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Abstract:

The measurement of technical efficiency of decision making units is useful for making

comparisons and informing managers and policy makers on existing differentials and

potential improvements across a sample of analyzed units. The step further is to re-

late the obtained efficiency estimates to some external or environmental variables which

may influence the production process and hence, affect the performance evaluation and

explain the efficiency differentials. Conditional efficiency measures (Daraio and Simar,

2005; 2007a), including conditional FDH, conditional DEA, conditional order−m and

conditional order−�, have been recently introduced and became rapidly a useful tool

to investigate the impact of external-environmental factors on the performance of De-

cision Making Units in a nonparametric framework. In this paper, we clarify what

can be learned by analyzing these conditional efficiency scores, showing that the im-

pact of these factors on the production process can have different facets: impact on

the attainable set in the input × output space, and/or impact on the distribution of

the inefficiency scores. The approach proposes statistical inference on the level of the

impact, using up-to-dated bootstrap algorithms for which we prove the consistency.

The procedure is illustrated through simulated samples and with a real data set in the

Banking industry.
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1 Introduction and Basic Notations

In productivity analysis, one is interested in the evaluation of the performances of firms to

identify inefficient units where improvements could help to increase their profitability or to

reduce their costs. Most of the efficiency analysis literature focused on the estimation of the

production frontier, which provides the benchmark against which the economic producers

are evaluated. Nevertheless, a very important component, that recent studies are more

concerned with, is the explanation of efficiency differentials by including in the analysis

exogenous variables or environmental factors, that cannot be controlled by the producer,

but may influence the production process. From a managerial point of view, it is important

to identify the “particularities” of the production process or the economic conditions that

might be responsible for inefficiency as well as to detect and analyze possible influential

factors that can determine changes in productivity patterns. The meaning and the economic

role played by external-environmental variables is strictly linked to the economic field firms

are operating in. The choice of the environmental variables has to be done on a case-by-case

basis, having a good knowledge of the production process characteristics and by taking into

account the economic field of application.

In this paper, we will formalize a nonparametric production model where the role of

these environmental factors is explicitly introduced in a non-restrictive way. Then we will

explain how in these models, we can measure and infer about the impact of these factors on

the production process. By doing so, we will clarify the usefulness and limitations of some

previous tools developed in the literature and suggest practical algorithms to implement

them.

We will first introduce the notations and the basic assumptions on the Data Generating

Process (DGP) characterizing the production process in the presence of environmental fac-

tors. Let X ∈ ℝ
p
+ denote the vector of inputs and let Y ∈ ℝ

q
+ denote the vector of outputs.

We consider a vector of environmental factors Z ∈ Z ⊂ ℝ
r that may influence the process

and the productivity patterns. Firms transform quantities of inputs into outputs, but the

environmental variables may affect this process. Let (Ω,A,ℙ) be the probability space on

which the random variables are defined, we denote by P the support of the joint distribution

of (X, Y, Z) and we denote a particular DGP by P ∈ ℙ.

A large part of the literature on this topic has been focused on so-called 2-stage analysis,

where typically, some first stage estimates of the efficiency of the firms are regressed in a

second stage on these additional factors to investigate their effect on efficiency. Simar and

Wilson (2007) clarified that these two stages approaches are restricted to models where these

factors do not influence the shape of the production set (this is the “separability” condition

detailed in the following). Banker and Natarajan (2008) suggest another model where a two-

stage approach is valid but the model heavily depends on quite restrictive and unrealistic
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assumptions on the production process, as described and commented in details in Simar and

Wilson (2010b). If the 2-stage approach is validated (by the appropriate test, see Daraio et

al. 2010), one can indeed in a first stage estimate the efficiency scores of the units relative

to the boundary of the unconditional attainable set in the inputs × outputs space and

then regress, in a second stage, the obtained efficiencies on the environmental factors. We

know that even if an appropriate model is used (Logit, Truncated Normal, Nonparametric

truncated regression,. . . ), the inference on the impact of Z on the efficiency measures has

to be carefully conducted, using adapted bootstrap techniques (see Simar and Wilson, 2007

and 2010b for details).

The impact and influence of Z on the production process may be multiple and can be

quite different from one application to the other. The effect of Z on the production may

either affect the range of achievable values for the couples (X, Y ), including the shape of the

boundaries of the attainable set, or it may only affect the distribution of the inefficiencies

inside a set with boundaries not depending on Z (only the probability of being more or

less far from the efficient frontier may depend on Z) or it can affect both. Finally, the

environmental factors Z may also be completely independent of (X, Y ).

Cazals et al. (2002) and Daraio and Simar (2005) provide a quite general and unre-

stricted framework to investigate the joint behavior of (X, Y, Z) from a productivity point

of view. They consider a probability model that generates the variables (X, Y, Z) where the

conditional distribution of (X, Y ) given a particular value of Z will be of particular interest.

This conditional process can be described by

H(x, y∣z) = Prob(X ≤ x, Y ≥ y∣Z = z), (1.1)

or any equivalent variation of it (the joint conditional density function or the joint conditional

cumulative distribution function, . . . ). The function H(x, y∣z) is simply the probability for

a unit operating at level (x, y) to be dominated by firms facing the same environmental

conditions z. Given that Z = z, the range of possible combinations of inputs × outputs, Ψz,

is the support of H(x, y∣z):

Ψz = {(x, y)∣Z = z, x can produce y}, (1.2)

If H(x, y) denotes the unconditional probability of being dominated, we have

H(x, y) =

∫

Z

H(x, y∣z) fZ(z) dz, (1.3)

having support Ψ, the marginal (unconditional) attainable set defined as

Ψ = {(x, y)∣ x can produce y} =
∪

z∈Z

Ψz. (1.4)
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Remember that the joint support of the variables (X, Y, Z) is denoted by P. It is clear that,

by construction, for all z ∈ Z, Ψz ⊆ Ψ.

The “separability“ condition, described in Simar and Wilson (2007) states that the sup-

port of (X, Y ) is not dependent of Z, equivalently

“Separability” condition: Ψz = Ψ, for all z ∈ Z. (1.5)

In this latter case, the support of (X, Y, Z) can be written as P = Ψ×Z, where × represents

the cartesian product. As clearly illustrated by Figures 1 and 2 in Simar and Wilson (2010),

it is important to understand the implications of condition (1.5). If the condition is verified,

the only potential remaining impact of the environmental factors on the production process

may be on the distribution of the efficiencies. This justifies the use of 2-stage approaches as

illustrated in Simar and Wilson (2007). If the condition (1.5) is not verified, the measure of

the distance of a unit (x, y) to the boundary of Ψ, even if it can be well defined and esti-

mated (see details below), has little economic interest, because it ignores the heterogeneity

introduced by Z on the attainable sets of values for (X, Y ).

Whether or not Ψz is independent of z is an empirical issue and Daraio et al. (2010)

provide a statistical procedure to test this hypothesis. The test is a “global” test of sepa-

rability since it tests the null hypothesis Ψz = Ψ, ∀z ∈ Z against its complement: ∃z ∈ Z
such that Ψz ∕= Ψ.

As described e.g. in Daraio and Simar (2007a), the two measures H(x, y∣z) and H(x, y)

allow to define conditional and marginal efficiency scores that can be estimated by nonpara-

metric methods. The comparison of the conditional and marginal efficiency scores can be

used to investigate the impact of Z on the production process. One of the objectives of

this paper is to clarify what can be learned from the analysis of these conditional efficiency

scores and focusing on the particular role of efficiency scores relative to partial order frontiers

(order-m frontiers from Cazals et al., 2002 and order-� quantile type frontiers from Daouia

and Simar, 2006). In this paper, we suggest also a procedure allowing to make local inference

on the impact of Z on the process (as opposed to the global test of separability developed

in Daraio et al. 2010). Confidence intervals for the local impact of Z will be obtained by

adapting the subsampling ideas from Simar and Wilson (2010a)

The paper is organized as follows. Section 2 revisits the concept of conditional efficiency

scores and explains what can effectively be learned by comparing conditional and uncondi-

tional efficiencies. Section 3, provides nonparametric estimates for the local effect of Z on

the production including a consistent bootstrap algorithm to produce confidence intervals for

the measures of the impact. We illustrate the procedure with a real data set in the banking

sector in Section 4.2. Section 5 summarizes the main findings and concludes the paper.
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2 Effect of Z on Efficiency Measures

2.1 Farrell Efficiency scores

The literature on efficiency analysis propose several ways for measuring the distance of a firm

operating at the level (x0, y0) to the efficient boundary of the attainable set. In the lines of

the pioneering work of Debreu (1950), Farrell (1957) and Shephard (1970), radial distances

became very popular in the efficiency literature. They can be input or output oriented

(maximal radial contraction of the inputs or maximal radial expansion of the outputs to

reach the efficient boundary). Recently, Färe et al. (1985) introduced hyperbolic radial

distances that avoid some of the ambiguity in choosing output or input orientation. In this

case, input and output levels are adjusted simultaneously. These radial measures can be

defined as follows:

�(x0, y0) = inf{� > 0∣(�x0, y0) ∈ Ψ}
�(x0, y0) = sup{� > 0∣(x0, �y0) ∈ Ψ}

(x0, y0) = sup{
 > 0∣(
−1x0, 
y0) ∈ Ψ}.

In what follows, we will focus the presentation for the output orientation and it is easy

to adapt the presentation for the input oriented and for the hyperbolic cases. From Cazals

et al. (2002) and Daraio and Simar (2005), we know that under the assumption of free

disposability of the inputs and of the outputs, these measures can be characterized by some

appropriate probability function determined by H(x, y). We have, for the marginal Farrell

output measure of efficiency,

�(x0, y0) = sup{� > 0∣SY ∣X(�y0∣X ≤ x0) > 0}, (2.1)

where SY ∣X(y0∣X ≤ x0) = Prob(Y ≥ y0∣X ≤ x0) =
H(x0, y0)

H(x0, 0)
is the (nonstandard) condi-

tional survival function of Y , nonstandard because the condition is X ≤ x0 and not X = x0.

If the firm is facing environmental factors Z = z0, then Daraio and Simar (2005) define

the conditional Farrell output measure of efficiency as

�(x0, y0∣z0) = sup{� > 0∣(x0, �y0) ∈ Ψz0}
= sup{� > 0∣SY ∣X,Z(�y0∣X ≤ x0, Z = z0) > 0}, (2.2)

where SY ∣X,Z(y0∣X ≤ x0, Z = z0) = Prob(Y ≥ y0∣X ≤ x0, Z = z0) =
H(x0, y0∣z0)
H(x0, 0∣z0)

is the

conditional survival function of Y , here we condition on X ≤ x0 and Z = z0. Since for all

z0 ∈ Z, Ψz0 ⊆ Ψ, we have for all (x0, y0, z0) ∈ P the relations 1 ≤ �(x0, y0∣z0) ≤ �(x0, y0).

Daraio et al. (2010) uses these two measures to conduct a global test of separability.

In their approach, using unconditional and conditional efficiency measures, they propose to
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estimate (by using FDH or DEA techniques) a kind of mean integrated square difference

between P and Ψ×Z. This provide a test statistic whose sampling distribution is approxi-

mated by the bootstrap. We propose below, as a complementary analysis, to investigate the

local impact of Z on the process.

It has been shown in details in Daraio and Simar (2005, 2007a) that the ratios of condi-

tional to unconditional measures may be informative to investigate the impact of Z on the

production process. The ratios are defined as follows, for all (x, y, z) ∈ P,

R(x, y∣z) = �(x, y∣z)
�(x, y)

. (2.3)

If we consider a generic random observation (X, Y ) ∈ Ψz of a firm facing environmental

factors Z = z, we can define the random variable R(X, Y ∣Z = z) having the following

properties: for all z ∈ Z, R(X, Y ∣Z = z)
a.s.
≤ 1, but if the separability condition (1.5) holds

then for all z, R(X, Y ∣Z = z)
a.s.
= 1. A population parameter of particular interest will be the

conditional average of these ratio. For any DGP P ∈ ℙ, we define the mean and variance of

R(X, Y ∣Z = z):

� z(P ) = E(R(X, Y ∣Z = z))

�2,z(P ) = V(R(X, Y ∣Z = z)). (2.4)

Clearly, for all P ∈ ℙ, � z(P ) ≤ 1 but if Ψz = Ψ, � z(P ) = 1 and if Ψz ∕= Ψ, then � z(P ) < 1.

So, � z(P ) will be our basic quantity of interest that allows to make a local analysis on the

impact of Z on the production set when Z = z. We will provide nonparametric estimate

of � z(P ) and their analysis as a function of z will help to understand how the impact of Z

on the attainable set may vary with z. We will also provide bootstrap confidence intervals

for � z(P ) , for all z ∈ Z. By looking to the confidence interval, we will be able to check if

locally, Z has a significant effect on the boundary of the attainable set.

2.2 Partial order Frontiers

Partial frontiers, and the resulting partial efficiency scores, have been proposed to provide

robust measures of efficiencies, robust to extreme data points or outliers (a survey and

a detailed analysis of these approaches can be found in Daraio and Simar, 2007a). In our

setup here, this remains true when we will use partial frontiers of extreme orders, as explained

below. However, when using partial frontiers of lower order, we will see that we obtain useful

complementary information on the impact of Z on the distribution of the inefficiencies inside

the attainable set. To save space, we limit the presentation to the output oriented case and

to the order-� quantile frontiers. The extension to other orientations (input and hyperbolic)

is immediate. The case of the partial output order-m frontier is summarized in Appendix

A.2.
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Order-� quantile frontiers

Extending previous work of Aragon et al. (2000) for the univariate case, Daouia and Simar

(2006) define for any � ∈ (0, 1] the order-� output efficiency score as

��(x0, y0) = sup{� > 0∣SY ∣X(�y0∣X ≤ x0) > 1− �}. (2.5)

We see that if � → 1, ��(x0, y0) → �(x0, y0). If ��(x0, y0) = 1, the point (x0, y0) belongs

to the order-� quantile frontier, meaning that only (1− �) × 100% of the firms using less

resources than x0, dominate the unit (x0, y0). A value ��(x0, y0) < 1 indicates a firm

producing more than the level determined by the order-� frontier at x0.

By conditioning on Z = z0, Daouia and Simar (2006) define similarly the conditional

order-� output efficiency score of (x0, y0) as

��(x0, y0∣z0) = sup{� > 0∣SY ∣X,Z(�y0∣X ≤ x0, Z = z0) > 1− �}. (2.6)

Again the ratios of conditional to unconditional scores will be of interest. We define

R�(x, y∣z) =
��(x, y∣z)
��(x, y)

, (2.7)

and when considering a generic observation (X, Y ) ∈ Ψz of a firm facing environmental

factors Z = z, we obtain the random variable R�(X, Y ∣Z = z). For any DGP P ∈ ℙ, we

can thus define the conditional average of this ratio:

� z�(P ) = E(R�(X, Y ∣Z = z)), (2.8)

where again, if � → 1, � z�(P ) → � z(P ).

In the Appendix A.2, we define the order-m efficiency scores, the ratios Rm(x, y∣z) =

�m(x, y∣z)/�m(x, y) and their expectation � zm(P ) = E(Rm(X, Y ∣Z = z)). In this case, when

m → ∞, � zm(P ) → � z(P ).

2.3 What do we learn by the analysis of � z(P ), � z�(P ) and � zm(P )?

It has been described in details in Daraio and Simar (2005, 2007a) how useful is the analysis

of the regression line of � z(P ) over z. For instance, in the output orientation, an increasing

regression corresponds to a favorable effect of Z (higher values of Z allow to reach higher

outputs, Z is acting as a free available input) and the opposite for a decreasing regression

(Z is acting as an undesirable output). A nonparametric estimator of the regression line will

be introduced below and an algorithm for providing pointwise confidence intervals will also

be described.
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We will now clarify what the expected ratio � z(P ) really measures and what the partial

ratios can add in the analysis.

First, it should be noticed that the conditional “full” parameter � z(P ) only brings infor-

mation on potential differences between the boundaries of Ψ and Ψz and is not sensitive to

changes in the distribution of inefficiencies. It is obvious that the measure R(x, y∣Z = z) ≤ 1

for a fixed point (x, y) only depends on the relative position of the boundaries of Ψ and Ψz (in

the radial direction given by y). This is true for all (x, y, z) ∈ P, so it is true for R(X, Y ∣Z =

z) and for its expectation � z(P ). This is illustrated below, in Figure 1, for the particular

case of a univariate output. Here �(x0, y0) = '(x0)/y0 and �(x0, y0∣z0) = 'z0(x0)/y0 so that

R(x0, y0∣z0) = 'z0(x0)/'(x0), with a similar expression for R�(x0, y0∣z0). Different distribu-

tions of the inefficiencies (conditional and unconditional) but having same support, result in

ratios R(x0, y0∣z0) = 1, as illustrated in the left panels of Figure 1: we see indeed in panel II

and III that 'z0(x0) ≡ '(x0).

Second, the information carried by the conditional “partial” parameter � z�(P ) is multiple.

Suppose that Ψz = Ψ and so � z(P ) = 1 (the support of (X, Y ) is not changed) then, if the

distribution of inefficiencies is affected by Z, the quantiles of SY ∣X,Z will be different from

those of SY ∣X. Therefore for all (x, y) ∈ Ψz, the ratio R�(x, y∣z) will be affected and so will

be their average. Note that in this case (Ψz = Ψ), the changes can go in two directions for

the partial parameter: if the distribution of the inefficiency is more spread in the direction of

less efficient behavior (as in panel II), we observe '�,z0(x0) < 'z0(x0) giving R�(x0, y0∣z0) < 1

and so the expectation � z0� (P ) may be less than 1. On the contrary, if z0 provides a favorable

environment to efficient behavior of the firms, the distribution of Y will be more concentrated

near the efficient boundary when Z = z0 (as in panel III), we have '�,z0(x0) > 'z0(x0) giving

R�(x0, y0∣z0) > 1 and we might have on the average � z0� (P ) > 1. That is the reason why

the global test of “separability” of Daraio et al. (2010) uses statistics only based on the full

measures of efficiency and not on the partial efficiency scores.

Third, if there is a shift on the frontier Ψz ∕= Ψ with � z(P ) < 1, it is much more difficult

to interpret the ratios R�(x, y∣z). It is clear that a shift of the boundary will be transferred

to the partial frontier, at least for large values of � , but this effect can either be increased or

compensated by a simultaneous change of the distribution of the inefficiencies. So, in the case

of a shift of the boundary (see the right panels of Figure 1), we could observe R�(x0, y0∣z0)
less, equal or greater than 1. We illustrate 3 cases in Figure 1. We see that in panel IV, the

shift of '�,z0(x0) with respect to '�(x0) is the same as the shift of 'z0(x0) with respect to

'(x0), giving here R�(x0, y0∣z0) < R(x0, y0∣z0) < 1. In panel V, we have more spread toward

inefficiencies when conditioning on z0, the shift of the quantile of the conditional distribution

is much more important so R�(x0, y0∣z0) ≪ R(x0, y0∣z0) < 1. But we could observe, as in

panel VI, a different behavior when given z0 it is more probable to reach the frontier 'z0(x0)
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implying that we could obtain for some quantiles R�(x0, y0∣z0) > R(x0, y0∣z0). So even if

R(x0, y0∣z0) < 1 we could have in extreme cases R�(x0, y0∣z0) ≥ 1 (in panel VI, we illustrate

the case where R�(x0, y0∣z0) > 1).

So, to summarize the second and third points above, if Ψz = Ψ, � z�(P ) is useful to shed

light on the local impact of Z on the shape of the distribution of the inefficiencies. But it

does not allow to detect, when considered alone, a local shift of the boundary of the support

of (X, Y ). Unless � → 1, because in this case, the partial frontier can serve as a robust

estimator of the full frontier (see in the next section).

In any cases, these partial measures bring useful complementary information of the rel-

ative position of the quantiles of SY ∣X,Z with respect to those of SY ∣X . It will therefore be

useful to provide the regression lines � z(P ), � z�1
(P ), . . . , � z�k

(P ) on z, for a grid of selected

values for � like, 0.99, 0.95, 0.90; . . . , 0.50. The latter case � = 0.50 is providing for instance,

a picture on the impact of z on the median of the inefficiency distribution as a function of z.

The same is true for the order-m partial parameters � zm(P ) where the particular case

m = 1 would provide a picture of the effect of z on the average frontier. Here, the choice of

large values of m would provide the same information as the full frontier parameter (see in

the next section).
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Figure 1: Various scenarios for F (y∣X ≤ x0) and F (y∣X ≤ x0, Z = z0) . In the left panels

the “separability” condition is verified, while on the right panels, this condition is violated.
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3 Nonparametric Estimator

3.1 Efficiency Estimators

Nonparametric estimators of the conditional and unconditional efficiency scores are very

easy to obtain. We summarized the notations and properties here to what is needed for the

rest of the paper (details can be found in Daraio and Simar, 2007a, or Simar and Wilson,

2008). We will denote Sn = {(Xi, Yi, Zi)∣ i = 1, . . . , n} the sample of n iid observations on

(X, Y, Z) generated in P according the DGP P ∈ ℙ. If we plug nonparametric estimators of

SY ∣X and SY ∣X,Z in all the formulae above, we obtain very natural nonparametric estimators

of the efficiencies. For the SY ∣X we can use the empirical probabilities

ŜY ∣X(y0∣X ≤ x0) =
1/n

∑n
i=1 1I(Xi ≤ x0, Yi ≥ y0)

1/n
∑n

i=1 1I(Xi ≤ x0)
, (3.1)

where 1I(⋅) is the indicator function. This provides the popular FDH estimator of �(x0, y0)

�̂(x0, y0) = max
{i∣Xi≤x0}

{
min

j=1,...,q

Y j
i

yj0

}
(3.2)

whose statistical properties are well known (see e.g. Simar and Wilson, 2008). To summarize,

under mild regularity conditions:

n1/(p+q)
(
�(x0, y0)− �̂(x0, y0)

)
ℒ−→ Weibull(�p+q

0 , p+ q), (3.3)

where �0 is a constant depending on the DGP P ∈ ℙ that is described in Park et al. (2000).

For the conditional (conditional to Z = z0) some smoothing techniques are required. We

have the estimator

ŜY ∣X,Z(y0∣X ≤ x0, Z = z0) =
1/n

∑n
i=1 1I(Xi ≤ x0, Yi ≥ y0)K((z0 − Zi)/b)

1/n
∑n

i=1 1I(Xi ≤ x0)K((z0 − Zi)/b)
, (3.4)

where for simplicity, we wrote the expression for a univariate Z. Here K(⋅) is a kernel

with compact support and b > 0 is the bandwidth. For the general multivariate case,

see Daraio and Simar (2007a). In the general multivariate setup, an optimal bandwidth

selection procedure has been suggested in Bădin et al. (2010), it is based on a least-squares

cross validation technique. This leads to the conditional efficiency estimator

�̂(x0, y0∣z0) = max
{i∣Xi≤x0,∣∣Zi−z0∣∣≤b}

{
min

j=1,...,q

Y j
i

yj0

}
(3.5)

So, it appears that the estimation of the conditional efficiency score is a kind of “restricted”

FDH program (restricted to data points having ∣∣Zi − z0∣∣ ≤ b). The statistical properties
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of the estimators of the conditional measures have been determined in Jeong et al (2010).

To summarize and roughly speaking, these estimators keep similar properties as the FDH

estimator but with an “effective” sample size depending on the bandwidth: n is replaced

by nbr, where r is the dimension of Z. In practice since the optimal bandwidth has a

size n−1/(r+4) (see Bădin et al., 2010 for details), this gives a rate of convergence for the

conditional measures estimators of n4/((r+4)(p+q)) in place of the better rate n1/(p+q) achieved

by the FDH estimators. It is important to report these rates in order to derive below a

consistent bootstrap algorithm.

The nonparametric partial frontier efficiency estimates are obtained in a similar way, by

plugging the estimators ŜY ∣X and ŜY ∣X,Z in the expressions defining the partial efficiency

scores: algorithms have been proposed in Cazals et al. (2002), Daraio and Simar (2005,

2007a) for the order-m case and in Daouia and Simar (2006) and Daraio and Simar (2007a)

for the order-� quantile case. Their statistical properties have been also established. Under

mild regularity conditions, we have for instance

√
n
(
��(x0, y0)− �̂�(x0, y0)

)
ℒ−→ N

(
0, �2(�, x0)

)
, (3.6)

where an expression for �2(�, x0) is given in Daouia and Simar (2006). A similar result holds

for the order-m case (see Cazals et al. 2002).

For the estimators of the conditional partial measures, we have similar results where

the rate of convergence
√
n deteriorates to

√
nbr = n2/(r+4) when the optimal bandwidth of

Bădin et al. (2010) described above is used.

Robust Estimators of the Full Frontier

As explained above the partial frontiers may have their own interest providing less extreme

surfaces to benchmark individual units and allowing to investigate the impact of Z on the

distribution of the efficiencies. In particular for m = 1, the order-m frontier is not looking

to an optimal behavior but rather to an average behavior of firms (the same is true for the

order-� frontier with � = 0.50).

But as pointed and illustrated in Daraio and Simar (2007a) it may happen that outliers

or extreme data points can hide the real effect of the environmental factors. So, in this case,

it is particularly useful to build robust estimators of the full frontier. This can be achieved

by using partial order frontier with extreme orders.

Indeed, if we let � = �(n) → 1 (or m = m(n) → ∞) when n → ∞ fast enough (see

Cazals et al., 2002 and Daouia and Simar, 2006, for details), the respective partial frontier

estimators will converge to the full frontier sharing the same properties as the FDH estimator

(with the same limiting Weibull distribution). But for finite n (as we use in practice), �(n)

will be less than 1 (and m(n) will be less than infinity) and so the corresponding estimate
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of the full frontier will not envelop all the data points being more robust and resistant to

outliers and extreme values than the standard envelopment estimators like FDH or DEA.

Simar (2003) has suggested some data driven techniques to select reasonable values of �

andm by analyzing the proportion of data points remaining outside the corresponding partial

frontiers over a grid of values of the orders. This allows to detect potential outliers. Daouia

and Gijbels (2009) propose a theoretical comparisons of both partial frontiers in terms of

their robustness properties and give a rule with more theoretical background for selecting

appropriate levels of � or m. In Daouia and Gijbels (2010), a semi-automatic practical rule

is given to select the appropriate order of the partial frontier for obtaining robust estimators

of the full frontier (and the corresponding efficiency scores) in the presence of outliers.

3.2 Estimation of the Regression

To save place we only present the full frontier case, where we want to estimate � z(P ) =

E(R(X, Y ∣Z = z) by using basic tools from the nonparametric econometrics literature (see

e.g. Pagan and Ullah, 1999). We will simplify the presentation to univariate continuous Z,

but this can be done for any dimension r of Z.1

We do not have iid observations ofR(Xi, Yi∣Z = z), neither iid observations R(Xi, Yi∣Zi) =

�(Xi, Yi∣Zi)/�(Xi, Yi) because the lambda’s are unknown. What we only have is the set of

the n estimators (obtained from the sample Sn):

R̂(Xi, Yi∣Zi) =
�̂(Xi, Yi∣Zi)

�̂(Xi, Yi)
,

so that we have a sample of n pairs
(
Zi, R̂(Xi, Yi∣Zi)

)
, i = 1, . . . , n from which we will

estimate � z(P ). Most of the nonparametric estimates of the regression function (including

Nadaraya-Watson, local linear, etc. . . ) can be written as

�̂ zn =

n∑

i=1

Wn(Zi, z, ℎz)R̂(Xi, Yi∣Zi), (3.7)

with the weights Wn(Zi, z, ℎz) ≥ 0 summing up to one. This is a local average of the

R̂(Xi, Yi∣Zi), the localization being tuned by the bandwidth ℎz. The Nadaraya-Watson

kernel weights are given by

Wn(Zi, z, ℎz) =
K
(
(Zi − z)/ℎz

)
∑n

i=1K
(
(Zi − z)/ℎz

) .

For local linear estimator we have rather (see Fan and Gijbels, 1996)

Wn(Zi, z, ℎz) =
wn(Zi, z, ℎz)∑n
i=1wn(Zi, z, ℎz)

, where wn(Zi, z, ℎz) = K
(Zi − z

ℎz

)
[S2,n − (Zi − z)S1,n] ,

1For more details on how to handle discrete variables in this framework, see Bădin and Daraio (2010).
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where Sj,n =
∑n

1 K
(
(Zi − z)/ℎz

)
(Zi − z)j , j = 1, 2.

As usual in nonparametric regression, bandwidth ℎz with appropriate size (i.e. ℎz =

c n−1/(r+4)) can be obtained by least-squares crossvalidation criterion (see e.g. Li and Racine,

2007 for details).

In order to provide pointwise confidence intervals for � z(P ) we need to derive the sta-

tistical properties of �̂ zn . Standard theory cannot be applied because we do not observe

independent pairs (Zi, R(Xi, Yi∣Zi)) but rather the pairs (Zi, R̂(Xi, Yi∣Zi)), where, as no-

ticed above, R̂(Xi, Yi∣Zi) are estimates of R(Xi, Yi∣Zi). Hopefully, we can follow the same

argument as in Simar and Wilson (2010) and Daraio et al. (2010) to obtain the asymptotic

distribution of our regression estimate. This will be sufficient to prove the consistency of the

bootstrap we propose in the next section.

Under regularity conditions, we obtain (a sketch of the proof is proposed in Appendix

A.1) the following result, as n → ∞, ℎz → 0 with nℎr
z → ∞

√
nℎr

z

(
�̂ zn − � z(P )− n−��z

QP
− ℎ2

z(B
z + n−�Cz)

)
ℒ−→ N

(
0, V z

)
. (3.8)

where Bz, Cz, �z
Q, V

z are bounded constants described in the Appendix and � = 4/((r +

4)(p + q)) is determined by the rate of convergence of the conditional efficiency estimator

that is used.2

We see that we have the usual bias term Bz coming from the nonparametric regression

and a second bias term, coming from the estimation of the R(Xi, Yi∣Zi) by R̂(Xi, Yi∣Zi) that

disappears when n increases at a rate n−�. As shown below this latter bias term can be

neglected in our bootstrap approach.

Balancing the bias coming from ℎz and the variance term, it is well known in the nonpara-

metric literature (see e.g. Pagan and Ullah, 1999) that the optimal size of the bandwidth ℎz

for the regression is ℎz = cn−1/(r+4) which is achieved by using least-squares crossvalidation

for selecting ℎz. With this choice we have

n2/(r+4)
(
�̂ zn − � z(P )− �z

Q

n�

)
ℒ−→ N

(
cBz, V z

)
, (3.9)

where in the asymptotic normal, the bias term n−�Cz can be neglected since it is an o(1).

3.3 Confidence Intervals for the Regression

For building confidence intervals for � z(P ) by using the bootstrap, we cannot use the stan-

dard algorithms as in Härdle and Bowman (1988) or Härdle and Marron (1991), because

2To save place we do not explicit the results for the partial frontier measures, but we would obtain in

this case similar results as (3.8) with � = 2/(r + 4), due to the better rate of convergence of the efficiency

estimators. This does not change the nonparametric rate
√
nℎr

z we obtain in (3.8) for �̂zn . So confidence

intervals for �z�(P ) could be obtained by following the same algorithm as the one described in the next

section.
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the R(Xi, Yi∣Zi) are not directly observed and the available pairs (Zi, R̂(Xi, Yi∣Zi)) are not

independent. In addition bootstrapping on the pairs (Zi, R̂(Xi, Yi∣Zi)) would neglect all the

noise introduced by estimating R(Xi, Yi∣Zi) by R̂(Xi, Yi∣Zi).
3

The original independent data are the (Xi, Yi, Zi), i = 1, . . . , n. So we will use, as in

Simar and Wilson (2010), the m out of n bootstrap on the triple (Xi, Yi, Zi) to approximate

the sampling distribution of
(
�̂ zn − � z(P )

)
. Its consistency is established by Theorem 2.1 in

Politis et al (2002) but we give below the main ideas.

We will consider a bootstrap sample of m observations drawn without replacement from

the sample Sn = {(Xi, Yi, Zi)∣ i = 1, . . . , n}. Since the original sample was an iid random

sample of size n generated by the DGP P ∈ ℙ, this subsample, denoted by Sm, can be

considered as a random iid sample of size m drawn from the same P . We will consider

m = m(n) → ∞ as n → ∞ with m/n → 0. So by (3.9), we have

(
�̂ zn − � z(P )

)
∼ �z

Q

n�
+AN

(
cBz

n2/(r+4)
,

V z

n4/(r+4)

)
(3.10)

(
�̂ zm − � z(P )

)
∼ �z

Q

m�
+AN

(
cBz

m2/(r+4)
,

V z

m4/(r+4)

)
, (3.11)

where �̂ zm is the same estimator as �̂ zn but computed with the sample Sm. If the distribution

appearing in (3.10) was completely known, it would be easy to find its quantiles qn;�, where

Prob
(
�̂ zn − � z(P )

)
≤ qn;�

)
= �. Then a (1 − �) × 100% confidence interval would be given

by

� z(P ) ∈
[
�̂ zn − qn;1−�/2, �̂

z
n − qn;�/2

]
. (3.12)

The quantiles qn;� are unknown but they can be approximated from the normal approxima-

tion (3.10) by

qn;� ≈ �z
Q

n�
+

cBz

n2/(r+4)
+

√
V z

n2/(r+4)
z�,

where z� is the quantile of the standard normal. Note that since �Q, B
z and V z are unknown,

this is not very helpful. But we have the same relation for the quantiles qm;� of �̂ zm − � z(P ):

qm;� ≈ �z
Q

m�
+

cBz

m2/(r+4)
+

√
V z

m2/(r+4)
z�.

So we see that for m,n → ∞ with m/n → 0 we have

qn;� − (m/n)2/(r+4)qm;� = �z
Q

[
1

n�
− (m/n)2/(r+4)

m�

]
= o(1), (3.13)

3It should be noticed that we are not interested in the individual random variables R(Xi, Yi∣Zi)), but

rather in the expectation �z(P ), given that Z = z, and to analyze this as a function of z. Individual

confidence interval for a particular fixed point of interest for R(x0, y0∣z0) could be obtained by standard

bootstrap techniques as described in Kneip et al. (2008, 2010) or in Simar and Wilson (2010).
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that indicates that the quantiles of (m/n)2/(r+4)
(
�̂ zm − � z(P )

)
can be used to approximate

those of
(
�̂ zn−� z(P )

)
, and that the bias term introduced by �z

Q can be neglected (as confirmed

empirically in Simar and Wilson, 2010a, by intensive Monte-Carlo experiments in similar

setups).

Of course the quantiles of
(
�̂ zm− � z(P )

)
are also unknown but they can be approximated

by the Monte-Carlo part of the bootstrap algorithm. First we see that in (m/n)2/(r+4)
(
�̂ zm−

� z(P )
)
we can replace � z(P ) by �̂ zn since by doing so we add an error op(1) of smaller order

(the order is (m/n)2/(r+4) × n−(� ∧ 2/(r+4))).

So, in practice the unknown quantiles qn;� will be approximated by (m/n)2/(r+4)q∗m;�

where q∗m;� are the bootstrap approximations of qm;�. For a given m, we construct the Nm

subsets S∗
m,b, b = 1, . . . , Nm, of size m drawn without replacement from Sn.

4 The sampling

distribution of
(
�̂ zm − � z(P )

)
is then approximated by

Ĝm,n(w) =
1

Nm

Nm∑

b=1

1I
(
�̂ ∗,zm,b − � zn ≤ w

)
, (3.14)

where �̂ ∗,zm,b is the version of �̂ zm applied to the sample S∗
m,b. The quantiles of Ĝm,n(w) are

given by

q∗m;� = inf{w∣Ĝm,n(w) ≤ �}. (3.15)

The bootstrap (1− �)× 100% confidence interval for � z(P ) is thus given by

� z(P ) ∈
[
�̂ zn − (m/n)2/(r+4)q∗m;1−�/2, �̂

z
n − (m/n)2/(r+4)q∗m;�/2

]
. (3.16)

A formal proof of the consistency of this m out of n bootstrap is given in Theorem 2.1 in

Politis et al.(2002). The only remaining question is how to select m in practice. We follow

the data driven method described in Simar and Wilson (2010a).

3.4 The bootstrap algorithm

The bootstrap algorithm can thus be described as follows.

[1 ] First we compute from the sample Sn = {(Xi, Yi, Zi)∣ i = 1, . . . , n} the n efficiency

scores �̂(Xi, Yi) and their conditional version �̂(Xi, Yi∣Zi) . By doing so, for each data

point we compute the optimal bandwidth for the conditional survival function at Zi (we

do this by using the Bădin et al. (2010) approach). We thus have n optimal bandwidths

ℎn,i each attached to the ith observation. We compute the n ratios R̂(Xi, Yi∣Zi).

4The number of subsets Nm can be a huge number: Nm =

(
n

m

)
. In practice, of course, we do not

compute all these subsets, but we would just take a random selection of B such subsamples, where B should

not be too small.
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[2 ] We select a fixed grid of values for Z, say {z1, . . . , zk} where the regression will be

evaluated. We compute the nonparametric regression by one of the methods described

in (3.7): this provides �̂
zj
n for j = 1, . . . , k. Here the bandwidth ℎz

n is selected by

least-squares crossvalidation.

[3 ] For a given value of m < n, we will repeat the next steps [3.1] to [3.3] B times, for

b = 1, . . . , B, where B is large enough (say, B = 2000).

[3.1 ] Draw a random sample S∗
m,b = {(X∗,b

i , Y ∗,b
i , Z∗,b

i )∣ i = 1, . . . , m} without re-

placement from Sn. By doing so, we keep also the value of the bandwidth ℎ∗,b
n,i

computed at step [1] attached to the corresponding selected data (X∗,b
i , Y ∗,b

i , Z∗,b
i ).

[3.2 ] We compute the m ratios R̂∗,b(X∗,b
i , Y ∗,b

i ∣Z∗,b
i ), i = 1, . . . , m by the same tech-

niques as in [1]. Note that here we have to rescale the corresponding bandwidths

ℎ∗,b
n,i at the appropriate size. So we will use the bandwidths ℎ∗,b

m,i = (n/m)1/(r+4)ℎ∗,b
n,i

for computing the conditional scores in the bootstrap sample S∗
m,b.

[3.3 ] By the same nonparametric method as in [2], we estimate the regressions �̂
∗,b,zj
m

at the fixed points zj , for j = 1, . . . , k. For doing so we use the same bandwidth

computed in [2] but rescaled to the appropriate size.5 So we will use here ℎz
m =

(n/m)1/(r+4)ℎz
n. We obtain �̂

∗,b,zj
m for j = 1, . . . , k.

[4 ] For each j = 1, . . . , k, compute (q
∗,zj
m;�/2, q

∗,zj
m;1−�/2), the �/2 and 1 − �/2 quantiles of

the B bootstrapped values of �̂
∗,b,zj
m − �̂

zj
n . This provides the k confidence intervals of

� zj (P ) at each fixed zj :

� zj (P ) ∈
[
�̂ zjn − (m/n)2/(r+4)q

∗,zj
m;1−�/2, �̂

zj
n − (m/n)2/(r+4)q

∗,zj
m;�/2

]
. (3.17)

The selection of m is done as follows. We redo the steps [3] to [4] over a grid of L values of

m, say, m1 < m2 < . . . < mL and we obtain for each mℓ, the k resulting confidence intervals

(3.17).6 Then we compute the volatility of the quantity of interest seen as a function of m.

Here the two bounds of the confidence intervals (3.17) are of the quantities of interest, Politis

et al. (2002) suggest in this case to take czj (m) = (1/2)[lowzj
m + up

zj
m], where the notation is

implicit. The volatility is measured by the “moving” standard deviation of 3 adjacent values

of czj(m) centered at the current value of mℓ, ℓ = 2, . . . , L − 1. As explained in Politis et

al. (2002), a reasonable value for mzj should correspond to the value that minimizes this

5Here we could recompute the bandwidth ℎz
m by crossvalidation, but at a computational cost. By doing

what is suggested in [3.3], we achieved the desired theoretical order of the bandwidth.
6The choice of this grid is really open and depends on the computational burden: we should cover a

wide spectrum of values for m. Simar and Wilson (2010a) and Daraio et al. (2010) suggest, for instance, to

choose the 49 subsamples sizes m ∈ {[n/50], 2[n/50], . . . , 49[n/50]}, where [a] denotes the integer parts of a.
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volatility. Intensive Monte-Carlo experiments in Simar and Wilson (2010a) and Daraio et al.

(2010), in similar setups of nonparametric frontier estimation, indicate that this procedure

provides very good results in terms of coverage, size of tests, power of tests, etc.

A simpler alternative is to select a common value of m for the different values of zj . We

could for instance select the m equal to the average of all the mz . We could also use the

same approach as above, but here, the volatility would be measured on an average value

c(m) = (1/k)
∑

j c
zj (m). This approach could provide more stable behavior of c(m) as a

function of m. In the simulation examples shown below, it appears that we have very little

differences by using either approach. The optimal values for mzj were rather stable across

the selected grid for z. In all the results shown below, we used the more general approach

where we select an optimal m different for each zj.

4 Numerical Illustrations

4.1 Simulated Examples

To illustrate how the procedure can work in practice, we first introduced some simulated

examples, because there we know what we expect to find. We will use, as simulated scenario,

an example inspired from Simar and Wilson (2010b) where we see clearly the 2 different ways

an environmental factor can influence the production process. We analyze the three following

different DGPs:

Y = g(X)e−U (4.1)

Y ∗ = g(X)e−U(1+∣Z−2∣/2) (4.2)

Y ∗∗ = g(X)e−(1+∣Z−2∣/2)e−U , (4.3)

where g(X) = [1 − (X − 1)2]1/2 with X ∼ U(0, 1) and Z ∼ U(0, 4). Finally U ≥ 0 with

U ∼ N+(0, �2
U) and we choose for the illustration �2

U = 0.10.

In the first DGP1 (4.1), Z has no effect on the production process (Z is independent

of (X, Y )). In the DGP2 (4.2), we have the “separability” condition Ψz ≡ Ψ, ∀z but Z

influences the distribution of the inefficiencies (higher probability of being inefficient when

∣Z − 2∣ increases). In the last DGP3 (4.3), the effect of Z is only on the boundary of the

attainable (X, Y ), violating the “separability” condition (the shift is multiplicative and more

important when ∣Z−2∣ increases). A summary of the results for the case n = 100 is displayed

in Figure 2; the following comments will be useful to understand what we learn and what

we do not learn by looking to these pictures.

In DGP1 (the 2 top panels), the Z is independent of (X, Y ), we see indeed the flat

behavior of our regressions. With 100 observations, the random fluctuations of the estimates
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of the efficiency scores (full or �-quantile frontiers) are responsible on the right panels for

some deviations from the flat lines. There is also an edge effect due to the nonparametric

regression, we have always less precision of the regressing estimate near the edge of the cloud

of points (this will remain true for all the pictures below).

For the first 2 DGP’s, the “separability” condition is verified and so the true (unobserved)

R(Z) = 1 with probability 1. This explains why the confidence intervals for DGP1 and

DGP2 are so narrow in both left panels: the randomness comes only from the fact that we

use estimators of R̂(Z) in place of R(Z). For DGP2, in the left panel, we see at both ends

of the picture some small spurious effect on �̂ zn , where it should be flat. This is due to the

fact that when Z approaches 0 or 4, the inefficiency distribution gives more probability to

inefficiency. It is well known, that the precision of the FDH estimator deteriorates when the

probability of observing firms near the boundary decreases (which is the case when ∣Z − 2∣
increases). The greater statistical noise induces the small spurious effect at both ends (we

will see that this effect disappears when the sample size increases). However we see clearly on

the right panel of DGP2 that the effect of Z on the inefficiency distribution is really present.

The inverse-U -shaped effect reflects the heteroscedasticity in the distribution of inefficiencies.

The lower level quantile frontiers are more sensitive to the change of Z. The effect is more

important near the center: when Z = 2, there is no “bad” effect on the efficiency distribution,

so, using conditional measures (to Z = 2), a firm is benchmarked, at the � level, against very

efficient firms leading to higher values of �̂�(x, y∣z) with respect to the marginal measure

�̂�(x, y) where we do not take into account for the favorable environment and R̂�(z) will be

larger than 1. This is not possible to detect when � → 1, because the boundary has not

moved.

For DGP3, we see here clearly that the separability condition is violated. We observe

that the confidence intervals are wider because R(Z) has now its own randomness, increasing

statistical imprecision. It seems clear that the interpretation of the �̂ z�,n for small values of

�, without looking to what happens when � → 1 is very difficult. Compare the upper-most

dash dot red lines (� = 0.50) for DGP2 and DGP3: without a clear information on the

separability issue, we cannot identify the source of the impact of Z.

When n is larger, we would confirm all the above facts with more evidence. Figure 3

illustrates this for n = 200. For instance, in DGP2, the quantile frontiers are better estimated

and the effect of Z on the distribution of inefficiencies appears more clearly. But the full

frontier case (left panel) displays a quite flat shape, as it should. In the DGP3, the left panel

indicates clearly the role of Z on the boundary (almost no effect when Z is around 2). In the

right panel, the regression curves, corresponding to different levels of the quantiles, confirm

the inverse-U -shape effect of Z on the frontier level.7 The curves are not parallel because

7In order to understand the impact of Z on the production processes in DGP2 and DGP3, the reader
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the effect in DGP3 is multiplicative and not additive.
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Figure 2: Regressions of the ratios R(Z) on Z. From top to bottom: DGP1, DGP2 and

DGP3. Left panels, full frontier �̂ zn with 95% confidence intervals for � z(P ). Right panels,

�̂ z�,n for � = (0.5, 0.75, 0.90, 0.95, 0.99, 1.00), the last one (full frontier case) in solid line.

Here n = 100 and the circles are the estimated data points (Zi, R̂(Zi)).

can verify that if the factors (1 + ∣Z − 2∣/2) would be replaced by (1 − ∣Z − 2∣/2) all the inverse-U -shaped

curves would be replaced by U -shaped curves.
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Figure 3: Regressions of the ratios R(Z) on Z. From top to bottom: DGP1, DGP2 and

DGP3. Left panels, full frontier �̂ zn with 95% confidence intervals for � z(P ). Right panels,

�̂ z�,n for � = (0.5, 0.75, 0.90, 0.95, 0.99, 1.00), the last one (full frontier case) in solid line.

Here n = 200 and the circles are the estimated data points (Zi, R̂(Zi)).

4.2 Efficiency in the Banking Sector

Simar and Wilson (2007) includes an empirical example based on Aly et al. (1990) using

data on 6.955 US Commercial Banks observed at the end of the 4th quarter, 2002.8 They

run a truncated regression on the trCoutput oriented DEA estimates of efficiency in a second

8We would like to thank Paul W. Wilson who provided us this data set.
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stage (as suggested in Aly et al., 1990). Daraio et al. (2010) used the same data set to test

the “separability” condition which was rejected at any reasonable level, indicating that any

two-stage procedure is meaningless for this dataset. This was a global test; we will rather

here proceed to a local analysis.

The original data set contains 3 inputs (purchased funds, core deposits and labor) and

4 outputs (consumer loans, business loans, real estate loans, and securities held) for banks.

Aly et al.1990 considered 2 continuous environmental factors, the size of the banks Z1, and

a measure of the diversity of the services proposed by the banks Z2 (see Aly. et al., 1990,

for details) and one binary variable indicating if the banks belong or not to a Metropolitan

Statistical Area. We will use, as in Simar and Wilson (2007), a measure of the size of the

banks by the log of the total assets, rather than the total deposit as in Aly et al. For

simplifying the presentation, we will illustrate our procedure with a subsample of 322 Banks

(also used in Simar and Wilson, 2007).

Some prior exploratory data analysis indicates that the 3 inputs are highly correlated

among themselves and the same is true for the 4 outputs. So, due the dimensionality of the

problem (3 inputs, 4 outputs, and 3 environmental factors) with the limited sample used

here (322 units), we first reduce the dimension in the input × output space by using the

methodology suggested in Daraio and Simar (2007a).

Since the radial measures are scale invariant, we divide each inputs and outputs by their

mean (to be “unit” free) and replace the 3 scaled inputs by their best (non-centered) linear

combination (we use here a kind of non-centered PCA, as explained in details in Daraio

and Simar, 2007a), and we check that we did not loose much information by doing so, and

that the resulting univariate input factor is highly correlated with the 3 original inputs. We

follow the same procedure with the 4 outputs. The results are

IF = 0.5707X1 + 0.5731X2 + 0.5881X3,

OF = 0.4851Y1 + 0.4875Y2 + 0.5095Y3 + 0.5172Y4,

indicating that both the input and the output factor are a kind of average of the scaled

inputs and outputs respectively (the weights are equal). We obtain the following correlations

�̂IF,Xj
= (0.972, 0.971, 0.996) for j = 1, 2, 3 and IF explains 96% of total inertia of the

original data (X1, X2, X3). We obtain similar results when reducing the dimension in the

output space: �̂OF,Yj
= (0.924, 0.938, 0.975, 0.990) for j = 1, . . . , 4, and OF explains 92%

of total inertia of the original data (Y1, . . . , Y4). Hence we can conclude that we do not

loose much information by this dimension reduction and the factors IF and OF are good

representatives of the input and output activities of the Banks.

Remember that with the full data set and with all the original variables, Daraio et al.

(2010) rejected the null hypothesis of global separability. We will here illustrate in our
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simplified version of the examples what we can learn by the methodology we proposed in

this paper. Figure 4 below illustrates the marginal analysis of the impact of the SIZE variable

on the production process. The question of the separability condition for Z1 = SIZE does

not appear clearly on the left panel of the figure. We observe a slight positive effect on the

boundary of the attainable set. Larger size banks allow to reduce the inputs, for a given level

of the outputs more than smaller banks (the last decrease on the right is spurious and is due

to the isolated big units having their FDH scores equal to 1; automatically their conditional

FDH is 1 and by construction, so are the ratios corresponding to these units). However, in

the same time, the pointwise confidence intervals at each grid point cover in most of the case

the value 1. Since for several values of z, the expected ratio is really (significantly) bigger

than one, we can confirm that globally a test of separability would reject the null hypothesis

(as was found for a global test in Daraio et al., 2010, in a similar setup, but with a larger

data set).

The right panel of Figure 4 gives a more clear picture. Looking to the �-quantiles

regressions here (from bottom to top going from � = 0.5 till 0.99), we learn a lot. Even the

regression corresponding to the 99%-quantile frontier is quite different from the regression

with the full ratios. The general shape of the quantiles curves is more stable than the limit

(full frontier) one. So, it seems that the full frontier analysis is perturbed by some extreme

data points, and that the effect of Z1 may be masked by some outlying points. The analysis

of the regressions with more robust quantiles frontiers show a very regular positive slope,

confirming again the positive effect of the SIZE on the process, as extensively explained in

Daraio and Simar (2005, 2007a). Since they are parallel, it seems that the effect is additive

with respect to the different quantiles of the distribution of the inefficiencies, it is only the

boundary that is shifted (remember panel IV of Figure 1 above).

The above analysis illustrates how useful it is to look simultaneously to the full frontier

results but also to the �-quantile results with a grid of values for �.
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Figure 4: Marginal effect of Z1 = SIZE on the production. Left panel, full

frontier �̂ zn with 95% confidence intervals for � z(P ). Right panels, �̂ z�,n for � =

(0.5, 0.75, 0.90, 0.95, 0.99, 1.00), the last one (full frontier case) in solid line. Here n = 322

and the circles are the estimated data points (Zi, R̂(Zi)).

We do the same univariate exercise to investigate the marginal effect of the variable Z2

(DIVERSE: a measure of the diversity of the products of the Banks). Figure 5 displays the

results. We do not see a clear effect of Z2 on the boundary, except for small values of z (less

diverse Banks should be able to reduce more their inputs given the level of their outputs).

This is confirmed by the right panel but the distribution of the inefficiencies seems to be

homoscedastic relative to Z2 (the different quantile results are similar and rather stable with

respect to z2). Note that the downward curvature at the extreme left part of the picture

(for the full frontier case and for the 99%-quantile case) are due to the edge effect mentioned

before.
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Figure 5: Marginal effect of Z2 = DIVERSE on the production. Left panel, full

frontier �̂ zn with 95% confidence intervals for � z(P ). Right panels, �̂ z�,n for � =

(0.5, 0.75, 0.90, 0.95, 0.99, 1.00), the last one (full frontier case) in solid line. Here n = 322

and the circles are the estimated data points (Zi, R̂(Zi)).

We can now illustrate how the effect of Z can be displayed for bivariate cases. Here we

estimate from the start the conditional survival function by conditioning on both Z1 = SIZE

and Z2 = DIVERSE. We first do the exercise for the full sample of 322 units. To save place

we only show the results for the order-� quantile frontier, to be less sensitive to extreme

points (as noticed above). Figure 6 shows on the left panel the estimate of the regression

of R̂(Zi) on Zi evaluated on a grid of values for Z1 and Z2. We see the increasing slope

relative to Z1 and the flat average effect of Z2. We do not observe a clear interaction effect

between Z1 and Z2, although the effect of Z1 seems bigger for middle values of Z2. The right

panel indicates the resulting marginal effects obtained from the preceding surface regression,

evaluated at the observations (Xi, Yi, Zi) and then viewed marginally as a function of each

component Z1 and Z2 separately. The marginal effects confirm what has been seen in the

“pure” marginal analysis above.
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Figure 6: Joint effect of (Z1, Z2) on the production process. We use here �̂ z�,n for � = 0.95.

Here n = 322 and the circles are the estimated data points (Zi, R̂�(Zi)).

Of course for this bivariate analyis we can also compute at selected grid points (z1, z2)

confidence intervals for � z(P ) and � z�(P ). We illustrate this in Table 1 where we select for zℓ

the 3 quartiles of Zℓ, ℓ = 1, 2 giving the 9 selected pairs for (z1, z2). The resulting confidence

intervals shown in the table confirm the analysis done above. We note also (as in Figure 4)

that the estimates of the expected ratios with the full frontier are sometimes outside the 95%

confidence intervals, showing that the point estimates are in some cases biased (the basic

bootstrap techniques for confidence intervals, automatically correct for the bias). This is

less apparent for partial frontier, as expected, partial efficiency scores having an asymptotic

normal distribution and not a Weibull type one.

Finally, we want to investigate if the effects of Z1 and Z2 are similar across the two groups

of banks MSA = 1 (174 banks are in a Metropolitan Statistical Area) and MSA = 0 (148

units are not belonging to a MSA). Since the sample size is large in both groups, we can do

two separate analysis. The results are displayed in Figure 7.

It seems that the marginal effects have approximately the same shape and same size in

the two groups, but we detect a slight difference of the interaction between the two variables.

In the group MSA, we have the highest ratios for large Z1 and small Z2 whereas for the not

MSA banks the size effect Z1 is larger for higher values of Z2. This slight interaction was

hidden in the global picture with all the observations in Figure 6.
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z1 z2 �̂zn low up �̂z�,n low up

10.6699 0.8514 1.4368 1.2663 1.4254 1.0175 0.9844 1.0312

10.6699 0.9998 1.3748 1.2069 1.3499 0.9731 0.9533 0.9901

10.6699 1.1391 1.2080 1.0448 1.1754 0.8809 0.8569 0.8884

11.3696 0.8514 1.4569 1.2524 1.4324 1.1098 1.0801 1.1234

11.3696 0.9998 1.3551 1.1839 1.3417 1.0338 1.0124 1.0437

11.3696 1.1391 1.2042 1.0131 1.1274 0.9707 0.9398 0.9812

12.1351 0.8514 1.3016 1.0528 1.1561 1.1874 1.1269 1.2250

12.1351 0.9998 1.2391 1.0395 1.1210 1.1023 1.0517 1.1232

12.1351 1.1391 1.1602 0.9700 1.0729 1.0419 0.9939 1.0600

Table 1: Point estimates and 95% confidence intervals for � z(P ) and � z�(P ), with � = 0.95

at selected grid points (z1, z2).
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Figure 7: Joint effect of (Z1, Z2) on the production process for the two groups. Top panels

for 174 Banks in MSA and bottom panels for 148 Banks not in a MSA.We use here �̂ z�,n for

� = 0.95. 26



5 Conclusions

This paper has formalized in a nonparametric model of production the role of environmental

variables by introducing these external factors in a non-restrictive way.

The paper clarifies what can be learned by analyzing the conditional efficiency measures and

proposes a general approach to measure and infer about the impact of these factors on the

production process.

By using conditional efficiency measures we can indeed measure the impact of external factors

on the attainable set in the input-output space, and/or we can investigate the impact of the

external factors on the distribution of inefficiency scores.

The paper proposes a statistical approach to make inference on the level of the impact by

using up-to dated bootstrap algorithms for which we prove the consistency. In the paper we

have provided practical information to implement the bootstrap and have shown its general

and wide usefulness for empirical applications by illustrating its functioning by means of

several simulated examples and a real dataset on US commercial banks.

A Appendix

A.1 Asymptotic Properties of �̂ zn

The argument is the one developed in the Appendix of Simar and Wilson (2010b) where OLS

is used on DEA efficiency scores. We adapt it to the usual standard setup of nonparametric

regression (see e.g. Pagan and Ullah, 1999). We must first obtain the stochastic properties

of the random variables R̂(Xi, Yi∣Zi) which play the role of the dependent variable in the

regression. Here we summarize the arguments used in Section 4.2 of Daraio et al. (2010).

To simplify the notation we will define the n unobserved iid ratios Ri = R(Xi, Yi∣Zi) and

the n available estimators R̂i = R̂(Xi, Yi∣Zi).

Under mild regularity conditions, we have for a generic observation (Xi, Yi), as n → ∞
n�
(
R̂i − Ri

) ℒ−→ QZi

P (⋅), (A.1)

where QZi

P (⋅) is a nondegenerate distribution (i.e. it is not a Dirac distribution with mass 1

at one single value) with finite mean �Zi

Q and variance �2,Zi

Q > 0. The rate of convergence is

governed by the worst rate of convergence of the estimators used to estimate the �’s. In our

case here, it is the rate of the conditional measure, so � = 4/((r+4)(p+ q)) (see Section 3).

Since R̂i = Ri+n−��i, where �i is implicitly defined by the equation, �i must have limiting

distribution QZi

P (⋅). So, we have for large n

E(R̂i) = E(R̂i) + �Zi

Q /n� (A.2)

V(R̂i) = V(R̂i) +O(n−�), (A.3)
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where the second term in (A.3) accounts for the variance of n−��i and the covariance between

Ri and n−��i is indeed O(n−�).

Of course there is some dependence between the R̂i and so between the n−��i. Following

Daraio et al. (2010), and based on the local nature of the envelopment estimators (for the

FDH case, asymptotically, the estimator at (Xi, Yi) depends only on at most one other data

point), all the covariances between n−��i and n−��j for j ∕= i are asymptotically equal to

zeros, except for at most 2 values of j ∕= i. It is also clear that when nonzero, this covariance

is bounded by the product of the two standard deviations, i.e. O(n2�).

Now, as defined in (3.7), the nonparametric regression estimator is given by

�̂ zn =

n∑

i=1

Wn(Zi, z, ℎz)R̂i

=
n∑

i=1

Wn(Zi, z, ℎz)Ri + n−�
n∑

i=1

Wn(Zi, z, ℎz)�i

= �̂ z(P ) + �z. (A.4)

The first term of the last equation �̂ z(P ) is the standard nonparametric regression estimator

of � z(P ) one would obtain by observing the iid true values Ri; the second term �z accounts

for the bias and the dependence introduced by replacing Ri by its estimates R̂i.

Now we analyze the asymptotic behavior of �z. Again, to simplify the notation we

particularize to the case of the Nadaraya-Watson estimator and for one dimensional z (r = 1)

(the same idea can be used for the local linear estimator case, but at a cost of notational

complexity, see Fan and Gijbels, 1996). We can now summarize the main steps. First we

can write

�z =
1

f̂Z(z)

1

nℎz

n∑

i=1

Ki
�i
n�

where f̂Z(z)
p−→fZ(z) and Ki = K((Zi − z)/ℎz). Due to the first two moments of n−��j

summarized above (in particular the bounded number of nonzero covariances) it is easy to

show (see details e.g. in Lemma 3.1 of Pagan and Ullah, 1999) that

E

(
1

nℎz

n∑

i=1

Ki
�i
n�

)
= fZ(z)

�z
QP

+ ℎ2
z C

z

n�
+ o(n−�ℎ2

z) (A.5)

V

(
1

nℎz

n∑

i=1

Ki
�i
n�

)
≤ fZ(z)D

z

nℎz n2�
+O

(
n−(1+2�)

)
(A.6)

where Cz and Dz are bounded constants. Due to this, one can see that

√
nℎz

(
�z − �z

QP
+ ℎ2

z C
z

n�

)
p−→0.
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The multivariate extension is given by

√
nℎr

z

(
�z − �z

QP
+ ℎ2

z C
z

n�

)
p−→0. (A.7)

Therefore, since from (A.4)

�̂ zn − �z
QP

+ ℎ2
z C

z

n�
= �̂ z(P ) + �z − �z

QP
+ ℎ2

z C
z

n�
,

we obtain as n → ∞
√
nℎr

z

(
�̂ z(P )− � z(P )− ℎ2

zB
z
)

ℒ−→ N
(
0, V z

)
, (A.8)

where the bias Bz and the variance V z are bounded constants that can be found in any

textbook on nonparametric econometrics. They depend on the particular estimator used

(Nadaraya-Watson, Local linear,etc.) and on characteristics of the Kernel and of the DGP;

see e.g. Pagan and Ullah (1999) or Li and Racine (2007) for details and comments.

Now, from (A.7) we obtain as n → ∞, ℎz → 0 with nℎr
z → ∞:

√
nℎr

z

(
�̂ zn − � z(P )− n−��z

QP
− ℎ2

z(B
z + n−�Cz)

)
ℒ−→ N

(
0, V z

)
. (A.9)

A.2 Order-m partial frontiers

An alternative partial frontier has been introduced by Cazals et al. (2002): the order-m

frontiers. Roughly speaking, in the output orientation case, the idea is to take as benchmark

for evaluating firms, the expectation of the best practice among m peers drawn at random

in the population of firms using less resources than x0. Specifically, consider m i.i.d. random

variables Yi, i = 1, . . . , m generated according the survival SY ∣X(y∣X ≤ x0) and we define

the random set Ψm(x0) = {(x′, y) ∈ ℝ
p+q
+ ∣x′ ≤ x0, y ≤ Yi, i = 1, . . . , m}. Then, we can define

�̃m(x0, y0) = sup{� > 0∣(x0, �y) ∈ Ψm(x0)}

= max
i=1,...,m

{
min

j=1,...,q

Y j
i

yj0

}
.

This is the maximal output radial expansion (≤ of ≥ 1) for (x0, y0) to reach the FDH of

the random set of firms (x0, Yi), i = 1, . . . , m. Finally, the order-m output efficiency score is

given by the conditional expectation of �̃m(x0, y0):

�m(x0, y0) = E
(
�̃m(x0, y0)∣X ≤ x0

)
. (A.10)

It is easy to see that if m → ∞, �m(x0, y0) → �(x0, y0). See Daraio and Simar (2007a)

for details. Since the benchmark is against an average of the best among m peers, the
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corresponding frontier (the set of points (x, y) where �m(x, y) = 1) is less extreme. For

instance if m = 1, the m-frontier represent an average production frontier among producers

using less resources than the current value x0. It has been shown in Cazals et al. (2002)

that if �m(x0, y0) exists, it can be computed by the following univariate integral

�m(x0, y0) =

∫ ∞

0

[
1−

(
1− SY ∣X(uy0∣X ≤ x0)

)m]
du. (A.11)

When facing environmental conditions Z = z0, we can define the conditional order -m

measures by conditioning every random event to Z = z0. As described in Daraio and Simar

(2007a), thus leads to the expression

�m(x0, y0∣z0) =
∫ ∞

0

[
1−

(
1− SY ∣X,Z(uy0∣X ≤ x0, Z = z0)

)m]
du, (A.12)

leading, in our purpose, to the ratios

Rm(x, y∣z) =
�m(x, y∣z)
�m(x, y)

. (A.13)

The parameter of interest will be here

� zm(P ) = E(Rm(X, Y ∣Z = z)), (A.14)

where again, if m → ∞, � zm(P ) → � z(P ).

What has been said above about � z�(P ), remains valid for � zm(P ): the parameter will

mainly capture the local effect of Z on the distribution of the inefficiencies when the boundary

is not changing (Ψz = Ψ). But it does not allow, when considered alone, to capture a shift

of the boundary. Unless m increases to infinity and we search a robust estimator of the full

frontier (see Section 3).
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