarsely measured giving rise to the observed bounded outcome scores on [0,1]. In the next

section we will look at some possible approaches to model scores on [0,1], but we consider

only the logistic-normal case.

3 Modelling bounded outcome scores on [0,1]

Often bounded outcome scores are proportions or fractions. Aitchison and Shen [3] give

examples in different research areas, e.g., as a medical application they mention the proportion

of serum proteins in blood. Compliance research, as seen above, provides other examples.

Inevitably, the true proportion for an individual is almost never known because it either

involves destructive and/or exhaustive measuring.

In this section we will denote a score on [0,1] by Yi to distinguish it from a score Ui ∈ (0, 1).

We consider three major cases. In the first case, the bounded outcome scores Yi are proportions

equal to ri/Ni (i = 1, . . . , n) whereby ri is the ith count out of Ni units. For instance, in

compliance research, pdaysi = ri/Ni, whereby ri is the number of days the ith patient has

correctly taken the drug in Ni days. In the second case, the Yis are discrete random variables

on [0,1]. So we will assume a latent structure on (0,1) behind the bounded outcome score.

An example of this type is the Barthel index (see e.g., Lesaffre et al. [15]). In the third case,

the Yis are fractions, e.g., the fraction of a substance in some material (e.g., the fraction of

serum proteins in blood).

3.1 Modelling proportions on [0,1]

When, given the individual, the bounded outcome score is a proportion derived from a series

of independent Bernoulli experiments, then an obvious choice is to work with a binomial

distribution. Namely, we could assume that,

ri ∼ Bin(Ui, Ni) (i = 1, . . . , n) (3)

with Ui ∼ LN(µ, σ2). Thus, we assume that given Ui, ri has a binomial distribution and that

Ui is a continuous latent random variable which has a logistic-normal distribution. For each

value of Ui one observes Ni binary outcomes Wij (j = 1, . . . , Ni) summing up to ri. For the

compliance example, Ui could be interpreted as the (true) latent adherence of the ith patient

to the drug. The observed adherence pdaysi = ri/Ni is a coarse measure for the latent score
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depending on the operational definition of when the drug is taken correctly and on the length

of the period that the patient is observed. Observe that this model is actually a classical

measurement error model [4], specifying the distribution f(Y |U).

Model (3) can be extended by replacing µ by xT
i β and hence becomes an example of

a generalized mixed effects model, whereby conditional on Ui the Wij are assumed to be

independent. Fitting such a model can be done with e.g., the SAS procedure NLMIXED

using Maximum Likelihood or the function glmmPQL in package MASS [20] in R [18] using

Penalized Quasi-Likelihood. Hence, actually we are modelling overdispersion. An alternative

way to deal with the overdispersion problem is to use quasi-likelihood. In that case, we assume

that the variance function of our model is of the form V (φ, pi) = φNipi(1− pi) instead of the

usual V (pi) = Nipi(1 − pi) which is assumed by the binomial model. Although, there is no

statistical model leading to the variance function V (φ, pi), the parameters can be estimated

and they also have the usual asymptotic properties [17]. Nowadays, standard software is

available for fitting quasi-likelihood models, e.g., function glm in R or the SAS procedure

GENMOD.

3.2 Modelling discrete bounded outcome scores on [0,1] which are

not proportions

When Yi is a discrete random variable on [0,1] (e.g., the Barthel index), but not a proportion

then it is not immediately obvious what model to choose for the scores. But, we could assume

that the observed score is a coarse measure of the true latent score which lies in the interval

(0,1). This assumption can often be made, but not always as discussed in Section 6.2.

With a latent score on (0,1) there could be several mechanisms that generate observed

scores on [0,1]. One mechanism is rounding-off. Namely, the latent score Ui is rounded off

to Yi when Yi − ε ≤ Ui < Yi + ε, where ε is the smallest rounding-off error. Digit preference

and truncation are other examples of coarsened recording of the latent score. The last type of

coarsening could happen when the observed score Yi can only take a finite number of different

values and that, say, yi = k/m when k/m ≤ Ui < (k + 1)/m, where k = 1, . . . , m and m is

the maximum score in the original scale.

The framework of our approach is that of coarsened data, as formalized by Heitjan and

Rubin [8] and Heitjan [7]. They considered deterministic or stochastic coarsening. In partic-

ular, when there is more than one possible procedures to generate the Yi from the Ui, then
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one speaks of a stochastic coarsening.

In general, we assume m
s

+ 1 disjoint intervals [(al, bl)] (al, bl are real numbers in [0, 1] and

[(., .)] denotes the four possible kinds of intervals) for which
⋃m

s
+1

l=1 [(al, bl)] = [0, 1] and each

one contains only one yi = ki/m, (k = 0, s, . . . ,m), then

yi(ui) =

{
k

m
: ui ∈ [(ai, bi)], k = 0, s, . . . , m

}
, (4)

where s denotes the step length. For different procedures generating al and bl, we obtain

different coarsening mechanisms, i.e., rounding-off, digit preference, etc. In case of stochastic

coarsening for different individuals different coarsening mechanisms apply, hence different sets

of [(al, bl)] apply. For deterministic coarsening and stochastic coarsening when the observed

yi are coarsened at random (CAR), the likelihood becomes

L(θ; y) =
n∏

i=1

∫ bi

ai

g (ui; θ) du, (5)

where g is the probability density function of the logistic-normal distribution.

This integral can be calculated by means of the transformation z = logit (u), and so we

get that the likelihood of the sample becomes the likelihood of interval-censored normally

distributed random variables,

L(θ = (βT , σ)T ; y) =
n∏

i=1

[
Φ

(
z

(u)
i − xT

i β

σ

)
− Φ

(
z

(l)
i − xT

i β

σ

)]
, (6)

where z
(l)
i = logit(ai), z

(u)
i = logit(bi) and Φ(.) is the distribution function of the standard

normal distribution.

The Maximum Likelihood estimates for this model can easily be obtained using standard

numerical procedures like the Newton-Raphson or the BFGS (Broyden, Fletcher, Goldfarb and

Shanno) algorithm. Alternatively, an EM algorithm can be written involving the calculation

of means of truncated normal distributions.

Observe that while in the previous subsection we specified the model f(Y |U) now we have

specified f(U |Y ), although in a rather simple way. One could specify other models for f(U |Y ),

for instance a normal kernel N(0, σ2
δ ) truncated at the boundaries. This corresponds to the

Berkson measurement error model. However, it is not clear to what physical phenomenon,

like rounding-off, this model corresponds to.

The previous mechanisms (rounding-off, digit preference, etc.) assume only coarsened

recording of the true latent scores. Of course even without coarsening, the observed scores
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may deviate from the latent scores purely by random variation (as in the previous subsection).

In other words, Yi = Ui + δi, where δi is the measurement error for the ith subject. When

measurement error happens on the transformed scale, i.e., Yi = expit(Zi + δi), where expit

is the inverse of logit and δi ∼ N(0, σ2
δ ) then Yi ∼ N(xT

i β, σ2 + σ2
δ ) if Zi ∼ N(xT

i β, σ2). If

there is no information on σδ there is no way of retrieving the distribution of the true latent

score, and actually in many applications there is no need to do this. Hence, if measurement

error is present (which is often the case) we will assume here that the observed score Yi is

obtained from coarsened recording of Ui + δi, which has a logistic-normal distribution. But,

for simplicity reasons we denote the variance on the transformed scale again σ2.

3.3 Modelling fractions on [0,1]

Fractions typically have a value in [0, 1]. The values in (0,1) can be assumed realizations of a

continuous random variable. For instance, the proportion of mercury in amalgam is the ratio

of 2 continuous random variables with numerator the weight of mercury and denominator the

total weight. But, because some alloys do not contain the specific component this ratio can be

zero. The other extreme is that the alloy is not an alloy but a pure substance. Thus, although

a fraction is a proportion the method explained in Section 3.1 cannot be used here. On the

other hand, a mixture distribution could describe the distribution of fractions by adding to a

classical distribution on (0, 1) two point-mass distributions at the boundaries, i.e., at 0 and

at 1. This is similar to the models considered by Zhou and Tu [24] and Lachenbruch [11, 12]

who examined two-part models for positive random variables with a zero-part and hence we

call it a three-part model. Formally, the three-part model is

g(Yi) ≡ g(Yi,di) =
3∏

j=1

π
dij

ij , (7)

where

πij =





p1I(Yi = 0) if di = (1, 0, 0)

p2I(Yi = 1) if di = (0, 1, 0)

(1− p1 − p2)g(ui|xi; θ) if di = (0, 0, 1)

where di is the indicator vector specifying when U ∈ (0, 1) is observed, I(y = a) is the Dirac

function being 1 for y = a and zero elsewhere and p1 > 0, p2 > 0, p1 + p2 < 1. Clearly, the

proportions p1, p2 represent the proportions of subjects who have a score 0, 1 respectively

and need to be estimated from the data. A useful extension could be to include covariates

in the 0- and 1-parts, as well. Namely, the probability of belonging to one of the three parts
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can be given by the regression model:

h(pij) = wT
i αj (j = 1, 2)

where e.g., h is the logit function, αj (j = 1, 2) are two parameter vectors and wi is a set of

covariates not necessarily the same as xi (i.e., the covariates in the continuous part).

The three-part model could also be considered in the two previous sections, in case the

logistic transform does not provide a good fit to the data or its use is not supported by the

problem’s nature as will be seen in Section 6.2.

4 Alternatives to the logistic-normal distribution

In Section 3 we emphasized the logistic-normal distribution, but it is not the only suitable

distribution resulting from the logistic transformation and not necessarily the best one either.

Indeed, statistical inference based on the normal distribution is known to be vulnerable to

outliers. A more robust approach is to use the logistic-t distribution instead of the logistic-

normal [13]. Of course, for scores on (0,1) a part of the attractiveness of the approach would

be lost because we would need to replace the classical techniques, like the t-test, by more

sophisticated ones. The same remark applies for a proportion on [0,1] with a latent score

on (0,1), since the current software (e.g., SAS proc NLMIXED) assumes normality for the

latent scores. For the rounding-off mechanism changing from a logistic-normal to a logistic-t

distribution is relatively straightforward since it only involves replacing the normal integrals

by t-integrals. Moreover, using the BFGS algorithm as optimization procedure requires only

the first-order derivatives to be adapted which can easily be computed.

Another extension to the logistic-normal distribution is obtained by changing the logistic

transformation. Aitchison and Lauder [2] suggested the Box-Cox transformation family

zi =
(ui/(1− ui))

λ − 1

λ
,

for which when λ → 0 corresponds to the logistic transformation. However, the authors did

not document the usefulness of their extension. For the analysis of clinical trial data, we

suspect that the extra flexibility has little to offer.
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5 Simulation study

The purpose of this simulation study is to evaluate our proposals for analyzing bounded

outcome scores on [0,1] in the two-group situation and under the shift-alternative on the

transformed scale. More specifically we focus on the cases described in Sections 3.1 and 3.2

and are interested in the probability of the Type I error and the power for different alternatives.

Further, we assume below that the first treatment group pertains to the control treatment

and the second treatment group to the experimental treatment.

5.1 Set up of simulation study

All simulations involve two-group comparisons. We first look at scores on (0,1). The mean and

variance from the control and experimental treatments are specified on the transformed scale

and vary from 0 to 3 and from 1 to 4, respectively, to ensure different shapes of the distribution

on the original scale. In particular, to achieve U -shaped and Unimodal distributions we used

µ = 0 and σ equal to 4 and 1, respectively. For the J-shaped we used µ = 3 and σ = 1.

Further, we vary ∆/σ from 0 (H0) to 0.2, 0.5 and 1, corresponding to no, small, moderate

and large treatment effects, respectively. In all cases the mean of the model is µ + ∆x∆,

where x∆ is the treatment indicator. The sample sizes for the treatment groups vary and

are taken as n1 = n2 = 20, 50 and 100. We sampled from a logistic-normal, a logistic-t

and a logistic-logistic distribution. Each situation was sampled 1000 times. For all sampled

situations we apply the two-sample t-test on the transformed scale and the Wilcoxon test (on

the original scale). While these simulations actually represent a power comparison between a

two-sample t-test and a Wilcoxon test, they are not of primary interest to us. However, they

are useful to serve as a benchmark to the simulations on [0,1].

To simulate scores yi on [0,1] we use the simulated scores ui on (0,1). Firstly, we create

proportions (like for the compliance measure) by simulating from the Binomial distribution

with probability ui and Ni fixed first at 30 and then varying stochastically from 10 to 200.

Then we compared the Wilcoxon test on the original proportions with an analysis using a

generalized mixed-effects model (i.e., SAS proc NLMIXED). Secondly, the yis are obtained

using the coarsening mechanism that yi = k/m when (k − 0.5s)/m ≤ Ui < (k + 0.5s)/m,

where (k = 1, . . . , m) with s = 1 and m = 10, 30 and 50. In the boundaries, we have yi = 0

when 0 < Ui < 0.5s/m and yi = 1 when (m − 0.5s)/m < Ui < 1. In this case we compare

the Wilcoxon test with the model of Section (3.2) assuming as reference distribution for the

latent variable the logistic-normal. For this model an S/R function was written by the authors
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which is available upon request.

In a second step the effect of including a baseline covariate into our models is examined.

The purpose is to show the advantage of our approach above versus a non-parametric approach

by allowing for covariate adjustment thereby increasing the power of the statistical comparison

between the treatment groups. This simulation was inspired by the results obtained from the

THAMES and from the survival part of the ECASS-1 study. More specifically we have taken

the value of ∆ from these studies. Further, we have taken for µ = 0, 1.5 and 3 and for

σ = 1, 2, 3. Moreover, we included as baseline value realizations of the variable logit(u0)

where U0 ∼ LN (µ, σ2) and ρ = cor (logit (U) , logit (U0)) = 0.3 or 0.7. For each case the

power for the Binomial and the Coarsening model was computed and compared with the one

of the Wilcoxon test. These results are based on 1000 replications, sample size n equal to 200

and Ni = m = 30.

5.2 Simulation results

5.2.1 Results on (0,1)

First we compared (results not shown) the achieved significance level and power of the t-test on

the logistically transformed score and the Wilcoxon test on the original score are compared

on random variables with a logistic-normal, a logistic-t and a logistic-logistic distribution,

respectively. This is actually a standard comparison of the test characteristics of the t-test

and the Wilcoxon test. The results are not particularly of interest here but were useful as a

benchmark for the results in the following subsections. The simulation results indicated (as

expected) that the t-test and the Wilcoxon test have similar characteristics under the null-

and alternative hypotheses, with the Wilcoxon test having a slightly higher power for the

logistic-t and logistic-logistic distributions.

5.2.2 Results for the Binomial model

In Table 1 the comparison between the Wilcoxon test and the Binomial model with a normal

random-effect and Ni = 30 is presented. In the majority of the cases we observe that the

performance of the Wilcoxon test is nearly identical with the one of the Binomial model. The

Type I error is close to 0.05 for all the cases even for the small sample size n = 40. Further, we

observe the expected positive association of the power with the sample size and the effect size

11



∆/σ. However, the power does also depend on the shape of the distribution, in contrast to

the results of the previous subsection. In particular, we observe that more powerful is the U -

shaped, followed by the Unimodal and the J-shaped, especially for small Ni. An explanation

of this phenomenon lies in the fact that the latent score Ui (true probability of success) is not

known but only the observed proportion is. When all the true proportions are relatively close

to 0 or to 1 the observed proportions will be relatively close to each other, especially when

Ni are small. A proof of this is seen in the power of the Wilcoxon test which shows a similar

behavior. When Ni varies from 10 to 200 (results not shown), the power increases and the

dependence of the power on the shape of the distribution gradually decreases.

5.2.3 Results for the Coarsening model

In Table 2 the comparison between the Wilcoxon test and the model based on the coarsening

mechanism of Section 3.2 with m = 10 is presented. Basically the same phenomenon is seen

as for the previous case. Further, a similar explanation of why the J-shaped model performs

worse can be given. However, as m and n increase, the distribution shape dependency of the

power gradually disappears.

5.2.4 Including covariates

The results for the power calculations when taking the response measured at baseline into

account are presented in Tables 3 and 4. First of all, we observe that now the Wilcoxon

can have a much lower power than the parametric models taking the baseline covariate into

account. Further, as σ and ρ increase the difference in power between the parametric models

and the Wilcoxon test increases. Finally, we observe that this difference is more obvious for

the THAMES study since in this case the estimated ∆ is lower and thus more difficult to

detect by the nonparametric test.
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6 Applications

6.1 A compliance-enhancing intervention study: THAMES study

Recently, an open-label, multicenter compliance-enhancing intervention (THAMES) study

was completed in Belgium to measure the effect of a program of pharmaceutical care, designed

to enhance adherence to atorvastatin treatment. All patients, aged 18 years or above, who

had been taking atorvastatin for at least 3 months were included in the study provided they

usually got their medication in one of the pharmacies participating in the study. Four well-

defined districts were identified, two in Flanders (North of Belgium) and two in Wallonia

(South of the country). In both Flanders and Wallonia, all pharmacists in one of the districts

were to apply measures to improve compliance and enhance persistence, whereas in the second

district no such measures were taken. All pharmacists were equipped with the MEMS system,

an electronically monitored pharmaceutical package designed to compile the dosing histories

of ambulatory patients taking oral medications (see [19]). At the first visit, the pharmacist

instructed the patient how to use the monitored packages. Depending on the number of tablets

prescribed and posology, the patient was instructed to return to the pharmacy every month

or every 3 months. The total study duration was 12 months. Therefore, the number of visits

to the pharmacy ranged from 5 to 13. At each visit, the patient’s dosing history was checked

by means of the electronic monitoring system. The period between the first and second visit

was considered to be the baseline period. In addition to the compilation of dosing histories as

described above, pharmaceutical care measures to enhance compliance/persistence with the

prescribed dosing regime were applied from the second pharmacy visit onwards, i.e. after the

baseline period. The pharmacist used several tools to improve compliance, more details can

be found in [21]. In case the patient failed to appear for the last visit, contact was made with

the patient by telephone or postcard in order to obtain the reasons for drop-out.

The primary efficacy parameter of the THAMES study was adherence to prescribed ther-

apy in the post-baseline period whereby adherence was defined for each patient as the pro-

portion of days during which the MEMS record showed that the patient had opened the pill

container. This variable was also estimated at baseline (baseline adherence) between the first

intake of drug and the time of the second visit to the pharmacy. The second pharmacy visit

was the first time the pharmacist was to counsel with the patient based on observed dosing

history data. Finally for the calculation of the “post-baseline adherence” the post-baseline

period was arbitrarily cut-off at day 300.
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6.1.1 Baseline covariates

The THAMES study could not be randomized due to practical difficulties. Therefore, we

need to compare the baseline covariates of the intervention and control groups. In Table 5 we

compared: gender, age, weight, work status (unemployed versus employed), a cardiovascular

risk score (see Vrijens et al. [21]), family history of CHD and the pdays at baseline with

the appropriate statistical techniques. Especially, the adherence at baseline is of interest, the

Wilcoxon test gives a significant value (p-value = 0.011). The reasons for this significant

difference at the start are not clear, but it requires that the imbalance at the start needs to be

taken into account. We were aware of the potential dangers of correcting for baseline covariates

in the presence of imbalance at baseline (see e.g., Wainer and Brown [22]). However, for

illustrative purposes we will still perform an ANCOVA type of analysis in the next subsection,

for instance to show that our approach easily incorporates baseline covariates.

6.1.2 Efficacy comparison

Initially, we checked for a treatment effect without correcting for any baseline covariates.

Both the Wilcoxon test and the Binomial model give a significant intervention effect with

p-value < 0.001. In Figure 3 the histograms of the two treatment groups with superimposed

kernel estimates and fitted distributions are presented. We observe that the estimated logistic-

normal distributions provide a very good fit to the observed data. Finally, P̂∆ = 0.657

with corresponding 95% C.I. using the Delta method (0.601, 0.713), which also supports the

intervention effect.

In the second part of the analysis we take into account the baseline covariates mentioned

in Section 6.1.1. Note that the logit of baseline adherence was taken as covariate. In Table

6 the results of the Binomial model with a logistic-normal random effect are shown. A

highly significant intervention effect (p-value < 0.001) is seen. Also, most of the covariates

do not seem to have a strong impact on the response. As mentioned above our analysis

uses a generalized linear mixed model to estimate the intervention effect. A competitor is a

marginal GEE model. In Table 7 the results are shown from an analysis using R function

glm (see also Section 3.1). As expected the intervention effect is lower now. On the other

hand the regression coefficients of the other regressors are larger in absolute value than for

the previous analysis indicating that in the generalized linear mixed approach the random

variable Z captures much of the extra-Binomial variation. While we are aware of the dispute

between statisticians regarding the use of a random effects model versus a marginal model,
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we believe that here the generalized mixed effects model is to be preferred since the estimated

intervention effect can clearly be related to the obtained effect if the true compliance measures

were known.

6.2 A stroke trial: ECASS-1 study

The ECASS stroke study is a double-blind randomized parallel study designed to compare

the effect of alteplase (a thrombolytic drug) and placebo in patients with an acute ischaemic

stroke. The primary outcome is patient status at 3 months assesses by the Barthel index, a

measure of quality-of-life assessing the ability of patients to perform daily activities. For more

details we refer to [6] and [5]. Several versions of the Barthel index exist. In the ECASS-1

study the one used has scale from 0 to 100 with steps of 5. This version can be standardized

such that the values lie in [0,1]. The higher the score the better the patient can live an

independent life with 1 as the maximal value when the patient can live an independent life

without the help of others. The score could also be considered as a reflection of a latent scale

which measures the ability to cope with a handicap resulting from, say, a cerebrovascular

stroke. In this way it is plausible that the latent score for most if not all patients is less

than 1. This is medically supported since an observed score of 1 does not necessarily imply

complete neurologic recovery of the patient. Further it is also true that for a patient who

survived a stroke with a (observed) score of zero his/her true latent score is close to zero

but not really zero. But, clearly this is different from a patient who has an observed score

of zero because he did not survive the stroke. For this patient our assumption of a latent

score on (0,1) is not tenable. We could overcome this conflict by using a two-part model with

one point-mass distribution at 0 describing the patients who did not survive the stroke and a

continuous latent variable in (0,1) reflecting the ability for the remaining patients. Observe

that this model is not exactly the same as the one described in Section 3.3. Indeed, here the

mixture is based on the extra information we have on the patient (survived versus deceased)

and not in the first place on the observed value of zero for the bounded outcome score.

In particular, combining models (5) and (7), the model for the Barthel index which takes

into account patient mortality has the form,

g(yi, di; α,θ) = pdi
i [(1− pi)g(yi|xi; θ)]1−di

where di is the indicator of death, logit(pi) = wT
i α and g(yi|xi; θ) =

∫ bi

ai
g (ui|xi; θ) du. The
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corresponding log-likelihood is given by,

` (θ,α; y,d) =
n∑

i=1

{
di

(
wT

i α− Ci

)
+ (1− di)

[
log

(
Φ

(
z
(u)
i − xT

i β

σ

)
− Φ

(
z
(l)
i − xT

i β

σ

))
− Ci

]}
(8)

where θ = (βT , σ)T , Ci = log
(
1 + exp

(
wT

i α
))

and z
(l)
i , z

(u)
i are given in Section 3.2. Since

the parameters α and θ have distinct parameter spaces, model (8) splits up in a logistic

regression for the mortality rate and the coarsening model for the latent ability only for the

survivors.

According to our remarks in the beginning of this section, a reasonable coarsening mech-

anism in the case of Barthel index could be,

yi(ui) =

{
k

m
: ui ∈

(
k − s/2

m
,
k + s/2

m

)
, k = 0, s, . . . ,m

}
,

where m = 100 and s = 5 in our case and when k−s/2
m

< 0 or k+s/2
m

> 1 then yi(ui) equals

0 or 1, respectively. Before adopting this mechanism and use model (8) for our analysis we

should consider any discrepancies from the CAR assumption. The use of this mechanism

assumes two different lengths for the intervals in which ui might lie, namely s/2m if ui ∈
(0, s/2m) or ui ∈ (0, 1 − s/2m) and s/m in any other case. However, based on Corollary 1

of Heitjan and Rubin [8], we could assume CAR here because the type of coarsening used

is known from yi and moreover for all the values of ui ∈ yi we obtain the same coarsening

mechanism.

In accordance with [15] we first perform a Wilcoxon test on all patients ignoring their mor-

tality status. This gives a non significant treatment effect with p-value = 0.104. Observe that

this analysis mainly addresses the more practical question of how beneficial the thrombolytic

treatment is overall (combining ability with mortality).

Using model (8) we first divided the total study sample into survivors and deaths. The

model uses a logistic regression to predict mortality. The second part of the model only

involves survivors and on this part the model introduced in Section 3.2 is used. As mentioned

above, when the parameters of the two parts of the model are different, the analysis splits up

into two independent parts. The results for the effect of treatment and baseline covariates on

mortality are presented in Table 8. In particular, we observe no treatment effect (p-value =

0.080) but only a significant age effect (p-value < 0.001).

With regard to the second part of the model, we started our analysis without using any

baseline covariate. Both the Wilcoxon test and the coarsening model give a significant treat-

ment effect with corresponding p-values equal to 0.002 and 0.003, respectively. In Figure 4
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the histograms of the two treatment groups with the superimposed kernel estimates and the

fitted distributions are presented. We observe also here that the estimated logistic-normal

distributions provide a very good fit to the observed data. The estimated P∆ equals 0.583

with corresponding 95% C.I. using the Delta method (0.530, 0.637), showing the treatment

effect. In a second step the baseline covariates are introduced into the model. Table 9 presents

the results of the Coarsening model. A more significant treatment effect (p-value = 0.001)

is obtained by introducing the covariates and again a significant age effect (p-value < 0.001)

but of course in the other direction now.

7 Conclusion

The assumption of a latent variable on (0,1) together with the logistic transform facilitates

the modelling of the distribution of the bounded outcome score on [0,1] and allows baseline

covariate adjustment. We believe that this is the main advantage of our approach over other

approaches.

Despite the attractiveness of our approach, some critical remarks are needed. For the

Binomial model, we assumed that a random intercept model is adequate. For the compliance

example, this assumption is probably justified when the period upon which pdays is calculated

is relatively short. However, for longer periods it is likely that a random slope or serial

correlation is needed. On the other hand for the Coarsening model, a particular coarsening

mechanism needs to be chosen in order to calculate the integrals in (5). However, it is not

always clear which coarsening mechanism is underlying a discrete outcome score. For instance,

the coarsening mechanism chosen for the Barthel index was driven by logical reasoning but

there is no way of verifying whether this coarsening mechanism actually applies here.

We believe that future research is needed to render our approach more useful in practice.

For instance, it would be helpful to have analytical expressions which allow us to calculate the

necessary sample size when planning a clinical trial with bounded outcome scores given µ, ∆, σ

and (a) N for the Binomial model or (b) m for the Coarsening model. Further, repeated

models for bounded outcome scores using either a multivariate approach as suggested by

Aitchison and Shen [3] or incorporating random effects could be useful. Finally, a closer look

is needed on how to include bounded outcome scores as covariates in a regression model.
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Effect Size Sample Size Dist. Shape Distributions

∆/σ n = n1 + n2 Logistic-Normal Logistic-t (df = 4) Logistic-Logistic

Unimodal 0.064/0.056 0.054/0.045 0.044/0.042

40 U-Shaped 0.041/0.038 0.050/0.047 0.056/0.048

J-Shaped 0.055/0.050 0.057/0.058 0.064/0.058

Unimodal 0.059/0.056 0.048/0.044 0.050/0.045

0.0 100 U-Shaped 0.070/0.068 0.047/0.043 0.039/0.043

J-Shaped 0.068/0.055 0.054/0.049 0.046/0.045

Unimodal 0.068/0.068 0.044/0.046 0.053/0.053

200 U-Shaped 0.045/0.045 0.051/0.051 0.053/0.048

J-Shaped 0.058/0.052 0.045/0.052 0.060/0.048

Unimodal 0.083/0.069 0.116/0.109 0.097/0.076

40 U-Shaped 0.097/0.089 0.127/0.123 0.098/0.097

J-Shaped 0.062/0.057 0.077/0.073 0.084/0.065

Unimodal 0.149/0.147 0.173/0.176 0.156/0.139

0.2 100 U-Shaped 0.164/0.168 0.232/0.230 0.180/0.174

J-Shaped 0.101/0.101 0.109/0.114 0.127/0.127

Unimodal 0.264/0.262 0.303/0.323 0.262/0.269

200 U-Shaped 0.255/0.254 0.368/0.380 0.282/0.283

J-Shaped 0.179/0.175 0.182/0.196 0.182/0.178

Unimodal 0.305/0.279 0.367/0.368 0.331/0.315

40 U-Shaped 0.296/0.295 0.416/0.410 0.336/0.335

J-Shaped 0.213/0.195 0.217/0.200 0.213/0.180

Unimodal 0.630/0.617 0.709/0.734 0.678/0.681

0.5 100 U-Shaped 0.649/0.645 0.820/0.820 0.707/0.715

J-Shaped 0.424/0.381 0.444/0.447 0.425/0.422

Unimodal 0.917/0.900 0.949/0.965 0.917/0.913

200 U-Shaped 0.919/0.913 0.978/0.981 0.954/0.952

J-Shaped 0.728/0.689 0.724/0.759 0.707/0.714

Unimodal 0.816/0.783 0.873/0.882 0.847/0.831

40 U-Shaped 0.805/0.788 0.928/0.926 0.844/0.861

J-Shaped 0.581/0.531 0.586/0.583 0.566/0.535

1.0 Unimodal 0.996/0.995 0.998/1.000 0.998/0.998

100 U-Shaped 0.998/0.998 0.999/1.000 0.997/0.997

J-Shaped 0.936/0.913 0.913/0.930 0.914/0.901

Unimodal 1.000/1.000 1.000/1.000 1.000/1.000

200 U-Shaped 1.000/1.000 1.000/1.000 1.000/1.000

J-Shaped 0.997/0.997 0.999/0.999 0.996/0.998

Table 1: Simulation results (based on 1000 simulations) for the Binomial model with Normal
random-effect versus Wilcoxon test when Ni equals 30. Each entry refers to the proportion of
times the null hypothesis is rejected in the Binomial model/Wilcoxon test. In each case the model
assumes normal distribution for the latent variable.
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Effect Size Sample Size Dist. Shape Distributions

∆/σ n = n1 + n2 Logistic-Normal Logistic-t (df = 4) Logistic-Logistic

Unimodal 0.031/0.042 0.042/0.048 0.026/0.049

40 U-Shaped 0.038/0.057 0.046/0.050 0.047/0.035

J-Shaped 0.048/0.046 0.039/0.043 0.041/0.043

Unimodal 0.043/0.042 0.026/0.045 0.026/0.053

0.0 100 U-Shaped 0.051/0.056 0.052/0.053 0.061/0.065

J-Shaped 0.050/0.052 0.049/0.055 0.054/0.052

Unimodal 0.047/0.047 0.058/0.058 0.056/0.049

200 U-Shaped 0.051/0.056 0.048/0.045 0.051/0.046

J-Shaped 0.047/0.050 0.047/0.052 0.040/0.043

Unimodal 0.080/0.087 0.056/0.102 0.150/0.097

40 U-Shaped 0.096/0.098 0.101/0.100 0.085/0.082

J-Shaped 0.075/0.064 0.081/0.083 0.088/0.079

Unimodal 0.145/0.156 0.127/0.232 0.109/0.175

0.2 100 U-Shaped 0.137/0.134 0.194/0.204 0.176/0.171

J-Shaped 0.139/0.137 0.188/0.186 0.162/0.161

Unimodal 0.188/0.275 0.191/0.363 0.174/0.286

200 U-Shaped 0.249/0.253 0.374/0.388 0.273/0.282

J-Shaped 0.209/0.213 0.387/0.314 0.275/0.263

Unimodal 0.273/0.280 0.226/0.397 0.184/0.309

40 U-Shaped 0.297/0.295 0.405/0.403 0.322/0.327

J-Shaped 0.270/0.267 0.385/0.350 0.287/0.297

Unimodal 0.691/0.629 0.794/0.789 0.604/0.675

0.5 100 U-Shaped 0.627/0.632 0.799/0.810 0.673/0.683

J-Shaped 0.575/0.541 0.676/0.628 0.604/0.637

Unimodal 0.934/0.929 0.810/0.975 0.895/0.938

200 U-Shaped 0.895/0.889 0.978/0.983 0.938/0.941

J-Shaped 0.874/0.866 0.911/0.943 0.885/0.902

Unimodal 0.851/0.826 0.878/0.901 0.858/0.845

40 U-Shaped 0.823/0.806 0.945/0.949 0.857/0.860

J-Shaped 0.778/0.731 0.788/0.807 0.722/0.759

1.0 Unimodal 0.992/0.996 0.993/0.999 0.984/0.998

100 U-Shaped 0.997/0.996 1.000/1.000 0.998/0.999

J-Shaped 0.996/0.979 0.980/0.994 0.988/0.989

Unimodal 1.000/1.000 0.986/1.000 0.995/1.000

200 U-Shaped 1.000/1.000 1.000/1.000 1.000/1.000

J-Shaped 1.000/1.000 1.000/1.000 1.000/1.000

Table 2: Simulation results (based on 1000 simulations) for the Coarsening model versus Wilcoxon
test when m equals 10. Each entry refers to the proportion of times the null hypothesis is rejected
in the Coarsening model/Wilcoxon test. In each case the model assumes normal distribution for the
latent variable.
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µ σ ρ = 0.3 ρ = 0.7

Coarsening/Wilcoxon Binomial/Wilcoxon Coarsening/Wilcoxon Binomial/Wilcoxon

1.0 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000

0.0 2.0 0.866/0.816 0.806/0.756 0.988/0.798 0.959/0.784

3.0 0.474/0.434 0.498/0.474 0.786/0.463 0.690/0.432

1.0 1.000/1.000 0.996/0.996 1.000/1.000 1.000/0.994

1.5 2.0 0.868/0.826 0.794/0.727 0.982/0.792 0.946/0.745

3.0 0.479/0.442 0.437/0.398 0.702/0.450 0.657/0.428

1.0 1.000/1.000 0.984/0.972 1.000/1.000 1.000/0.980

3.0 2.0 0.790/0.754 0.705/0.638 0.960/0.789 0.892/0.662

3.0 0.496/0.452 0.441/0.380 0.666/0.430 0.589/0.389

Table 3: Simulation results (based on 1000 simulations) for the Coarsening model and the Bino-
mial model, respectively versus the Wilcoxon test using the treatment effect ∆ obtained from the
THAMES study. Each entry refers to the proportion of times the null hypothesis is rejected in the
Coarsening model/Binomial model/Wilcoxon test.

µ σ ρ = 0.3 ρ = 0.7

Coarsening/Wilcoxon Binomial/Wilcoxon Coarsening/Wilcoxon Binomial/Wilcoxon

1.0 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000

0.0 2.0 0.970/0.946 0.956/0.936 0.998/0.956 1.000/0.942

3.0 0.708/0.659 0.682/0.658 0.929/0.671 0.886/0.644

1.0 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000

1.5 2.0 0.976/0.962 0.948/0.921 1.000/0.948 1.000/0.956

3.0 0.695/0.669 0.695/0.648 0.905/0.688 0.864/0.636

1.0 1.000/1.000 1.000/1.000 1.000/1.000 1.000/0.999

3.0 2.0 0.950/0.913 0.914/0.878 0.999/0.948 0.985/0.869

3.0 0.697/0.645 0.622/0.569 0.876/0.639 0.824/0.601

Table 4: Simulation results (based on 1000 simulations) for the Coarsening model and the Binomial
model, respectively versus the Wilcoxon test using the treatment effect ∆ obtained from the sur-
vivor’s part of the ECASS-1 study. Each entry refers to the proportion of times the null hypothesis
is rejected in the Coarsening model/Binomial model/Wilcoxon test.
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Variable Levels Intervention Control p-value

Adherence − 0.926 0.895 0.011

Gender Males 102(54.84%) 85(46.70%)

Females 84(45.16%) 97(53.30%) 0.116

Age − 61.96 60.71 0.231

Weight − 77.22 77.83 0.735

Work Unemployed 46(24.73%) 64(35.16%)

Employed 140(75.27%) 118(64.84%) 0.029

Card. Risk − 12.74 10.52 0.013

Fam. Hist. No 145(77.54%) 142(78.02%)

Yes 42(22.46%) 40(21.98%) 0.911

Table 5: THAMES study: Comparison of baseline covariates for difference in the two groups. For
categorical variables frequencies (percentages) and for continuous variables the mean, are reported.

Variable Estimate Std. Error p-value

Intercept 0.545 0.249 0.029

Baseline 0.648 0.051 <0.001

Intervention 0.818 0.161 <0.001

Gender −0.171 0.199 0.391

Age 0.009 0.011 0.403

Weight 0.005 0.006 0.429

Work −0.240 0.233 0.302

Card. Risk −0.021 0.012 0.064

History −0.444 0.191 0.021

σ 1.433 0.062

Table 6: THAMES study: Parameter estimates, standard errors and p-values for the Binomial
model with normal random-effect for the Compliance data.
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Variable Estimate Std. Error p-value

Intercept 0.814 0.242 0.001

Baseline 0.545 0.055 <0.001

Intervention 0.706 0.163 <0.001

Gender −0.142 0.193 0.465

Age 0.029 0.011 0.012

Weight 0.010 0.006 0.088

Work −0.748 0.243 0.002

Card. Risk −0.027 0.011 0.013

History −0.609 0.175 <0.001

φ 46.623

Table 7: THAMES study: Parameter estimates, standard errors and p-values for the Binomial
model assuming overdispersion for the Compliance data.

Variable Estimate Std. Error p-value

Intercept −2.574 0.263 <0.001

Treatment 0.516 0.294 0.080

Gender −0.340 0.307 0.268

Age 0.937 0.228 <0.001

Table 8: ECASS-1 study: Parameter estimates, standard errors and p-values for the logistic regres-
sion for the mortality rate.

Variable Estimate Std. Error p-value

Intercept 2.655 0.258 <0.001

Treatment 1.059 0.331 0.001

Gender −0.467 0.339 0.169

Age −0.793 0.171 <0.001

σ 3.317 0.165

Table 9: ECASS-1 study: Parameter estimates, standard errors and p-values for the Coarsening
model for the Barthel index.
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Figure 1: Different logistic-normal distributions
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Figure 2: Correspondence of the location-shift alternative between the original and transformed
scale
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Figure 3: THAMES study: Proportion of correct dosing days
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Figure 4: ECASS-1 study: Barthel Index for survivors
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