<u>TECHNICAL</u> <u>REPORT</u>

0323

ASYMPTOTIC FOR DEA ESTIMATORS IN NON-PARAMETRIC FRONTIER MODELS

KNEIP, A., SIMAR, L. and P. WILSON

<u>IAP STATISTICS</u> <u>NETWORK</u>

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP

Asymptotics for DEA Estimators in Non-parametric Frontier Models^{*}

Alois Kneip

Léopold Simar and Paul W. Wilson^{**}

September 2003

Key Words: Bootstrap, frontier, efficiency, data envelopment analysis, DEA.

ABSTRACT

Non-parametric data envelopment analysis (DEA) estimators based on linear programming methods have been widely applied in analyses of productive efficiency. The distributions of these estimators remain unknown except in the simple case of one input and one output. This paper derives the asymptotic distribution of DEA estimators under variable returns-to-scale. In addition, two bootstrap procedures (one based on sub-sampling, the other based on smoothing) are shown to provide consistent inference. The smooth bootstrap requires smoothing the irregularly-bounded density of inputs and outputs as well as smoothing of the DEA frontier estimate. Both bootstrap procedures allow for dependence of the inefficiency process on output levels and the mix of inputs in the case of input-oriented measures, or on inputs levels and the mix of outputs in the case of output-oriented measures.

^{*}Research support from "Projet d'Actions de Recherche Concertées" (No. 98/03–217) and from the "Interuniversity Attraction Pole", Phase V (No. P5/24) from the Belgian Government are acknowledged.

^{**}Kneip: Lehrstuhl für Statistik und Mathematik, Johannes Gutenberg-Universität, Mainz, Germany; email kneip@wiwi.uni-mainz.de. Simar: Institut de Statistique, Université Catholique de Louvain, Voie du Roman Pays 20, Louvain-la-Neuve, Belgium; email simar@stat.ucl.ac.be. Wilson: Department of Economics, University of Texas, Austin, Texas 78712 USA; email wilson@eco.utexas.edu.

1. Introduction

Many dozens—perhaps hundreds—of published papers have proposed measures of technical, allocative, and other types of productive efficiency based on microeconomic theory of the firm and early work by Debreu (1951), Farrell (1957), and Shephard (1970). Many more published papers have employed linear programming methods along the lines of Charnes *et al.* (1978, 1979) and Färe *et al.* (1985) to estimate productive efficiency using data from a wide variety of industries. Collectively, these papers number well over 1,000 (see Lovell, 1993 and Seiford, 1996 and 1997 for comprehensive bibliographies). Within this literature, those approaches that incorporate convexity assumptions are known as Data Envelopment Analysis (DEA).

DEA estimators measure efficiency relative to an *estimate* of an unobserved *true* frontier, conditional on observed data resulting from an underlying data-generating process (DGP). Until recently, little was known about the statistical properties of DEA estimators (Simar and Wilson, 2000b, provide a survey of the available statistical results for DEA estimators). It is now understood, however, that under certain assumptions the DEA *frontier* estimator is a consistent, maximum likelihood estimator (Banker, 1993), with a known rate of convergence (Korostelev *et al.*, 1995). In addition, consistency and convergence rates of DEA *efficiency* estimators has been established (Kneip *et al.*, 1998). The asymptotic distribution of DEA efficiency estimators for the special case of one input, one output was derived by Gijbels *et al.* (1999), but until now there have been no such results that would allow one to perform classical inference regarding efficiency in more general cases with multiple inputs and outputs. To date, the bootstrap methods proposed by Simar and Wilson (1998, 2000a) provide the only means for inferences about efficiency based on DEA estimators in a multivariate framework, but consistency for these procedures has not been proved.

This paper derives the asymptotic distribution of DEA estimators under variable returns to scale. In addition, two bootstrap methods are shown to provide consistent inference. The first is based on sub-sampling; bootstrap samples of size m < n are drawn (independently, with replacement) from the empirical distribution of the n sample observations. There is little surprise that such a method should work; Swanepoel (1986) discussed this approach for inference about the boundary of support for a univariate distribution, but the difficulty with this approach lies in the choice of m. The second bootstrap approach involves smoothing both the distribution of the observations, as well as the initial frontier estimate. Simulation results for both bootstrap methods are provided.

We proceed as follows: in the next section, we define notation and briefly describe the DEA estimator. We derive the asymptotic distribution of this estimator in the third section, and present the bootstrap procedures in the fourth section. Simulation results are presented in section 5, and concluding remarks appear in the final section.

2. DEA Estimators

To establish notation for the rest of the paper, suppose that firms use input quantities $\boldsymbol{x} \in \mathbb{R}^p_+$ to produce output quantities $\boldsymbol{y} \in \mathbb{R}^q_+$. Standard microeconomic theory of the firm posits a production set

$$\Psi = \{ (\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{x} \text{ can produce } \boldsymbol{y} \}.$$
(2.1)

The production set Ψ is sometimes described in terms of its sections

$$\mathcal{Y}(\boldsymbol{x}) \equiv \{ \boldsymbol{y} \mid (\boldsymbol{x}, \boldsymbol{y}) \in \Psi \}$$
(2.2)

and

$$\mathfrak{X}(\boldsymbol{y}) \equiv \{ \boldsymbol{x} \mid (\boldsymbol{x}, \boldsymbol{y}) \in \Psi \},$$
(2.3)

which form the output feasibility and input requirement sets, respectively. Knowledge of either $\mathcal{Y}(\boldsymbol{x})$ for all \boldsymbol{x} or $\mathcal{X}(\boldsymbol{y})$ for all \boldsymbol{y} is equivalent to knowledge of Ψ ; thus, both $\mathcal{Y}(\boldsymbol{x})$ and $\mathcal{X}(\boldsymbol{y})$ inherit the properties of Ψ . We denote the boundary of $\mathcal{X}(\boldsymbol{y})$ by

$$\mathfrak{X}^{\partial}(\boldsymbol{y}) = \{ \boldsymbol{x} \mid (\boldsymbol{x}, \boldsymbol{y}) \in \Psi, \ (\delta \boldsymbol{x}, \boldsymbol{y}) \notin \Psi \ \forall \ \delta < 1 \}$$

$$(2.4)$$

Various economic assumptions regarding Ψ are possible; we adopt those of Shephard (1970) and Färe (1988):

Assumption 1: Ψ is closed and convex; $\mathcal{Y}(\boldsymbol{x})$ is closed, convex, and bounded for all $\boldsymbol{x} \in \mathbb{R}^p_+$; and $\mathfrak{X}(\boldsymbol{y})$ is closed and convex for all $\boldsymbol{y} \in \mathbb{R}^q_+$.

The boundary Ψ^{∂} of Ψ constitutes the **technology**. Microeconomic theory of the firm suggests that in perfectly competitive markets, firms operating in the interior of Ψ will be driven from the market, but makes no prediction of how long this might take.

Assumption 2: $(x, y) \notin \Psi$ if x = 0, $y \ge 0$, $y \ne 0$, i.e., all production requires use of some inputs.

Assumption 3: for $\tilde{x} \geq x$, $\tilde{y} \leq y$, if $(x, y) \in \Psi$ then $(\tilde{x}, y) \in \Psi$ and $(x, \tilde{y}) \in \Psi$, i.e., both inputs and outputs are strongly disposable.

Here and throughout, inequalities involving vectors are defined on an element-by-element basis; e.g., for \tilde{x} , $x \in \mathbb{R}^p_+$, $\tilde{x} \ge x$ means that some number $\ell \in \{0, 1, \ldots, p\}$ of the corresponding elements of \tilde{x} and x ere equal, while $(p - \ell)$ of the elements of \tilde{x} are greater than the corresponding elements of x. Note that Assumption 3 is equivalent to an assumption of monotonicity of the technology.

Various measures of technical efficiency are possible. We use the Farrell (1957) measure of input technical efficiency, defined by

$$\theta(\boldsymbol{x}, \boldsymbol{y}) \equiv \inf\{\delta \mid (\delta \boldsymbol{x}, \boldsymbol{y}) \in \Psi, \ \delta > 0\}$$
(2.5)

for an arbitrary point $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{p+q}_+$. This is the the reciprocal of the Shephard (1970) input distance function. For $(\boldsymbol{x}, \boldsymbol{y}) \in \Psi$, $0 < \theta(\boldsymbol{x}, \boldsymbol{y}) \leq 1$. Note that θ provides a measure of Euclidean distance from the point $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{p+q}_+$ to the boundary of Ψ in a direction parallel to the input axes and orthogonal to the output axes. One can also define outputoriented measures; we consider only the input orientation to conserve space. All of our results extend to output-oriented measures via straightforward, although perhaps tedious, changes in notation.

Of course, Ψ and hence $\theta(\boldsymbol{x}, \boldsymbol{y})$ are unknown and must be estimated from a sample of observations $S_n = \{(X_i, Y_i)\}_{i=1}^n$. The DEA estimator of Ψ is merely the convex hull of the

free disposal hull of S_n , given by

$$\widehat{\Psi} = \left\{ (\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{y} \leq \boldsymbol{Y} \boldsymbol{q}, \ \boldsymbol{x} \geq \boldsymbol{X} \boldsymbol{q}, \ \boldsymbol{i}' \boldsymbol{q} = 1, \ \boldsymbol{q} \in \mathbb{R}^n_+ \right\},$$
(2.6)

where $\boldsymbol{Y} = [\boldsymbol{y}_1 \quad \dots \quad \boldsymbol{y}_n], \boldsymbol{X} = [\boldsymbol{x}_1 \quad \dots \quad \boldsymbol{x}_n], \boldsymbol{i}$ denotes an $(n \times 1)$ vector of ones, and \boldsymbol{q} is an $(n \times 1)$ vector of intensity variables. The corresponding DEA estimator of $\theta(\boldsymbol{x}, \boldsymbol{y})$ is obtained by replacing Ψ with $\widehat{\Psi}$ in (2.5); *i.e.*,

$$\widehat{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \min\left\{\delta > 0 \mid \boldsymbol{y} \leq \boldsymbol{Y}\boldsymbol{q}, \ \delta\boldsymbol{x} \geq \boldsymbol{X}\boldsymbol{q}, \ \boldsymbol{i}'\boldsymbol{q} = 1, \ \boldsymbol{q} \in \mathbb{R}^{n}_{+}\right\}.$$
(2.7)

Minimization of the linear program in (2.7) provides a solution for both δ and \boldsymbol{q} . Whereas $\theta(\boldsymbol{x}, \boldsymbol{y})$ defined in (2.5) gives a measure of distance from a point $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{p+q}_+$ to the boundary of Ψ , $\hat{\theta}(\boldsymbol{x}, \boldsymbol{y})$ measures distance from the same point to the boundary of the convex hull of the free-disposal hull of the *n* sample observations; from Kneip *et al.* (1998) we have $\hat{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \theta(\boldsymbol{x}, \boldsymbol{y}) + O_p(n^{\frac{2}{p+q+1}})$ when $\theta(\boldsymbol{x}, by)$ is twice-differentiable. As with many non-parametric estimators, the DEA estimators suffer from the curse of dimensionality.

3. Asymptotic Distribution of DEA Estimators

To derive the distribution of the estimator $\hat{\theta}(\boldsymbol{x}, \boldsymbol{y})$, a data generating process must be defined. The framework we consider is similar to that in Simar (1996), Kneip *et al.* (1998), and Simar and Wilson (1998, 2000a).

Assumption 4: The *n* observations in S_n are identically, independently distributed (iid) random variables on the convex attainable set Ψ .

Assumption 5: (a) The (X, Y) possess a joint density f with support $\mathcal{D} \subset \Psi$; (b) f is continuous on \mathcal{D} ; and (c) $f(\theta(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{x}, \boldsymbol{y}) > 0$ for all $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}$.

Clearly, Assumption 5(c) imposes a discontinuity in f at frontier points where $\theta(\boldsymbol{x}, \boldsymbol{y}) =$ 1. This assumption ensures a significant, non-negligible probability of observing production units close to the production frontier, while $f \equiv 0$ for technically non-attainable points which lie outside Ψ .

We concentrate on a fixed point $(\boldsymbol{x}, \boldsymbol{y}) \in \Psi$ in the analysis that follows. The statistical performance of the DEA estimator $\widehat{\theta}(\boldsymbol{x}, \boldsymbol{y})$ of $\theta(\boldsymbol{x}, \boldsymbol{y})$ depends on the smoothness of the

frontier. Kneip *et al.* (1998) derive different rates of convergence depending of the degree of smoothness. We consider only the case where $\theta(x, y)$ is twice-differentiable.

Assumption 6: (a) For (x, y) in the interior of \mathcal{D} , the function $\theta(v, w)$ is twice continuously differentiable for all (v, w) in a sufficiently small neighborhood of (x, y); and (b) the matrix $\theta''(x, y)$ of second derivatives of θ at (x, y) is positive definite.

Assumptions 1–6 describe the statistical model to be considered. However, in order to formulate our results it is necessary to introduce some additional notation. As an important theoretical tool for our analysis we will consider a decomposition of the vectors X_i of inputs which is specific for the particular point of interest, \boldsymbol{x} .

Let $\mathcal{V}(\boldsymbol{x})$ denote the (p-1)-dimensional linear space of all vectors $\boldsymbol{z} \in \mathbb{R}^p$ such that $\boldsymbol{z}^T \boldsymbol{x} = 0$. Any input vector X_i adopts a unique decomposition of the form

$$X_{i} = \gamma_{i} \frac{\boldsymbol{x}}{||\boldsymbol{x}||} + \boldsymbol{Z}_{i} \quad \text{for some } \boldsymbol{Z}_{i} \in \mathcal{V}(\boldsymbol{x}) \text{ and } \gamma_{i} = \frac{\boldsymbol{x}^{T} X_{i}}{||\boldsymbol{x}||},$$
(3.1)

where $||\cdot||$ denotes the Euclidean norm. One can then specify the set $\Psi^*(\boldsymbol{x})$ of all $(\boldsymbol{z}, \boldsymbol{y}) \in \mathcal{V}(\boldsymbol{x}) \times \mathbb{R}^q_+$ with the property that there exists an $(\boldsymbol{x}^*, \boldsymbol{y}) \in \Psi$ with $\boldsymbol{x}^* = \gamma \frac{\boldsymbol{x}}{||\boldsymbol{x}||} + \boldsymbol{z}$ for some $\gamma > 0$. For $(\boldsymbol{z}, \boldsymbol{y}) \in \Psi^*(\boldsymbol{x})$ define the function

$$g_{x}(oldsymbol{z},oldsymbol{y}) = \inf \left\{ \gamma \mid \left(\gamma rac{oldsymbol{x}}{||oldsymbol{x}||} + oldsymbol{z},oldsymbol{y}
ight) \in \Psi
ight\}.$$

Similarly, let

$$\widehat{g}_x(oldsymbol{z},oldsymbol{y}) = \inf\left\{\gamma \mid \left(\gamma rac{oldsymbol{x}}{||oldsymbol{x}||} + oldsymbol{z},oldsymbol{y}
ight) \in \widehat{\Psi}
ight\}.$$

Formally, one may extend the definition of g_x to all $(\boldsymbol{v}, \boldsymbol{y})$ with $\left(\boldsymbol{v} - \frac{\boldsymbol{x}^T \boldsymbol{v}}{||\boldsymbol{x}||^2} \boldsymbol{x}, \boldsymbol{y}\right) \in \Psi^*(\boldsymbol{x})$, which implies $g_x(\boldsymbol{v}, \boldsymbol{y}) = g_x \left(\boldsymbol{v} - \frac{\boldsymbol{x}^T \boldsymbol{v}}{||\boldsymbol{x}||^2} \boldsymbol{x}, \boldsymbol{y}\right)$.

In the case of one input (p = 1), the function g_x is simply the "frontier function" and does not depend on \boldsymbol{x} . Then $\mathcal{V} = \{0\}$ and $g_x(0, \boldsymbol{y}) \equiv g(\boldsymbol{y}) = \theta(x, \boldsymbol{y})\boldsymbol{x} \equiv \partial \boldsymbol{\xi}(\boldsymbol{y})$ for all \boldsymbol{x} .

We are interested only in analyzing $g_x(\boldsymbol{z}, \boldsymbol{y})$ as a function of \boldsymbol{z} and \boldsymbol{y} . However, we have adopted the notation g_x to emphasize that for p > 1, the structure of this function depends on the vector $\frac{\boldsymbol{x}}{||\boldsymbol{x}||}$. Note that whenever $(\boldsymbol{x}, \boldsymbol{y})$ lies in the interior of Ψ , $(\boldsymbol{z}, \boldsymbol{y}) \in \Psi^*(\boldsymbol{x}) \forall \boldsymbol{z} \in \mathcal{V}(\boldsymbol{x})$.

It is easy to check that

$$\theta(\boldsymbol{x}, \boldsymbol{y}) = \frac{g_x(0, \boldsymbol{y})}{||\boldsymbol{x}||} \quad \text{and} \quad \widehat{\theta}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\widehat{g}_x(0, \boldsymbol{y})}{||\boldsymbol{x}||}.$$
(3.2)

Figure 1 illustrates the definition of g_x for the case p = 2. For a given output vector \boldsymbol{y} , the input requirement set $\mathcal{X}(\boldsymbol{y})$ is a convex subset of \mathbb{R}^2_+ with efficiency boundary $\mathcal{X}^{\partial}(\boldsymbol{y})$, shown by the solid black line. We now consider an input vector \boldsymbol{x} with $||\boldsymbol{x}|| = 1$. The ray $\gamma \boldsymbol{x}, \gamma \geq 0$, is represented by the solid gray line passing through the origin. For a vector \boldsymbol{z} with $\boldsymbol{z}^T \boldsymbol{x} = 0$, the dashed gray line $\gamma \boldsymbol{x} + \boldsymbol{z}$ is parallel to $\gamma \boldsymbol{x}$. The intersection between $\gamma \boldsymbol{x} + \boldsymbol{z}$ and $\mathcal{X}^{\partial}(\boldsymbol{y})$ then determines the point $g_x(\boldsymbol{z}, \boldsymbol{y})\boldsymbol{x} + \boldsymbol{z}$.

The following lemma summarizes the most important properties of g_x .

Lemma 1: By Assumption A1,

(a) g_x is convex, and for all $(\boldsymbol{v}, \widetilde{\boldsymbol{y}}) \in \Psi$ and $\boldsymbol{z} = \boldsymbol{v} - \frac{\boldsymbol{x}^T \boldsymbol{v}}{||\boldsymbol{x}||^2} \boldsymbol{x}$,

$$\theta(\boldsymbol{v}, \widetilde{\boldsymbol{y}}) \frac{\boldsymbol{x}^T \boldsymbol{v}}{||\boldsymbol{x}||} = g_x(\theta(\boldsymbol{v}, \widetilde{\boldsymbol{y}}) \boldsymbol{z}, \widetilde{\boldsymbol{y}}) \quad and \quad \widehat{\theta}(\boldsymbol{v}, \widetilde{\boldsymbol{y}}) \frac{\boldsymbol{x}^T \boldsymbol{v}}{||\boldsymbol{x}||} = \widehat{g}_x(\widehat{\theta}(\boldsymbol{v}, \widetilde{\boldsymbol{y}}) \boldsymbol{z}, \widetilde{\boldsymbol{y}}).$$

(b) Let $(\boldsymbol{x}, \boldsymbol{y})$ be in the interior of \mathcal{D} . By Assumption 6,

the function g_x(·, ·) is twice continuously differentiable for all points in a sufficiently small neighborhood of (0, y);

• The matrix $g''_x(0, \boldsymbol{y})$ of second derivatives at $(0, \boldsymbol{y})$ is positive semidefinite, and there exists a constant $c_0 > 0$ such that $\boldsymbol{w}^T g''_x(0, \boldsymbol{y}) \boldsymbol{w} \ge c_0 \forall \boldsymbol{w} \in \mathcal{V}(\boldsymbol{x}) \times \mathbb{R}^q$ with $||\boldsymbol{w}|| = 1$. **Proof.** For all $(\boldsymbol{z}_1, \boldsymbol{y}_1)$, $(\boldsymbol{z}_2, \boldsymbol{y}_2) \in \Psi^*(\boldsymbol{x})$ and every $\alpha \in [0, 1]$, the definition of g_x implies that $[\alpha g_x(\boldsymbol{z}_1, \boldsymbol{y}_1) + (1 - \alpha)g_x(\boldsymbol{z}_2, \boldsymbol{y}_2)] \frac{\boldsymbol{x}}{||\boldsymbol{x}||} + \tilde{\boldsymbol{z}}_{\alpha} \ge g_x(\tilde{\boldsymbol{z}}_{\alpha}, \tilde{\boldsymbol{y}}_{\alpha}) \frac{\boldsymbol{x}}{||\boldsymbol{x}||} + \tilde{\boldsymbol{z}}_{\alpha}$ with $(\tilde{\boldsymbol{z}}_{\alpha}, \tilde{\boldsymbol{y}}_{\alpha}) =$ $(\alpha \boldsymbol{z}_1 + (1 - \alpha)\boldsymbol{z}_2, \alpha \boldsymbol{y}_1 + (1 - \alpha)\boldsymbol{y}_2) \in \Psi^*(\boldsymbol{x})$. Consequently, g_x is a convex function. Moreover, for any $\boldsymbol{v} \in X^\partial(\tilde{\boldsymbol{y}})$ we necessarily have $\boldsymbol{v} = g_x(\boldsymbol{z}, \tilde{\boldsymbol{y}}) \frac{\boldsymbol{x}}{||\boldsymbol{x}||} + \boldsymbol{z}$ for $\boldsymbol{z} = \boldsymbol{v} - \frac{\boldsymbol{x}^T \boldsymbol{v}}{||\boldsymbol{x}||^2} \boldsymbol{x}$. Assertion (a) then follows from $\theta(\boldsymbol{v}, \tilde{\boldsymbol{y}}) \boldsymbol{v} \in X^\partial(\tilde{\boldsymbol{y}})$. In view of Assumption 6(a) twicedifferentiability of g_x at $(0, \boldsymbol{y})$ follows directly.

Assumption 6(b) implies that

$$1 \ge \alpha \theta(g_x(z_1, y_1) \frac{x}{||x||} + z_1, y_1) + (1 - \alpha) \theta(g_x(z_2, y_2) \frac{x}{||x||} + z_2, y_2) > \theta\left((\alpha g_x(z_1, y_1) + (1 - \alpha) g_x(z_2, y_2)) \frac{x}{||x||}, y \right)$$

holds for all $(\boldsymbol{z}_1, \boldsymbol{y}_1), (\boldsymbol{z}_2, \boldsymbol{y}_2) \in \Psi^*(\boldsymbol{x}), (\boldsymbol{z}_1, \boldsymbol{y}_1) \neq (\boldsymbol{z}_2, \boldsymbol{y}_2)$ and every $\alpha \in [0, 1]$ with $\alpha \boldsymbol{z}_1 + (1 - \alpha)\boldsymbol{z}_2 = 0$ and $\alpha \boldsymbol{y}_1 + (1 - \alpha)\boldsymbol{y}_2 = \boldsymbol{y}$. Since $\theta(g_x(0, \boldsymbol{y})\frac{\boldsymbol{x}}{||\boldsymbol{x}||}, \boldsymbol{y}) = 1$, we can conclude that $\alpha g_x(\boldsymbol{z}_1, \boldsymbol{y}_1) + (1 - \alpha)g_x(\boldsymbol{z}_2, \boldsymbol{y}_2) > g_x(0, \boldsymbol{y})$, which leads to the asserted structure of g''_x .

As noted earlier, Kneip *et al.* (1998) showed that the rate of convergence of the input inefficiency estimator is $O_p(n^{-2/(p+q+1)})$. The following lemma shows that the problem of specifying the distribution of $\frac{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}{\theta(\boldsymbol{x},\boldsymbol{y})}$ can be reformulated in terms of g_x and of the distribution of $\theta(X_i, Y_i)$, Z_i and Y_i .

Lemma 2: Let (x, y) be in the interior of \mathcal{D} . Under Assumptions 1–6 we obtain for any $\delta > 0$

$$\operatorname{Prob}\left(\frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{\theta(\boldsymbol{x},\boldsymbol{y})} - 1 \le \delta n^{-\frac{2}{p+q+1}}\right) = \operatorname{Prob}(A[\delta,n]), \tag{3.3}$$

where $A[\delta, n]$ denotes the following event: There exist some $\alpha_1 \ge 0, \ldots, \alpha_n \ge 0$ with $\sum_{j=1}^n \alpha_j = 1$ such that

$$\sum_{i=1}^{n} \alpha_i Z_i = 0, \quad and \quad \sum_{i=1}^{n} \alpha_i Y_i = \boldsymbol{y}$$
(3.4)

and

$$\sum_{i=1}^{n} \alpha_i \frac{g_x(\theta_i Z_i, Y_i)}{\theta_i g_x(0, \boldsymbol{y})} - 1 \le \delta n^{-\frac{2}{p+q+1}},$$

where $\theta_i = \theta(X_i, Y_i)$ and $Z_i = X_i - \frac{\boldsymbol{x}^T X_i}{||\boldsymbol{x}||^2} \boldsymbol{x}$. **Proof.** By definition of a DEA frontier we have $\frac{\widehat{\theta}(\boldsymbol{x}, \boldsymbol{y})}{\theta(\boldsymbol{x}, \boldsymbol{y})} - 1 \leq \delta n^{-\frac{2}{p+q+1}}$ if and only if there exists a $\beta > 0$ with $\frac{\beta}{\theta(\boldsymbol{x}, \boldsymbol{y})} - 1 \leq \delta n^{-\frac{2}{p+q+1}}$ such that

$$\sum_{i=1}^{k} \alpha_i Y_i = \boldsymbol{y}, \quad \text{and} \quad \sum_{i=1}^{k} \alpha_i X_i = \beta \boldsymbol{x}$$
(3.5)

hold for some $\alpha_1 \geq 0, \ldots, \alpha_n \geq 0$ with $\sum_{j=1}^n \alpha_j = 1$. The relations in (3.1) and Lemma 1(a) imply $X_i = \frac{g_x(\theta_i Z_i, Y_i)}{\theta_i ||\boldsymbol{x}||} \boldsymbol{x} + Z_i$. Since all Z_i are orthogonal to \boldsymbol{x} , (3.5) can only hold if (3.4) is satisfied, and if $\sum_{i=1}^n \alpha_i \frac{g_x(\theta_i Z_i, Y_i)}{\theta_i ||\boldsymbol{x}||} = \beta$. The lemma now follows from $g_x(0, \boldsymbol{y}) = ||\boldsymbol{x}|| \theta(\boldsymbol{x}, \boldsymbol{y})$.

Consider an orthonormal basis $\boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(p-1)}$ of $\mathcal{V}(\boldsymbol{x})$. Every vector $Z_i \in \mathcal{V}(\boldsymbol{x})$ can be expressed in the form $Z_i = \sum_{j=1}^{p-1} \zeta_{ij} \boldsymbol{z}^{(j)}$. Let $\zeta_i = (\zeta_{i1}, \ldots, \zeta_{i,p-1})$. Since $\theta_i = \theta(X_i, Y_i)$ and $Z_i = X_i - \frac{\boldsymbol{x}^T X_i}{||\boldsymbol{x}||^2} \boldsymbol{x}$ are smooth functions of (X_i, Y_i) , Assumption 5 implies that (θ_i, ζ_i, Y_i) has a density \bar{f}_x on $[0, 1] \times \mathbb{R}^{p-1} \times \mathbb{R}^q_+$. Let $\bar{\mathcal{D}}$ denote the support of this density. By Assumption 5(a)–(c), it is easily seen that $\bar{f}_x(\cdot, \cdot, \cdot)$ is continuous on $(0, 1) \times \mathbb{R}^{p-1} \times \mathbb{R}^q_+$, and $\bar{f}_x(1, 0, \boldsymbol{y}) > 0$.

The following Theorem plays an important role in our analysis by "localizing" the frontier problem. The value of $\hat{\theta}(\boldsymbol{x}, \boldsymbol{y})$ is essentially determined by those observations which fall into a small "neighborhood" of $(\boldsymbol{x}, \boldsymbol{y})$. Note that for the proof of the theorem, Assumption 6(b) is crucial. The theorem does not apply if, for example, the frontier is linear. In such a case the frontier cannot be considered locally; in the case of a linear or conical frontier $\hat{\theta}(\boldsymbol{x}, \boldsymbol{y})$ may be determined by points very far from the point of interest $(\boldsymbol{x}, \boldsymbol{y})$.

Before proceeding, some additional notation is needed. Note that the sample of observations S_n can be represented equivalently be the corresponding samples $\tilde{S}_n = \{(\theta_i, Z_i, Y_i)\}_{i=1}^n$ or $\bar{S}_n = \{(\theta_i, \zeta_i, Y_i)\}_{i=1}^n$, where ζ_i is determined by $Z_i = \sum_{j=1}^{p-1} \zeta_{ij} \boldsymbol{z}^{(j)}$.

Define a set $C(\boldsymbol{x}, \boldsymbol{y}; h)$ by

$$C(\boldsymbol{x}, \boldsymbol{y}; h) = \Big\{ (\theta, \widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}}) \in (0, 1) \times \Psi^*(\boldsymbol{x}) \ \Big| \ 1 - \theta \le h^2,$$
$$z = \sum_j \zeta_j \boldsymbol{z}^{(j)} \text{ with } |\zeta_j| \le h \ \forall \ j = 1, \ \dots, \ p - 1,$$
$$|\boldsymbol{y}_r - \widetilde{\boldsymbol{y}}_r| \le h \ \forall \ r = 1, \ \dots, \ q \Big\}.$$

Let $A[\delta, n; h]$ denote the following event: for some $k \leq n$ and $i_1, \ldots, i_k \in \{1, \ldots, n\}$, there exist some $(X_{i_1}, Y_{i_1}), \ldots, (X_{i_k}, Y_{i_k})$ with $(\theta_{i_1}, Z_{i_1}, Y_{i_1}), \ldots, (\theta_{i_k}, Z_{i_k}, Y_{i_k}) \in \widetilde{S}_n \cap$ $C(x, y; h \cdot n^{-\frac{1}{p+q+1}})$, as well as some $\alpha_1 \geq 0, \ldots, \alpha_k \geq 0$ with $\sum_{j=1}^k \alpha_j = 1$ such that $\sum_{j=1}^k \alpha_j Y_{i_j} = y, \sum_{j=1}^k \alpha_j Z_{i_j} = 0$, and

$$\sum_{j=1}^{k} \alpha_j \frac{g_x(\theta_{i_j} Z_{i_j}, Y_{i_j})}{\theta_{i_j} g_x(0, \boldsymbol{y})} - 1 \le \delta n^{-\frac{2}{p+q+1}}$$
(3.7)

Again, $\theta_{i_j} = \theta(X_{i_j}, Y_{i_j})$ and $Z_{i_j} = X_{i_j} - \frac{\boldsymbol{x}^T X_{i_j}}{||\boldsymbol{x}||^2} \boldsymbol{x}$. **Theorem 1:** Let $(\boldsymbol{x}, \boldsymbol{y})$ be in the interior of \mathcal{D} . Then under Assumptions 1–6 (a) for any $\epsilon > 0$ there exists an $h_{\epsilon} < \infty$ such that for all $h \ge h_{\epsilon}$, every $\delta > 0$ and all sufficiently large n,

$$|\operatorname{Prob}(A[\delta, n] - \operatorname{Prob}(A[\delta, n; h])| \le \epsilon;$$
(3.8)

(b) there exists an open neighborhood $N(\boldsymbol{x}, \boldsymbol{y})$ of $(\boldsymbol{x}, \boldsymbol{y})$ such that

$$\operatorname{Prob}\left(\sup_{(\widetilde{\boldsymbol{x}},\widetilde{\boldsymbol{y}})\in N(\boldsymbol{x},\boldsymbol{y})} \left| \frac{\widehat{\theta}(\widetilde{\boldsymbol{x}},\widetilde{\boldsymbol{y}})}{\theta(\widetilde{\boldsymbol{x}},\widetilde{\boldsymbol{y}})} - 1 \right| \le n^{-\frac{2}{p+q+1}} \log n \right) \to 1 \quad as \ n \to \infty$$

and

$$\operatorname{Prob}\left(\sup_{(\widetilde{\boldsymbol{x}},\widetilde{\boldsymbol{y}})\in N(\boldsymbol{x},\boldsymbol{y})}\left|\frac{\widehat{g}_{x}(\widetilde{\boldsymbol{x}}-\frac{\boldsymbol{x}^{T}\widetilde{\boldsymbol{x}}}{||\boldsymbol{x}||^{2}}\boldsymbol{x},\widetilde{\boldsymbol{y}})}{g_{x}(\widetilde{\boldsymbol{x}}-\frac{\boldsymbol{x}^{T}\widetilde{\boldsymbol{x}}}{||\boldsymbol{x}||^{2}}\boldsymbol{x},\widetilde{\boldsymbol{y}})}-1\right| \leq n^{-\frac{2}{p+q+1}}\log n\right) \to 1 \quad as \ n \to \infty.$$

A proof is given in the appendix.

In order to examine the probabilities $P(A[\delta, n; h])$, more notation is required. Let $(\tilde{\vartheta}_1, \tilde{\zeta}_1, \tilde{y}_1), (\tilde{\vartheta}_2, \tilde{\zeta}_2, \tilde{y}_2), \ldots$ denote a sequence of iid random variables uniformly distributed on $[0, 1] \times [-1, 1]^{p-1} \times [-1, 1]^q$. For $k \in \mathbb{N}$, let $U[\gamma, k]$ denote the following event: there exist some $\alpha_1 \geq 0, \ldots, \alpha_k \geq 0$ with $\sum_{j=1}^k \alpha_j = 1$ such that

$$\sum_{j=1}^{k} \alpha_j \widetilde{\boldsymbol{y}}_j = 0, \quad \text{and} \quad \sum_{j=1}^{k} \alpha_j \widetilde{\boldsymbol{z}}_j = 0, \tag{3.9}$$

where $\widetilde{\boldsymbol{z}}_j = \sum_{r=1}^{p-1} \zeta_{jr} \boldsymbol{z}_r$, and

$$\sum_{j=1}^{k} \alpha_{j} \frac{1}{2g_{x}(0, \boldsymbol{y})} \left[\widetilde{\boldsymbol{z}}_{j}^{T} g_{x;zz}^{\prime\prime}(0, \boldsymbol{y}) \widetilde{\boldsymbol{z}}_{j} + 2 \widetilde{\boldsymbol{z}}_{j}^{T} g_{x;zy}^{\prime\prime}(0, \boldsymbol{y}) \widetilde{\boldsymbol{y}}_{j} + \widetilde{\boldsymbol{y}}_{j}^{T} g_{x;yy}^{\prime\prime}(0, \boldsymbol{y}) \widetilde{\boldsymbol{y}}_{j} \right] + \sum_{j=1}^{k} \alpha_{j} \vartheta_{j} \leq \gamma$$

$$(3.10)$$

Here we use

$$g''(\boldsymbol{x}; 0, \boldsymbol{y}) = \begin{bmatrix} g''_{x;zz}(0, \boldsymbol{y}) & g''_{x;zy}(0, \boldsymbol{y})^T \\ g''_{x;zy}(0, \boldsymbol{y}) & g''_{x;yy}(0, \boldsymbol{y}) \end{bmatrix}$$

to denote the matrix of second derivatives of g_x at $(0, \mathbf{y})$.

Proposition 1: Under the conditions of Theorem 1,

$$\operatorname{Prob}(A[\delta,n;h]) - \sum_{k=1}^{\infty} \operatorname{Prob}\left(U\left[\frac{\delta}{h^2},k\right]\right) \frac{h^{k(p+q+1)}\bar{f}_x(1,0,\boldsymbol{y})^k}{k!} e^{-h^{p+q+1}\bar{f}_x(1,0,\boldsymbol{y})} \right| \to 0$$
(3.11)

as $n \to \infty$ for any h > 0.

Proof. Recall the definition of $A[\delta, n; h]$. Since $Z_{i_j} = O_p(n^{-\frac{1}{p+q+1}}), |\boldsymbol{y} - Y_{i_j}| = O_p(n^{-\frac{1}{p+q+1}})$ and $1 - \theta_i = O_p(n^{-\frac{2}{p+q+1}})$, Taylor expansions of g_x yield

$$\begin{split} \sum_{j=1}^{k} \alpha_{j} \frac{g_{x}(\theta_{i_{j}} Z_{i_{j}}, Y_{i_{j}})}{\theta_{i_{j}} g_{x}(0, \boldsymbol{y})} - 1 &= \sum_{j=1}^{k} \alpha_{j} \frac{g_{x}(\theta_{i_{j}} Z_{i_{j}}, Y_{i_{j}}) - g_{x}(0, \boldsymbol{y})}{g_{x}(0, \boldsymbol{y})} + \sum_{j=1}^{k} \alpha_{j} (1 - \theta_{i_{j}}) + o_{p}(n^{-\frac{2}{p+q+1}}) \\ &= \sum_{j=1}^{k} \alpha_{j} \frac{1}{2g_{x}(0, \boldsymbol{y})} \bigg[Z_{i_{j}}^{T} g_{x;zz}''(0, \boldsymbol{y}) Z_{i_{j}} + 2Z_{i_{j}}^{T} g_{x;zy}''(0, \boldsymbol{y}) (Y_{i_{j}} - \boldsymbol{y}) \\ &+ (Y_{i_{j}} - \boldsymbol{y})^{T} g_{x;yy}''(0, \boldsymbol{y}) (Y_{i_{j}} - \boldsymbol{y}) \bigg] \\ &+ \sum_{j=1}^{k} \alpha_{j} (1 - \theta_{i_{j}}) + o_{p}(n^{-\frac{2}{p+q+1}}) \end{split}$$

where the convergence is uniform for all possible $(X_{i_j}, Y_{i_j}) \in C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$. Note that necessarily $\sum_{j=1}^{k} \alpha_j \left[g_{x;z}(0, \boldsymbol{y})' \cdot Z_{i_j} + g'_{x;y}(0, \boldsymbol{y}) \cdot (Y_{i_j} - \boldsymbol{y}) \right] = 0$, where $g'_x(0, \boldsymbol{y}) = (g_{\boldsymbol{x};\boldsymbol{z}}(0, \boldsymbol{y})', g_{\boldsymbol{x};\boldsymbol{y}}(0, \boldsymbol{y})')^T$ denotes the vector of first derivatives of g_x at $(0, \boldsymbol{y})$.

The density \bar{f}_x is continuous at $(1, 0, \boldsymbol{y})$. Hence, the probability that there is an observation in $C(\boldsymbol{x}, \boldsymbol{y}; h \cdot n^{-\frac{1}{p+q+1}})$ is asymptotically equivalent to $h^{p+q+1}\bar{f}_x(1, 0, \boldsymbol{y}) \cdot n^{-1}$. Hence for large n, the distribution of the number k of points in $C(\boldsymbol{x}, \boldsymbol{y}; h \cdot n^{-\frac{1}{p+q+1}})$ follows approximately a Poisson distribution with parameter $h^{p+q+1}\bar{f}_x(1, 0, \boldsymbol{y})$. Continuity of the densities implies that the conditional distribution of (θ_i, ζ_i, Y_i) given $(\theta_i, Z_i, Y_i) \in C(\boldsymbol{x}, \boldsymbol{y}; h \cdot n^{-\frac{1}{p+q+1}})$ is uniform on $\bar{C}(h \cdot n^{-\frac{1}{p+q+1}}) := [1, 1 - h^2 n^{-\frac{2}{p+q+1}}] \times [-hn^{-\frac{1}{p+q+1}}, hn^{-\frac{1}{p+q+1}}]^{p-1} \times [y_1 - hn^{-\frac{1}{p+q+1}}, y_1 + hn^{-\frac{1}{p+q+1}}] \times \cdots \times [y_q - hn^{-\frac{1}{p+q+1}}, y_q + hn^{-\frac{1}{p+q+1}}]$. Combining these arguments with (3.12) reveals that

$$\left| \operatorname{Prob}(A[\delta,n;h] - \sum_{k=1}^{\infty} \operatorname{Prob}(\bar{A}[\delta,n;h;k]) \frac{h^{k(p+q+1)} \bar{f}_x(1,0,\boldsymbol{y})^k}{k!} e^{-h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y})} \right| \to 0$$

as $n \to \infty$, where for a sequence $(\tilde{\theta}_{1,n}, \tilde{\zeta}_{1,n}, \tilde{Y}_{1,n}), \ldots, (\tilde{\theta}_{k,n}, \tilde{\zeta}_{k,n}, \tilde{Y}_{k,n})$ of k iid random variables uniformly distributed on $\bar{C}(h \cdot n^{-\frac{1}{p+q+1}})$, we use $\bar{A}[\delta, n; h; k]$ to describe the following

event: there exist some $\alpha_1 \ge 0, \ldots, \alpha_k \ge 0$ with $\sum_{j=1}^k \alpha_j = 1$ such that $\sum_{j=1}^k \alpha_j \widetilde{Y}_{j,n} = \boldsymbol{y}$ and $\sum_{j=1}^k \alpha_j \widetilde{Z}_{j,n} = 0$ for $\widetilde{Z}_{j,n} = \sum_{r=1}^{p-1} \zeta_{j,n,r} \boldsymbol{z}_r$ and

$$\sum_{j=1}^{k} \alpha_{j} \frac{1}{2g_{x}(0, \boldsymbol{y})} \Big[\widetilde{Z}_{j,n}^{T} g_{x;zz}^{\prime\prime\prime}(0, \boldsymbol{y}) \widetilde{Z}_{j,n} + 2\widetilde{Z}_{j,n}^{T} g_{x;zy}^{\prime\prime\prime}(0, \boldsymbol{y}) (\widetilde{Y}_{j,n} - \boldsymbol{y}) \\ + (\widetilde{Y}_{j,n} - \boldsymbol{y})^{T} g_{x;yy}^{\prime\prime\prime}(0, \boldsymbol{y}) (\widetilde{Y}_{j,n} - \boldsymbol{y}) \Big] + \sum_{j=1}^{k} \alpha_{j} (1 - \widetilde{\theta}_{j,n}) \leq \delta \cdot n^{-\frac{2}{p+q+1}}.$$

$$(3.14)$$

The assertion of the proposition now follows from the fact that $A[\delta, n; h; k]$ is realized iff the event $U[\frac{\delta}{h^2}, k]$ is realized for $\tilde{\vartheta}_j = \frac{1}{h^2 n^{-\frac{2}{p+q+1}}}(1 - \tilde{\theta}_{j,n}), \tilde{\zeta}_j = \frac{1}{hn^{-\frac{1}{p+q+1}}}\tilde{\zeta}_{j,n}$ and $\tilde{y}_j = \frac{1}{hn^{-\frac{1}{p+q+1}}}(\tilde{Y}_{j,n} - y)$. It then follows that uniformity of $(\tilde{\theta}_{j,n}, \tilde{\zeta}_{j,n}, \tilde{Y}_{j,n})$ on $\bar{C}(h \cdot n^{-\frac{1}{p+q+1}})$ is equivalent to uniformity of $(\tilde{\vartheta}_j, \tilde{\zeta}_j, \tilde{y}_j)$ on $[0, 1] \times [-1, 1]^{p-1} \times [-1, 1]^q$, and that (3.13) corresponds to (3.9). Finally, (3.14) implies (3.10) holds when γ is replaced by δ/h^2 .

We are now ready to state a theorem about the asymptotic distribution of

$$n^{\frac{2}{p+q+1}} \left(\frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{\theta(\boldsymbol{x},\boldsymbol{y})} - 1\right).$$

Theorem 2: Under the conditions of Theorem 1 let

$$F_x(\delta) = \lim_{k \to \infty} \operatorname{Prob}\left(U\left[\delta \frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{k^{2/(p+q+1)}},k\right]\right)$$
(3.15)

for $-\infty < \delta < \infty$. Then F_x is a continuous distribution function with $F_x(0) = 0, 0 \leq F_x(\delta) < 1$, and

$$F_{x}(\delta) = \lim_{n \to \infty} \operatorname{Prob} \left[n^{\frac{2}{p+q+1}} \left(\frac{\widehat{\theta}(\boldsymbol{x}, \boldsymbol{y})}{\theta(\boldsymbol{x}, \boldsymbol{y})} - 1 \right) \leq \delta \right] = \lim_{n \to \infty} \operatorname{Prob}(A[\delta, n])$$
$$= \lim_{h \to \infty} \sum_{k=1}^{\infty} \operatorname{Prob} \left(U\left[\frac{\delta}{h^{2}}, k \right] \right) \frac{h^{k(p+q+1)} \overline{f}_{x}(1, 0, \boldsymbol{y})^{k}}{k!} e^{-h^{p+q+1} \overline{f}_{x}(1, 0, \boldsymbol{y})}$$

A proof is given in the appendix.

Although the asymptotic distribution in Theorem 2 possesses a non-standard structure, it nevertheless is a well-defined, continuous probability distribution. Recalling the definition of the event $U(\cdot, \cdot)$, it is clear that the shape of the distribution function F_x is determined by $\frac{(p+q)(p+q+1)}{2} + 2$ parameters determined by (i) the values $\bar{f}_x(1,0,\boldsymbol{y})$ and $g_x(0, \boldsymbol{y})$ of the density f_x , (ii) the values of the function g_x at the corresponding frontier point, and (iii) the matrix $g''_x(0, \boldsymbol{y})$ of second derivatives of g_x at $(0, \boldsymbol{y})$. If these parameters were known, quantiles of the asymptotic distribution could be estimated easily by Monte Carlo simulations. Unfortunately, however, obtaining reliable estimates of the matrix $g''_x(0, \boldsymbol{y})$ necessary for this approach to work well seems particularly difficult. Fortunately, the bootstrap, when bootstrap samples are drawn appropriately, provides a way out of this difficulty.

4. Bootstrapping DEA Estimators

As in section 3, we consider a fixed point $(\boldsymbol{x}, \boldsymbol{y})$ in the interior of \mathcal{D} satisfying Assumption 6. In this section, we consider suitable bootstrap procedures for estimating confidence intervals for $\theta(\boldsymbol{x}, \boldsymbol{y})$.

The simplest bootstrap would, on each replication, take n independent draws from the empirical distribution of the observations in S_n to construct a pseudo-sample S_n^* , and then apply (2.7) to obtain a bootstrap estimate $\hat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})$ (note that $\hat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})$ measures distance from the original point of interest, $(\boldsymbol{x}, \boldsymbol{y})$, to the boundary of the convex hull of the free-disposal hull of the pseudo-observations in S_n^*). However, this naive bootstrap does not provide consistent inference as discussed by Simar and Wilson (1999a, 1999b). From Theorem 1 it is clear that as $n \to \infty$, the distribution of $n\frac{2}{p+q+1}\left(\frac{\hat{\theta}^*}{\hat{\theta}}-1\right)$ does not tend to the true distribution F. The empirical distribution of (θ_i, Z_i, Y_i) does not converge sufficiently fast to mimic the true probabilities on the sets $C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$ which are proportional to $\frac{1}{n}$. This result is not surprising; it is well-known that the naive bootstrap does not work in the case of estimating the boundary of support for a univariate distribution (*e.g.*, see Bickel and Freedman, 1981).

We consider two different bootstrap approaches; the first is based on sub-sampling, while the second is based on smoothing.

4.1 Bootstrap with Sub-sampling

Let $m = n^{\kappa}$ for some $\kappa \in (0, 1)$, and consider the following bootstrap scheme:

Algorithm #1:

- [1] Generate a bootstrap sample $S_m^* = \{(X_i^*, Y_i^*)\}_{i=1}^m$ by randomly drawing (independently, uniformly, and with replacement) m observations from the original sample, S_n .
- [2] Apply the DEA estimator in (2.7) to construct bootstrap estimates $\hat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})$.
- [3] Repeat steps [1]–[2] *B* times; use the resulting bootstrap values to approximate the conditional distribution of $m^{\frac{2}{p+q+1}}(\frac{\hat{\theta}^*(\boldsymbol{x},\boldsymbol{y})}{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1)$ given S_n , and use this approximation to approximate the unknown distribution of $n^{\frac{2}{p+q+1}}(\frac{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1)$. For a given $\alpha \in (0,1)$, use the bootstrap values to estimate the quantiles $\delta_{\alpha/2,m}$, $\delta_{1-\alpha/2,m}$ where

$$\operatorname{Prob}\left[m^{\frac{2}{p+q+1}}\left(\frac{\hat{\theta}^{*}(\boldsymbol{x},\boldsymbol{y})}{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1\right) \leq \delta_{\alpha/2,m} \mid \mathbb{S}_{n}\right] = \frac{\alpha}{2},$$
$$\operatorname{Prob}\left[m^{\frac{2}{p+q+1}}\left(\frac{\hat{\theta}^{*}(\boldsymbol{x},\boldsymbol{y})}{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1\right) \leq \delta_{1-\alpha/2,m} \mid \mathbb{S}_{n}\right] = 1-\frac{\alpha}{2}.$$

[4] Compute $\left[\frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{1+n^{-\frac{2}{p+q+1}}\delta_{1-\alpha/2,m}}, \frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{1+n^{-\frac{2}{p+q+1}}\delta_{\alpha/2,m}}\right]$, a symmetric $1-\alpha$ confidence interval estimate for $\theta(\boldsymbol{x},\boldsymbol{y})$.

Consistency of this bootstrap is easy to show.

Theorem 3: Under the conditions of Theorem 1, let $m \equiv m(n) = n^{\kappa}$ for some $\kappa \in (0, 1)$. Then

$$\sup_{\delta>0} \left| F(\delta) - \operatorname{Prob}\left[m^{\frac{2}{p+q+1}} \left(\frac{\widehat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x}, \boldsymbol{y})} - 1 \right) \le \delta \mid \mathfrak{S}_n \right] \right| \xrightarrow{p} 0 \quad as \ n \to \infty.$$
(4.1)

Proof. The bootstrap samples S_m^* can be represented equivalently by the samples $\widetilde{S}_m^* = \{(\theta_i^*, Z_i^*, Y_i^*)\}_{i=1}^m$ or $\overline{S}_m^* = \{(\theta_i^*, \zeta_i^*, Y_i^*)\}_{i=1}^m$. Recall the definitions of the events $A[\delta, n; h]$ and $A[\delta, n]$; replace n by m and (θ_i, Z_i, Y_i) by $(\theta_i^*, Z_i^*, Y_i^*)$ to define events $A[\delta, m; h]^*$ and $A[\delta, m]^*$, and note that

 $\operatorname{Prob} \left[m^{\frac{2}{p+q+1}} \left(\frac{\widehat{\theta}^*(\boldsymbol{x},\boldsymbol{y})}{\theta(\boldsymbol{x},\boldsymbol{y})} - 1 \right) \leq \delta \mid \mathbb{S}_n \right] = \operatorname{Prob} \left(A[\delta,m]^* \mid \mathbb{S}_n \right) \text{ holds for all } m, \ \delta.$ Theorem 2 implies $|m^{\frac{2}{p+q+1}} \left(\frac{\theta(\boldsymbol{x},\boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})} - 1 \right)| \xrightarrow{p} 0$ as $n \to \infty$, and hence

$$\sup_{\delta} \left| \operatorname{Prob} \left[m^{\frac{2}{p+q+1}} \left(\frac{\widehat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x}, \boldsymbol{y})} - 1 \right) \le \delta \mid \mathbb{S}_n \right] - \operatorname{Prob} \left(A[\delta, m]^* \mid \mathbb{S}_n \right) \right| = o_p(1) \qquad (4.2)$$

Now consider the sets $C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}})$, and note

 $\operatorname{Prob}((\theta_i^*, Z_i^*, Y_i^*) \in C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}}) | S_n)$ is equivalent to the relative frequency of points in \widetilde{S}_n falling into $C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}})$. Consequently,

$$\left|\frac{\operatorname{Prob}((\theta_i^*, Z_i^*, Y_i^*) \in C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}}) \mid \boldsymbol{S}_n)}{\operatorname{Prob}((\theta_i, Z_i, Y_i) \in C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}})} - 1\right| = O_p\left(n^{(\kappa-1)/2}\right).$$

Standard results on the convergence of the empirical distribution now can be used to show that also the conditional distributions of the points falling into $C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$ asymptotically coincide:

$$\sup_{\mathcal{C}} \left| \frac{\operatorname{Prob}[(\theta_i^*, Z_i^*, Y_i^*) \in \mathcal{C} \mid S_n]}{\operatorname{Prob}[(\theta_i^*, Z_i^*, Y_i^*) \in C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}}) \mid S_n]} - \frac{\operatorname{Prob}[(\theta_i, Z_i, Y_i) \in \mathcal{C}]}{\operatorname{Prob}[(\theta_i, Z_i, Y_i) \in C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}})]} \right| = o_p(1)$$

where the supremum refers to all (p+q)-dimensional subintervals \mathcal{C} of $C(\boldsymbol{x}, \boldsymbol{y}; hm^{-\frac{1}{p+q+1}})$.

This leads to $\sup_{\delta} |\operatorname{Prob}(A[\delta, m; h]^* | S_n) - \operatorname{Prob}(A[\delta, m; h])| \xrightarrow{p} 0$ as $n \to \infty$. By arguments similar to those used to prove Theorem 1, it follows that for all $\epsilon > 0$ there exists a h_{ϵ} such that for every $h \ge h_{\epsilon}$, $\operatorname{Prob}(\sup_{\delta} |\operatorname{Prob}(A[\delta, m; h]^* | S_n) - \operatorname{Prob}(A[\delta, m])| \ge \epsilon) \to 0$ and $\operatorname{Prob}(\sup_{\delta} |P(A[\delta, m; h]^* | S_n) - P(A[\delta, m]^* | S_n)| \ge \epsilon) \to 0$ as $n \to \infty$. The assertion of the theorem now follows from (4.2) and Theorems 1 and 2.

4.2 Bootstrap with Smoothing

Alternatively, a bootstrap procedure that generates pseudo-samples based on a smoothed empirical distribution and a smoothed estimate of g_x allows consistent inference about $\theta(x, y)$. This bootstrap procedure consists of the following steps (details of the smoothing procedures will be discussed in a sequel):

Algorithm #2:

[1] Compute a **smooth** analog $\widehat{g}_x^*(\boldsymbol{z}, \widetilde{\boldsymbol{y}})$ of the frontier function $\widehat{g}_x(\boldsymbol{z}, \widetilde{\boldsymbol{y}})$; details are given below.

- [2] Draw a bootstrap sample $\bar{S}_n^* = \{(\theta_i^*, \zeta_i^*, Y_i^*)\}_{i=1}^n$ by iid sampling from a smooth nonparametric estimate \hat{f}_x of the density \bar{f}_x . Then determine $\tilde{S}_n^* = \{(\theta_i^*, Z_i^*, Y_i^*)\}_{i=1}^n$ using $Z_i^* = \sum_{j=1}^p \zeta_{ij}^* z_j$.
- [3] Define a bootstrap sample $S_n^* = \{(X_i^*, Y_i^*)\}_{i=1}^n$ of size n by setting

$$X_{i}^{*} = \frac{\widehat{g}_{x}^{*}(\theta_{i}^{*}Z_{i}^{*}, Y_{i}^{*})}{\theta_{i}^{*}} \frac{x}{||x||} + Z_{i}^{*}$$

- [4] Apply the original DEA estimator in (2.7) to obtain a bootstrap estimate $\hat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})$.
- [5] Repeat steps [2]–[4] *B* times; use the resulting bootstrap values to approximate the conditional distribution of $(\frac{\hat{\theta}^*(\boldsymbol{x},\boldsymbol{y})}{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})} 1)$ given S_n , and use this approximation to approximate the unknown distribution of $(\frac{\hat{\theta}(\boldsymbol{x},\boldsymbol{y})}{\theta(\boldsymbol{x},\boldsymbol{y})} 1)$. For a given $\alpha \in (0,1)$, use the bootstrap values to estimate the quantiles $\delta_{\alpha/2}$, $\delta_{1-\alpha/2}$ where

$$\operatorname{Prob}\left[\left(\frac{\hat{\theta}^{*}(\boldsymbol{x},\boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1\right) \leq \delta_{\alpha/2} \mid \boldsymbol{S}_{n}\right] = \frac{\alpha}{2},$$

$$\operatorname{Prob}\left[\left(\frac{\hat{\theta}^{*}(\boldsymbol{x},\boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1\right) \leq \delta_{1-\alpha/2} \mid \boldsymbol{S}_{n}\right] = 1-\frac{\alpha}{2}.$$

[6] Compute $\left[\frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{1+\delta_{1-\alpha/2}}, \frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{1+\delta_{\alpha/2}}\right]$, a symmetric $(1-\alpha)$ confidence interval estimate for $\theta(\boldsymbol{x},\boldsymbol{y})$.

Recall that if p = 1 then g_x is the "frontier function" and does not depend on x. Moreover, in this case, $Z_i \equiv 0$ and \hat{f}_x as well as g_x only depend on y. However, for p > 1 the above steps define g_x and \hat{f}_x specifically for the point (x, y) that is of interest. Consequently, if confidence intervals are to be constructed for the efficiency measure defined in (2.5) evaluated at different points in \mathbb{R}^{p+q}_+ , separate bootstraps must be performed for each of these points.

In the simulations described in the next section, we use kernel estimators to approximate \bar{f}_x . The only particular difficulty is the discontinuity of $\bar{f}_x(\theta, \zeta, \tilde{y})$ at points $(\theta, \zeta, \tilde{y})$ with $\theta = 1$. This problem is handled by reflecting observations (θ_i, ζ_i, Y_i) to obtain $(2-\theta_i, \zeta_i, Y_i)$, and incorporating the resulting 2n points in the estimation. We use a Gaussian product kernel, with separate bandwidths for each marginal dimension chosen using the univariate

two-stage plug-in method described by Sheather and Jones (1991). Alternatively, one could use least-squares cross-validation as described by Simar and Wilson (2000a), but the approach employed here imposes much less computational burden.

The specification of the function \hat{g}_x^* in step [1] of Algorithm #2 is crucial for validity of the bootstrap procedure. Unfortunately, it is not possible to rely on the estimated DEA frontier. The difference between \hat{g}_x and g_x is of order $n^{-\frac{2}{p+q+1}}$ and even more importantly, \hat{g}_x is not differentiable and hence does not possess the same degree of smoothness as g_x . Setting $\hat{g}_x^* = \hat{g}_x$ therefore does not seem to lead to a consistent bootstrap. Even if the distributions of (θ_i, Z_i, Y_i) and $(\theta_i^*, Z_i^*, Y_i^*)$ were identical, the asymptotic distributions of $\sum_{j=1}^k \alpha_j \frac{g_x(\theta_j Z_j, Y_j)}{\theta_j g_x(0, \mathbf{y})} - 1$ and $\sum_{j=1}^k \alpha_j \frac{\hat{g}_x(\theta_j^* Z_j^*, Y_j^*)}{\theta_j^* \hat{g}_x(0, \mathbf{y})} - 1$ will probably not coincide.

It is important to understand the purpose of smoothing the DEA frontier estimate. We do not require that \hat{g}_x^* be closer to g_x than \hat{g}_x . It suffices completely if the relative distances $\frac{\tilde{g}_x(z,\tilde{y})}{g_x(z,\tilde{y})}$ do not change very much with (z, \tilde{y}) . If for some $\beta > 0$ we have $\beta g_x(z, \tilde{y}) = \tilde{g}_x(z, \tilde{y})$ for all (z, \tilde{y}) , then $\frac{g_x(\theta_i Z_i, Y_i)}{g_x(0, y)} = \frac{\tilde{g}_x(\theta_i Z_i, Y_i)}{\tilde{g}_x(0, y)}$, and by Lemma 2 the errors of the resulting DEA estimators are identical. In effect, proportionality is not necessary. We can infer from Proposition 1 that even if the first derivatives of g_x and \tilde{g}_x^* are completely different, the limiting distributions will be close as long as the second derivatives approximately coincide. In smoothing the DEA frontier function in step [1], it is therefore essential to preserve convexity.

One possibility would be to employ convolution smoothing of \hat{g}_x . This approach, however, presents a formidable integration problem in (p + q - 1)-dimensions, and it seems unlikely that such an approach could be successfully implemented with real data. Alternatively, one may use a bandwidth $b \in (0, 1)$ to define a smooth "bootstrap frontier" \hat{g}_x^* by

$$\widehat{g}_x^*(\boldsymbol{z}, \widetilde{\boldsymbol{y}}) = \widehat{g}_x(0, \boldsymbol{y}) + b^2 \left[\widehat{g}_x \left(\frac{z}{b}, \ \boldsymbol{y} + \frac{\widetilde{\boldsymbol{y}} - \boldsymbol{y}}{b} \right) - \widehat{g}_x(0, \boldsymbol{y}) \right]$$
(4.3)

Note that setting b = 1 in (4.3) results in no smoothing of the frontier; in this case, the resulting procedure is similar to the "single-smooth" algorithm proposed by Simar and Wilson (2000a).

To understand the motivation for the smoothing in (4.3), let b < 1 and define

$$g_x^*(\boldsymbol{z}, \widetilde{\boldsymbol{y}}) = g_x(0, \boldsymbol{y}) + b^2 \left[g_x \left(\frac{\boldsymbol{z}}{b}, \ \boldsymbol{y} + \frac{\widetilde{\boldsymbol{y}} - \boldsymbol{y}}{b} \right) - g_x(0, \boldsymbol{y}) \right].$$
(4.4)

The following properties are easily verified: (i) \widehat{g}_x^* as well as g_x^* are convex functions; (ii) $\widehat{g}_x^*(0, \boldsymbol{y}) = \widehat{g}_x(0, \boldsymbol{y}) = \widehat{\theta}(\boldsymbol{x}, \boldsymbol{y})||x||$ as well as $g_x^*(0, \boldsymbol{y}) = g_x(0, \boldsymbol{y}) = \theta(\boldsymbol{x}, \boldsymbol{y})||x||$; (iii) The second derivatives of g_x^* and of g_x at the point $(0, \boldsymbol{y})$ are identical, i.e. $g_x''(0, \boldsymbol{y}) = (g_x^*)''(0, \boldsymbol{y})$; and (iv) by Theorem 1(b),

$$\left|\frac{\widehat{g}_{x}^{*}(\boldsymbol{z},\widetilde{\boldsymbol{y}})}{\widehat{g}_{x}^{*}(0,\boldsymbol{y})} - \frac{g_{x}^{*}(\boldsymbol{z},\widetilde{\boldsymbol{y}})}{g_{x}^{*}(0,\boldsymbol{y})}\right| = \left|b^{2}\frac{\widehat{g}_{x}\left(\frac{\boldsymbol{z}}{b},\boldsymbol{y}+\frac{\widetilde{\boldsymbol{y}}-\boldsymbol{y}}{b}\right)}{\widehat{g}_{x}(0,\boldsymbol{y})} - b^{2}\frac{g_{x}\left(\frac{\boldsymbol{z}}{b},\boldsymbol{y}+\frac{\widetilde{\boldsymbol{y}}-\boldsymbol{y}}{b}\right)}{g_{x}(0,\boldsymbol{y})}\right| = b^{2}n^{-\frac{2}{p+q+1}}\log n$$

$$(4.5)$$

for all $(\frac{z}{b}, y + \frac{\tilde{y}-y}{b})$ in a sufficiently small neighborhood of (0, y).

Property (iv) implies that if $b/\log n \to 0$ as $n \to \infty$, the difference between \hat{g}_x^* and g_x^* is of **smaller** order than $n^{-\frac{2}{p+q+1}}$. Asymptotically a bootstrap based on \hat{g}_x^* will thus provide the same results as a bootstrap directly relying on g_x^* . On the other hand, it follows from properties (i)–(iii) that the parameters determining the asymptotic distribution of efficiency estimates from g_x^* coincide with those from g_x .

It is possible to determine a suitable order of magnitude of b. We assume g_x is three times continuously differentiable. If g_x is replaced by g_x^* , the assertion of Proposition 1 remains true provided $n^{-\frac{1}{p+q+1}}/b \to 0$. Relation (3.12) then becomes

$$\sum_{j=1}^{k} \alpha_{j} \frac{g_{x}^{*}(\theta_{i_{j}} Z_{i_{j}}, Y_{i_{j}})}{\theta_{i_{j}} g_{x}^{*}(0, \mathbf{y})} - 1 = \sum_{j=1}^{k} \alpha_{j} \frac{g_{x}^{*}(Z_{i_{j}}, Y_{i_{j}}) - g_{x}^{*}(0, \mathbf{y})}{g_{x}^{*}(0, \mathbf{y})} + \sum_{j=1}^{k} \alpha_{j} (1 - \theta_{i_{j}}) + O_{p} (n^{-\frac{3}{p+q+1}})$$

$$= \sum_{j=1}^{k} \alpha_{j} \frac{1}{2g_{x}(0, \mathbf{y})} \Big[Z_{i_{j}}^{T} g_{x;zz}''(0, \mathbf{y}) Z_{i_{j}} + 2Z_{i_{j}}^{T} g_{x;zy}''(0, \mathbf{y}) (Y_{i_{j}} - \mathbf{y}) + (Y_{i_{j}} - \mathbf{y})^{T} g_{x;yy}''(0, \mathbf{y}) (Y_{i_{j}} - \mathbf{y}) \Big]$$

$$+ \sum_{j=1}^{k} \alpha_{j} (1 - \theta_{i_{j}}) + O_{p} \left(b^{-1} n^{-\frac{3}{p+q+1}} \right)$$

$$(4.6)$$

The approximation error in (4.6) is the smaller the larger is b. On the other hand, the estimation error (4.5) decreases with b. The remainder terms in (4.5) and (4.6) are of the same order of magnitude (up to a log n term) if b is chosen proportional to $n^{-\frac{1}{3(p+q+1)}}$.

An obvious difficulty of the above bootstrap consists in the fact that in most bootstrap samples there will exist points (Z_i^*, Y_i^*) with $(\frac{Z_i^*}{b}, \boldsymbol{y} + \frac{Y_i^* - \boldsymbol{y}}{b}) \notin \widehat{\Psi}^*$, where $\widehat{\Psi}^*$ denotes the convex hull of the free-disposal hull of the bootstrap observations in S_n^* . This phenomenon is not very important in terms of asymptotic theory since by Theorem 1, the DEA estimator is essentially only determined by points in a neighborhood of $(\theta(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{x}, \boldsymbol{y})$. However, any implementation of the algorithm requires that one must deal with such points. Two possibilities exist:

- Elimination: Suppose that in the bootstrap sample there are $\ell < n$ points with $\left(\frac{Z_{i_j}^*}{b}, \boldsymbol{y} + \frac{Y_{i_j}^* \boldsymbol{y}}{b}\right) \notin \widehat{\Psi}^*, i_j \in \{1, \ldots, n\}, j = 1, \ldots, l$. Eliminate these points from the bootstrap samples and calculate $\widehat{\theta}^*(\boldsymbol{x}, \boldsymbol{y})$ from the remaining $(n \ell)$ bootstrap observations.
- Extrapolation: Suppose that for some $i \in \{1, \ldots, n\}$ we have $\left(\frac{Z_i^*}{b}, \boldsymbol{y} + \frac{Y_i^* \boldsymbol{y}}{b}\right) \notin \widehat{\Psi}^*$. Let b^* denote the smallest possible \widetilde{b} such that $\left(\frac{Z_i^*}{b}, \boldsymbol{y} + \frac{Y_i^* \boldsymbol{y}}{\widetilde{b}}\right) \in \widehat{\Psi}^*$. Clearly, $b^* > b$. The structure of the DEA estimator implies that for all $\widetilde{b} > b^*$ sufficiently close to b^* , there exist some β_0, β_1 such that $\widehat{g}_x\left(\frac{Z_i^*}{b}, \boldsymbol{y} + \frac{Y_i^* \boldsymbol{y}}{\widetilde{b}}\right) = \beta_0 + \beta_1 \frac{1}{\widetilde{b}}$. Then "define" $\widehat{g}_x\left(\frac{Z_i^*}{b}, \boldsymbol{y} + \frac{Y_i^* \boldsymbol{y}}{\widetilde{b}}\right) := \beta_0 + \beta_1 \frac{1}{\widetilde{b}}$ and calculate the corresponding value of $\widehat{g}_x^*(Z_i^*, Y_i^*)$.

In the simulations described in section 5, we use the elimination option.

We now consider the asymptotic behavior of the double-smooth bootstrap proposed above. Our analysis rests upon the following additional assumption:

Assumption 7: The density estimate \hat{f}_x satisfies

$$\sup_{(\theta, \boldsymbol{z}, \widetilde{\boldsymbol{y}}) \in C(\boldsymbol{x}, \boldsymbol{y}; h)} \left| \widehat{f}_{x}(\theta, \boldsymbol{z}, \widetilde{\boldsymbol{y}}) - \overline{f}_{x}(\theta, \boldsymbol{z}, \widetilde{\boldsymbol{y}}) \right| = o_{p}(1) \quad as \ n \to \infty$$
(4.7)

if h is sufficiently small. Furthermore, g_x is three times continuously differentiable and $b \to 0$ as well as $n^{-\frac{1}{p+q+1}}/b \to 0$ as $n \to \infty$.

The next theorem ensures consistency of our double-smooth bootstrap.

Theorem 4: Given Assumptions 1–7,

$$\sup_{\delta>0} \left| F(\delta) - \operatorname{Prob}\left(n^{\frac{2}{p+q+1}}\left(\frac{\widehat{\theta}^*(\boldsymbol{x},\boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})} - 1\right) \le \delta \mid \mathbb{S}_n\right) \right| \xrightarrow{p} 0 \quad as \ n \to \infty.$$

A proof is given in the appendix.

5. Monte Carlo Evidence

We conducted two sets of experiments, with p = q = 1 and p = q = 2. All experiments consist of 1000 Monte Carlo trials, with 2000 bootstrap replications on each trail. Within either set of experiments, we examined 7 sample sizes, with $n \in$ $\{25, 50, 100, 200, 400, 800\}$. For the case with one output and one input (p = q = 1), we simulated a DGP by drawing an "efficient" input observation x_e distributed uniformly on [10, 20], and setting the output level $y = x_e^{0.8}$. We then computed the "observed" input observation $x = x_e e^{0.2|\varepsilon|}$, where $\varepsilon \sim N(0, 1)$ and is independent. The DGP for this case can therefore be written as

$$y_i = x^{0.8} e^{-0.16|\varepsilon|}.$$
(5.1)

We take the point (x, y) = (20.69, 7.5) as the fixed point for which efficiency is estimated on each Monte Carlo trial; the true efficiency for this point is $\theta(x, y) = 0.6$.

For the two-input, two-output (p = q = 2) case, we again generated efficient input levels x_{1e} , x_{2e} from the uniform distribution on [10, 20]. Next, we computed output levels by generating ω uniform on $\left[\frac{1}{9}\frac{\pi}{2}, \frac{8}{9}\frac{\pi}{2}\right]$ and setting $y_1 = x_{1e}^{0.4}x_{2e}^{0.4} \times \cos(\omega)$ and $y_2 = x_{1e}^{0.4}x_{2e}^{0.4} \times \sin(\omega)$. We then generated the observed output levels by setting $x_1 = x_{1e}e^{0.2|\varepsilon|}$ and $x_2 = x_{2e}e^{0.2|\varepsilon|}$ and where $\varepsilon \sim N(0, 1)$ as before. Efficiency is estimated for the fixed point $\boldsymbol{x} = (20.69, 20.69), \, \boldsymbol{y} = (5.59, 5.59)$ on each Monte Carlo trial. The true efficiency for this point is $\theta(\boldsymbol{x}, \boldsymbol{y}) = 0.6$, as in the previous case.

In both cases, the fixed points of interest were chosen to lie roughly in the middle of the range of output data that are generated. In the case where p = q = 2, the output quantities, for a given level of inputs, are generated to lie on an arc between $\pi/18$ and $8\pi/18$ radians.

Table 1 shows results for coverages of confidence intervals estimated by the bootstrapwith-sub-sampling using Algorithm #1 as described in section 4.1. For each sample size n, we examined bootstrap sample sizes $m = n^{\kappa}$ with $\kappa \in \{0.50, 0.55, \ldots, 0.95, 1.00\}$ When $\kappa = 1$ Algorithm #1 is identical to the naive bootstrap, which is known to provide inconsistent inference. For the case where p = q = 1 shown in columns 3–5, the results in Table 1 reveal good coverages for the ratio-based confidence intervals at the three significance levels considered when κ is in the neighborhood of 0.80. The optimal value of κ apparently remains about the same as sample size is increased from 25 to 800.

The results for the case where p = q = 2, shown in columns 6–8 of Table 1, reveal reduced coverage relative to the results for p = q = 1 for given values of n and κ , due to the curse of dimensionality. However, with p = q = 2, the coverages of confidence intervals are consistently good across the various sample sizes when κ lies in the neighborhood of 0.60–0.70. Not surprisingly, the optimal value of κ appears to depend on the dimensionality of the problem.

Results from the double bootstrap using Algorithm #2 are shown in Table 2, again for the cases p = q = 1 (shown in columns 3–5) and p = q = 2 (shown in columns 6–8). In either case, bandwidths $b \in \{0.4, 0.6, 0.8, 1.0\}$ were used to smooth \hat{g}_x in step [1] of the algorithm, using (4.3). As discussed previously, this bootstrap is inconsistent when b = 1; we include this case only for comparison. The results in Table 2 indicate some gains in terms of coverage of estimated confidence intervals as b is reduced below 1.0. In both cases, b = 0.4 appears too small, and indeed for p = q = 2 results could not be computed due to numerical problems when n = 25 or n = 50 (see the discussion preceeding Assumption 7).

Recall from the discussion surrounding (4.6) that our theoretical results imply that the optimal value of b should be proportional to $n^{-1\frac{1}{3(p+q+1)}}$. Since b is necessarily bounded between 0 and 1 (as opposed to bandwidths in ordinary kernel estimators), it is independent of the units of measurement for x and y. Clearly, b should be close to 1 for small n, and

should become smaller as n increases. Using $b = n^{-\frac{1}{3(p+q+1)}}$ as a rule-of-thumb implies $b = n^{-1/9}$ for the case where p = q = 1, and $b = n^{-1/15}$ for p = q = 2. Hence, for p = q = 1, the rule-of-thumb criterion yields b = 0.70, 0.65, 0.60, 0.56, 0.51 and 0.48 corresponding to n = 25, 50, 100, 200, 400 and 800, respectively; for p = q = 2, we have b = 0.81, 0.77, 0.74, 0.70, 0.67 and 0.64, respectively. The results in Table 2 indicate that the rule-of-thumb gives rather reasonable choices for b. It is also interesting to note that, for sample sizes of 50 or greater, the estimated coverages in Table 2 vary little across b = 0.4 and b = 0.6 when p = q = 1, and b = 0.6 and b = 0.8 when p = q = 2. Within these ranges for b, the estimated coverages in Table 2 are similar to the best cases in Table 1 where the sub-sampling approach was used.

6. Conclusions

The analysis in section 3 establishes the asymptotic distribution of the DEA efficiency estimator for the variable returns to scale case under rather weak assumptions on the DGP, while the analysis in section 4 establishes consistency of two bootstrap procedures. The bootstrap procedures are necessary for any practical application since the asymptotic distribution in Theorem 2 contains unknown terms and would be difficult to either estimate or simulate. The bootstrap procedures, by contrast, are readily implementable, and provide good coverage properties as demonstrated by our Monte Carlo experiments. For finite samples in applicatons, one might optimize the choice of κ in Algorithm #1 to determine the sub-sample size, or the choice of the bandwidth b in Algorithm #2. This could be accomplished by iterating the bootstrap procedures along the lines of Hall (1992).

Appendix

Lemma A1: Suppose that Assumptions 1-6 hold for a given $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}$ and let b, h be real numbers with $0 < b \leq h/2$. Consider $k \in \mathbb{N}$ arbitrary points $(\theta_1, z_1, \boldsymbol{y}_1), \ldots, (\theta_k, z_k, \boldsymbol{y}_k) \in \overline{\mathcal{D}}$ satisfying

$$\sum_{r=1}^{k} \alpha_r \boldsymbol{z}_r = 0, \qquad \sum_{r=1}^{k} \alpha_r \boldsymbol{y}_r = \boldsymbol{y}$$
(A.1)

for some $\alpha_1, \ldots, \alpha_k \geq 0$ with $\sum_{r=1}^k \alpha_r = 1$. If $(\theta_k, \mathbf{z}_k, \mathbf{y}_k) \notin C(\mathbf{x}, \mathbf{y}; hn^{-\frac{1}{p+q+1}})$, then for all sufficiently large *n* there exists some $(\widetilde{\mathbf{z}}, \widetilde{\mathbf{y}}) \in \Psi^*(\mathbf{x})$ with $(1, \widetilde{\mathbf{z}}, \widetilde{\mathbf{y}}) \in C(\mathbf{x}, \mathbf{y}; bn^{-\frac{1}{p+q+1}})$ such that

$$\sum_{r=1}^{k-1} \widetilde{\alpha}_r \boldsymbol{z}_r + \widetilde{\alpha}_k \widetilde{\boldsymbol{z}} = 0, \qquad \sum_{r=1}^{k-1} \widetilde{\alpha}_r \boldsymbol{y}_r + \widetilde{\alpha}_k \widetilde{\boldsymbol{y}} = \boldsymbol{y}$$
(A.2)

for some $\widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_k \ge 0$ with $\sum_{r=1}^k \widetilde{\alpha}_r = 1$ and such that

$$\sum_{r=1}^{k} \alpha_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} \ge \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \frac{g_x(\widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}})}{g_x(0, \boldsymbol{y})} + c_1 \cdot \widetilde{\alpha}_k hbn^{-\frac{2}{p+q+1}}$$
(A.3)

where $c_1 = \min\{\frac{1}{2}, \frac{c_0}{8g_x(0, \boldsymbol{y})}\}$ and c_0 is defined as in Lemma 1(b). **Proof:** Assume that (A.1) holds with $(\theta_k, \boldsymbol{z}_k, \boldsymbol{y}_k) \notin C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$. Then either $\theta_k \leq c_k$

$$1 - h^2 n^{-\frac{2}{p+q+1}}$$
 and $(1, \mathbf{z}_k, \mathbf{y}_k) \in C(\mathbf{x}, \mathbf{y}; hn^{-\frac{1}{p+q+1}})$ or $(1, \mathbf{z}_k, \mathbf{y}_k) \notin C(\mathbf{x}, \mathbf{y}; hn^{-\frac{1}{p+q+1}})$.

First consider the case where $\theta_k \leq 1 - h^2 n^{-\frac{z}{p+q+1}}$ but $(1, \boldsymbol{z}_k, \boldsymbol{y}_k) \in C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$. Since $\frac{1}{\theta_k} - 1 \geq 1 - \theta_k$ we obtain $\frac{g_x(\theta_k \boldsymbol{z}_k, \boldsymbol{y}_k)}{\theta_k g_x(0, \boldsymbol{y})} \geq \frac{g_x(\theta_k \boldsymbol{z}_k, \boldsymbol{y}_k)}{g_x(0, \boldsymbol{y})} + (1 - \theta_k) \frac{g_x(\theta_k \boldsymbol{z}_k, \boldsymbol{y}_k)}{g_x(0, \boldsymbol{y})}$. Straightforward Taylor expansions of g_x can be used to show that for all sufficiently large n,

$$\frac{g_x(\theta_k \boldsymbol{z}_k, \boldsymbol{y}_k)}{\theta_k g_x(0, \boldsymbol{y})} \ge \frac{g_x(\boldsymbol{z}_k, \boldsymbol{y}_k)}{g_x(0, \boldsymbol{y})} + \frac{1}{2}(1 - \theta_k) \ge \frac{g_x(\boldsymbol{z}_k, \boldsymbol{y}_k)}{g_x(0, \boldsymbol{y})} + \frac{1}{2}h^2 n^{-\frac{2}{p+q+1}}.$$
 (A.4)

Note that $(1, \mathbf{z}_k, \mathbf{y}_k) \in C(\mathbf{x}, \mathbf{y}; hn^{-\frac{1}{p+q+1}})$ implies that $(1, \frac{b}{h}\mathbf{z}_k, \mathbf{y} + \frac{b}{h}(\mathbf{y}_k - \mathbf{y})) \in C(\mathbf{x}, \mathbf{y}; bn^{-\frac{1}{p+q+1}})$. Relation (A.2) thus holds for $(\widetilde{\mathbf{z}}, \widetilde{\mathbf{y}}) := (\frac{b}{h}\mathbf{z}_k, \mathbf{y} + \frac{b}{h}(\mathbf{y}_k - \mathbf{y}))$ and $\widetilde{\alpha}_r = \alpha_r \frac{\frac{b}{h}}{\frac{b}{h} + \alpha_k(1 - \frac{b}{h})}$ as well as $\widetilde{\alpha}_k = \alpha_k \frac{1}{\frac{b}{h} + \alpha_k(1 - \frac{b}{h})}$. Then (A.4) and convexity of g_x lead to

$$\sum_{r=1}^{k} \alpha_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} \ge \frac{\frac{b}{h}}{\frac{b}{h} + \alpha_k (1 - \frac{b}{h})} \left(\sum_{r=1}^{k} \alpha_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} \right) + \frac{\alpha_k (1 - \frac{b}{h})}{\frac{b}{h} + \alpha_k (1 - \frac{b}{h})}$$
$$\ge \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \left(\frac{\frac{b}{h} g_x(\boldsymbol{z}_k, \boldsymbol{y}_k)}{g_x(0, \boldsymbol{y})} + (1 - \frac{b}{h}) \frac{g_x(0, \boldsymbol{y})}{g_x(0, \boldsymbol{y})} \right) + \widetilde{\alpha}_k \frac{b}{h} \frac{1}{2} h^2 n^{-\frac{2}{p+q+1}}$$

$$\geq \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \frac{g_x(\widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}})}{g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \frac{1}{2} bhn^{-\frac{2}{p+q+1}}$$

It now only remains to prove (A.3) for the case where $(1, \boldsymbol{z}_k, \boldsymbol{y}_k) \notin C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$. Let $\gamma = \max\{\delta \mid (1, \delta \boldsymbol{z}_k, \boldsymbol{y} + \delta(\boldsymbol{y}_k - \boldsymbol{y})) \in C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})\}$ as well as $\alpha_r^* = \alpha_r \frac{\gamma}{\gamma + \alpha_k(1-\gamma)}$ and $\alpha_k^* = \alpha_k \frac{1}{\gamma + \alpha_k(1-\gamma)}$. This yields

$$\sum_{r=1}^{k-1} \alpha_r^* \boldsymbol{z}_r + \alpha_k^* \gamma \boldsymbol{z}_k = 0, \qquad \sum_{r=1}^{k-1} \alpha_r^* \boldsymbol{y}_r + \alpha_k^* (\boldsymbol{y} + \gamma (\boldsymbol{y}_k - \boldsymbol{y})) = \boldsymbol{y}$$
(A.6)

By definition of g_x we have $g_x(\theta_k \boldsymbol{z}_k, \boldsymbol{y}_k)/\theta_k \ge g_x(\boldsymbol{z}_k, \boldsymbol{y}_k)$. Convexity of g_x and arguments similar to (A.5) then imply

$$\sum_{r=1}^{k} \alpha_{r} \frac{g_{x}(\theta_{r} \boldsymbol{z}_{r}, Y_{r})}{\theta_{r} g_{x}(0, \boldsymbol{y})} \geq \sum_{r=1}^{k-1} \alpha_{r}^{*} \frac{g_{x}(\theta_{r} \boldsymbol{z}_{r}, \boldsymbol{y}_{r})}{\theta_{r} g_{x}(0, \boldsymbol{y})} + \alpha_{k}^{*} \left(\frac{\gamma g_{x}(\boldsymbol{z}_{k}, \boldsymbol{y}_{k})}{g_{x}(0, \boldsymbol{y})} + (1 - \gamma) \frac{g_{x}(0, \boldsymbol{y})}{g_{x}(0, \boldsymbol{y})} \right)$$
$$\geq \sum_{r=1}^{k-1} \alpha_{r}^{*} \frac{g_{x}(\theta_{r} \boldsymbol{z}_{r}, \boldsymbol{y}_{r})}{\theta_{r} g_{x}(0, \boldsymbol{y})} + \alpha_{k}^{*} \frac{g_{x}(\gamma \boldsymbol{z}_{k}, \boldsymbol{y} + \gamma(\boldsymbol{y}_{k} - \boldsymbol{y}))}{g_{x}(0, \boldsymbol{y})}$$
(A.7)

Finally, define $(\tilde{\boldsymbol{z}}, \tilde{\boldsymbol{y}}) := \left(\frac{b}{h}\gamma \boldsymbol{z}_k, \boldsymbol{y} + \frac{b}{h}\gamma(\boldsymbol{y}_k - \boldsymbol{y})\right)$ and $\tilde{\alpha}_r = \alpha_r^* \frac{\frac{b}{h}}{\frac{b}{h} + \alpha_k^*(1 - \frac{b}{h})}$ as well as $\tilde{\alpha}_k = \alpha_k^* \frac{1}{\frac{b}{h} + \alpha_k^*(1 - \frac{b}{h})}$. Clearly, then, $(1, \tilde{\boldsymbol{z}}, \tilde{\boldsymbol{y}}) \in C(\boldsymbol{x}, \boldsymbol{y}; bn^{-\frac{1}{p+q+1}})$, and relation (A.2) is a direct consequence of (A.6). Moreover, for sufficiently large n,

$$\sum_{r=1}^{k-1} \alpha_r^* \frac{g_x(\theta_r \boldsymbol{z}_r, Y_r)}{\theta_r g_x(0, \boldsymbol{y})} + \alpha_k^* \frac{g_x(\gamma \boldsymbol{z}_k, \boldsymbol{y} + \gamma(\boldsymbol{y}_k - \boldsymbol{y}))}{g_x(0, \boldsymbol{y})}$$

$$\geq \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \left[\frac{\frac{b}{h} g_x(\gamma \boldsymbol{z}_k, \boldsymbol{y} + \gamma(\boldsymbol{y}_k - \boldsymbol{y}))}{g_x(0, \boldsymbol{y})} + (1 - \frac{b}{h}) \frac{g_x(0, \boldsymbol{y})}{g_x(0, \boldsymbol{y})} \right]$$

$$\geq \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \frac{g_x(\widetilde{\boldsymbol{z}}_k, \widetilde{\boldsymbol{y}}_k)}{g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \frac{b}{h} \frac{c_0 h^2 n^{-\frac{2}{p+q+1}}}{8g_x(0, \boldsymbol{y})}$$
(A.8)

By using Lemma 1(b) the second inequality follows from Taylor expansions of $g_x(\gamma \boldsymbol{z}_k, \boldsymbol{y} + \gamma(\boldsymbol{y}_k - \boldsymbol{y}))$ as well as $g_x(0, \boldsymbol{y})$ at the point $(\tilde{\boldsymbol{z}}, \tilde{\boldsymbol{y}}) := (\frac{b}{h}\gamma \boldsymbol{z}_k, \boldsymbol{y} + \frac{b}{h}\gamma(\boldsymbol{y}_k - \boldsymbol{y}))$. Note that the first derivatives cancel out due to $\frac{b}{h}(\gamma \boldsymbol{z}_k - \frac{b}{h}\gamma \boldsymbol{z}_k) + (1 - \frac{b}{h}) \cdot (-\frac{b}{h}\gamma \boldsymbol{z}_k) = 0$ and $\frac{b}{h}(\gamma(\boldsymbol{y}_k - \boldsymbol{y})) - \frac{b}{h}\gamma(\boldsymbol{y}_k - \boldsymbol{y})) + (1 - \frac{b}{h}) \cdot (-\frac{b}{h}\gamma(\boldsymbol{y}_k - \boldsymbol{y})) = 0$. The bound given in (A.8) is then obtained by an analysis of the second derivatives while taking into account that $1 - \frac{b}{h} \ge \frac{1}{2}$,

 $\left\| \begin{pmatrix} \gamma \boldsymbol{z}_k \\ \gamma(\boldsymbol{y}_k - \boldsymbol{y}) \end{pmatrix} \right\|^2 \ge h^2, \text{ and that} \inf_{\substack{(1, \boldsymbol{z}, \boldsymbol{w}) \in C(\boldsymbol{x}, \boldsymbol{y}; bn^{-\frac{1}{p+q+1}})} \inf_{||\boldsymbol{v}||=1} v^T g_x''((\boldsymbol{z}, \boldsymbol{w}) v \ge \frac{c_0}{2} \text{ for all sufficiently large } n, \text{ where } c_0 \text{ is defined in Lemma 1(b). Combining (A.7) and (A.8) yields (A.3).}$

Proof of Theorem 1: Let $\boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(p-1)}$ denote the orthonormal basis of $\mathcal{V}(\boldsymbol{x})$ used in the definition of \bar{f}_x . Note that the sample S_n of observations can be equivalently represented be the corresponding samples $\tilde{S}_n = \{(\theta_i, Z_i, Y_i)\}_{i=1}^n$ and $\bar{S}_n = \{(\theta_i, \zeta_i, Y_i)\}_{i=1}^n$, where ζ_i is determined by $Z_i = \sum_{j=1}^{p-1} \zeta_{ij} \boldsymbol{z}^{(j)}$.

Choose an arbitrary b > 0 and set $b_n = b \cdot n^{-\frac{1}{p+q+1}}$, $b_n^* = \frac{b_n}{2(p-1)+2q}$. For $i = 1, \ldots, p-1$ and $j = 1, \ldots, q$, define

$$\begin{split} \bar{B}_{2i-1} &= \{ (\boldsymbol{v}, \boldsymbol{w}) \in \mathbb{R}^{p-1} \times \mathbb{R}^{q} \mid \max_{r \neq i} |v_{r}| \leq b_{n}^{*}, |v_{i} - b_{n}| \leq b_{n}^{*}, \max_{s=1, \dots, q} |y_{s} - w_{s}| \leq b_{n}^{*} \} \\ \bar{B}_{2i} &= \{ (\boldsymbol{v}, \boldsymbol{w}) \in \mathbb{R}^{p-1} \times \mathbb{R}^{q} \mid \max_{r \neq i} |v_{r}| \leq b_{n}^{*}, |v_{i} + b_{n}| \leq b_{n}^{*}, \max_{s=1, \dots, q} |y_{s} - w_{s}| \leq b_{n}^{*} \} \\ \bar{B}_{2j-1+2(p-1)} &= \{ (\boldsymbol{v}, \boldsymbol{w}) \in \mathbb{R}^{p-1} \times \mathbb{R}^{q} \mid \max_{r=1, \dots, p-1} |v_{r}| \leq b_{n}^{*}, \max_{s \neq j} |y_{s} - w_{s}| \leq b_{n}^{*}, |y_{j} + b_{n} - w_{j}| \leq b_{n}^{*} \}, \\ \bar{B}_{2j+2(p-1)} &= \{ (\boldsymbol{v}, \boldsymbol{w}) \in \mathbb{R}^{p-1} \times \mathbb{R}^{q} \mid \max_{r=1, \dots, p-1} |v_{r}| \leq b_{n}^{*}, \max_{s \neq j} |y_{s} - w_{s}| \leq b_{n}^{*}, |y_{j} - b_{n} - w_{j}| \leq b_{n}^{*} \}. \end{split}$$

Finally, for $j = 1, \ldots, 2(p-1) + 2q$ let B_j denote the set of all $(\boldsymbol{z}, \boldsymbol{w}) \in \mathcal{V}(\boldsymbol{x}) \times \mathbb{R}^q_+$ with $(\boldsymbol{z}, \boldsymbol{w}) = (\sum_j v_j \boldsymbol{z}^{(j)}, \boldsymbol{w})$ for some $(\boldsymbol{v}, \boldsymbol{w}) \in \bar{B}_j$.

It follows from Assumptions 4-5 that if n is sufficiently large,

$$\bar{D}_{j,n} := [1 - b_n^2, 1] \times \bar{B}_j \subset \bar{\mathcal{D}}$$
(A.9)

for all $j = 1, \ldots, 2(p-1) + 2q$. Recall that $\overline{\mathcal{D}}$ denotes the support of \overline{f}_x .

For each $j = 1, \ldots, 2(p-1) + 2q$ the set $\overline{D}_{j,n}$ has Lebesgue measure proportional to $b^{p+q+1} \cdot \frac{1}{n}$, and our assumptions on the distribution of the random variables (θ_i, ζ_i, Y_i) thus imply Prob $[(\theta_i, \zeta_i, y_i) \in \overline{D}_{j,n}]$ is proportional to $b^{p+q+1} \cdot \frac{1}{n}$. It therefore follows from standard arguments that there exist some $0 < d_0, d_1 < \infty$ such that for all n sufficiently large,

$$1 - (2(p-1) + 2q) \cdot \exp(-d_0 b^{p+q+1}) \le \operatorname{Prob} \left(\bar{\mathbb{S}}_n \cap \bar{D}_{j,n} \neq \emptyset \; \forall \; j = 1, \; \dots, \; 2(p-1) + 2q\right)$$
$$\le 1 - \exp(-d_1 b^{p+q+1}). \tag{A.10}$$

Hence for every $\epsilon > 0$, there exits a $b_{\epsilon} < \infty$ such that for all $b \ge b_{\epsilon}$ and all n sufficiently large,

$$\operatorname{Prob}\left(\bar{\mathfrak{S}}_{n}\cap\bar{D}_{j,n}\neq\emptyset\;\forall\;j=1,\;\ldots\;,\;2(p-1)+2q\right)\geq1-\epsilon.$$
(A.11)

By (A.11), assertion (a) of the theorem holds if there is a $h_{\epsilon} > 0$ such that for all $h > h_{\epsilon}$ the following conditional probabilities are equivalent for sufficiently large n:

$$\operatorname{Prob}\left(A[\delta,n] \mid \bar{\mathbb{S}}_n \cap \bar{D}_{j,n} \neq \emptyset \,\forall \, j\right) = \operatorname{Prob}\left(A[\delta,n;h \cdot n^{-\frac{1}{p+q+1}}] \mid \bar{\mathbb{S}}_n \cap \bar{D}_{j,n} \neq \emptyset \,\forall \, j\right).$$

$$(A.12)$$

Now we will demonstrate that (A.12) is satisfied for all $h \ge c_3 \cdot b$, where $c_3 < \infty$ denotes a suitable constant which will be specified in the sequel.

First note that by construction of \overline{B}_j and B_j , we obtain that for any $(\widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}}) \in \Psi^*(x)$ with $(1, \widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}}) \in C(x, y; b_n^*)$ and **arbitrary** vectors $(\widetilde{\theta}_1, \widetilde{\boldsymbol{z}}_1, \widetilde{w}_1) \in [1 - b_n^2, 1] \times B_1$, $\dots, (\widetilde{\theta}_{2(p-1)+2q}, \widetilde{\boldsymbol{z}}_{2(p-1)+2q}, \widetilde{w}_{2(p-1)+2q}) \in [1 - b_n^2, 1] \times B_{2(p-1)+2q}$, there exist some $\gamma_1, \dots, \gamma_{2(p-1)+2q} \ge 0$ with $\sum_{j=1}^{2(p-1)+2q} \gamma_j = 1$ such that

$$\widetilde{\boldsymbol{z}} = \sum_{j=1}^{2(p-1)+2q} \gamma_j \widetilde{\boldsymbol{z}}_j, \qquad \widetilde{\boldsymbol{y}} = \sum_{j=1}^{2(p-1)+2q} \gamma_j \widetilde{\boldsymbol{w}}_j.$$
(A.13)

By definition of $(\tilde{\theta}_j, \tilde{z}_j, \tilde{w}_j)$, it is clear that for sufficiently large n we obtain $\frac{g_x(\tilde{\theta}_j \tilde{z}_j, \tilde{w}_j)}{\tilde{\theta}_j g_x(0, y)} \leq 1.5$, $\left\| \begin{pmatrix} \tilde{\theta}_j \tilde{z}_j - \tilde{z} \\ \tilde{w}_j - \tilde{y} \end{pmatrix} \right\|^2 \leq (2(p-1) + 2q)b_n^2$, and that $\sup_{(1, z, w) \in C(\boldsymbol{x}, \boldsymbol{y}; b_n^*)} \left\| \sup_{||\boldsymbol{v}||=1} \boldsymbol{v}^T g_x''((\boldsymbol{z}, \boldsymbol{w}) \boldsymbol{v} \right\| \leq c_0^*$

for some $c_0^* < \infty$. Therefore, for all *n* sufficiently large,

$$\frac{g_x(\widetilde{\boldsymbol{z}},\widetilde{\boldsymbol{y}})}{g_x(0,\boldsymbol{y})} \leq \sum_{j=1}^{2(p-1)+2q} \gamma_j \frac{g_x(\widetilde{\theta}_j \widetilde{\boldsymbol{z}}_j, \widetilde{\boldsymbol{w}}_j)}{\widetilde{\theta}_j g_x(0,\boldsymbol{y})} \\
\leq \sum_{j=1}^{2(p-1)+2q} \gamma_j \left(\frac{g_x(\widetilde{\theta}_j \widetilde{\boldsymbol{z}}_j, \widetilde{\boldsymbol{w}}_j)}{g_x(0,\boldsymbol{y})} + 1.5(\frac{1}{\widetilde{\theta}_j} - 1) \right) \leq \frac{g_x(\widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}})}{g_x(0,\boldsymbol{y})} + c_2 b^2 n^{-\frac{2}{p+q+1}}$$
(A.14)

-25 -

where $c_2 = \frac{(2(p-1)+2q)c_0^*}{2g_x(0,\boldsymbol{y})} + 2.$

Using the continuity of g''_x , the second inequality can be derived from second order Taylor expansions of $g_x(\tilde{\theta}_j \tilde{z}_j, \tilde{w}_j)$ at (\tilde{z}, \tilde{y}) . Note that due to (A.13) all first order terms cancel out.

Set $c_3 = c_2(2(p-1)+2q)/c_1$, where c_1 is defined by Lemma A1, and let $b \ge b_{\epsilon}$ as well as $h \ge c_3 b$. Consider an arbitrary $(\theta, \boldsymbol{z}, \boldsymbol{w}) \in \bar{\mathbb{S}}_n$ with $(\theta, \boldsymbol{z}, \boldsymbol{w}) \notin C(\boldsymbol{x}, \boldsymbol{y}; hn^{-\frac{1}{p+q+1}})$, and assume that for $k \le n$ there exist some $(\theta_1, \boldsymbol{z}_1, \boldsymbol{y}_1), \ldots, (\theta_{k-1}, \boldsymbol{z}_{k-1}, \boldsymbol{y}_{k-1}) \in \bar{\mathbb{S}}_n$ such that (A.1) holds with $(\theta_k, \boldsymbol{z}_k, \boldsymbol{y}_k) = (\theta, \boldsymbol{z}, \boldsymbol{w})$. Lemma A1 then implies that there is a $(\tilde{\boldsymbol{z}}, \tilde{\boldsymbol{y}})$ with $(1, \tilde{\boldsymbol{z}}, \tilde{\boldsymbol{y}}) \in C(\boldsymbol{x}, \boldsymbol{y}; \frac{b}{2(p-1)+2q}n^{-\frac{1}{p+q+1}})$ such that relations (A.2)–(A.3) are satisfied when bis replaced by $\frac{b}{2(p-1)+2q}$.

On the other hand, $\bar{\mathbb{S}}_n \cap D_{j,n} \neq \emptyset \ \forall \ j = 1, \ldots, \ 2(p-1) + 2q$ imposes the existence of 2(p-1)+2q points $(\tilde{\theta}_1, \tilde{z}_1, \tilde{w}_1) \in \bar{\mathbb{S}}_n \cap [1-b_n^2, 1] \times B_1, \ldots, (\tilde{\theta}_{2(p-1)+q}, \tilde{z}_{2(p-1)+q}, \tilde{w}_{2(p-1)+q}) \in \bar{\mathbb{S}}_n \cap [1-b_n^2, 1] \times B_{2(p-1)+q}$. For some suitable $\gamma_1, \ldots, \gamma_{2(p-1)+q} \ge 0$ with $\sum_{j=1}^{2(p-1)+q} \gamma_j = 1$, we then obtain (A.13)–(A.14), and one can conclude from (A.3) that

$$\sum_{r=1}^{k-1} \alpha_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \alpha_k \frac{g_x(\theta \boldsymbol{z}, \boldsymbol{w})}{\theta g_x(0, \boldsymbol{y})}$$

$$\geq \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \widetilde{\alpha}_k \frac{g_x(\widetilde{\boldsymbol{z}}, \widetilde{\boldsymbol{y}})}{g_x(0, \boldsymbol{y})} + \alpha_k \frac{c_1 c_3}{2(p-1)+2q} b^2 n^{-\frac{2}{p+q+1}}$$

$$\geq \sum_{r=1}^{k-1} \widetilde{\alpha}_r \frac{g_x(\theta_r \boldsymbol{z}_r, \boldsymbol{y}_r)}{\theta_r g_x(0, \boldsymbol{y})} + \sum_{j=1}^{2(p-1)+2q} \widetilde{\alpha}_k \gamma_j \frac{g_x(\widetilde{\theta}_j \widetilde{\boldsymbol{z}}_j, \widetilde{\boldsymbol{w}}_j)}{\widetilde{\theta}_j g_x(0, \boldsymbol{y})},$$
(A.15)

where α_r , $\tilde{\alpha}_r$ are defined as in Lemma A1. Clearly, $\sum_{r=1}^{k-1} \tilde{\alpha}_r + \sum_{j=1}^{2(p-1)+2q} \tilde{\alpha}_k \gamma_j = 1$ as well as $\sum_{r=1}^{k-1} \tilde{\alpha}_r \boldsymbol{z}_r + \sum_{j=1}^{2(p-1)+2q} \tilde{\alpha}_k \gamma_j \tilde{\boldsymbol{z}}_j = 0$ and $\sum_{r=1}^{k-1} \tilde{\alpha}_r \boldsymbol{y}_r + \sum_{j=1}^{2(p-1)+2q} \tilde{\alpha}_k \gamma_j \tilde{\boldsymbol{w}}_j = \boldsymbol{y}$.

Note that $(\tilde{\theta}_j, \tilde{z}_j, \tilde{w}_j) \in \bar{S}_n \cap C(x, y; hn^{-\frac{1}{p+q+1}})$ for all j. We can therefore infer from (A.15) that if $\bar{S}_n \cap D_{j,n} \neq \emptyset \forall j$, then the minimal value of $\sum_i \alpha_i \frac{g_x(\theta_i Z_i, Y_i)}{\theta_i g_x(0, y)}$ over all $\alpha_1, \ldots, \alpha_n \geq 0$ with $\sum \alpha_i = 1$ is achieved by those linear combinations which assign zero weight $\alpha_i = 0$ to all observations with $(\theta, z, w) := (\theta_i, Z_i, Y_i) \notin C(x, y; hn^{-\frac{1}{p+q+1}})$. This leads to (A.12) and thus completes the proof of part (a).

In order to prove part (b) first note that (A.9)–(A.15) remain valid when defining

 $b = [(2c_2)^{-1} \log n]^{1/2}$ and $(\tilde{z}, \tilde{y}) = (0, y)$. By (A.10) and (A.14) we can then infer that there is a constant d_0^* such that

$$\operatorname{Prob}\left(\frac{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}{\theta(\boldsymbol{x},by)} - 1 \le n^{-\frac{2}{p+q+1}}\frac{\log n}{2}\right) \ge 1 - (2(p-1) + 2q) \cdot \exp[-d_0^*(\log n)^{(p+q+1)/2}]$$
(A.16)

By Lemma 1 the above arguments can also be used to show that (A.16) holds for any point in a sufficiently small neighborhood $N(\boldsymbol{x}, \boldsymbol{y})$ of $(\boldsymbol{x}, \boldsymbol{y})$. Using the continuity and convexity of θ and $\hat{\theta}$, the asserted property of $\hat{\theta}$ now follows from standard arguments based on interpolating a sufficiently fine grid of n points in $N(\boldsymbol{x}, \boldsymbol{y})$. In view of Lemma 1(a) the assertion on \hat{g}_x is an immediate consequence.

Proof of Theorem 2: Let

$$F_{x,h}(\delta) = \sum_{k=1}^{\infty} \operatorname{Prob}\left(U\left[\frac{\delta}{h^2}, k\right]\right) \frac{h^{k(p+q+1)}\bar{f}_x(1, 0, \boldsymbol{y})^k}{k!} e^{-h^{p+q+1}\bar{f}_x(1, 0, \boldsymbol{y})^k}$$

Clearly, $F_{x,h}$ is a continuous distribution function with $F_{x,h}(0) = 0$ and $F_{x,h}(\infty) = 1$. By definition of the respective events we obtain

$$\operatorname{Prob}(A[\delta, n; h]) \le \operatorname{Prob}(A[\delta, n; h^*]) \le \operatorname{Prob}(A[\delta, n] \le 1$$

for all δ , n and all $h^* > h$. It follows from Proposition 1 that $F_{x,h}(\delta) \leq F_{x,h^*}(\delta) \leq 1$ for any $\delta > 0$. This implies that $\{F_{x,h}(\delta)\}_{h>0}$ is a bounded sequence of monotonically increasing real numbers and thus necessarily converges to a limit value. Together with Theorem 1(a) we can therefore conclude that there exists a monotone function $F_x(\delta)$ such that

$$F_x(\delta) =: \lim_{h \to \infty} F_{x,h}(\delta) = \lim_{n \to \infty} \operatorname{Prob}(A[\delta, n]).$$

Clearly, F_x is a distribution function with $F_x(0) = 0$ and $F_x(\infty) = 1$.

It only remains to verify relation (3.15) as well as to show that F_x is continuous and that $F_x(\delta) < 1$. This requires a closer analysis of $\operatorname{Prob}(U[\frac{\delta}{h^2}, k])$. It is now seen that there exists a $0 < d_0 < \infty$ such that for all $\gamma > 0$ and all sufficiently large k, we have $|\operatorname{Prob}(U[\gamma, k]) - \operatorname{Prob}(U[\gamma, k+1])| \leq d_0/k$. Consequently, if [t] is the largest integer which is smaller or equal to t, then

$$|\operatorname{Prob}(U[\gamma, k]) - \operatorname{Prob}(U[\gamma, [\lambda k]])| \le d_0 \cdot \max\{\lambda - 1, \frac{1}{\lambda} - 1\}$$
(A.17)

holds for any $\gamma > 0$, $\lambda > 0$ and all sufficiently large k. On the other hand, for large ha Poisson distribution with parameter $h^{p+q+1}\bar{f}_x(1,0,\boldsymbol{y})$ can be well approximated by a $N(h^{p+q+1}\bar{f}_x(1,0,\boldsymbol{y}), h^{p+q+1}\bar{f}_x(1,0,\boldsymbol{y}))$ - distribution. Combining these arguments reveals

$$\begin{aligned} F_x(\delta) &= \lim_{h \to \infty} F_{x,h}(\delta) \\ &= \lim_{h \to \infty} \int \operatorname{Prob} \left(U \left[\frac{\delta}{h^2}, \left[\sqrt{h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y})} z + h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y}) \right] \right] \right) \phi(z) dz \\ &= \lim_{h \to \infty} \int \operatorname{Prob} \left(U \left[\frac{\delta}{h^2}, \left[\left(1 + \frac{z}{\sqrt{h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y})}} \right) h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y}) \right] \right] \right) \phi(z) dz \\ &= \lim_{h \to \infty} \int \operatorname{Prob} \left(U \left[\frac{\delta}{h^2}, \left[h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y}) \right] \right] \right) \phi(z) dz \\ &= \lim_{h \to \infty} P \left(U \left[\frac{\delta}{h^2}, \left[h^{p+q+1} \bar{f}_x(1,0,\boldsymbol{y}) \right] \right] \right), \end{aligned}$$

where ϕ denotes the standard normal density. Relation (3.15) then follows from

$$\lim_{h \to \infty} \operatorname{Prob}\left(U\left[\frac{\delta}{h^2}, \left[h^{p+q+1}\bar{f}_x(1,0,\boldsymbol{y})\right]\right]\right) = \lim_{k \to \infty} \operatorname{Prob}\left(U\left[\delta\frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{k^{2/(p+q+1)}}, k\right]\right),$$

and by using (3.16) the continuity of $F_x(\delta)$ for $\delta > 0$ follows from

$$|F_x(\lambda\delta) - F_x(\delta)| = \lim_{k \to \infty} \left| \operatorname{Prob} \left(U \left[\delta \frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{(k/\lambda^{(p+q+1)/2})^{2/(p+q+1)}}, \frac{k\lambda^{(p+q+1)/2}}{\lambda^{(p+q+1)/2}} \right] \right) - \operatorname{Prob} \left(U \left[\delta \frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{(k/\lambda^{(p+q+1)/2})^{2/(p+q+1)}}, \frac{k}{\lambda^{(p+q+1)/2}} \right] \right) \right| \le d_0 \cdot \max\{\lambda^{(p+q+1)/2} - 1, \frac{1}{\lambda^{(p+q+1)/2}} - 1\}$$

Clearly, the event $U\left[\delta \frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{k^{2/(p+q+1)}}, k\right]$ implies that $(\tilde{\vartheta}_j, \tilde{\zeta}_j, \tilde{\boldsymbol{y}}_j) \in I_{k,\delta} := \left[0, \delta \frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{k^{2/(p+q+1)}}\right] \times \left[\frac{-1}{k^{1/(p+q+1)}}, \frac{1}{k^{1/(p+q+1)}}\right]^{p-1} \times \left[\frac{-1}{k^{1/(p+q+1)}}, \frac{1}{k^{1/(p+q+1)}}\right]^q$ for at least one observation $j \in \{1, \ldots, k\}$. Since $\operatorname{Prob}(I_{k,\delta}) = \delta \frac{\bar{f}_x(1,0,\boldsymbol{y})^{2/(p+q+1)}}{k}$ for all sufficiently large k, standard arguments now lead to

$$\operatorname{Prob}\left(U\left[\delta\frac{\overline{f}_{x}(1,0,\boldsymbol{y})^{2/(p+q+1)}}{k^{2/(p+q+1)}}, k\right]\right) \leq \operatorname{Prob}\left((\widetilde{\vartheta}_{j},\widetilde{\zeta}_{j},\widetilde{Y}_{j}) \in I_{k,\delta} \text{ for some } j \in \{1, \ldots, k\}\right)$$
$$= 1 - \exp(-\delta\overline{f}_{x}(1,0,\boldsymbol{y})^{2/(p+q+1)}) \quad \text{as } k \to \infty$$

One can infer that F_x is continuous at $\delta = 0$ and that $F_x(\delta) < 1$ for all $\delta > 0$. **Proof of Theorem 4:** Recall the definitions of the events $A[\delta, n; h]$ and $A[\delta, n]$. Replace (θ_i, Z_i, Y_i) by $(\theta_i^*, Z_i^*, Y_i^*)$ and g_x by \hat{g}_x^* to define events $A[\delta, n; h]^*$ and $A[\delta, n]^*$. First, note that for all n,

$$\operatorname{Prob}\left(n^{\frac{2}{p+q+1}}\left(\frac{\widehat{\theta}^{*}(\boldsymbol{x},\boldsymbol{y})}{\widehat{\theta}(\boldsymbol{x},\boldsymbol{y})}-1\right) \leq \delta \mid \mathbb{S}_{n}\right) = \operatorname{Prob}(A[\delta,n]^{*} \mid \mathbb{S}_{n})$$

Conditional on S_n , the essential parts of the arguments used in the proofs of Lemma A1 and Theorem 1 remain valid when being applied to \hat{g}_x^* and \hat{f}_x instead of g_x and f_x . This is easily seen when noting that \hat{g}_x^* is necessarily convex and that with probability converging to 1 as $n \to \infty$ the bounds given in (A.8) and (A.15) also apply to \hat{g}_x^* . Since $n^{-\frac{1}{p+q+1}}/b \to 0$, the latter follows from (4.5) and Taylor expansions of g_x^* similar to (4.6). Furthermore, due to (4.7) relations (A.10)–(A.12) generalize to S_n^* and \hat{f}_x . We can therefore conclude that for any $\epsilon > 0$ there exists a $h_{\epsilon} > 0$ such that for all $h \ge h_{\epsilon}$,

$$\operatorname{Prob}\left(\sup_{\delta} \left[\operatorname{Prob}(A[\delta, n]^* \mid \mathfrak{S}_n) - \operatorname{Prob}(A[\delta, n, h]^* \mid \mathfrak{S}_n)\right] \le \epsilon\right) \to 1 \quad \text{as } n \to \infty. \quad (A.19)$$

On the other hand, in view of (4.5)–(4.7), one can additionally invoke arguments similar to those used in the proof of Proposition 1 to obtain

$$\sup_{\delta} \left| \operatorname{Prob}(A[\delta, n, h]^* \mid \mathbb{S}_n) - \sum_{k=1}^{\infty} \operatorname{Prob}\left(U\left[\frac{\delta}{h^2}, k\right] \right) \frac{h^{k(p+q+1)} \bar{f}_x(1, 0, \boldsymbol{y})^k}{k!} e^{-h^{p+q+1} \bar{f}_x(1, 0, \boldsymbol{y})} \right| = o_p(1).$$

$$(A.20)$$

The theorem now follows from Theorem 2.

REFERENCES

- Banker, R.D. (1993), Maximum Likelihood, consistency and data Envelopment analysis: a statistical foundation, *Management Sci.* 39, 1265-1273.
- Bickel, P.J. and Freedman, D.A. (1981), Some asymptotic theory for the bootstrap, Ann. Statist. 9, 1196–1217.
- Charnes, A., Cooper, W.W. and Rhodes E. (1978), Measuring the inefficiency of decision making units, *European J. Oper. Res.* 2, 429-444.
- Charnes, A., Cooper, W.W. and Rhodes E. (1979), Measuring the efficiency of decision making units, *European J. Oper. Res.* 3, 339.
- Debreu, G. (1951), The coefficient of resource utilization, *Econometrica* 19, 273–292.
- Färe, R., Grosskopf, S. and Lovell, C.A.K. (1985), The Measurement of Efficiency of Production. Boston, Kluwer-Nijhoff Publishing.
- Farrell, M.J. (1957), The measurement of productive efficiency, J. Roy. Statist. Soc. Ser. A 120, 253-281.
- Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999), On estimation of monotone and concave frontier functions, J. Amer. Statist. Assoc. 94, 220–228.
- Hall, P. (1992), The Bootstrap and Edgeworth Expansion, New York: Springer-Verlag.
- Kneip, A., Park, B.U. and Simar, L. (1998), A note on the convergence of nonparametric DEA estimators for production efficiency scores, *Econometric Theory*, 14, 783–793.
- Korostelev, A., Simar, L. and Tsybakov, A.B. (1995), On estimation of monotone and convex boundaries, *Publ. Statist. Univ. Paris XXXIX* 1, 3–18.
- Lovell, C. A. K. (1993), "Production Frontiers and Productive Efficiency," in *The Measurement of Productive Efficiency: Techniques and Applications*, ed. by Hal Fried, C. A. Knox Lovell, and Shelton S. Schmidt, Oxford University Press, Inc., Oxford, pp. 3–67.
- Seiford, L.M. (1996), Data envelopment analysis: The evolution of the state-of-the-art (1978–1995), *J. Productivity Anal.*, 7, 2/3, 99–138.
- Seiford, L. M. (1997), A bibliography for data envelopment analysis (1978–1996), Ann. Oper. Res. 73, 393–438.
- Sheather, S.J., and M.C. Jones (1991), A reliable data-based data-based bandwidth selection method for kernel density estimation, *J.R. Statist. Soc.* B, 53, 684–690.
- Shephard, R.W. (1970), *Theory of Cost and Production Function*. Princeton: Princeton University Press.
- Simar, L. (1996), Aspects of statistical analysis in DEA-type frontier models, *Journal of Productivity Analysis* 7, 177-185.
- Simar, L. and Wilson, P.W. (1998), Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models, *Management Science* 44, 49–61.

- Simar, L. and Wilson, P.W. (1999a), Some problems with the Ferrier/Hirschberg bootstrap idea, J. Productivity Anal. 11, 67–80.
- Simar, L. and Wilson, P.W. (1999b), Of course we can bootstrap DEA scores! But does it mean anything? Logic trumps wishful thinking, J. Productivity Anal. 11, 93–97.
- Simar, L. and Wilson, P.W. (2000a), A general methodology for bootstrapping in nonparametric frontier models, J. Appl. Statist. 27, 779–802.
- Simar, L. and Wilson, P.W. (2000b), Statistical inference in nonparametric frontier models: The state of the art, J. Productivity Anal. 13, 49–78.
- Swanepoel, J. W. H. (1986), A note on proving that the (modified) bootstrap works, Communications in Statistics: Theory and Methods 15, 3193–3203.

		p = q = 1			p = q = 2			
n	κ	.90	$-(1-\alpha)$.95	.99	.90	$-(1-\alpha)$.95	.99	
25	0.50	0.949	0.976	0.986	0.934	0.967	0.993	
25	0.55	0.958	0.978	0.993	0.934	0.966	0.991	
25	0.60	0.948	0.970	0.993	0.899	0.951	0.990	
25	0.65	0.949	0.984	0.999	0.891	0.940	0.988	
25	0.70	0.945	0.963	0.989	0.822	0.892	0.975	
25	0.75	0.927	0.966	0.988	0.779	0.868	0.964	
25	0.80	0.920	0.967	0.990	0.704	0.808	0.935	
25	0.85	0.908	0.952	0.991	0.641	0.752	0.909	
25	0.90	0.877	0.926	0.972	0.567	0.681	0.853	
25	0.95	0.872	0.922	0.972	0.499	0.618	0.821	
25	1.00	0.801	0.879	0.956	0.419	0.529	0.737	
50	0.50	0.975	0.990	1.000	0.968	0.988	0.998	
50	0.55	0.974	0.990	0.998	0.943	0.982	0.998	
50	0.60	0.969	0.989	0.994	0.920	0.962	0.996	
50	0.65	0.968	0.984	0.997	0.874	0.926	0.983	
50	0.70	0.956	0.980	0.995	0.834	0.918	0.979	
50	0.75	0.952	0.976	0.994	0.766	0.847	0.942	
50	0.80	0.928	0.962	0.990	0.713	0.787	0.904	
50	0.85	0.902	0.952	0.988	0.636	0.723	0.864	
50	0.90	0.905	0.947	0.988	0.533	0.629	0.798	
50	0.95	0.857	0.913	0.971	0.437	0.536	0.738	
50	1.00	0.827	0.884	0.964	0.384	0.476	0.665	
100	0.50	0.975	0.994	0.999	0.962	0.989	1.000	
100	0.55	0.978	0.997	1.000	0.935	0.972	0.998	
100	0.60	0.981	0.992	0.999	0.905	0.953	0.986	
100	0.65	0.979	0.991	0.998	0.887	0.940	0.981	
100	0.70	0.976	0.990	0.999	0.842	0.890	0.961	
100	0.75	0.965	0.983	0.998	0.787	0.864	0.948	
100	0.80	0.939	0.968	0.994	0.688	0.768	0.894	
100	0.85	0.914	0.954	0.985	0.639	0.732	0.854	
100	0.90	0.890	0.934	0.985	0.520	0.624	0.775	
100	0.95	0.808	0.895	0.962	0.461	0.567	0.720	
100	1.00	0.775	0.833	0.938	0.371	0.473	0.645	

TABLE 1Coverage of CIs Estimated by Sub-Sampling

TABLE 1 (continued)
-----------	------------

		$p = q = 1$ $(1 - \alpha)$			p = q = 2			
n	κ	.90	$(1 - \alpha)$.95	.99	.90	$(1 - \alpha)$.95	.99	
200	0.50	0.975	0.991	0.999	0.945	0.985	0.999	
200	0.55	0.983	0.996	1.000	0.951	0.981	0.996	
200	0.60	0.985	0.997	1.000	0.941	0.971	0.998	
200	0.65	0.984	0.996	0.999	0.910	0.938	0.985	
200	0.70	0.973	0.991	0.999	0.863	0.913	0.973	
200	0.75	0.963	0.981	1.000	0.770	0.850	0.936	
200	0.80	0.926	0.971	0.995	0.699	0.788	0.904	
200	0.85	0.901	0.948	0.993	0.641	0.725	0.871	
200	0.90	0.837	0.914	0.976	0.534	0.633	0.791	
200	0.95	0.805	0.876	0.965	0.418	0.518	0.693	
200	1.00	0.733	0.821	0.945	0.348	0.435	0.645	
400	0.50	0.968	0.993	0.999	0.964	0.996	1.000	
400	0.55	0.986	0.996	0.999	0.957	0.983	0.996	
400	0.60	0.985	0.995	1.000	0.954	0.983	0.999	
400	0.65	0.981	0.997	1.000	0.897	0.948	0.987	
400	0.70	0.965	0.992	0.999	0.861	0.912	0.971	
400	0.75	0.953	0.983	0.994	0.795	0.873	0.955	
400	0.80	0.933	0.967	0.998	0.695	0.798	0.915	
400	0.85	0.890	0.937	0.985	0.623	0.741	0.876	
400	0.90	0.809	0.903	0.971	0.519	0.608	0.785	
400	0.95	0.768	0.842	0.948	0.398	0.518	0.706	
400	1.00	0.714	0.791	0.902	0.311	0.398	0.573	
800	0.50	0.946	0.989	0.995	0.944	0.985	0.998	
800	0.55	0.972	0.996	0.998	0.954	0.987	0.998	
800	0.60	0.971	0.992	0.998	0.961	0.981	0.995	
800	0.65	0.962	0.991	0.999	0.924	0.964	0.988	
800	0.70	0.971	0.991	0.998	0.855	0.909	0.975	
800	0.75	0.951	0.973	1.000	0.807	0.877	0.961	
800	0.80	0.890	0.946	0.992	0.708	0.789	0.922	
800	0.85	0.873	0.929	0.978	0.611	0.727	0.863	
800	0.90	0.814	0.891	0.968	0.477	0.592	0.773	
800	0.95	0.751	0.821	0.927	0.383	0.483	0.653	
800	1.00	0.695	0.779	0.902	0.262	0.356	0.548	

		p = q = 1			p = q = 2			
n	b	.90	$-(1-\alpha)$.95	.99	.90	$-(1-\alpha)$.95	.99	
25	0.4	0.793	0.869	0.953				
50	0.4	0.831	0.911	0.976				
100	0.4	0.870	0.931	0.973	0.672	0.781	0.937	
200	0.4	0.907	0.964	0.994	0.678	0.814	0.955	
400	0.4	0.910	0.957	0.991	0.762	0.849	0.952	
800	0.4	0.937	0.971	0.997	0.763	0.859	0.962	
25	0.6	0.810	0.883	0.961	0.456	0.589	0.831	
50	0.6	0.861	0.927	0.978	0.643	0.750	0.899	
100	0.6	0.888	0.934	0.978	0.722	0.815	0.939	
200	0.6	0.916	0.968	0.995	0.746	0.856	0.962	
400	0.6	0.913	0.959	0.989	0.808	0.887	0.965	
800	0.6	0.916	0.966	0.995	0.821	0.884	0.970	
25	0.8	0.833	0.900	0.962	0.641	0.753	0.900	
50	0.8	0.868	0.936	0.981	0.665	0.770	0.908	
100	0.8	0.881	0.933	0.980	0.744	0.848	0.950	
200	0.8	0.907	0.962	0.996	0.794	0.877	0.965	
400	0.8	0.892	0.950	0.986	0.808	0.887	0.967	
800	0.8	0.882	0.938	0.993	0.813	0.887	0.968	
25	1.0	0.844	0.913	0.977	0.667	0.770	0.904	
50	1.0	0.871	0.933	0.981	0.684	0.786	0.910	
100	1.0	0.878	0.927	0.981	0.760	0.855	0.950	
200	1.0	0.891	0.949	0.994	0.793	0.866	0.959	
400	1.0	0.866	0.923	0.982	0.792	0.864	0.955	
800	1.0	0.855	0.914	0.986	0.773	0.848	0.950	

 TABLE 2

 Coverage of CIs Estimated by Double-Smooth Bootstrap

Figure 1 Illustration of g_x for the case p = 2

