
T E C H N I C A L

R E P O R T

0323

ASYMPTOTIC FOR DEA ESTIMATORS IN

NON-PARAMETRIC FRONTIER MODELS

KNEIP, A., SIMAR, L. and P. WILSON

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



Asymptotics for DEA Estimators in

Non-parametric Frontier Models∗

Alois Kneip
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ABSTRACT

Non-parametric data envelopment analysis (DEA) estimators based on linear program-
ming methods have been widely applied in analyses of productive efficiency. The distri-
butions of these estimators remain unknown except in the simple case of one input and
one output. This paper derives the asymptotic distribution of DEA estimators under vari-
able returns-to-scale. In addition, two bootstrap procedures (one based on sub-sampling,
the other based on smoothing) are shown to provide consistent inference. The smooth
bootstrap requires smoothing the irregularly-bounded density of inputs and outputs as
well as smoothing of the DEA frontier estimate. Both bootstrap procedures allow for
dependence of the inefficiency process on output levels and the mix of inputs in the case
of input-oriented measures, or on inputs levels and the mix of outputs in the case of
output-oriented measures.
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1. Introduction

Many dozens—perhaps hundreds—of published papers have proposed measures of tech-

nical, allocative, and other types of productive efficiency based on microeconomic theory of

the firm and early work by Debreu (1951), Farrell (1957), and Shephard (1970). Many more

published papers have employed linear programming methods along the lines of Charnes

et al. (1978, 1979) and Färe et al. (1985) to estimate productive efficiency using data from

a wide variety of industries. Collectively, these papers number well over 1,000 (see Lovell,

1993 and Seiford, 1996 and 1997 for comprehensive bibliographies). Within this literature,

those approaches that incorporate convexity assumptions are known as Data Envelopment

Analysis (DEA).

DEA estimators measure efficiency relative to an estimate of an unobserved true fron-

tier, conditional on observed data resulting from an underlying data-generating process

(DGP). Until recently, little was known about the statistical properties of DEA estimators

(Simar and Wilson, 2000b, provide a survey of the available statistical results for DEA esti-

mators). It is now understood, however, that under certain assumptions the DEA frontier

estimator is a consistent, maximum likelihood estimator (Banker, 1993), with a known rate

of convergence (Korostelev et al., 1995). In addition, consistency and convergence rates

of DEA efficiency estimators has been established (Kneip et al., 1998). The asymptotic

distribution of DEA efficiency estimators for the special case of one input, one output

was derived by Gijbels et al. (1999), but until now there have been no such results that

would allow one to perform classical inference regarding efficiency in more general cases

with multiple inputs and outputs. To date, the bootstrap methods proposed by Simar and

Wilson (1998, 2000a) provide the only means for inferences about efficiency based on DEA

estimators in a multivariate framework, but consistency for these procedures has not been

proved.

This paper derives the asymptotic distribution of DEA estimators under variable returns

to scale. In addition, two bootstrap methods are shown to provide consistent inference.

The first is based on sub-sampling; bootstrap samples of size m < n are drawn (indepen-
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dently, with replacement) from the empirical distribution of the n sample observations.

There is little surprise that such a method should work; Swanepoel (1986) discussed this

approach for inference about the boundary of support for a univariate distribution, but

the difficulty with this approach lies in the choice of m. The second bootstrap approach

involves smoothing both the distribution of the observations, as well as the initial frontier

estimate. Simulation results for both bootstrap methods are provided.

We proceed as follows: in the next section, we define notation and briefly describe

the DEA estimator. We derive the asymptotic distribution of this estimator in the third

section, and present the bootstrap procedures in the fourth section. Simulation results are

presented in section 5, and concluding remarks appear in the final section.

2. DEA Estimators

To establish notation for the rest of the paper, suppose that firms use input quantities

x ∈ Rp+ to produce output quantities y ∈ Rq+. Standard microeconomic theory of the firm

posits a production set

Ψ = {(x,y) | x can produce y}. (2.1)

The production set Ψ is sometimes described in terms of its sections

Y(x) ≡ {y | (x,y) ∈ Ψ} (2.2)

and

X(y) ≡ {x | (x,y) ∈ Ψ}, (2.3)

which form the output feasibility and input requirement sets, respectively. Knowledge of

either Y(x) for all x or X(y) for all y is equivalent to knowledge of Ψ; thus, both Y(x) and

X(y) inherit the properties of Ψ. We denote the boundary of X(y) by

X∂(y) = {x | (x,y) ∈ Ψ, (δx,y) 6∈ Ψ ∀ δ < 1} (2.4)

Various economic assumptions regarding Ψ are possible; we adopt those of Shephard

(1970) and Färe (1988):
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Assumption 1: Ψ is closed and convex; Y(x) is closed, convex, and bounded for all

x ∈ Rp+; and X(y) is closed and convex for all y ∈ Rq+.

The boundary Ψ∂ of Ψ constitutes the technology. Microeconomic theory of the firm

suggests that in perfectly competitive markets, firms operating in the interior of Ψ will be

driven from the market, but makes no prediction of how long this might take.

Assumption 2: (x,y) 6∈ Ψ if x = 0, y ≥ 0,y 6= 0, i.e., all production requires use of

some inputs.

Assumption 3: for x̃ ≥ x, ỹ ≤ y, if (x,y) ∈ Ψ then (x̃,y) ∈ Ψ and (x, ỹ) ∈ Ψ, i.e.,

both inputs and outputs are strongly disposable.

Here and throughout, inequalities involving vectors are defined on an element-by-element

basis; e.g., for x̃, x ∈ Rp+, x̃ ≥ x means that some number ` ∈ {0, 1, . . . , p} of

the corresponding elements of x̃ and x ere equal, while (p − `) of the elements of x̃ are

greater than the corresponding elements of x. Note that Assumption 3 is equivalent to an

assumption of monotonicity of the technology.

Various measures of technical efficiency are possible. We use the Farrell (1957) measure

of input technical efficiency, defined by

θ(x,y) ≡ inf{δ | (δx,y) ∈ Ψ, δ > 0} (2.5)

for an arbitrary point (x,y) ∈ Rp+q+ . This is the the reciprocal of the Shephard (1970)

input distance function. For (x,y) ∈ Ψ, 0 < θ(x,y) ≤ 1. Note that θ provides a measure

of Euclidean distance from the point (x,y) ∈ Rp+q+ to the boundary of Ψ in a direction

parallel to the input axes and orthogonal to the output axes. One can also define output-

oriented measures; we consider only the input orientation to conserve space. All of our

results extend to output-oriented measures via straightforward, although perhaps tedious,

changes in notation.

Of course, Ψ and hence θ(x,y) are unknown and must be estimated from a sample of

observations Sn = {(Xi, Yi)}ni=1. The DEA estimator of Ψ is merely the convex hull of the
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free disposal hull of Sn, given by

Ψ̂ =
{

(x,y) | y ≤ Y q, x ≥ Xq, i′q = 1, q ∈ Rn+
}
, (2.6)

where Y = [y1 . . . yn ], X = [x1 . . . xn ], i denotes an (n× 1) vector of ones, and

q is an (n× 1) vector of intensity variables. The corresponding DEA estimator of θ(x,y)

is obtained by replacing Ψ with Ψ̂ in (2.5); i.e.,

θ̂(x,y) = min
{
δ > 0 | y ≤ Y q, δx ≥Xq, i′q = 1, q ∈ Rn+

}
. (2.7)

Minimization of the linear program in (2.7) provides a solution for both δ and q. Whereas

θ(x,y) defined in (2.5) gives a measure of distance from a point (x,y) ∈ Rp+q+ to the

boundary of Ψ, θ̂(x,y) measures distance from the same point to the boundary of the

convex hull of the free-disposal hull of the n sample observations; from Kneip et al. (1998)

we have θ̂(x,y) = θ(x,y)+Op(n
2

p+q+1 ) when θ(x, by) is twice-differentiable. As with many

non-parametric estimators, the DEA estimators suffer from the curse of dimensionality.

3. Asymptotic Distribution of DEA Estimators

To derive the distribution of the estimator θ̂(x,y), a data generating process must be

defined. The framework we consider is similar to that in Simar (1996), Kneip et al. (1998),

and Simar and Wilson (1998, 2000a).

Assumption 4: The n observations in Sn are identically, independently distributed (iid)

random variables on the convex attainable set Ψ.

Assumption 5: (a) The (X,Y ) possess a joint density f with support D ⊂ Ψ; (b) f is

continuous on D; and (c) f(θ(x,y)x,y)> 0 for all (x,y) ∈ D.

Clearly, Assumption 5(c) imposes a discontinuity in f at frontier points where θ(x,y) =

1. This assumption ensures a significant, non-negligible probability of observing production

units close to the production frontier, while f ≡ 0 for technically non-attainable points

which lie outside Ψ.

We concentrate on a fixed point (x,y) ∈ Ψ in the analysis that follows. The statistical

performance of the DEA estimator θ̂(x,y) of θ(x,y) depends on the smoothness of the
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frontier. Kneip et al. (1998) derive different rates of convergence depending of the degree

of smoothness. We consider only the case where θ(x,y) is twice-differentiable.

Assumption 6: (a) For (x, y) in the interior of D, the function θ(v,w) is twice continu-

ously differentiable for all (v,w) in a sufficiently small neighborhood of (x,y); and (b) the

matrix θ′′(x,y) of second derivatives of θ at (x,y) is positive definite.

Assumptions 1–6 describe the statistical model to be considered. However, in order

to formulate our results it is necessary to introduce some additional notation. As an

important theoretical tool for our analysis we will consider a decomposition of the vectors

Xi of inputs which is specific for the particular point of interest, x.

Let V(x) denote the (p − 1)-dimensional linear space of all vectors z ∈ Rp such that

zTx = 0. Any input vector Xi adopts a unique decomposition of the form

Xi = γi
x

||x|| +Zi for some Zi ∈ V(x) and γi =
xTXi

||x|| , (3.1)

where || · || denotes the Euclidean norm. One can then specify the set Ψ∗(x) of all (z,y) ∈
V(x) × Rq+ with the property that there exists an (x∗,y) ∈ Ψ with x∗ = γ x

||x|| + z for

some γ > 0. For (z,y) ∈ Ψ∗(x) define the function

gx(z,y) = inf

{
γ |
(
γ
x

||x|| + z,y

)
∈ Ψ

}
.

Similarly, let

ĝx(z,y) = inf

{
γ |
(
γ
x

||x|| + z,y

)
∈ Ψ̂

}
.

Formally, one may extend the definition of gx to all (v,y) with
(
v − xT v

||x||2x,y
)
∈ Ψ∗(x),

which implies gx(v,y) = gx

(
v − xT v

||x||2x,y
)

.

In the case of one input (p = 1), the function gx is simply the ”frontier function” and

does not depend on x. Then V = {0} and gx(0,y) ≡ g(y) = θ(x,y)x ≡ ∂§(y) for all x.

We are interested only in analyzing gx(z,y) as a function of z and y. However, we

have adopted the notation gx to emphasize that for p > 1, the structure of this function

depends on the vector x
||x|| . Note that whenever (x,y) lies in the interior of Ψ, (z,y) ∈

Ψ∗(x) ∀ z ∈ V(x).
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It is easy to check that

θ(x,y) =
gx(0,y)

||x|| and θ̂(x,y) =
ĝx(0,y)

||x|| . (3.2)

Figure 1 illustrates the definition of gx for the case p = 2. For a given output vector y,

the input requirement set X(y) is a convex subset of R2
+ with efficiency boundary X∂(y),

shown by the solid black line. We now consider an input vector x with ||x|| = 1. The ray

γx, γ ≥ 0, is represented by the solid gray line passing through the origin. For a vector

z with zTx = 0, the dashed gray line γx+ z is parallel to γx. The intersection between

γx+ z and X∂(y) then determines the point gx(z,y)x+ z.

The following lemma summarizes the most important properties of gx.

Lemma 1: By Assumption A1,

(a) gx is convex, and for all (v, ỹ) ∈ Ψ and z = v − xT v
||x||2x,

θ(v, ỹ)
xTv

||x|| = gx(θ(v, ỹ)z, ỹ) and θ̂(v, ỹ)
xTv

||x|| = ĝx(θ̂(v, ỹ)z, ỹ).

(b) Let (x,y) be in the interior of D. By Assumption 6,

• the function gx(·, ·) is twice continuously differentiable for all points in a suffi-

ciently small neighborhood of (0,y);

• The matrix g′′x(0,y) of second derivatives at (0,y) is positive semidefinite, and

there exists a constant c0 > 0 such that wT g′′x(0,y)w ≥ c0 ∀ w ∈ V(x)×Rq with ||w|| = 1.

Proof. For all (z1,y1), (z2,y2) ∈ Ψ∗(x) and every α ∈ [0, 1], the definition of gx implies

that [αgx(z1,y1) + (1− α)gx(z2,y2)] x
||x|| + z̃α ≥ gx(z̃α, ỹα) x

||x|| + z̃α with (z̃α, ỹα) =

(αz1 + (1 − α)z2, αy1 + (1 − α)y2) ∈ Ψ∗(x). Consequently, gx is a convex function.

Moreover, for any v ∈ X∂(ỹ) we necessarily have v = gx(z, ỹ) x
||x|| + z for z = v − xT v

||x||2x.

Assertion (a) then follows from θ(v, ỹ)v ∈ X∂(ỹ). In view of Assumption 6(a) twice-

differentiability of gx at (0,y) follows directly.

Assumption 6(b) implies that

1 ≥αθ(gx(z1,y1)
x

||x|| + z1,y1) + (1− α)θ(gx(z2,y2)
x

||x|| + z2,y2)

>θ

(
(αgx(z1,y1) + (1− α)gx(z2,y2))

x

||x|| ,y
)
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holds for all (z1,y1), (z2,y2) ∈ Ψ∗(x), (z1,y1) 6= (z2,y2) and every α ∈ [0, 1] with αz1 +

(1−α)z2 = 0 and αy1 + (1−α)y2 = y. Since θ(gx(0,y) x
||x|| ,y) = 1, we can conclude that

αgx(z1,y1) + (1−α)gx(z2,y2) > gx(0,y), which leads to the asserted structure of g′′x .

As noted earlier, Kneip et al. (1998) showed that the rate of convergence of the input

inefficiency estimator is Op(n
−2/(p+q+1)). The following lemma shows that the problem

of specifying the distribution of
�

θ(x,y)
θ(x,y) can be reformulated in terms of gx and of the

distribution of θ(Xi, Yi), Zi and Yi.

Lemma 2: Let (x,y) be in the interior of D. Under Assumptions 1–6 we obtain for any

δ > 0

Prob

(
θ̂(x,y)

θ(x,y)
− 1 ≤ δn− 2

p+q+1

)
= Prob(A[δ, n]), (3.3)

where A[δ, n] denotes the following event: There exist some α1 ≥ 0, . . . , αn ≥ 0 with
∑n
j=1 αj = 1 such that

n∑

i=1

αiZi = 0, and
n∑

i=1

αiYi = y (3.4)

and
n∑

i=1

αi
gx(θiZi, Yi)

θigx(0,y)
− 1 ≤ δn− 2

p+q+1 ,

where θi = θ(Xi, Yi) and Zi = Xi − xTXi
||x||2 x.

Proof. By definition of a DEA frontier we have
�

θ(x,y)
θ(x,y) − 1 ≤ δn− 2

p+q+1 if and only if there

exists a β > 0 with β
θ(x,y) − 1 ≤ δn− 2

p+q+1 such that

k∑

i=1

αiYi = y, and

k∑

i=1

αiXi = βx (3.5)

hold for some α1 ≥ 0, . . . , αn ≥ 0 with
∑n
j=1 αj = 1. The relations in (3.1) and

Lemma 1(a) imply Xi = gx(θiZi,Yi)
θi||x|| x + Zi. Since all Zi are orthogonal to x, (3.5) can

only hold if (3.4) is satisfied, and if
∑n
i=1 αi

gx(θiZi,Yi)
θi||x|| = β. The lemma now follows from

gx(0,y) = ||x||θ(x,y).

Consider an orthonormal basis z(1), . . . , z(p−1) of V(x). Every vector Zi ∈ V(x)

can be expressed in the form Zi =
∑p−1
j=1 ζijz

(j). Let ζi = (ζi1, . . . , ζi,p−1). Since
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θi = θ(Xi, Yi) and Zi = Xi − xTXi
||x||2 x are smooth functions of (Xi, Yi), Assumption 5

implies that (θi, ζi, Yi) has a density f̄x on [0, 1]× Rp−1 × Rq+. Let D̄ denote the support

of this density. By Assumption 5(a)–(c), it is easily seen that f̄x(·, ·, ·) is continuous on

(0, 1)× Rp−1 × Rq+, and f̄x(1, 0,y) > 0.

The following Theorem plays an important role in our analysis by ”localizing” the

frontier problem. The value of θ̂(x,y) is essentially determined by those observations

which fall into a small ”neighborhood” of (x,y). Note that for the proof of the theorem,

Assumption 6(b) is crucial. The theorem does not apply if, for example, the frontier is

linear. In such a case the frontier cannot be considered locally; in the case of a linear or

conical frontier θ̂(x,y) may be determined by points very far from the point of interest

(x,y).

Before proceeding, some additional notation is needed. Note that the sample of

observations Sn can be represented equivalently be the corresponding samples S̃n =

{(θi, Zi, Yi)}ni=1 or S̄n = {(θi, ζi, Yi)}ni=1, where ζi is determined by Zi =
∑p−1
j=1 ζijz

(j).

Define a set C(x,y;h) by

C(x,y;h) =
{

(θ, z̃, ỹ) ∈ (0, 1)×Ψ∗(x)
∣∣∣ 1− θ ≤ h2,

z =
∑

j

ζjz
(j) with |ζj| ≤ h ∀ j = 1, . . . , p− 1,

|yr − ỹr| ≤ h ∀ r = 1, . . . , q
}
.

Let A[δ, n;h] denote the following event: for some k ≤ n and i1, . . . , ik ∈ {1, . . . , n},
there exist some (Xi1 , Yi1), . . . , (Xik , Yik) with (θi1 , Zi1 , Yi1), . . . , (θik , Zik , Yik) ∈ S̃n ∩
C(x, y;h · n− 1

p+q+1 ), as well as some α1 ≥ 0, . . . , αk ≥ 0 with
∑k
j=1 αj = 1 such that

∑k
j=1 αjYij = y,

∑k
j=1 αjZij = 0, and

k∑

j=1

αj
gx(θijZij , Yij )

θijgx(0,y)
− 1 ≤ δn− 2

p+q+1 (3.7)

Again, θij = θ(Xij , Yij ) and Zij = Xij −
xTXij
||x||2 x.

Theorem 1: Let (x,y) be in the interior of D. Then under Assumptions 1–6
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(a) for any ε > 0 there exists an hε < ∞ such that for all h ≥ hε, every δ > 0 and all

sufficiently large n,

|Prob(A[δ, n]− Prob(A[δ, n;h])| ≤ ε; (3.8)

(b) there exists an open neighborhood N(x,y) of (x,y) such that

Prob

(
sup

(
�

x,
�

y)∈N(x,y)

∣∣∣∣∣
θ̂(x̃, ỹ)

θ(x̃, ỹ)
− 1

∣∣∣∣∣ ≤ n
− 2
p+q+1 log n

)
→ 1 as n→∞

and

Prob


 sup

(
�

x,
�

y)∈N(x,y)

∣∣∣∣∣∣
ĝx(x̃− xT

�

x
||x||2x, ỹ)

gx(x̃− xT
�

x
||x||2x, ỹ)

− 1

∣∣∣∣∣∣
≤ n− 2

p+q+1 logn


→ 1 as n→∞.

A proof is given in the appendix.

In order to examine the probabilities P (A[δ, n;h]), more notation is required. Let

(ϑ̃1, ζ̃1, ỹ1), (ϑ̃2, ζ̃2, ỹ2), . . . denote a sequence of iid random variables uniformly distributed

on [0, 1] × [−1, 1]p−1 × [−1, 1]q. For k ∈ N, let U [γ, k] denote the following event: there

exist some α1 ≥ 0, . . . , αk ≥ 0 with
∑k

j=1 αj = 1 such that

k∑

j=1

αj ỹj = 0, and

k∑

j=1

αjz̃j = 0, (3.9)

where z̃j =
∑p−1
r=1 ζjrzr, and

k∑

j=1

αj
1

2gx(0,y)

[
z̃Tj g

′′
x;zz(0,y)z̃j + 2z̃Tj g

′′
x;zy(0,y)ỹj + ỹTj g

′′
x;yy(0,y)ỹj

]
+

k∑

j=1

αjϑj ≤ γ

(3.10)

Here we use

g′′(x; 0,y) =

[
g′′x;zz(0,y) g′′x;zy(0,y)T

g′′x;zy(0,y) g′′x;yy(0,y)

]

to denote the matrix of second derivatives of gx at (0,y).

Proposition 1: Under the conditions of Theorem 1,
∣∣∣∣∣Prob(A[δ, n;h])−

∞∑

k=1

Prob

(
U

[
δ

h2
, k

])
hk(p+q+1)f̄x(1, 0,y)k

k!
e−h

p+q+1f̄x(1,0,y)

∣∣∣∣∣→ 0

(3.11)
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as n→∞ for any h > 0.

Proof. Recall the definition of A[δ, n;h]. Since Zij = Op(n
− 1
p+q+1 ), |y − Yij | =

Op(n
− 1
p+q+1 ) and 1− θi = Op(n

− 2
p+q+1 ), Taylor expansions of gx yield

k∑

j=1

αj
gx(θijZij , Yij )

θijgx(0,y)
− 1 =

k∑

j=1

αj
gx(θijZij , Yij )− gx(0,y)

gx(0,y)
+

k∑

j=1

αj(1− θij ) + op(n
− 2
p+q+1 )

=
k∑

j=1

αj
1

2gx(0,y)

[
ZTijg

′′
x;zz(0,y)Zij + 2ZTijg

′′
x;zy(0,y)(Yij − y)

+ (Yij − y)T g′′x;yy(0,y)(Yij − y)

]

+
k∑

j=1

αj(1− θij ) + op(n
− 2
p+q+1 )

where the convergence is uniform for all possible (Xij , Yij ) ∈ C(x,y;hn−
1

p+q+1 ). Note

that necessarily
∑k
j=1 αj

[
gx;z(0,y)′ · Zij + g′x;y(0,y) · (Yij − y)

]
= 0, where g′x(0,y) =

(gx;z(0,y)′, gx;y(0,y)′)T denotes the vector of first derivatives of gx at (0,y).

The density f̄x is continuous at (1, 0,y). Hence, the probability that there is an observa-

tion in C(x,y;h·n− 1
p+q+1 ) is asymptotically equivalent to hp+q+1f̄x(1, 0,y)·n−1. Hence for

large n, the distribution of the number k of points in C(x,y;h · n− 1
p+q+1 ) follows approxi-

mately a Poisson distribution with parameter hp+q+1f̄x(1, 0,y). Continuity of the densities

implies that the conditional distribution of (θi, ζi, Yi) given (θi, Zi, Yi) ∈ C(x,y;h·n− 1
p+q+1 )

is uniform on C̄(h · n− 1
p+q+1 ) := [1, 1 − h2n−

2
p+q+1 ] × [−hn− 1

p+q+1 , hn−
1

p+q+1 ]p−1 × [y1 −
hn−

1
p+q+1 , y1+hn−

1
p+q+1 ]×· · ·×[yq−hn−

1
p+q+1 , yq+hn

− 1
p+q+1 ]. Combining these arguments

with (3.12) reveals that

∣∣∣∣∣Prob(A[δ, n;h]−
∞∑

k=1

Prob(Ā[δ, n;h; k])
hk(p+q+1)f̄x(1, 0,y)k

k!
e−h

p+q+1f̄x(1,0,y)

∣∣∣∣∣→ 0

as n→∞, where for a sequence (θ̃1,n, ζ̃1,n, Ỹ1,n), . . . , (θ̃k,n, ζ̃k,n, Ỹk,n) of k iid random vari-

ables uniformly distributed on C̄(h ·n− 1
p+q+1 ), we use Ā[δ, n;h; k] to describe the following
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event: there exist some α1 ≥ 0, . . . , αk ≥ 0 with
∑k
j=1 αj = 1 such that

∑k
j=1 αjỸj,n = y

and
∑k
j=1 αjZ̃j,n = 0 for Z̃j,n =

∑p−1
r=1 ζj,n,rzr and

k∑

j=1

αj
1

2gx(0,y)

[
Z̃Tj,ng

′′
x;zz(0,y)Z̃j,n + 2Z̃Tj,ng

′′
x;zy(0,y)(Ỹj,n − y)

+ (Ỹj,n − y)T g′′x;yy(0,y)(Ỹj,n − y)
]

+

k∑

j=1

αj(1− θ̃j,n) ≤ δ · n− 2
p+q+1 .

(3.14)

The assertion of the proposition now follows from the fact that Ā[δ, n;h; k] is realized iff

the event U [ δ
h2 , k] is realized for ϑ̃j = 1

h2n
− 2
p+q+1

(1 − θ̃j,n), ζ̃j = 1

hn
− 1
p+q+1

ζ̃j,n and ỹj =

1

hn
− 1
p+q+1

(Ỹj,n − y). It then follows that uniformity of (θ̃j,n, ζ̃j,n, Ỹj,n) on C̄(h · n− 1
p+q+1 )

is equivalent to uniformity of (ϑ̃j , ζ̃j, ỹj) on [0, 1] × [−1, 1]p−1 × [−1, 1]q, and that (3.13)

corresponds to (3.9). Finally, (3.14) implies (3.10) holds when γ is replaced by δ/h2.

We are now ready to state a theorem about the asymptotic distribution of

n
2

p+q+1 (
�

θ(x,y)
θ(x,y) − 1).

Theorem 2: Under the conditions of Theorem 1 let

Fx(δ) = lim
k→∞

Prob

(
U

[
δ
f̄x(1, 0,y)2/(p+q+1)

k2/(p+q+1)
, k

])
(3.15)

for −∞ < δ < ∞. Then Fx is a continuous distribution function with Fx(0) = 0, 0 ≤
Fx(δ) < 1, and

Fx(δ) = lim
n→∞

Prob

[
n

2
p+q+1

(
θ̂(x,y)

θ(x,y)
− 1

)
≤ δ
]

= lim
n→∞

Prob(A[δ, n])

= lim
h→∞

∞∑

k=1

Prob

(
U

[
δ

h2
, k

])
hk(p+q+1)f̄x(1, 0,y)k

k!
e−h

p+q+1f̄x(1,0,y)

A proof is given in the appendix.

Although the asymptotic distribution in Theorem 2 possesses a non-standard struc-

ture, it nevertheless is a well-defined, continuous probability distribution. Recalling the

definition of the event U(·, ·), it is clear that the shape of the distribution function Fx is

determined by (p+q)(p+q+1)
2 + 2 parameters determined by (i) the values f̄x(1, 0,y) and
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gx(0,y) of the density f̄x, (ii) the values of the function gx at the corresponding frontier

point, and (iii) the matrix g′′x(0,y) of second derivatives of gx at (0,y). If these parameters

were known, quantiles of the asymptotic distribution could be estimated easily by Monte

Carlo simulations. Unfortunately, however, obtaining reliable estimates of the matrix

g′′x(0,y) necessary for this approach to work well seems particularly difficult. Fortunately,

the bootstrap, when bootstrap samples are drawn appropriately, provides a way out of this

difficulty.

4. Bootstrapping DEA Estimators

As in section 3, we consider a fixed point (x,y) in the interior of D satisfying Assumption

6. In this section, we consider suitable bootstrap procedures for estimating confidence

intervals for θ(x,y).

The simplest bootstrap would, on each replication, take n independent draws from the

empirical distribution of the observations in Sn to construct a pseudo-sample S∗n, and

then apply (2.7) to obtain a bootstrap estimate θ̂∗(x,y) (note that θ̂∗(x,y) measures

distance from the original point of interest, (x,y), to the boundary of the convex hull of

the free-disposal hull of the pseudo-observations in S∗n). However, this naive bootstrap

does not provide consistent inference as discussed by Simar and Wilson (1999a, 1999b).

¿From Theorem 1 it is clear that as n → ∞, the distribution of n
2

p+q+1

(
θ̂∗

�

θ
− 1
)

does

not tend to the true distribution F . The empirical distribution of (θi, Zi, Yi) does not

converge sufficiently fast to mimic the true probabilities on the sets C(x,y;hn−
1

p+q+1 )

which are proportional to 1
n . This result is not surprising; it is well-known that the naive

bootstrap does not work in the case of estimating the boundary of support for a univariate

distribution (e.g., see Bickel and Freedman, 1981).

We consider two different bootstrap approaches; the first is based on sub-sampling,

while the second is based on smoothing.

4.1 Bootstrap with Sub-sampling

Let m = nκ for some κ ∈ (0, 1), and consider the following bootstrap scheme:
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Algorithm #1:

[1] Generate a bootstrap sample S∗m = {(X∗i , Y ∗i )}mi=1 by randomly drawing (indepen-

dently, uniformly, and with replacement) m observations from the original sample,

Sn.

[2] Apply the DEA estimator in (2.7) to construct bootstrap estimates θ̂∗(x,y).

[3] Repeat steps [1]–[2] B times; use the resulting bootstrap values to approximate the

conditional distribution of m
2

p+q+1 ( θ̂
∗(x,y)

θ̂(x,y)
− 1) given Sn, and use this approximation

to approximate the unknown distribution of n
2

p+q+1 ( θ̂(x,y)
θ(x,y)−1). For a given α ∈ (0, 1),

use the bootstrap values to estimate the quantiles δα/2,m, δ1−α/2,m where

Prob

[
m

2
p+q+1

(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δα/2,m | Sn

]
=
α

2
,

Prob

[
m

2
p+q+1

(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δ1−α/2,m | Sn

]
= 1− α

2
.

[4] Compute

[
�

θ(x,y)

1+n
− 2
p+q+1 δ1−α/2,m

,
�

θ(x,y)

1+n
− 2
p+q+1 δα/2,m

]
, a symmetric 1 − α confidence in-

terval estimate for θ(x,y).

Consistency of this bootstrap is easy to show.

Theorem 3: Under the conditions of Theorem 1, let m ≡ m(n) = nκ for some κ ∈ (0, 1).

Then

sup
δ>0

∣∣∣∣∣F (δ)− Prob

[
m

2
p+q+1

(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δ | Sn

]∣∣∣∣∣
p→ 0 as n→∞. (4.1)

Proof. The bootstrap samples S∗m can be represented equivalently by the samples S̃∗m =

{(θ∗i , Z∗i , Y ∗i )}mi=1 or S̄∗m = {(θ∗i , ζ∗i , Y ∗i )}mi=1. Recall the definitions of the events A[δ, n;h]

and A[δ, n]; replace n by m and (θi, Zi, Yi) by (θ∗i , Z
∗
i , Y

∗
i ) to define events A[δ,m;h]∗ and

A[δ,m]∗, and note that

Prob
[
m

2
p+q+1

( �

θ∗(x,y)
θ(x,y)

− 1
)
≤ δ | Sn

]
= Prob (A[δ,m]∗ | Sn) holds for all m, δ. Theorem

2 implies |m 2
p+q+1 ( θ(x,y)

�

θ(x,y)
− 1)| p→ 0 as n→∞, and hence

sup
δ

∣∣∣∣∣Prob

[
m

2
p+q+1

(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δ | Sn

]
− Prob (A[δ,m]∗ | Sn)

∣∣∣∣∣ = op(1) (4.2)
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Now consider the sets C(x,y;hm−
1

p+q+1 ), and note

Prob((θ∗i , Z
∗
i , Y

∗
i ) ∈ C(x,y;hn−

1
p+q+1 ) | Sn) is equivalent to the relative frequency of

points in S̃n falling into C(x,y;hm−
1

p+q+1 ). Consequently,

∣∣∣∣∣
Prob((θ∗i , Z

∗
i , Y

∗
i ) ∈ C(x,y;hm−

1
p+q+1 ) | Sn)

Prob((θi, Zi, Yi) ∈ C(x,y;hm−
1

p+q+1 )
− 1

∣∣∣∣∣ = Op

(
n(κ−1)/2

)
.

Standard results on the convergence of the empirical distribution now can be used to

show that also the conditional distributions of the points falling into C(x,y;hn−
1

p+q+1 )

asymptotically coincide:

sup
C

∣∣∣∣
Prob[(θ∗i , Z

∗
i , Y

∗
i ) ∈ C | Sn]

Prob[(θ∗i , Z
∗
i , Y

∗
i ) ∈ C(x,y;hm−

1
p+q+1 ) | Sn]

− Prob[(θi, Zi, Yi) ∈ C]

Prob[(θi, Zi, Yi) ∈ C(x,y;hm−
1

p+q+1 )]

∣∣∣∣ = op(1)

where the supremum refers to all (p+ q)-dimensional subintervals C of C(x,y;hm−
1

p+q+1 ).

This leads to supδ |Prob(A[δ,m;h]∗ | Sn)− Prob(A[δ,m;h])| p→ 0 as n → ∞. By argu-

ments similar to those used to prove Theorem 1, it follows that for all ε > 0 there exists a

hε such that for every h ≥ hε, Prob (supδ |Prob(A[δ,m;h]∗ | Sn)− Prob(A[δ,m])| ≥ ε)→ 0

and Prob (supδ |P (A[δ,m;h]∗ | Sn)− P (A[δ,m]∗ | Sn)| ≥ ε)→ 0 as n→∞. The assertion

of the theorem now follows from (4.2) and Theorems 1 and 2.

4.2 Bootstrap with Smoothing

Alternatively, a bootstrap procedure that generates pseudo-samples based on a

smoothed empirical distribution and a smoothed estimate of gx allows consistent infer-

ence about θ(x,y). This bootstrap procedure consists of the following steps (details of the

smoothing procedures will be discussed in a sequel):

Algorithm #2:

[1] Compute a smooth analog ĝ∗x(z, ỹ) of the frontier function ĝx(z, ỹ); details are given

below.
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[2] Draw a bootstrap sample S̄∗n = {(θ∗i , ζ∗i , Y ∗i )}ni=1 by iid sampling from a smooth non-

parametric estimate f̂x of the density f̄x. Then determine S̃∗n = {(θ∗i , Z∗i , Y ∗i )}ni=1

using Z∗i =
∑p
j=1 ζ

∗
ijzj .

[3] Define a bootstrap sample S∗n = {(X∗i , Y ∗i )}ni=1 of size n by setting

X∗i =
ĝ∗x(θ∗iZ

∗
i , Y

∗
i )

θ∗i

x

||x|| + Z∗i .

[4] Apply the original DEA estimator in (2.7) to obtain a bootstrap estimate θ̂∗(x,y).

[5] Repeat steps [2]–[4] B times; use the resulting bootstrap values to approximate the

conditional distribution of (
�

θ∗(x,y)
�

θ(x,y)
− 1) given Sn, and use this approximation to

approximate the unknown distribution of ( θ̂(x,y)
θ(x,y) − 1). For a given α ∈ (0, 1), use the

bootstrap values to estimate the quantiles δα/2, δ1−α/2 where

Prob

[(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δα/2 | Sn

]
=
α

2
,

Prob

[(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δ1−α/2 | Sn

]
= 1− α

2
.

[6] Compute
[ �

θ(x,y)
1+δ1−α/2

,
�

θ(x,y)
1+δα/2

]
, a symmetric (1 − α) confidence interval estimate for

θ(x,y).

Recall that if p = 1 then gx is the ”frontier function” and does not depend on x.

Moreover, in this case, Zi ≡ 0 and f̂x as well as gx only depend on y. However, for

p > 1 the above steps define gx and f̂x specifically for the point (x,y) that is of interest.

Consequently, if confidence intervals are to be constructed for the efficiency measure defined

in (2.5) evaluated at different points in Rp+q+ , separate bootstraps must be performed for

each of these points.

In the simulations described in the next section, we use kernel estimators to approximate

f̄x. The only particular difficulty is the discontinuity of f̄x(θ, ζ, ỹ) at points (θ, ζ, ỹ) with

θ = 1. This problem is handled by reflecting observations (θi, ζi, Yi) to obtain (2−θi, ζi, Yi),
and incorporating the resulting 2n points in the estimation. We use a Gaussian product

kernel, with separate bandwidths for each marginal dimension chosen using the univariate
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two-stage plug-in method described by Sheather and Jones (1991). Alternatively, one

could use least-squares cross-validation as described by Simar and Wilson (2000a), but the

approach employed here imposes much less computational burden.

The specification of the function ĝ∗x in step [1] of Algorithm #2 is crucial for validity of

the bootstrap procedure. Unfortunately, it is not possible to rely on the estimated DEA

frontier. The difference between ĝx and gx is of order n−
2

p+q+1 and even more importantly,

ĝx is not differentiable and hence does not possess the same degree of smoothness as gx.

Setting ĝ∗x = ĝx therefore does not seem to lead to a consistent bootstrap. Even if the

distributions of (θi, Zi, Yi) and (θ∗i , Z
∗
i , Y

∗
i ) were identical, the asymptotic distributions of

∑k
j=1 αj

gx(θjZj ,Yj)
θjgx(0,y) − 1 and

∑k
j=1 αj

ĝx(θ∗jZ
∗
j ,Y
∗
j )

θ∗j ĝx(0,y) − 1 will probably not coincide.

It is important to understand the purpose of smoothing the DEA frontier estimate. We

do not require that ĝ∗x be closer to gx than ĝx. It suffices completely if the relative distances

g̃x(z,
�

y)
gx(z,

�

y)
do not change very much with (z, ỹ). If for some β > 0 we have βgx(z, ỹ) = g̃x(z, ỹ)

for all (z, ỹ), then gx(θiZi,Yi)
gx(0,y) =

�

gx(θiZi,Yi)
g̃x(0,y) , and by Lemma 2 the errors of the resulting

DEA estimators are identical. In effect, proportionality is not necessary. We can infer

from Proposition 1 that even if the first derivatives of gx and g̃∗x are completely different,

the limiting distributions will be close as long as the second derivatives approximately

coincide. In smoothing the DEA frontier function in step [1], it is therefore essential to

preserve convexity.

One possibility would be to employ convolution smoothing of ĝx. This approach, how-

ever, presents a formidable integration problem in (p + q − 1)-dimensions, and it seems

unlikely that such an approach could be successfully implemented with real data. Alter-

natively, one may use a bandwidth b ∈ (0, 1) to define a smooth ”bootstrap frontier” ĝ∗x

by

ĝ∗x(z, ỹ) = ĝx(0,y) + b2
[
ĝx

(
z

b
, y +

ỹ − y
b

)
− ĝx(0,y)

]
(4.3)

Note that setting b = 1 in (4.3) results in no smoothing of the frontier; in this case, the

resulting procedure is similar to the ”single-smooth” algorithm proposed by Simar and

Wilson (2000a).
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To understand the motivation for the smoothing in (4.3), let b < 1 and define

g∗x(z, ỹ) = gx(0,y) + b2
[
gx

(
z

b
, y +

ỹ − y
b

)
− gx(0,y)

]
. (4.4)

The following properties are easily verified: (i) ĝ∗x as well as g∗x are convex functions;

(ii) ĝ∗x(0,y) = ĝx(0,y) = θ̂(x,y)||x|| as well as g∗x(0,y) = gx(0,y) = θ(x,y)||x||; (iii) The

second derivatives of g∗x and of gx at the point (0,y) are identical, i.e. g′′x(0,y) = (g∗x)′′(0,y);

and (iv) by Theorem 1(b),

∣∣∣∣
ĝ∗x(z, ỹ)

ĝ∗x(0,y)
− g∗x(z, ỹ)

g∗x(0,y)

∣∣∣∣ =

∣∣∣∣∣∣
b2
ĝx

(
z
b ,y +

�

y−y
b

)

ĝx(0,y)
− b2

gx

(
z
b ,y +

�

y−y
b

)

gx(0,y)

∣∣∣∣∣∣
= b2n−

2
p+q+1 logn

(4.5)

for all ( zb ,y + ỹ−y
b ) in a sufficiently small neighborhood of (0,y).

Property (iv) implies that if b/ logn → 0 as n → ∞, the difference between ĝ∗x and

g∗x is of smaller order than n−
2

p+q+1 . Asymptotically a bootstrap based on ĝ∗x will thus

provide the same results as a bootstrap directly relying on g∗x. On the other hand, it follows

from properties (i)–(iii) that the parameters determining the asymptotic distribution of

efficiency estimates from g∗x coincide with those from gx.

It is possible to determine a suitable order of magnitude of b. We assume gx is three

times continuously differentiable. If gx is replaced by g∗x, the assertion of Proposition 1

remains true provided n−
1

p+q+1 /b→ 0. Relation (3.12) then becomes

k∑

j=1

αj
g∗x(θijZij , Yij )

θijg
∗
x(0,y)

− 1 =

k∑

j=1

αj
g∗x(Zij , Yij )− g∗x(0,y)

g∗x(0,y)
+

k∑

j=1

αj(1− θij ) + Op(n
− 3
p+q+1 )

=

k∑

j=1

αj
1

2gx(0,y)

[
ZTijg

′′
x;zz(0,y)Zij + 2ZTijg

′′
x;zy(0,y)(Yij − y)

+ (Yij − y)T g′′x;yy(0,y)(Yij − y)
]

+

k∑

j=1

αj(1− θij ) + Op

(
b−1n−

3
p+q+1

)

(4.6)
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The approximation error in (4.6) is the smaller the larger is b. On the other hand, the

estimation error (4.5) decreases with b. The remainder terms in (4.5) and (4.6) are of the

same order of magnitude (up to a logn term) if b is chosen proportional to n−
1

3(p+q+1) .

An obvious difficulty of the above bootstrap consists in the fact that in most bootstrap

samples there will exist points (Z∗i , Y
∗
i ) with (

Z∗i
b ,y +

Y ∗i −y
b ) 6∈ Ψ̂∗, where Ψ̂∗ denotes the

convex hull of the free-disposal hull of the bootstrap observations in S∗n. This phenomenon

is not very important in terms of asymptotic theory since by Theorem 1, the DEA estimator

is essentially only determined by points in a neighborhood of (θ(x,y)x,y). However,

any implementation of the algorithm requires that one must deal with such points. Two

possibilities exist:

• Elimination: Suppose that in the bootstrap sample there are ` < n points with(
Z∗ij
b ,y +

Y ∗ij−y
b

)
6∈ Ψ̂∗, ij ∈ {1, . . . , n}, j = 1, . . . , l. Eliminate these points from

the bootstrap samples and calculate θ̂∗(x,y) from the remaining (n − `) bootstrap

observations.

• Extrapolation: Suppose that for some i ∈ {1, . . . , n} we have
(
Z∗i
b
,y +

Y ∗i −y
b

)
6∈

Ψ̂∗. Let b∗ denote the smallest possible b̃ such that
(
Z∗i
b ,y +

Y ∗i −y
�

b

)
∈ Ψ̂∗. Clearly,

b∗ > b. The structure of the DEA estimator implies that for all b̃ > b∗ sufficiently

close to b∗, there exist some β0, β1 such that ĝx

(
Z∗i
b
,y +

Y ∗i −y
�

b

)
= β0 + β1

1
�

b
. Then

”define” ĝx

(
Z∗i
b ,y +

Y ∗i −y
b

)
:= β0 + β1

1
b and calculate the corresponding value of

ĝ∗x(Z∗i , Y
∗
i ).

In the simulations described in section 5, we use the elimination option.

We now consider the asymptotic behavior of the double-smooth bootstrap proposed

above. Our analysis rests upon the following additional assumption:

Assumption 7: The density estimate f̂x satisfies

sup
(θ,z,

�

y)∈C(x,y;h)

∣∣∣f̂x(θ, z, ỹ)− f̄x(θ, z, ỹ)
∣∣∣ = op(1) as n→∞ (4.7)

if h is sufficiently small. Furthermore, gx is three times continuously differentiable and

b→ 0 as well as n−
1

p+q+1 /b→ 0 as n→∞.
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The next theorem ensures consistency of our double-smooth bootstrap.

Theorem 4: Given Assumptions 1–7,

sup
δ>0

∣∣∣∣∣F (δ)− Prob

(
n

2
p+q+1

(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δ | Sn

)∣∣∣∣∣
p→ 0 as n→∞.

A proof is given in the appendix.

5. Monte Carlo Evidence

We conducted two sets of experiments, with p = q = 1 and p = q = 2. All

experiments consist of 1000 Monte Carlo trials, with 2000 bootstrap replications on

each trail. Within either set of experiments, we examined 7 sample sizes, with n ∈
{25, 50, 100, 200, 400, 800}. For the case with one output and one input (p = q = 1),

we simulated a DGP by drawing an “efficient” input observation xe distributed uniformly

on [10, 20], and setting the output level y = x0.8
e . We then computed the “observed” input

observation x = xee
0.2|ε|, where ε ∼ N(0, 1) and is independent. The DGP for this case

can therefore be written as

yi = x0.8e−0.16|ε|. (5.1)

We take the point (x, y) = (20.69, 7.5) as the fixed point for which efficiency is estimated

on each Monte Carlo trial; the true efficiency for this point is θ(x, y) = 0.6.

For the two-input, two-output (p = q = 2) case, we again generated efficient input

levels x1e, x2e from the uniform distribution on [10, 20]. Next, we computed output

levels by generating ω uniform on
[

1
9
π
2 ,

8
9
π
2

]
and setting y1 = x0.4

1e x
0.4
2e × cos(ω) and y2 =

x0.4
1e x

0.4
2e × sin(ω). We then generated the observed output levels by setting x1 = x1ee

0.2|ε|

and x2 = x2ee
0.2|ε| and where ε ∼ N(0, 1) as before. Efficiency is estimated for the fixed

point x = (20.69, 20.69), y = (5.59, 5.59) on each Monte Carlo trial. The true efficiency

for this point is θ(x,y) = 0.6, as in the previous case.

In both cases, the fixed points of interest were chosen to lie roughly in the middle of

the range of output data that are generated. In the case where p = q = 2, the output
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quantities, for a given level of inputs, are generated to lie on an arc between π/18 and

8π/18 radians.

Table 1 shows results for coverages of confidence intervals estimated by the bootstrap-

with-sub-sampling using Algorithm #1 as described in section 4.1. For each sample size

n, we examined bootstrap sample sizes m = nκ with κ ∈ {0.50, 0.55, . . . , 0.95, 1.00}
When κ = 1 Algorithm #1 is identical to the naive bootstrap, which is known to provide

inconsistent inference. For the case where p = q = 1 shown in columns 3–5, the results

in Table 1 reveal good coverages for the ratio-based confidence intervals at the three sig-

nificance levels considered when κ is in the neighborhood of 0.80. The optimal value of κ

apparently remains about the same as sample size is increased from 25 to 800.

The results for the case where p = q = 2, shown in columns 6–8 of Table 1, reveal

reduced coverage relative to the results for p = q = 1 for given values of n and κ, due to

the curse of dimensionality. However, with p = q = 2, the coverages of confidence intervals

are consistently good across the various sample sizes when κ lies in the neighborhood of

0.60–0.70. Not surprisingly, the optimal value of κ appears to depend on the dimensionality

of the problem.

Results from the double bootstrap using Algorithm #2 are shown in Table 2, again for

the cases p = q = 1 (shown in columns 3–5) and p = q = 2 (shown in columns 6–8). In

either case, bandwidths b ∈ {0.4, 0.6, 0.8, 1.0} were used to smooth ĝx in step [1] of the

algorithm, using (4.3). As discussed previously, this bootstrap is inconsistent when b = 1;

we include this case only for comparison. The results in Table 2 indicate some gains in

terms of coverage of estimated confidence intervals as b is reduced below 1.0. In both cases,

b = 0.4 appears too small, and indeed for p = q = 2 results could not be computed due to

numerical problems when n = 25 or n = 50 (see the discussion preceeding Assumption 7).

Recall from the discussion surrounding (4.6) that our theoretical results imply that the

optimal value of b should be proportional to n−1 1
3(p+q+1 . Since b is necessarily bounded

between 0 and 1 (as opposed to bandwidths in ordinary kernel estimators), it is independent

of the units of measurement for x and y. Clearly, b should be close to 1 for small n, and
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should become smaller as n increases. Using b = n−
1

3(p+q+1) as a rule-of-thumb implies

b = n−1/9 for the case where p = q = 1, and b = n−1/15 for p = q = 2. Hence, for

p = q = 1, the rule-of-thumb criterion yields b = 0.70, 0.65, 0.60, 0.56, 0.51 and 0.48

corresponding to n = 25, 50, 100, 200, 400 and 800, respectively; for p = q = 2, we have

b = 0.81, 0.77, 0.74, 0.70, 0.67 and 0.64, respectively. The results in Table 2 indicate

that the rule-of-thumb gives rather reasonable choices for b. It is also interesting to note

that, for sample sizes of 50 or greater, the estimated coverages in Table 2 vary little across

b = 0.4 and b = 0.6 when p = q = 1, and b = 0.6 and b = 0.8 when p = q = 2. Within

these ranges for b, the estimated coverages in Table 2 are similar to the best cases in Table

1 where the sub-sampling approach was used.

6. Conclusions

The analysis in section 3 establishes the asymptotic distribution of the DEA efficiency

estimator for the variable returns to scale case under rather weak assumptions on the

DGP, while the analysis in section 4 establishes consistency of two bootstrap procedures.

The bootstrap procedures are necessary for any practical application since the asymptotic

distribution in Theorem 2 contains unknown terms and would be difficult to either estimate

or simulate. The bootstrap procedures, by contrast, are readily implementable, and provide

good coverage properties as demonstrated by our Monte Carlo experiments. For finite

samples in applicatons, one might optimize the choice of κ in Algorithm #1 to determine

the sub-sample size, or the choice of the bandwidth b in Algorithm #2. This could be

accomplished by iterating the bootstrap procedures along the lines of Hall (1992).
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Appendix

Lemma A1: Suppose that Assumptions 1-6 hold for a given (x,y) ∈ D and let b, h be real

numbers with 0 < b ≤ h/2. Consider k ∈ N arbitrary points (θ1, z1,y1), . . . , (θk, zk,yk) ∈
D̄ satisfying

k∑

r=1

αrzr = 0,

k∑

r=1

αryr = y (A.1)

for some α1, . . . , αk ≥ 0 with
∑k

r=1 αr = 1. If (θk, zk,yk) 6∈ C(x,y;hn−
1

p+q+1 ), then for

all sufficiently large n there exists some (z̃, ỹ) ∈ Ψ∗(x) with (1, z̃, ỹ) ∈ C(x,y; bn−
1

p+q+1 )

such that
k−1∑

r=1

α̃rzr + α̃kz̃ = 0,

k−1∑

r=1

α̃ryr + α̃kỹ = y (A.2)

for some α̃1, . . . , α̃k ≥ 0 with
∑k
r=1 α̃r = 1 and such that

k∑

r=1

αr
gx(θrzr,yr)

θrgx(0,y)
≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+ α̃k

gx(z̃, ỹ)

gx(0,y)
+ c1 · α̃khbn−

2
p+q+1 (A.3)

where c1 = min{ 1
2 ,

c0
8gx(0,y)} and c0 is defined as in Lemma 1(b).

Proof: Assume that (A.1) holds with (θk, zk,yk) 6∈ C(x,y;hn−
1

p+q+1 ). Then either θk ≤
1− h2n−

2
p+q+1 and (1, zk,yk) ∈ C(x,y;hn−

1
p+q+1 ) or (1, zk,yk) 6∈ C(x,y;hn−

1
p+q+1 ).

First consider the case where θk ≤ 1− h2n−
2

p+q+1 but (1, zk,yk) ∈ C(x,y;hn−
1

p+q+1 ).

Since 1
θk
− 1 ≥ 1 − θk we obtain gx(θkzk,yk)

θkgx(0,y) ≥
gx(θkzk,yk)
gx(0,y) + (1 − θk) gx(θkzk,yk)

gx(0,y) . Straight-

forward Taylor expansions of gx can be used to show that for all sufficiently large n,

gx(θkzk,yk)

θkgx(0,y)
≥ gx(zk,yk)

gx(0,y)
+

1

2
(1− θk) ≥ gx(zk,yk)

gx(0,y)
+

1

2
h2n−

2
p+q+1 . (A.4)

Note that (1, zk,yk) ∈ C(x,y;hn−
1

p+q+1 ) implies that (1, bhzk,y + b
h (yk − y)) ∈

C(x,y; bn−
1

p+q+1 ). Relation (A.2) thus holds for (z̃, ỹ) := ( b
h
zk,y + b

h
(yk − y)) and

α̃r = αr
b
h

b
h+αk(1− b

h )
as well as α̃k = αk

1
b
h+αk(1− b

h )
. Then (A.4) and convexity of gx lead to

k∑

r=1

αr
gx(θrzr,yr)

θrgx(0,y)
≥

b
h

b
h + αk(1− b

h )

(
k∑

r=1

αr
gx(θrzr,yr)

θrgx(0,y)

)
+

αk(1− b
h)

b
h + αk(1− b

h)

≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+ α̃k

(
b
h
gx(zk,yk)

gx(0,y)
+ (1− b

h
)
gx(0,y)

gx(0,y)

)
+ α̃k

b

h

1

2
h2n−

2
p+q+1
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≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+ α̃k

gx(z̃, ỹ)

gx(0,y)
+ α̃k

1

2
bhn−

2
p+q+1

It now only remains to prove (A.3) for the case where (1, zk,yk) 6∈ C(
¯
x,y;hn−

1
p+q+1 ).

Let γ = max{δ | (1, δzk,y+ δ(yk − y)) ∈ C(x, y;hn−
1

p+q+1 )} as well as α∗r = αr
γ

γ+αk(1−γ)

and α∗k = αk
1

γ+αk(1−γ) . This yields

k−1∑

r=1

α∗rzr + α∗kγzk = 0,
k−1∑

r=1

α∗ryr + α∗k(y + γ(yk − y)) = y (A.6)

By definition of gx we have gx(θkzk,yk)/θk ≥ gx(zk,yk). Convexity of gx and arguments

similar to (A.5) then imply

k∑

r=1

αr
gx(θrzr, Yr)

θrgx(0,y)
≥
k−1∑

r=1

α∗r
gx(θrzr,yr)

θrgx(0,y)
+ α∗k

(
γgx(zk,yk)

gx(0,y)
+ (1− γ)

gx(0,y)

gx(0,y)

)

≥
k−1∑

r=1

α∗r
gx(θrzr,yr)

θrgx(0,y)
+ α∗k

gx(γzk,y + γ(yk − y))

gx(0,y)

(A.7)

Finally, define (z̃, ỹ) :=
(
b
hγzk,y + b

hγ(yk − y)
)

and α̃r = α∗r
b
h

b
h+α∗k(1− b

h )
as well as α̃k =

α∗k
1

b
h+α∗k(1− b

h )
. Clearly, then, (1, z̃, ỹ) ∈ C(x,y; bn−

1
p+q+1 ), and relation (A.2) is a direct

consequence of (A.6). Moreover, for sufficiently large n,

k−1∑

r=1

α∗r
gx(θrzr, Yr)

θrgx(0,y)
+ α∗k

gx(γzk,y + γ(yk − y))

gx(0,y)

≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+ α̃k

[
b
h
gx(γzk,y + γ(yk − y))

gx(0,y)
+ (1− b

h
)
gx(0,y)

gx(0,y)

]

≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+ α̃k

gx(z̃k, ỹk)

gx(0,y)
+ α̃k

b

h

c0h
2n−

2
p+q+1

8gx(0,y)

(A.8)

By using Lemma 1(b) the second inequality follows from Taylor expansions of gx(γzk,y+

γ(yk−y)) as well as gx(0,y) at the point (z̃, ỹ) := ( bhγzk,y+ b
hγ(yk−y)). Note that the

first derivatives cancel out due to b
h

(γzk − b
h
γzk) + (1− b

h
) · (− b

h
γzk) = 0 and b

h
(γ(yk −

y) − b
hγ(yk − y)) + (1 − b

h ) · (− b
hγ(yk − y)) = 0. The bound given in (A.8) is then

obtained by an analysis of the second derivatives while taking into account that 1− b
h ≥ 1

2 ,
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∣∣∣∣
∣∣∣∣
(

γzk
γ(yk − y)

)∣∣∣∣
∣∣∣∣
2

≥ h2, and that inf
(1,z,w)∈C(x,y;bn

− 1
p+q+1 )

inf
||v||=1

vT g′′x((z,w)v ≥ c0
2 for all

sufficiently large n, where c0 is defined in Lemma 1(b). Combining (A.7) and (A.8) yields

(A.3).

Proof of Theorem 1: Let z(1), . . . , z(p−1) denote the orthonormal basis of V(x) used

in the definition of f̄x. Note that the sample Sn of observations can be equivalently

represented be the corresponding samples S̃n = {(θi, Zi, Yi)}ni=1 and S̄n = {(θi, ζi, Yi)}ni=1,

where ζi is determined by Zi =
∑p−1
j=1 ζijz

(j).

Choose an arbitrary b > 0 and set bn = b·n− 1
p+q+1 , b∗n = bn

2(p−1)+2q
. For i = 1, . . . , p−1

and j = 1, . . . , q, define

B̄2i−1 = {(v,w) ∈ Rp−1 × Rq |max
r 6=i
|vr| ≤ b∗n, |vi − bn| ≤ b∗n, max

s=1, ... , q
|ys − ws| ≤ b∗n},

B̄2i = {(v,w) ∈ Rp−1 × Rq |max
r 6=i
|vr| ≤ b∗n, |vi + bn| ≤ b∗n, max

s=1, ... , q
|ys − ws| ≤ b∗n},

B̄2j−1+2(p−1) = {(v,w) ∈ Rp−1 × Rq | max
r=1, ... , p−1

|vr| ≤ b∗n,

max
s6=j
|ys − ws| ≤ b∗n, |yj + bn − wj | ≤ b∗n},

B̄2j+2(p−1) = {(v,w) ∈ Rp−1 × Rq | max
r=1, ... , p−1

|vr| ≤ b∗n,

max
s6=j
|ys − ws| ≤ b∗n, |yj − bn − wj | ≤ b∗n}.

Finally, for j = 1, . . . , 2(p− 1) + 2q let Bj denote the set of all (z,w) ∈ V(x)× Rq+ with

(z,w) = (
∑
j vjz

(j),w) for some (v,w) ∈ B̄j .
It follows from Assumptions 4–5 that if n is sufficiently large,

D̄j,n := [1− b2n, 1]× B̄j ⊂ D̄ (A.9)

for all j = 1, . . . , 2(p− 1) + 2q. Recall that D̄ denotes the support of f̄x.

For each j = 1, . . . , 2(p − 1) + 2q the set D̄j,n has Lebesgue measure proportional

to bp+q+1 · 1
n

, and our assumptions on the distribution of the random variables (θi, ζi, Yi)

thus imply Prob
[
(θi, ζi, yi) ∈ D̄j,n

]
is proportional to bp+q+1 · 1

n . It therefore follows from

standard arguments that there exist some 0 < d0, d1 < ∞ such that for all n sufficiently
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large,

1− (2(p− 1) + 2q) · exp(−d0b
p+q+1) ≤ Prob

(
S̄n ∩ D̄j,n 6= ∅ ∀ j = 1, . . . , 2(p− 1) + 2q

)

≤ 1− exp(−d1b
p+q+1).

(A.10)

Hence for every ε > 0, there exits a bε < ∞ such that for all b ≥ bε and all n sufficiently

large,

Prob
(
S̄n ∩ D̄j,n 6= ∅ ∀ j = 1, . . . , 2(p− 1) + 2q

)
≥ 1− ε. (A.11)

By (A.11), assertion (a) of the theorem holds if there is a hε > 0 such that for all h > hε

the following conditional probabilities are equivalent for sufficiently large n:

Prob
(
A[δ, n] | S̄n ∩ D̄j,n 6= ∅ ∀ j

)
= Prob

(
A[δ, n;h · n− 1

p+q+1 ] | S̄n ∩ D̄j,n 6= ∅ ∀ j
)
.

(A.12)

Now we will demonstrate that (A.12) is satisfied for all h ≥ c3 · b, where c3 < ∞ denotes

a suitable constant which will be specified in the sequel.

First note that by construction of B̄j and Bj, we obtain that for any (z̃, ỹ) ∈ Ψ∗(x)

with (1, z̃, ỹ) ∈ C(x, y; b∗n) and arbitrary vectors (θ̃1, z̃1, w̃1) ∈ [1 − b2n, 1] × B1,

. . . , (θ̃2(p−1)+2q, z̃2(p−1)+2q, w̃2(p−1)+2q) ∈ [1 − b2n, 1] × B2(p−1)+2q, there exist some

γ1, . . . , γ2(p−1)+2q ≥ 0 with
∑2(p−1)+2q
j=1 γj = 1 such that

z̃ =

2(p−1)+2q∑

j=1

γj z̃j , ỹ =

2(p−1)+2q∑

j=1

γjw̃j . (A.13)

By definition of (θ̃j , z̃j, w̃j), it is clear that for sufficiently large n we obtain
gx(

�

θj
�

zj ,
�

wj)
�

θjgx(0,y)
≤

1.5,

∣∣∣∣
∣∣∣∣
(
θ̃jz̃j − z̃
w̃j − ỹ)

)∣∣∣∣
∣∣∣∣
2

≤ (2(p− 1) + 2q)b2n, and that

sup
(1,z,w)∈C(x,y;b∗n)

[
sup
||v||=1

vT g′′x((z,w)v

]
≤ c∗0

for some c∗0 <∞. Therefore, for all n sufficiently large,

gx(z̃, ỹ)

gx(0,y)
≤

2(p−1)+2q∑

j=1

γj
gx(θ̃jz̃j , w̃j)

θ̃jgx(0,y)

≤
2(p−1)+2q∑

j=1

γj

(
gx(θ̃j z̃j , w̃j)

gx(0,y)
+ 1.5(

1

θ̃j
− 1)

)
≤ gx(z̃, ỹ)

gx(0,y)
+ c2b

2n−
2

p+q+1

(A.14)
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where c2 =
(2(p−1)+2q)c∗0

2gx(0,y) + 2.

Using the continuity of g′′x , the second inequality can be derived from second order

Taylor expansions of gx(θ̃j z̃j , w̃j) at (z̃, ỹ). Note that due to (A.13) all first order terms

cancel out.

Set c3 = c2(2(p− 1) + 2q)/c1, where c1 is defined by Lemma A1, and let b ≥ bε as well

as h ≥ c3b. Consider an arbitrary (θ, z,w) ∈ S̄n with (θ, z,w) 6∈ C(x,y;hn−
1

p+q+1 ), and

assume that for k ≤ n there exist some (θ1, z1,y1), . . . , (θk−1, zk−1,yk−1) ∈ S̄n such that

(A.1) holds with (θk, zk,yk) = (θ, z,w). Lemma A1 then implies that there is a (z̃, ỹ) with

(1, z̃, ỹ) ∈ C(x,y; b
2(p−1)+2q

n−
1

p+q+1 ) such that relations (A.2)–(A.3) are satisfied when b

is replaced by b
2(p−1)+2q .

On the other hand, S̄n ∩Dj,n 6= ∅ ∀ j = 1, . . . , 2(p− 1) + 2q imposes the existence of

2(p−1)+2q points (θ̃1, z̃1, w̃1) ∈ S̄n∩[1−b2n, 1]×B1, . . . , (θ̃2(p−1)+q, z̃2(p−1)+q, w̃2(p−1)+q) ∈
S̄n∩[1−b2n, 1]×B2(p−1)+q. For some suitable γ1, . . . , γ2(p−1)+q ≥ 0 with

∑2(p−1)+q
j=1 γj = 1,

we then obtain (A.13)–(A.14), and one can conclude from (A.3) that

k−1∑

r=1

αr
gx(θrzr,yr)

θrgx(0,y)
+αk

gx(θz,w)

θgx(0,y)

≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+ α̃k

gx(z̃, ỹ)

gx(0,y)
+ αk

c1c3
2(p− 1) + 2q

b2n−
2

p+q+1

≥
k−1∑

r=1

α̃r
gx(θrzr,yr)

θrgx(0,y)
+

2(p−1)+2q∑

j=1

α̃kγj
gx(θ̃jz̃j , w̃j)

θ̃jgx(0,y)
,

(A.15)

where αr, α̃r are defined as in Lemma A1. Clearly,
∑k−1
r=1 α̃r +

∑2(p−1)+2q
j=1 α̃kγj = 1 as

well as
∑k−1

r=1 α̃rzr +
∑2(p−1)+2q
j=1 α̃kγjz̃j = 0 and

∑k−1
r=1 α̃ryr +

∑2(p−1+2q
j=1 α̃kγjw̃j = y.

Note that (θ̃j, z̃j , w̃j) ∈ S̄n ∩ C(x,y;hn−
1

p+q+1 ) for all j. We can therefore infer from

(A.15) that if S̄n ∩ Dj,n 6= ∅ ∀ j, then the minimal value of
∑

i αi
gx(θiZi,Yi)
θigx(0,y) over all

α1, . . . , αn ≥ 0 with
∑
αi = 1 is achieved by those linear combinations which assign zero

weight αi = 0 to all observations with (θ, z,w) := (θi, Zi, Yi) 6∈ C(x,y;hn−
1

p+q+1 ). This

leads to (A.12) and thus completes the proof of part (a).

In order to prove part (b) first note that (A.9)–(A.15) remain valid when defining
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b =
[
(2c2)−1 logn

]1/2
and (z̃, ỹ) = (0,y). By (A.10) and (A.14) we can then infer that

there is a constant d∗0 such that

Prob

(
θ̂(x,y)

θ(x, by)
− 1 ≤ n− 2

p+q+1
logn

2

)
≥ 1− (2(p− 1) + 2q) · exp[−d∗0(logn)(p+q+1)/2]

(A.16)

By Lemma 1 the above arguments can also be used to show that (A.16) holds for any point

in a sufficiently small neighborhood N(x,y) of (x,y). Using the continuity and convexity

of θ and θ̂, the asserted property of θ̂ now follows from standard arguments based on

interpolating a sufficiently fine grid of n points in N(x,y). In view of Lemma 1(a) the

assertion on ĝx is an immediate consequence.

Proof of Theorem 2: Let

Fx,h(δ) =
∞∑

k=1

Prob

(
U

[
δ

h2
, k

])
hk(p+q+1)f̄x(1, 0,y)k

k!
e−h

p+q+1f̄x(1,0,y)

Clearly, Fx,h is a continuous distribution function with Fx,h(0) = 0 and Fx,h(∞) = 1. By

definition of the respective events we obtain

Prob(A[δ, n;h]) ≤ Prob(A[δ, n;h∗]) ≤ Prob(A[δ, n] ≤ 1

for all δ, n and all h∗ > h. It follows from Proposition 1 that Fx,h(δ) ≤ Fx,h∗(δ) ≤ 1 for any

δ > 0. This implies that {Fx,h(δ)}h>0 is a bounded sequence of monotonically increasing

real numbers and thus necessarily converges to a limit value. Together with Theorem 1(a)

we can therefore conclude that there exists a monotone function Fx(δ) such that

Fx(δ) =: lim
h→∞

Fx,h(δ) = lim
n→∞

Prob(A[δ, n]).

Clearly, Fx is a distribution function with Fx(0) = 0 and Fx(∞) = 1.

It only remains to verify relation (3.15) as well as to show that Fx is continuous and

that Fx(δ) < 1. This requires a closer analysis of Prob(U [ δh2 , k]). It is now seen that

there exists a 0 < d0 < ∞ such that for all γ > 0 and all sufficiently large k, we have
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|Prob(U [γ, k])− Prob(U [γ, k+ 1]| ≤ d0/k. Consequently, if [t] is the largest integer which

is smaller or equal to t, then

|Prob(U [γ, k])− Prob(U [γ, [λk]]| ≤ d0 ·max{λ− 1,
1

λ
− 1} (A.17)

holds for any γ > 0 ,λ > 0 and all sufficiently large k. On the other hand, for large h

a Poisson distribution with parameter hp+q+1f̄x(1, 0,y) can be well approximated by a

N(hp+q+1f̄x(1, 0,y), hp+q+1f̄x(1, 0,y))- distribution. Combining these arguments reveals

Fx(δ) = lim
h→∞

Fx,h(δ)

= lim
h→∞

∫
Prob

(
U

[
δ

h2
,

[√
hp+q+1f̄x(1, 0,y)z + hp+q+1f̄x(1, 0,y)

]])
φ(z)dz

= lim
h→∞

∫
Prob

(
U

[
δ

h2
,

[(
1 +

z√
hp+q+1f̄x(1, 0,y)

)
hp+q+1f̄x(1, 0,y)

]])
φ(z)dz

= lim
h→∞

∫
Prob

(
U

[
δ

h2
,
[
hp+q+1f̄x(1, 0,y)

]])
φ(z)dz

= lim
h→∞

P

(
U

[
δ

h2
,
[
hp+q+1f̄x(1, 0,y)

]])
,

where φ denotes the standard normal density. Relation (3.15) then follows from

lim
h→∞

Prob

(
U

[
δ

h2
,
[
hp+q+1f̄x(1, 0,y)

]])
= lim
k→∞

Prob

(
U

[
δ
f̄x(1, 0,y)2/(p+q+1)

k2/(p+q+1)
, k

])
,

and by using (3.16) the continuity of Fx(δ) for δ > 0 follows from

|Fx(λδ)− Fx(δ)| = lim
k→∞

∣∣∣Prob

(
U

[
δ

f̄x(1, 0,y)2/(p+q+1)

(k/λ(p+q+1)/2)2/(p+q+1)
,
kλ(p+q+1)/2

λ(p+q+1)/2

])

− Prob

(
U

[
δ

f̄x(1, 0,y)2/(p+q+1)

(k/λ(p+q+1)/2)2/(p+q+1)
,

k

λ(p+q+1)/2

]) ∣∣∣

≤ d0 ·max{λ(p+q+1)/2 − 1,
1

λ(p+q+1)/2
− 1}

Clearly, the event U
[
δ f̄x(1,0,y)2/(p+q+1)

k2/(p+q+1) , k
]

implies that (ϑ̃j , ζ̃j, ỹj) ∈ Ik,δ :=
[
0, δ f̄x(1,0,y)2/(p+q+1)

k2/(p+q+1)

]
×
[ −1
k1/(p+q+1) ,

1
k1/(p+q+1)

]p−1 ×
[ −1
k1/(p+q+1) ,

1
k1/(p+q+1)

]q
for at least one

observation j ∈ {1, . . . , k}. Since Prob(Ik,δ) = δ f̄x(1,0,y)2/(p+q+1)

k for all sufficiently large

k, standard arguments now lead to
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Prob

(
U

[
δ
f̄x(1, 0,y)2/(p+q+1)

k2/(p+q+1)
, k

])
≤Prob

(
(ϑ̃j, ζ̃j, Ỹj) ∈ Ik,δ for some j ∈ {1, . . . , k}

)

= 1− exp(−δf̄x(1, 0,y)2/(p+q+1)) as k →∞

One can infer that Fx is continuous at δ = 0 and that Fx(δ) < 1 for all δ > 0.

Proof of Theorem 4: Recall the definitions of the events A[δ, n;h] and A[δ, n]. Replace

(θi, Zi, Yi) by (θ∗i , Z
∗
i , Y

∗
i ) and gx by ĝ∗x to define events A[δ, n;h]∗ and A[δ, n]∗. First, note

that for all n,

Prob

(
n

2
p+q+1

(
θ̂∗(x,y)

θ̂(x,y)
− 1

)
≤ δ | Sn

)
= Prob(A[δ, n]∗ | Sn)

Conditional on Sn, the essential parts of the arguments used in the proofs of Lemma A1

and Theorem 1 remain valid when being applied to ĝ∗x and f̂x instead of gx and fx. This is

easily seen when noting that ĝ∗x is necessarily convex and that with probability converging

to 1 as n→∞ the bounds given in (A.8) and (A.15) also apply to ĝ∗x. Since n−
1

p+q+1 /b→ 0,

the latter follows from (4.5) and Taylor expansions of g∗x similar to (4.6). Furthermore,

due to (4.7) relations (A.10)–(A.12) generalize to S∗n and f̂x. We can therefore conclude

that for any ε > 0 there exists a hε > 0 such that for all h ≥ hε,

Prob

(
sup
δ

[Prob(A[δ, n]∗ | Sn)− Prob(A[δ, n, h]∗ | Sn)] ≤ ε
)
→ 1 as n→∞. (A.19)

On the other hand, in view of (4.5)–(4.7), one can additionally invoke arguments similar

to those used in the proof of Proposition 1 to obtain

sup
δ

∣∣∣∣∣Prob(A[δ, n, h]∗ | Sn)

−
∞∑

k=1

Prob

(
U

[
δ

h2
, k

])
hk(p+q+1)f̄x(1, 0,y)k

k!
e−h

p+q+1f̄x(1,0,y)

∣∣∣∣∣ = op(1).

(A.20)

The theorem now follows from Theorem 2.
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Färe, R., Grosskopf, S. and Lovell, C.A.K. (1985), The Measurement of Efficiency of
Production. Boston, Kluwer-Nijhoff Publishing.

Farrell, M.J. (1957), The measurement of productive efficiency, J. Roy. Statist. Soc. Ser.
A 120, 253-281.

Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999), On estimation of monotone
and concave frontier functions, J. Amer. Statist. Assoc. 94, 220–228.

Hall, P. (1992), The Bootstrap and Edgeworth Expansion, New York: Springer-Verlag.

Kneip, A., Park, B.U. and Simar, L. (1998), A note on the convergence of nonparametric
DEA estimators for production efficiency scores, Econometric Theory, 14, 783–793.

Korostelev, A., Simar, L. and Tsybakov, A.B. (1995), On estimation of monotone and
convex boundaries, Publ. Statist. Univ. Paris XXXIX 1, 3–18.

Lovell, C. A. K. (1993), “Production Frontiers and Productive Efficiency,” in The Mea-
surement of Productive Efficiency: Techniques and Applications, ed. by Hal Fried,
C. A. Knox Lovell, and Shelton S. Schmidt, Oxford University Press, Inc., Oxford,
pp. 3–67.

Seiford, L.M. (1996), Data envelopment analysis: The evolution of the state-of-the-art
(1978–1995),J. Productivity Anal., 7, 2/3, 99–138.

Seiford, L. M. (1997), A bibliography for data envelopment analysis (1978–1996), Ann.
Oper. Res. 73, 393–438.

Sheather, S.J., and M.C. Jones (1991), A reliable data-based data-based bandwidth selec-
tion method for kernel density estimation, J.R. Statist. Soc. B, 53, 684–690.

Shephard, R.W. (1970), Theory of Cost and Production Function. Princeton: Princeton
University Press.

Simar, L. (1996), Aspects of statistical analysis in DEA-type frontier models, Journal of
Productivity Analysis 7, 177-185.

Simar, L. and Wilson, P.W. (1998), Sensitivity analysis of efficiency scores: How to boot-
strap in nonparametric frontier models, Management Science 44, 49–61.

– 30 –



Simar, L. and Wilson, P.W. (1999a), Some problems with the Ferrier/ Hirschberg bootstrap
idea, J. Productivity Anal. 11, 67–80.

Simar, L. and Wilson, P.W. (1999b), Of course we can bootstrap DEA scores! But does
it mean anything? Logic trumps wishful thinking, J. Productivity Anal. 11, 93–97.

Simar, L. and Wilson, P.W. (2000a), A general methodology for bootstrapping in non-
parametric frontier models, J. Appl. Statist. 27, 779–802.

Simar, L. and Wilson, P.W. (2000b), Statistical inference in nonparametric frontier models:
The state of the art, J. Productivity Anal. 13, 49–78.

Swanepoel, J. W. H. (1986), A note on proving that the (modified) bootstrap works,
Communications in Statistics: Theory and Methods 15, 3193–3203.

– 31 –



TABLE 1
Coverage of CIs Estimated by Sub-Sampling

p = q = 1 p = q = 2
(1− α) (1− α)

n κ .90 .95 .99 .90 .95 .99

25 0.50 0.949 0.976 0.986 0.934 0.967 0.993
25 0.55 0.958 0.978 0.993 0.934 0.966 0.991
25 0.60 0.948 0.970 0.993 0.899 0.951 0.990
25 0.65 0.949 0.984 0.999 0.891 0.940 0.988
25 0.70 0.945 0.963 0.989 0.822 0.892 0.975
25 0.75 0.927 0.966 0.988 0.779 0.868 0.964
25 0.80 0.920 0.967 0.990 0.704 0.808 0.935
25 0.85 0.908 0.952 0.991 0.641 0.752 0.909
25 0.90 0.877 0.926 0.972 0.567 0.681 0.853
25 0.95 0.872 0.922 0.972 0.499 0.618 0.821
25 1.00 0.801 0.879 0.956 0.419 0.529 0.737

50 0.50 0.975 0.990 1.000 0.968 0.988 0.998
50 0.55 0.974 0.990 0.998 0.943 0.982 0.998
50 0.60 0.969 0.989 0.994 0.920 0.962 0.996
50 0.65 0.968 0.984 0.997 0.874 0.926 0.983
50 0.70 0.956 0.980 0.995 0.834 0.918 0.979
50 0.75 0.952 0.976 0.994 0.766 0.847 0.942
50 0.80 0.928 0.962 0.990 0.713 0.787 0.904
50 0.85 0.902 0.952 0.988 0.636 0.723 0.864
50 0.90 0.905 0.947 0.988 0.533 0.629 0.798
50 0.95 0.857 0.913 0.971 0.437 0.536 0.738
50 1.00 0.827 0.884 0.964 0.384 0.476 0.665

100 0.50 0.975 0.994 0.999 0.962 0.989 1.000
100 0.55 0.978 0.997 1.000 0.935 0.972 0.998
100 0.60 0.981 0.992 0.999 0.905 0.953 0.986
100 0.65 0.979 0.991 0.998 0.887 0.940 0.981
100 0.70 0.976 0.990 0.999 0.842 0.890 0.961
100 0.75 0.965 0.983 0.998 0.787 0.864 0.948
100 0.80 0.939 0.968 0.994 0.688 0.768 0.894
100 0.85 0.914 0.954 0.985 0.639 0.732 0.854
100 0.90 0.890 0.934 0.985 0.520 0.624 0.775
100 0.95 0.808 0.895 0.962 0.461 0.567 0.720
100 1.00 0.775 0.833 0.938 0.371 0.473 0.645
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TABLE 1 (continued)

p = q = 1 p = q = 2
(1− α) (1− α)

n κ .90 .95 .99 .90 .95 .99

200 0.50 0.975 0.991 0.999 0.945 0.985 0.999
200 0.55 0.983 0.996 1.000 0.951 0.981 0.996
200 0.60 0.985 0.997 1.000 0.941 0.971 0.998
200 0.65 0.984 0.996 0.999 0.910 0.938 0.985
200 0.70 0.973 0.991 0.999 0.863 0.913 0.973
200 0.75 0.963 0.981 1.000 0.770 0.850 0.936
200 0.80 0.926 0.971 0.995 0.699 0.788 0.904
200 0.85 0.901 0.948 0.993 0.641 0.725 0.871
200 0.90 0.837 0.914 0.976 0.534 0.633 0.791
200 0.95 0.805 0.876 0.965 0.418 0.518 0.693
200 1.00 0.733 0.821 0.945 0.348 0.435 0.645

400 0.50 0.968 0.993 0.999 0.964 0.996 1.000
400 0.55 0.986 0.996 0.999 0.957 0.983 0.996
400 0.60 0.985 0.995 1.000 0.954 0.983 0.999
400 0.65 0.981 0.997 1.000 0.897 0.948 0.987
400 0.70 0.965 0.992 0.999 0.861 0.912 0.971
400 0.75 0.953 0.983 0.994 0.795 0.873 0.955
400 0.80 0.933 0.967 0.998 0.695 0.798 0.915
400 0.85 0.890 0.937 0.985 0.623 0.741 0.876
400 0.90 0.809 0.903 0.971 0.519 0.608 0.785
400 0.95 0.768 0.842 0.948 0.398 0.518 0.706
400 1.00 0.714 0.791 0.902 0.311 0.398 0.573

800 0.50 0.946 0.989 0.995 0.944 0.985 0.998
800 0.55 0.972 0.996 0.998 0.954 0.987 0.998
800 0.60 0.971 0.992 0.998 0.961 0.981 0.995
800 0.65 0.962 0.991 0.999 0.924 0.964 0.988
800 0.70 0.971 0.991 0.998 0.855 0.909 0.975
800 0.75 0.951 0.973 1.000 0.807 0.877 0.961
800 0.80 0.890 0.946 0.992 0.708 0.789 0.922
800 0.85 0.873 0.929 0.978 0.611 0.727 0.863
800 0.90 0.814 0.891 0.968 0.477 0.592 0.773
800 0.95 0.751 0.821 0.927 0.383 0.483 0.653
800 1.00 0.695 0.779 0.902 0.262 0.356 0.548
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TABLE 2
Coverage of CIs Estimated by Double-Smooth Bootstrap

p = q = 1 p = q = 2
(1− α) (1− α)

n b .90 .95 .99 .90 .95 .99

25 0.4 0.793 0.869 0.953 — — —
50 0.4 0.831 0.911 0.976 — — —

100 0.4 0.870 0.931 0.973 0.672 0.781 0.937
200 0.4 0.907 0.964 0.994 0.678 0.814 0.955
400 0.4 0.910 0.957 0.991 0.762 0.849 0.952
800 0.4 0.937 0.971 0.997 0.763 0.859 0.962

25 0.6 0.810 0.883 0.961 0.456 0.589 0.831
50 0.6 0.861 0.927 0.978 0.643 0.750 0.899

100 0.6 0.888 0.934 0.978 0.722 0.815 0.939
200 0.6 0.916 0.968 0.995 0.746 0.856 0.962
400 0.6 0.913 0.959 0.989 0.808 0.887 0.965
800 0.6 0.916 0.966 0.995 0.821 0.884 0.970

25 0.8 0.833 0.900 0.962 0.641 0.753 0.900
50 0.8 0.868 0.936 0.981 0.665 0.770 0.908

100 0.8 0.881 0.933 0.980 0.744 0.848 0.950
200 0.8 0.907 0.962 0.996 0.794 0.877 0.965
400 0.8 0.892 0.950 0.986 0.808 0.887 0.967
800 0.8 0.882 0.938 0.993 0.813 0.887 0.968

25 1.0 0.844 0.913 0.977 0.667 0.770 0.904
50 1.0 0.871 0.933 0.981 0.684 0.786 0.910

100 1.0 0.878 0.927 0.981 0.760 0.855 0.950
200 1.0 0.891 0.949 0.994 0.793 0.866 0.959
400 1.0 0.866 0.923 0.982 0.792 0.864 0.955
800 1.0 0.855 0.914 0.986 0.773 0.848 0.950

– 34 –



Figure 1
Illustration of gx for the case p = 2
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