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Abstract

The tail of a bivariate distribution function in the domain of attraction of a bivariate

extreme-value distribution may be approximated by the one of its extreme-value attractor.

The extreme-value attractor has margins that belong to a three-parameter family and a

dependence structure which is characterised by a probability measure on the unit inter-

val with mean equal to one half, called spectral measure. Inference is done in a Bayesian

framework using a censored-likelihood approach. A prior distribution is constructed on an

infinite-dimensional model for this measure, the model being at the same time dense and

computationally manageable. A trans-dimensional Markov chain Monte Carlo algorithm

is developed and convergence to the posterior distribution is established. In simulations,

the Bayes estimator for the spectral measure is shown to compare favorably with fre-

quentist nonparametric estimators. An application to a data-set of Danish fire insurance

claims is provided.

Keywords. Bayes, Bivariate Extreme-Value Distribution, Extreme Conditional Quan-

tiles, MCMC, Metropolis-within-Gibbs, φ-irreducibility, Prediction, Rare Event Probabil-

ities, Reversible Jumps, Spectral Measure.

1 Introduction

In areas such as engineering or financial risk management, decisions have to be made which

depend on the extreme outcomes of two or more variables. Particular examples of interesting

questions may be: how high should a dike be in order to withstand exceptionally high levels of

a river at several sites simultaneously? How much capital to set aside in order to have sufficient

reserve in times of financial crises, affecting the values of multiple financial securities at once?
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These kind of problems require inference on the distribution of bivariate (or more generally

multivariate) extremes. In particular, we are interested in the bivariate density of a random

pair (X1, X2) on a quadrant [u1,∞)× [u2,∞), where u1 and u2 are large thresholds, that is

P(X1 > u1) and P(X2 > u2) are positive but small. This density can be used not only for the

computation of rare-event probabilities over joint tail regions, but also of extreme conditional

quantiles of one variable given an extreme outcome in the other variable. For instance, it may

be of interest to find a level x2 such that for a given probability p > 0 (small) and a given

value of x1 (large) we have P(X2 > x2 | X1 = x1) = p. Up to the best of our knowledge, the

latter type of problem has not yet been properly addressed in the extreme-value literature.

More specifically, let (xi1, xi2), i = 1, . . . , n, be an observed sample from an unknown

bivariate distribution F in the max-domain of attraction of a bivariate extreme-value distri-

bution G. We want to infer on the (bivariate) tail of F using the sample. Except for the case

of asymptotic independence, we know that the tail of F is well approximated by the one of G.

The margins of the latter distribution are characterised by three parameters each, for a total

of six parameters. We shall refer to these as the tail parameters. In addition, the dependence

structure of G is characterised by a spectral measure, which can be any probability measure

on the unit interval [0, 1] with mean 1/2. Thus, an approximation formula for F in a bivari-

ate tail region is obtained by the specification of six marginal tail parameters and a spectral

measure. It follows that with the above sample at hand, approximate inference on the tail

of F may be done via inference on these parameters. Inference on the spectral measure may

be done within parametric families, see for instance Boldi and Davison (2007); Coles and

Tawn (1991, 1994); de Haan et al. (2008); Einmahl et al. (2008); Joe et al. (1992); Ledford

and Tawn (1996); Smith (1994). Alternatively, one may prefer to proceed nonparametrically,

see for instance de Haan and de Ronde (1998); de Haan and Sinha (1999); Einmahl et al.

(2001, 2006); Einmahl and Segers (2009); Schmidt and Stadtmüller (2006). Surveys of these

methods can be found for instance in the monographs Coles (2001); Beirlant et al. (2004);

de Haan and Ferreira (2006); Kotz and Nadarajah (2000).

Data about extreme events being scarce by nature, the statistical uncertainty in extreme-

value analysis is quite substantial. The question is how to deal with this uncertainty for

practical purposes. A typical such purpose is prediction, the task being to compute a high

return level, that is a level which is exceeded once, on average, during a long future time inter-

val. The uncertainty due to the random nature of future outcomes then has to be combined

with the statistical uncertainty on the parameter estimates. In a frequentist setting, it may

be unclear how to do so: should one use a high quantile’s point estimate or rather the upper

bound of a certain confidence interval? As argued for instance in Coles and Tawn (1996)

and Coles and Tawn (2005), the Bayesian approach via the predictive density (Aitchison and

Dunsmore, 1975) seems more coherent. However, extreme-value dependence structures are

essentially infinite-dimensional. Therefore, nonparametric Bayesian methodology for multi-

variate extremes should be further developed. Our paper aims to take a step in that direction.
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Essentially, we extend the censored-likelihood method developed in Ledford and Tawn

(1996) to the case of arbitrary (i.e. infinite-dimensional) spectral measures in a Bayesian

setup. To this end, we select a prior on the six marginal tail parameters and on the set

of spectral measures. Via the censored likelihood, the joint posterior of the tail parameters

and the spectral measure is computed and converted into a posterior distribution for the tail

quantities of interest. The actual inference, based on the posterior, is performed by means

of a trans-dimensional Markov chain Monte Carlo algorithm; see for instance Guillotte and

Perron (2008) for similar work in the context of annual maxima, that is when data can be

modelled directly by a bivariate extreme-value distribution. Our methodology enables the

evaluation of the predictive density in a bivariate tail region, which can be used, for instance,

for prediction of high future levels of one variable given such outcomes of the other one.

The prior selection for the spectral measure is the more delicate part, and this is the main

contribution of the paper. We need to put a prior on the set of all cumulative distribution

functions on [0, 1] with mean 1/2. The actual prior will be concentrated on a countable union

of finite-dimensional families of smooth spectral measures which is dense in the set of all

spectral measures. For maximal flexibility, it is important that the spectral measures in our

model allow for atoms at 0 and 1 and at the same time are absolutely continuous on (0, 1).

The outline of the paper is as follows. Since the extreme-value model provides an ap-

proximation of the bivariate tail of F only, special care has to be taken on how to define the

likelihood of the parameters given the data (Section 2). The construction of the subspace of

spectral measures is done in Section 3. The selection of a prior for the spectral measures is

explained in Section 4, which then is used as a starting point for Bayesian inference in Sec-

tion 5. The MCMC algorithm employed for numerical computations along with a proof of its

convergence are given in Section 6. In Section 7, the Bayes estimator for the spectral measure

is compared via simulations with two nonparametric frequentist estimators. Furthermore, the

methodology is applied to a data-set of Danish fire insurance claims McNeil (1997). Finally,

a discussion in Section 8 concludes the paper.

2 Modelling bivariate tails

The domain-of-attraction condition on a bivariate cumulative distribution function F (Sub-

section 2.1) yields good approximations for F on quadrants of the form [u1,∞) × [u2,∞),

where u1 and u2 are high thresholds (Subsection 2.2). Here, a high threshold means that

Fj(uj) is less than but close to 1, where Fj is the marginal distribution, j ∈ {1, 2}. From this

approximation for F , approximations for interesting tail quantities can be derived. Since F

is only well approximated on a subset of its support, care has to be taken when writing down

the likelihood (Subsection 2.3).
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2.1 The domain-of-attraction condition

We assume that there exist sequences of constants anj > 0 and bnj , for j ∈ {1, 2}, and a

bivariate cumulative distribution function G with non-degenerate margins such that

lim
n→∞

Fn(an1x1 + bn1, an2x2 + bn2) = G(x1, x2) (2.1)

for all continuity points (x1, x2) of G. Here, G is called an extreme-value cumulative distri-

bution function and is necessarily of the following form:

• Its marginal cumulative distribution functions G1 and G2 are those of a univariate

extreme-value distribution:

− logGj(xj) =

(
1 + ξj

xj − µj
σj

)−1/ξj

, j ∈ {1, 2},

for xj such that σj+ξj(xj−µj) > 0, with shape parameter ξj (the extreme-value index),

location parameter µj , and positive scale parameter σj ;

• Its dependence structure is given by

− logG(x, y) = `
(
− logG1(x),− logG2(y)

)
, (2.2)

for all (x, y) ∈ R2 such that G1(x) > 0 and G2(y) > 0. The stable tail dependence

function ` (sometimes called tail copula) admits the representation

`(s, t) = 2

∫
[0,1]

max
(
ws, (1− w)t

)
dH(w), (s, t) ∈ [0,∞)2,

the spectral measure H being a probability measure on [0, 1] with mean equal to 1/2.

Note that the name “spectral measure” is quite often reserved for the measure 2H.

See for instance the monograph of Coles (2001) for an elementary introduction to extreme-

value theory, in particular Section 3.1 for the univariate theory and Section 8.2 for the bivariate

theory. The function ` is associated to the function V of Theorem 8.1 in Coles (2001) via

`(s, t) = V (1/s, 1/t).

Given a pair of large thresholds, u1 and u2, it will be convenient to rewrite the marginal

distributions using a different parametrisation which incorporates the thresholds in their

expressions. More precisely, writing ηj = (ξj , ζj , σj), j ∈ {1, 2}, the marginal cumulative

distribution functions can be written as

− logGj(xj | ηj) = ζj

(
1 + ξj

xj − uj
σj

)−1/ξj

, j ∈ {1, 2}, (2.3)

for xj such that σj + ξj(xj − uj) > 0, where ξj is again the extreme-value index, σj > 0 is a

scale parameter, and 0 < ζj = − logGj(uj | ηj). As uj is large, we have ζj ≈ 1−Gj(uj | ηj),
the marginal probability of exceeding the threshold uj .
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Therefore, a bivariate extreme-value cumulative distribution function G is parameterised

by its marginal parameter vectors η1 and η2 and its spectral measureH. From now on, we shall

make this explicit. Such a cumulative distribution function (x1, x2) 7→ G(x1, x2 | H, η1, η2) is

absolutely continuous provided that the restriction of the spectral measure H to the interior

(0, 1) of the unit interval is absolutely continuous. Still, the spectral measure is allowed to

have atoms at 0 and 1, so as to include, for instance, the case of independence where H is

equal to the Bernoulli(1/2) measure.

In statistical practice, the spectral measure is often modelled parametrically. In this

article, however, we model H nonparametrically for maximum flexibility.

2.2 The tail approximation

In Ledford and Tawn (1996) and Nadarajah et al. (1998), the domain-of-attraction condition

(2.1) is exploited to construct a good approximation for the tail of F . This construction

enables us to stipulate that for large thresholds u1 and u2, and for (x1, x2) ∈ [u1,∞)×[u2,∞),

the form of F (x1, x2) is that of a bivariate extreme-value cumulative distribution function.

The justification comes from equation (2.1) and the fact that extreme-value distributions are

max-stable: for t > 0, the function Gt is also a bivariate extreme-value cumulative distribution

function and it differs from G by location and scale only.

Thus, as in Ledford and Tawn (1996), we postulate that F (x1, x2) = F (x1, x2 | H, η1, η2)

for (x1, x2) ∈ [u1,∞) × [u2,∞), where F (x1, x2 | H, η1, η2) has dependence structure given

by (2.2), for some spectral measure H, and marginal distributions given by (2.3), for some

parameter vectors η1 and η2. Here, F (x1, x2 | H, η1, η2) for (x1, x2) ∈ [u1,∞) × [u2,∞) is

called the tail approximation to F .

Furthermore, we assume that H is absolutely continuous on (0, 1), so that F (x1, x2 |
H, η1, η2) is absolutely continuous on the region (x1, x2) ∈ [u1,∞)× [u2,∞). Its density

f(x1, x2 | H, η1, η2) =
∂2

∂x1∂x2
F (x1, x2 | H, η1, η2), x1 > u1, x2 > u2,

is a (rather complicated) function of the six marginal tail parameters given by η1 and η2

together with the spectral measure H. It is derived in Appendix A.1.

2.3 The censored likelihood

Let (X1, X2) be a random vector with (unknown) cumulutative distribution function F , and

let (x1, x2) be a realisation of this vector. Recall that the tail approximation to F is defined

only on the tail region [u1,∞)× [u2,∞). Therefore, by using the tail approximation alone, it

is not necessarily possible to specify the likelihood contribution of the datum (x1, x2), since

it may or may not belong to the tail region. Let us introduce a pseudo-likelihood instead.

We follow Ledford and Tawn (1996) by adopting a censoring approach: if xj 6 uj , then we

pretend that xj is censored by uj .
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Let (x∗1, x
∗
2) = (x1 ∨ u1, x2 ∨ u2), let d = (1[u1,∞)(x1),1[u2,∞)(x2)), and define

f∗(x∗1, x
∗
2 | H, η1, η2) =



F (u1, u2 | H, η1, η2) if d = (0, 0),
∂

∂x1
F (x1, u2 | H, η1, η2) if d = (1, 0),

∂

∂x2
F (u1, x2 | H, η1, η2) if d = (0, 1),

∂2

∂x1∂x2
F (x1, x2 | H, η1, η2) if d = (1, 1).

The exact expression for f∗ is given in Appendix A.1. Note also that if H({0}) > 0 and

H({1}) > 0, that is if the spectral measure has atoms at 0 and 1, then f∗ is positive on the

set {(x∗1, x∗2) : σj + ξj(x
∗
j − uj) > 0, j = 1, 2}.

Finally, let x = {(xi1, xi2) : i = 1, . . . , n} be an observed sample from F , with correspond-

ing censored sample x∗ = {(x∗i1, x∗i2) : i = 1, . . . , n}. The likelihood is defined as

L(H, η1, η2 | x∗) =
n∏
i=1

f∗(x∗i1, x
∗
i2 | H, η1, η2), (2.4)

which depends implicitly on the thresholds u1 and u2.

3 Modelling the spectral measure

Let H c be the set of spectral measures whose only atoms, if any, are at 0 and at 1. For a

spectral measure H, the same symbol will denote its cumulative distribution function, that is,

H(w) = H([0, w]) for w ∈ [0, 1]. In this section we will first construct a class H d of discrete

spectral measures (Subsection 3.1), and, by smoothing these, a class H s of smooth spectral

measures (Subsection 3.2). Both classes are countable unions of finite-dimensional models

and they are dense in H c with respect to the topology of uniform convergence of cumulative

distribution functions.

3.1 The approximation step

For integer m > 1, let H d
m be the set of discrete spectral measures whose restriction to (0, 1)

is uniformly distributed over m distinct points. According to the following proposition, the

cumulative distribution function of a spectral measure in H c can be approximated arbitrarily

closely, and in a uniform way, by the one of a spectral measure in H d =
⋃
m>1 H d

m . For

convenience, we exclude the Bernoulli(1/2) spectral measure, which is in H c and can be

thought of as the only member of H d
0 .

Proposition 3.1. For every H ∈ H c with H((0, 1)) > 0 and every integer m > 1 there

exists H∗ ∈H d
m such that H({a}) = H∗({a}) =: ha for a ∈ {0, 1} and such that

sup
w∈[0,1]

|H(w)−H∗(w)| 6 (1− h0 − h1)/m. (3.1)
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Proof. Let G be the cumulative distribution function of the probability measure supported on

(0, 1) defined by G(w) = H((0, w])/H((0, 1)) for 0 < w < 1. By assumption, G is continuous,

and

H(w) = h0 + (1− h0 − h1)G(w) + h1 δ1(w), w ∈ [0, 1], (3.2)

with δ1 the cumulative distribution function of the Dirac measure at 1. Let G−1(u) = inf{w ∈
[0, 1] : G(w) > u}, for u ∈ [0, 1], be the generalised inverse of G. Since G is continuous, it

follows that G−1 is strictly increasing. Therefore, by setting q0 = 0 and

qi = G−1(i/m), yi = m

∫ i/m

(i−1)/m
G−1(u) du,

for i ∈ {1, . . . ,m}, we get that qi−1 < yi < qi for all i ∈ {1, . . . ,m}.
Let G∗ be the cumulative distribution function of the discrete uniform distribution on the

set {y1, . . . , ym}. By construction, G(qi) = G∗(qi) = i/m for all i ∈ {0, . . . ,m} (recall that G

is continuous) and∫ 1

0
w dG∗(w) =

1

m

m∑
i=1

yi =

∫ 1

0
G−1(u) du =

∫ 1

0
w dG(w).

In addition, for w ∈ (0, qm] we can find i ∈ {1, . . . ,m} such that qi−1 < w 6 qi, whence

sup
w∈[0,1]

|G(w)−G∗(w)| 6 1/m. (3.3)

Let H∗ be the discrete measure with masses h0 and h1 at the points 0 and 1 respectively

and with masses (1−h0−h1)/m on each of the points y1, . . . , ym. The cumulative distribution

function of H∗ is given by

H∗(w) = h0 + (1− h0 − h1)G∗(w) + h1 δ1(w), w ∈ [0, 1]. (3.4)

Clearly, H∗(1) = 1 and∫ 1

0
w dH∗(w) = (1− h0 − h1)

∫ 1

0
w dG∗(w) + h1

= (1− h0 − h1)

∫ 1

0
w dG(w) + h1 =

∫ 1

0
w dH(w) =

1

2
,

that is, H∗ is a spectral measure; more precisely, H∗ ∈H d. Finally, by (3.2), (3.3) and (3.4),

we arrive at (3.1).

3.2 The smoothing step

Let H∗ ∈ H d
m for some m > 1 with masses 0 6 h0 < 1/2 and 0 6 h1 < 1/2 at 0 and 1

respectively, and with mass (1 − h0 − h1)/m on each of the points y1 < · · · < ym in (0, 1).
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Write ϑ = ϑ(H∗) = (h0, y1, . . . , ym, h1), and note that the relation between H∗ and ϑ is one-

to-one. We will associate to ϑ a spectral measure Hϑ in H c whose cumulative distribution

function is close to the one of H∗ itself.

Let S be a map that associates to a vector a of abscissas a1 < · · · < ak and a vector b of

ordinates b1 6 · · · 6 bk a piecewise cubic polynomial function ϕ = S(a, b) such that ϕ(ai) = bi

for all i ∈ {1, . . . , k} and such that ϕ is nondecreasing and continuously differentiable on

[a1, ak]. Such a construction is proposed in Fritsch and Butland (1984), see also Appendix A.2.

Given H∗ ∈H d
m as above, define functions ϕ− and ϕ+ on [0, 1] by ϕ± = S(a; b±) where

a = ( 0, y1, y2, . . . , ym, 1),

b−=
(
H∗(0), H∗(0), H∗(y1), . . . , H∗(ym−1), H∗(ym)

)
,

b+ =
(
H∗(0), H∗(y1), H∗(y2), . . . , H∗(ym), H∗(ym)

)
.

Define cumulative distribution functions H− and H+ of probability measures on [0, 1] by

H±(w) = ϕ±(w) if 0 6 w < 1 and H±(1) = 1. Clearly, H−(w) 6 H∗(w) 6 H+(w) for all

w ∈ [0, 1]. Put

Hϑ = αH− + (1− α)H+, (3.5)

where α = α(ϑ) ∈ [0, 1] is determined by the mean constraint

1/2 =

∫ 1

0
w dHϑ(w) = α

∫ 1

0
w dH−(w) + (1− α)

∫ 1

0
w dH+(w).

By construction, the masses of H−, H+ and Hϑ at 0 and 1 are again h0 and h1 respectively,

and

sup
w∈[0,1]

|Hϑ(w)−H∗(w)| 6 (1− h0 − h1)/m, (3.6)

the same bound holding true with Hϑ replaced by either H− or H+.

Let H s =
⋃
m>1 H s

m, where H s
m = {Hϑ : ϑ = ϑ(H∗), H∗ ∈ H d

m}. As a corollary to

Proposition 3.1, we obtain the following result, illustrated in Figure 1.

Proposition 3.2. For every H ∈H c such that H((0, 1)) > 0 and every integer m > 1 there

exists Hϑ ∈H s
m such that H({a}) = Hϑ({a}) =: ha for a ∈ {0, 1} and such that

sup
w∈[0,1]

|Hϑ(w)−H(w)| 6 2 (1− h0 − h1)/m.

Proof. Let H∗ ∈H d
m be the discrete approximant from Proposition 3.1. Let ϑ = ϑ(H∗). The

measure Hϑ in (3.5) enjoys all the required properties; in particular, see (3.6).

Note that the Bernoulli(1/2) spectral measure can still be approximated arbitrarily closely

by members in H d or H s: take h0 and h1 close to 1/2.
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0 y1 y2 y3 y4 1
w

1/4

1/2

3/4

1

H

Figure 1: The illustration shows the distribution functions from Proposition 3.2. The step

function is H∗, the dashed line is H− and the dash-dotted line is H+. The thick line is the

true spectral measure H and the dotted line is the smooth approximation Hϑ.

4 Prior distribution for the spectral measure

We will now construct a prior on the approximating set of spectral measures H s =
⋃
m>1 H s

m.

The spectral measures in H s
m are represented by vectors ϑ = (h0, y1, . . . , ym, h1) ∈ Rm+2, with

0 6 h0 < 1/2 and 0 6 h1 < 1/2 and with 0 < y1 < · · · < ym < 1 subject to the constraint

1/2 = (1− h0 − h1)ȳ + h1. (4.1)

The sigma-field on H s is the smallest one such such that the map ϑ 7→ Hϑ measurable, that

is, a set G ⊂ H s is measurable if the set of ϑ ∈
⋃
m>1R

m+2 verifying (4.1) and such that

Hϑ ∈ G is a Borel set.

It will be convenient to work with a different parametrisation. Let

Θ =
⋃
m>1

(
{m} ×Θm

)
, (4.2)

with Θm defined as follows:

Θ1 =
{

(h0, h1) : 0 < h0 < 1/2 and 0 < h1 < 1/2
}
,

Θm =
{

(h0, y1, . . . , ym−1, h1) : 0 < h0 < 1/2, 0 < h1 < 1/2,

and 0 < yi < 1 for i ∈ {1, . . . ,m}
}
, m > 2,
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the point ym being a function of h0, h1 and y1, . . . , ym−1 via the mean constraint (4.1):

ym = m
1/2− h1

1− h0 − h1
−
m−1∑
i=1

yi. (4.3)

Similarly, if m = 1, the constraint (4.1) implies y1 = (1/2− h1)/(1− h0 − h1).

Elements of Θm with m > 2 for which there are ties among the points y1, . . . , ym do

not correspond to spectral measures Hϑ in H s. Let N ⊂ Θ be the set of such parameter

vectors. For (m, θ) ∈ Θ \ N , put Hm,θ = Hϑ where ϑ = ϑ(m, θ) = (h0, y(1), . . . , y(m), h1)

with y(1) < · · · < y(m), the ordered values of y1, . . . , ym, and with ym determined by (4.3).

For definiteness, put Hm,θ = Bernoulli(1/2) for (m, θ) ∈ N . Since the map (m, θ) 7→ ϑ is

measurable and since N is measurable, the map

Θ→H s : (m, θ) 7→ Hm,θ (4.4)

is also measurable.

Each spectral measure Hϑ in H s for which h0 > 0 and h1 > 0 can be represented by a

vector (m, θ) ∈ Θ in this way. Because we do not insist on the points yi of the vector θ to be

ordered, there are actually m! different parameter vectors (m, θ) that yield the same spectral

measure Hϑ. The situation is similar to the case of mixture distributions, where the order of

the mixture components can be left non-identifiable, see Marin et al. (2005). The exclusion

of zero masses h0 = 0 or h1 = 0 at 0 and 1 has the technical advantage that the parameter

space is open and does not affect the flexibility of the model, since it is always possible to

take h0 and h1 arbitrarily small.

We now construct a probability measure on the parameter space Θ in (4.2). With respect

to this probability measure, the set N is a null set. Moreover, the map (m, θ) 7→ Hm,θ induces

a probability measure on H s which we select as the prior for H.

First, we draw an integer m > 1 from a 0–truncated Poisson(λ) distribution. Next, inside

each model m, the prior for θ ∈ Θm is defined with a uniform prior on the atoms h0 and

h1 in (0, 1/2)2, and, if m > 2, conditionally on (h0, h1) ∈ (0, 1/2)2, a uniform prior for

(y1, . . . , ym−1) on the set

Θm,h0,h1 =
{

(y1, . . . , ym−1) : (h0, y1, . . . , ym−1, h1) ∈ Θm

}
⊂ Rm−1. (4.5)

Specifically, the prior on (m, θ) ∈ Θ is specified by π(m, θ) = π(θ | m)π(m) where θ ∈ Θm

and

π(m) ∝ λm/m!, for m > 1,

π(θ | m) =

π(h0, h1) if m = 1,

π(y1, . . . , ym−1 | m,h0, h1)π(h0, h1) if m > 2,
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where

π(h0, h1) ∝ 1(0,1/2)2(h0, h1),

π(y1, . . . , ym−1 | m,h0, h1) ∝ 1Θm,h0,h1
(y1, . . . , ym−1)

The set N ⊂ Θ is indeed a null set and the mapping (4.4) is well defined everywhere on Θ.

The prior on (m, θ) induces a prior on the spectral measure H via∫
H s

g(H) dπ(H) =

∫
Θ
g(Hm,θ) dπ(m, θ) (4.6)

for nonnegative measurable functions g on H s.

Because of its trans-dimensional nature, implementation of the MCMC algorithm in Sec-

tion 6 requires the exact knowledge of π(y1, . . . , ym−1 | m,h0, h1) and thus of the normalising

constants λm−1(Θm,h0,h1) for integer m > 2 and (h0, h1) ∈ (0, 1/2)2; here λm−1 denotes

the (m − 1)–dimensional Lebesgue measure. These normalising constants are given by the

following result, illustrated in Figure 2, and proved in Appendix A.3.

Lemma 4.1. For integer m > 2 and (h0, h1) ∈ (0, 1/2)2, we have

λm−1(Θm,h0,h1) =
1

(m− 1)!

(
m(1/2− h1)

1− h0 − h1

)m−1

P

(
Y(m) <

1− h0 − h1

m(1/2− h1)

)
, (4.7)

where Y(m) is the maximum of Y = (Y1, . . . , Ym), and Y is distributed according to the uni-

form distribution on the (m − 1)-dimensional unit simplex, that is, the Dirichlet(1, . . . , 1)

distribution. Furthermore,

P

(
Y(m) <

1− h0 − h1

m(1/2− h1)

)
= 1−

K∑
k=1

(−1)k−1

(
m

k

)(
1− k 1− h0 − h1

m(1/2− h1)

)m−1

, (4.8)

where K is the greatest integer less than or equal to m(1/2− h1)/(1− h0 − h1).

Formally, putting Θ1,h0,h1 = {0 < y1 < 1 : (1−h0−h1)y1 +h1 = 1/2} = {(1/2−h1)/(1−
h0 − h1)}, formula (4.7) is also true for m = 1, by defining λ0 as the counting measure.

5 Bayesian inference

The model approximating the tail of the (unknown) bivariate cumulative distribution F is

specified via a spectral measure H in H s and marginal parameters (η1, η2) ∈ Ξ2, ηj =

(ξj , ζj , σj), j ∈ {1, 2}, where

Ξ = (−∞,∞)× (0,∞)× (0,∞).

The parameter space for H s is given by Θ =
⋃
m>1({m}×Θm) in (4.2). Thus, the parameters

defining a spectral measure consist of a model index m > 1 and, given this model index, a

11
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Figure 2: Illustration of λm−1(Θm,h0,h1), for m = 10, (h0, h1) ∈ [0, 1/2)2. The amplitude has

been rescaled by a factor of 0.735.

parameter vector θ = (h0, y1, . . . , ym−1, h1) ∈ Θm. Therefore, the complete parameter space

is

Ω = Θ× Ξ2. (5.1)

We assume a priori that (m, θ) and η1, η2 are independent. The prior for (m, θ), and hence

for H, has been constructed in Section 4. Concerning the marginal parameters, we do not

claim any originality but essentially follow the methodology proposed in Beirlant et al. (2004),

in which a careful literature review has been made on the subject. We consider independent

priors for both margins given by

π(ηj) ∝ exp(−ξ2
j /2) exp(−4ζj)σj exp(−σj/2)1(0,∞)(ζj)1(0,∞)(σj), (5.2)

that is, ξj , ζj and σj follow independent normal, exponential and gamma distributions respec-

tively, for j ∈ {1, 2}. While arbitrary, such a choice guarantees that the prior for (m, θ, η1, η2)

is proper, and so this is also true for the posterior. Alternatively, expert knowledge on certain

marginal return levels (quantiles) may be incorporated in the prior as in Coles and Tawn

(1996). The priors considered in the latter refererence are proper as well.

We develop Bayesian inference in the same spirit as that of model selection, see for instance

Robert (2007). Again, let x = {(x11, x12), . . . , (xn1, xn2)} be a sample from F . Let x∗ be the

corresponding censored sample. The joint posterior density for the parameter (m, θ, η1, η2) is

given by

π(m, θ, η1, η2 | x∗) ∝ L(Hm,θ, η1, η2 | x∗)π(θ | m)π(m)π(η1)π(η2), (5.3)

where L is the likelihood given by equation (2.4). In Section 6, we give an MCMC algo-

rithm which is used for numerical computations in every inference procedure that we propose

throughout the rest of the paper.
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In particular, for integer m > 1, let

π(m | x∗) =

∫
Θm×Ξ2

π(m, θ, η1, η2 | x∗) dθ dη1 dη2

be the posterior probability of selecting model m. We define the Bayes estimator for the

spectral measure H as the mixture

Ĥ(w) =
∑
m>1

π(m | x∗) Ĥ(m)(w), w ∈ [0, 1], (5.4)

where

Ĥ(m)(w) =
1

π(m | x∗)

∫
Θm×Ξ2

Hm,θ(w)π(m, θ, η1, η2 | x∗) dθ dη1 dη2

is the L 2-Bayes estimator of H(w) inside model m. The estimator (5.4) is evaluated nu-

merically via the sample mean of a trans-dimensional Markov chain constructed in the next

section.

Further, tail-related quantities of F are derived from the joint predictive (censored) density

f∗(x∗1, x
∗
2 | x∗) =

∑
m>1

∫
Θm×Ξ2

f∗(x∗1, x
∗
2 | Hm,θ, η1, η2)π(m, θ, η1, η2 | x∗) dθ dη1 dη2, (5.5)

where (x∗1, x
∗
2) can be thought of as a future (censored) observation, and from the conditional

predictive density

f∗2|1(x∗2 | x∗1, x∗) =
f∗(x∗1, x

∗
2 | x∗)

f∗1 (x∗1 | x∗)
. (5.6)

See Section 7.2 for an illustration.

6 Markov chain Monte Carlo sampling scheme

We now construct an MCMC algorithm that generates an irreducible Markov chain having

the posterior as its stationary distribution. The algorithm is described in Subsection 6.1.

Irreducibility and convergence are treated in Subsection 6.3, based upon a general result on

irreducibility provided in Subsection 6.2.

Recall that the complete parameter space for the vector ω = (m, θ, η1, η2) is given by

Ω = Θ × Ξ2 in (5.1). Here (η1, η2) determines both margins, and (m, θ) determines the

spectral measure.

6.1 The algorithm

We consider a block-at-a-time algorithm, see Chib and Greenberg (1995) and Gamerman and

Lopes (2006), constructed using two types of moves. At each iteration, a randomly chosen

move is proposed. The first move (M1) proposes a new candidate ω′ for which only (η1, η2) is

updated, and the second move (M2) updates only (m, θ). The algorithm is thus a mixture of
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two subalgorithms given by M1 and M2. While M1 is a standard full dimensional algorithm

on Ξ2, M2 is more involved since the proposed (m′, θ′) can either belong to the same space

{m}×Θm as the current (m, θ) (M2.1), or to {m+1}×Θm+1 (M2.2) or {m−1}×Θm−1 (M2.3).

In Roberts and Rosenthal (2006), M2 is called a trans-dimensional, Metropolis-within-Gibbs

algorithm.

The acceptance probabilities and target densities for both moves are given as follows:

1. The acceptance probability for M1 is given by the usual Metropolis–Hastings accep-

tance probability, see for instance Tierney (1994), the target distribution here being the

conditional posterior distribution of (η1, η2) given (m, θ).

2. The acceptance probability used in M2 is the one proposed by Green (1995). The target

distribution in M2 is the conditional posterior distribution of (m, θ) given (η1, η2).

It then follows that the (joint) posterior distribution of ω = (m, θ, η1, η2) is the stationary

distribution of the generated Markov chain, see Chib and Greenberg (1995) and Gamerman

and Lopes (2006).

The two moves are detailed below. Assume that the current state of the parameter is

ω = (m, θ, η1, η2) and that at this point, the posterior density π(ω | x∗) given in (5.3) is

positive.

M1 – Propose new margins.

1.1 Draw η′1 and η′2 independently and according to the prior in (5.2).

1.2 Let

A =
L(Hm,θ, η

′
1, η
′
2 | x∗)(((((

((
π1(η′1)π2(η′2)((((

(((π1(η1)π2(η2)

L(Hm,θ, η1, η2 | x∗)(((((
((

π1(η1)π2(η2)((((
(((π1(η′1)π2(η′2)

=
L(Hm,θ, η

′
1, η
′
2 | x∗)

L(Hm,θ, η1, η2 | x∗)
,

where L is the likelihood given by equation (2.4), and accept (η′1, η
′
2) with proba-

bility A ∧ 1.

M2 – Propose a new spectral measure. We update (m, θ), where θ ∈ Θm is given by

θ = (θ0, θ1, . . . , θm−1, θm) =

(h0, h1) if m = 1,

(h0, y1, . . . , ym−1, h1) if m > 2.

If m = 1, select a submove among M2.1 and M2.2 with equal probability; if m > 2, select

a submove among M2.1, M2.2 and M2.3 with equal probability. Let Im = {0, 1, . . . ,m−
1,m} be the set of indices corresponding to the components of θ.

M2.1 – Propose a candidate in Θm. This is a random-scan Metropolis-within-Gibbs

move. Select at random a component i ∈ Im of θ to be updated, the other
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components remaining fixed. Draw θ′i uniformly on the interval Iθ−i , associated

to the selected component, with endpoints on the boundary of Θm, and let

qi(θ
′
i | θ−i) =

1

λ1

(
Iθ−i

)1Iθ−i (θ′i),
be the resulting (instrumental) density; λ1 denotes Lebesgue measure. Let

θ′ ∈ Θm be the proposed candidate, and let

A =
L(Hm,θ′ , η1, η2 | x∗)π(m, θ′)���

���qi(θi | θ′−i)
L(Hm,θ, η1, η2 | x∗)π(m, θ)���

���qi(θ
′
i | θ−i)

=
L(Hm,θ′ , η1, η2 | x∗)π(m, θ′)

L(Hm,θ, η1, η2 | x∗)π(m, θ)
.

Accept θ′ to be the new candidate with probability A ∧ 1.

M2.2 – Propose a candidate in Θm+1. Insert ȳ = (1/2 − h1)/(1 − h0 − h1) in θ

as the component with index m, and relabel θ = (θ0, θ1, . . . , θm, θm+1), leaving

θi fixed for i < m, and with θm = ȳ and θm+1 = h1. Note that θ ∈ Θm+1.

Draw θ′m uniformly on the interval Iθ−m , associated to the component θm, with

endpoints on the boundary of Θm+1, and let

qm(θ′m | θ−m) =
1

λ1

(
Iθ−m

)1Iθ−m (θ′m),

be the resulting (instrumental) density. Let θ′ ∈ Θm+1 be the proposed candi-

date, and let

A =
L(Hm+1,θ′ , η1, η2 | x∗)π(m+ 1, θ′)

L(Hm,θ, η1, η2 | x∗)π(m, θ) qm(θ′m | θ−m)
.

Accept the proposed candidate with probability A ∧ 1.

M2.3 – Propose a candidate in Θm−1. Remove the component with index m − 1

from θ, relabel θ′ = (θ0, θ1, . . . , θm−2, θm−1), leaving θi fixed for i < m− 1, and

with θm−1 = h1. Accept θ′ with probability (1/A) ∧ 1, where A is as in M2.2

above with m replaced by m− 1.

By way of example, we use move M2 in the above algorithm to draw random spectral

measures H = Hm,θ from the prior (substitute L by 1 in the two definitions of A above).

Figure 3 below shows a shaded region S ⊂ [0, 1) × [0, 1] such that for every vertical section

S (w), 0 6 w < 1, we have P[H(w) ∈ S (w)] = 0.95 a priori, together with the prior pointwise

mean E[H(w)]. Note that the priors on H(0) = h0 and limw↑1H(w) = 1− h1 are uniform on

(0, 1/2) and (1/2, 1), respectively.
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Figure 3: A shaded region S ⊂ [0, 1) × [0, 1] such that P[H(w) ∈ S (w)] = 0.95 a priori

for every vertical section S (w) = {v ∈ [0, 1] : (w, v) ∈ S }, 0 6 w < 1, together with the

prior pointwise mean E[H(w)] (full line). The hyperparameter for the model index m is set

to λ = 10, and we use 500 000 iterations of the algorithm for generating the Markov chain.

6.2 Locally uniform irreducibility

In order to show irreducibility of the Markov chain generated by the algorithm in Subsec-

tion 6.1, we make use of a general result, Proposition 6.1 below, providing sufficient conditions

for the irreducibility of a Markov chain which makes transitions according to a mechanism

as in move M2.1. A crucial feature is that the number k > 1 of moves needed for the chain

to be able to reach the destination set is the same for every starting point in an open cube.

We do not claim originality of this result, and, in fact, similar conditions have been used

by Roberts and Smith (1994) and Hobert et al. (1997) in the context of the standard Gibbs

sampler. Since we have not found this particular result anywhere in the literature, we provide

a detailed proof.

First we need to introduce some notation and terminology. For x ∈ Rd, put ‖x‖∞ =

max(|x1|, . . . , |xd|). A set C ⊂ Rd is called an open cube if and only if there exist x ∈ Rd and

r > 0 such that C = {y ∈ Rd : ‖x− y‖∞ < r} =: C(x, r). We call x the center and r the

radius of the cube. A non-empty set E ⊂ Rd is said to be path-connected if for every x, y ∈ E
there exists a continuous map ϕ : [0, 1]→ E, called a path, such that ϕ(0) = x and ϕ(1) = y.

For E ⊂ Rd and x ∈ E, write Ei(x) = {yi ∈ R : (x1, . . . , xi−1, yi, xi+1, . . . , xd) ∈ E}, that is,

Ei(x) is the set of coordinates yi such that replacing the ith coordinate xi of the vector x

by yi produces a new vector that still belongs to E. For a Borel set E ⊂ Rd, let λE denote

d-dimensional Lebesgue measure restricted to E.

Proposition 6.1 (Locally uniform irreducibility). Let ∅ 6= E ⊂ Rd be open and let (Yt)
∞
t∈0

be a homogeneous Markov chain on E such that the transition between Y0 = x and Y1 is
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determined by the following mechanism:

1. an index i ∈ {1, . . . , d} is drawn with probability pi(x) > 0;

2. a new coordinate yi ∈ Ei(x) is drawn from a positive density qi( · | x) on Ei(x);

3. the move from x to x′ = (x1, . . . , xi−1, yi, xi+1, . . . , xd) is accepted with probability 0 <

αi(yi | x) < 1, in which case Y1 = x′, or else Y1 = x.

If E is path-connected, then for every cube C0 ⊂ E and every Borel set B ⊂ E such that

λE(B) > 0, there exists an integer k > 1 such that

P[Yk ∈ B | Y0 = y] > 0, for all y ∈ C0.

In particular, the chain (Yt)
∞
t=0 is λE-irreducible.

The proof of the proposition, given in detail in Appendix A.4, rests upon two ideas: first,

any two points in an open and path-connected set E can be connected by a finite number of

overlapping cubes; second, within a d-dimensional cube, every destination set can be reached

in at most d moves. These ideas are illustrated in Figure 4.

x

y

R1

R2

R3

R4

R5 B

E

C0

C1

C2

C3

C4

C5

Figure 4: Proposition 6.1: moving from y ∈ C(x, ε) = C0 via Ri = Ci−1 ∩ Ci, i = 1, . . . , 5, to

B ⊂ C = C5, when E ⊂ R2.

6.3 Convergence

We show φ-irreducibility of the Markov chain generated by the algorithm in Subsection 6.1

(Theorem 6.2), where φ is to be specified. Let π(ω | x∗), for all ω ∈ Ω = Θ × Ξ2, be the

posterior density given the censored sample x∗, and denote

Ωx∗ = {ω ∈ Ω : π(ω | x∗) > 0},

(Ξ2)x∗ = {(η1, η2) ∈ Ξ2 : π(η1, η2 | x∗) > 0}.
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Note that from the definition of the likelihood (2.4) and the prior (4.6) on (m, θ), we have

π(m, θ | x∗) > 0 for all (m, θ) ∈ Θ (recall we excluded h0 = 0 and h1 = 0), and also

Ωx∗ = Θ× (Ξ2)x∗ .

Here φ-irreducibility means that from any starting point ω ∈ Ωx∗ , and for every set

B ⊆ Ωx∗ with φ(B) > 0, the chain can reach B in a finite number of steps with positive

probability, for some measure φ on Ωx∗ .

To select φ, let λd denote d-dimensional Lebesgue measure, and consider the product

measure λ⊕ × λ6, where λ⊕ is the direct sum measure, that is, for all A =
⋃
d>2{d} × Ad,

where Ad ⊆ Rd, d > 2, λ⊕(A) =
∑

d>2 λd(Ad), see Fremlin (2003). We take φ = λ∗, the

restriction of the above product measure to Ωx∗ . In fact λ∗ is the reference measure for the

posterior distribution on Ωx∗ . Since its density is positive on Ωx∗ , the posterior distribution is

in fact equivalent to λ∗, but for notational convenience, we have decided to work with φ = λ∗.

Our main theorem for assessing convergence is the following. Its proof is given below.

Theorem 6.2. The MCMC algorithm in Subsection 6.1 generates a λ∗-irreducible, aperiodic

Markov chain on Ωx∗.

In view of the classical result found for instance in Tierney (1994), Roberts and Rosenthal

(2006) or Meyn and Tweedie (2009), Theorem 6.2 implies that there is a set of posterior

probability one for which the chain converges to the posterior if the initial state belongs to this

set. If πm,θ denotes the marginal posterior of (m, θ), then Theorem 6.2 also implies ergodicity

on a set of πm,θ-probability one, see Tierney (1996), that is convergence of the sample means

of the generated spectral measures to the Bayes estimator (5.4) for πm,θ-almost every starting

point (m, θ) ∈ Θ.

There may be a set of posterior probability zero inside Ωx∗ , and therefore of λ∗-measure

zero, such that convergence to the posterior does not occur if the initial state is chosen from

this set. If one wants to have convergence for every starting point, then a stronger property

called Harris recurrence needs to be proved. Harris recurrence is equivalent to what is known

as the Ergodic Theorem for irreducible Markov chains, see for example Robert and Casella

(2004) or Meyn and Tweedie (2009). Although sufficient conditions for Harris recurrence are

provided by Roberts and Rosenthal (2006), they seem to be difficult to verify in our setup.

However, the set of measure zero on which convergence does not necessarily occur can be

avoided by chosing the initial state using a continuous distribution on Ωx∗ .

Proof of Theorem 6.2. Suppose that the following claim has been established:

Claim 6.3. For (η1, η2) ∈ (Ξ2)x∗ , the homogeneous Markov chain (Zt)
∞
t=0 on Θ generated by

move M2 of the MCMC algorithm generates a λ⊕-irreducible, aperiodic Markov chain on Θ.

Then the proof of the theorem can be concluded as follows. Let ω = (m, θ; η) ∈ Ωx∗ =

Θ × (Ξ2)x∗ , where η = (η1, η2), and let B be a λ∗-measurable set in Ωx∗ with λ∗(B) > 0.

For every (m′, θ′) ∈ Θ, consider the section B2(m′, θ′) = {η′ ∈ (Ξ2)x∗ : (m′, θ′; η′) ∈ B}, and
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let B1 = {(m′, θ′) ∈ Θ : λ6(B2(m′, θ′)) > 0}. Here B1 is a λ⊕-measurable set, and Fubini’s

theorem implies that λ⊕(B1) > 0. We will move from ω into B in two stages:

ω = (m, θ; η)
(1) k times move M2−−−−−−−−−−−−−→ (m′, θ′; η) ∈ B1 × {η}

↓ (2) move M1

(m′, θ′; η′) ∈ {(m′, θ′)} ×B2(m′, θ′) ⊂ B

(1) By Claim 6.3, there exists a positive integer k such that with positive probability, the

chain generated by the MCMC algorithm can reach the set B1 × {η} starting from the

point (m, θ; η) after k times move M2.

(2) From a point (m′, θ′; η) ∈ B1×{η}, the chain can reach the set {(m′, θ′)}×B2(m′, θ′) ⊂ B
in a single application of move M1.

By the Chapman-Kolmogorov equations, it then follows that starting from the point ω, the

chain can reach the set B in k + 1 iterations. Hence, the Markov chain generated by the

MCMC algorithm is λ∗-irreducible. In addition, from the proof of aperiodicity in Claim 6.3,

it also follows that with positive probability, the chain may not move at all. Therefore, it is

aperiodic.

It then remains to prove Claim 6.3. This is done below, first for irreducibility and then

for aperiodicity.

Proof of Claim 6.3: irreducibility. Let z = (m, θ) ∈ Θ =
⋃
m>1

(
{m}×Θm

)
and let B ⊂ Θ be

a Borel set such that λ⊕(B) > 0. We have to show that there exists an integer k = k(z,B)

such that P[Zk ∈ B | Z0 = z] > 0.

Without loss of generality, we may assume that B is of the form {d} × Bd where Bd is

a Borel set in Θd with λd+1(Bd) > 0. We have to show that there exists a positive integer

k such that P[Zk ∈ {d} × Bd | Z0 = (m, θ)] > 0. There are three cases to consider: d = m,

d > m and d < m.

Case d = m: Suppose first that d = m, that is, no change of dimension is needed. By

Lemma A.3 in Appendix A.5, the set Θm is path-connected. In view of Proposition 6.1,

successive calls to move M2.1 will leave the model index m unchanged and will displace the

initial vector θ to a point in the set Bm. Formally, let (Yt)
∞
t=0 be the homogeneous Markov

chain on E = Θm with transition mechanism given by move M2.1. By Proposition 6.1, there

exists an integer k > 1 such that P[Yk ∈ Bm | Y0 = θ] > 0. It follows that P[Zk ∈ {m}×Bm |
Z0 = (m, θ)] > (1/3)k P[Yk ∈ Bm | Y0 = θ] > 0, since at each step, there is a chance of 1/3 or

1/2 that move M2.1 is selected.

Case d > m: For integer j > 1, write cj = (1/4; 1/2, . . . , 1/2; 1/4) ∈ Θj , the center of Θj .

Since Θj is open, there exists rj > 0 such that C(cj , rj) ⊂ Θj . Let r = min(rm, . . . , rd).

Recall that move M2.2 of the algorithm permits to increment the model index by one. We

19



will show that with positive probability, it is possible to move in the following way:

{d} × C(cd, r)
k2 times move M2.1−−−−−−−−−−−−→ {d} ×Bd

↑ move M2.2

. . .

↑ move M2.2

{m+ 1} × C(cm+1, r)

↑ move M2.2

(m, θ)
k1 times move M2.1−−−−−−−−−−−−→ {m} × C(cm, r)

First, as in the case d = m, the existence of the required numbers k1 and k2 of moves is

guaranteed by Proposition 6.1. A crucial fact here is that the number k2 does not depend on

the particular transit point in {d} × C(cd, r).

Second, for each j ∈ {m, . . . , d − 1} and each θ(j) ∈ C(cj , r), it is possible to move from

(j, θ(j)) upwards to {j + 1} × C(cj+1, r) with a single call to move M2.2: an additional new

coordinate in the interval (1/2 − r, 1/2 + r) is proposed and the enlarged resulting vector is

accepted.

Finally, by the Chapman–Kolmogorov equations, there is a positive probability that the

chain will move from (m, θ) along the path above into {d} ×Bd in k1 + (d−m) + k2 steps.

Case d < m: The proof is similar as in the case d > m, this time with m − d downward

moves (M2.3) from {m}×C(cm, r) down to {d}×C(cd, r), with r = min(rd, . . . , rm). At each

such step, the final coordinate of the vector (y1, . . . , yj−1) is suppressed and the resulting

vector is accepted.

This completes the proof of irreducibility in Claim 6.3.

Proof of Claim 6.3: aperiodicity. It is sufficient to show that events of the form {Zt+1 = Zt}
occur with positive probability. Consider the vector θ = (1/4; 1/4, 1/4, 1/4, 7/8; 1/4) in

Θ5. Applying move M2.3 to (5, θ), attempting to move into the set {4} × Θ4, involves

the suppression of the coordinate 7/8. However, the resulting point (4, θ′), where θ′ =

(1/4; 1/4, 1/4, 1/4; 1/4), does not belong to Θ4, as y4 = 5/4 > 1. As a consequence, the

proposed vector must be rejected.

By continuity, there exists a small cube C = C(θ, ε) ⊂ Θ5 so that for every point in {5}×C,

the move M2.3 yields a proposal that violates the constraint 0 < y4 < 1 and therefore must

be rejected with probability one. Finally, by irreducibility, the chain has positive probability

of reaching the set {5} × C, and this completes the proof of aperiodicity.

Claim 6.3 being proven, the proof of Theorem 6.2 is complete too.

7 Examples

In order to provide some validation for our methodology, we first apply it to artificial data

(Subsection 7.1) and compare our estimator with two frequentist estimators. Next, in Sub-
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section 7.2, we analyse a dataset of Danish fire insurance claims, a univariate version of which

has been previously studied in McNeil (1997) and Resnick (1997).

7.1 Simulation experiment

We compare the performance of our estimator with two frequentist estimators: the empirical

spectral measure in Einmahl et al. (2001) and the maximum empirical likelihood estimator

(mele) in Einmahl and Segers (2009).

Let x = {(xi1, xi2), i = 1, . . . , n} be an observed sample from a distribution in the domain

of attraction of a bivariate extreme-value distribution. While our estimator is based on the

associated censored sample x∗, the two frequentist estimators are based on the following rank-

transformed sample. Let zij = n/(n + 1 − rij), with rij the rank of xij among x1j , . . . , xnj ,

for i = 1, . . . , n and j = 1, 2. For i = 1, . . . , n, put si = zi1 + zi2 and wi = zi1/si; think of

(si, wi) as the (pseudo-)polar coordinates of (zi1, zi2) with respect to the sum-norm. Now for

a fixed k > 0, let In,k ⊂ {1, . . . , n} be the set of i ∈ {1, . . . , n} such that si > n/k. Here k

plays a similar role to our threshold (u1, u2) and should be thought of as being large but of

smaller order than n; in fact, asymptotically, k = kn → ∞ but kn/n → 0. Write N = |In,k|.
The empirical spectral measure is simply

Ĥemp(w) =
1

N

∑
i∈In,k

1[0,wi](w), w ∈ [0, 1].

Note that its mean is not necessarily equal to 1/2, so Ĥemp is not a genuine spectral measure.

The mele is equal to

Ĥmele(w) =
1

N

∑
i∈In,k

pi 1[0,wi](w), w ∈ [0, 1],

where the weights pi are given by

pi =
1

N

1

1 + µ(wi − 1/2)
, i = 1, . . . , N,

in terms of a Lagrange multiplier µ determined by the moment constraint

1/2 =

∫ 1

0
w dĤmele(w) =

N∑
i∈In,k

piwi.

We consider three models in the domain of attraction of some bivariate extreme-value dis-

tribution, two of them with atoms at 0 and 1, and one without such atoms; see Appendix A.6.

To asses the performance of the estimators, we do the same type of simulation experiment as

in Einmahl and Segers (2009). For each model, we draw 1 000 samples, each of size n = 1 000.

We consider ten different thresholds (u1α, u2α), with α ranging over an equidistant grid in

[0.72, 0.92]. For each α and for j ∈ {1, 2}, the threshold ujα is equal to the empirical quantile
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Figure 5: Mixture model. Figure (a) shows the MISE of each estimator as a function of the

threshold (determined by α) for 1 000 samples, each of size n = 1 000. The thick line is the

MISE of the Bayes estimator, the dotted line is the MISE of the mele, and the dashed line

is the MISE of the empirical estimator. The vertical line indicates the threshold for which

the results of the simulation are plotted in (b), (c), and (d). We summarise the results by

providing 95% pointwise confidence bands (shaded regions) and the medians (thick lines) for

each estimator: Bayes (b), empirical (c), and mele (d). In the three latter plots, the dashed

line is the true spectral measure.

of probability α for margin j. For the two frequentist estimators, we compute corresponding

values kα in such a way that for each α and each sample, there are the same number of

observations in the tail region determined by kα as in the tail region [u1α,∞) × [u2α,∞).

For each value of the threshold, the performance of the estimators is measured via the mean

integrated square error

MISE(Ĥ) = E

[∫ 1

0
{Ĥ(w)−H(w)}2 dw

]
,

estimated by the sample mean of the integrated squared errors over the 1 000 samples. In

Figures 5–7, the results are plotted as a function of the threshold.

As the results indicate, there does not seem to be a grand winner, although there is a

grand loser, the empirical spectral measure. When comparing the results for the Bayes and
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Figure 6: Logistic model. Figure (a) shows the MISE of each estimator as a function of the

threshold (determined by α) for 1 000 samples, each of size n = 1 000. The thick line is the

MISE of the Bayes estimator, the dotted line is the MISE of the mele, and the dashed line

is the MISE of the empirical estimator. The vertical line indicates the threshold for which

the results of the simulation are plotted in (b), (c), and (d). We summarise the results by

providing 95% pointwise confidence bands (shaded regions) and the medians (thick lines) for

each estimator: Bayes (b), empirical (c), and mele (d). In the three latter plots, the dashed

line is the true spectral measure.
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Figure 7: Asymmetric logistic model. Figure (a) shows the MISE of each estimator as a

function of the threshold (determined by α) for 1 000 samples, each of size n = 1 000. The

thick line is the MISE of the Bayes estimator, the dotted line is the MISE of the mele, and the

dashed line is the MISE of the empirical estimator. The vertical line indicates the threshold

for which the results of the simulation are plotted in (b), (c), and (d). We summarise the

results by providing 95% pointwise confidence bands (shaded regions) and the medians (thick

lines) for each estimator: Bayes (b), empirical (c), and mele (d). In the three latter plots,

the dashed line is the true spectral measure.
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the mele estimators, we see that both have their strenghts and their weaknesses. For instance,

the mele seems to do very well in the interior of the interval (0, 1), but has problems at the end

points, since the mele estimator has no atoms at 0 and 1. In fact, much of its MISE accounts

for this bias. One clear advantage of our estimator over the other ones is that it allows for

atoms at 0 and 1, similar to many parametric models (Beirlant et al., 2004, chapter 9). Note

also that the two frequentist estimators are not smooth; here we have smoothed them out

using cubic splines. The Bayes estimator, on the other hand, is smooth by construction.

7.2 Danish fire insurance data

The data set comprises 2 167 industrial fire losses and was collected from the Copenhagen

Reinsurance Company over the period 1980 to 1990. We are indebted to Alexander McNeil

(Heriot-Watt University) for making these data available through his personal homepage1.

The company’s figure for compensatory damage is divided in three categories: damage to

building (X1), damage to furniture and personal property (X2) and loss of profits due to the

incident (X3), see Figure 8.

In McNeil (1997) and Resnick (1997), the data-set is analysed as if it was univariate,

by combining the three categories into a single loss figure, X1 + X2 + X3. However, the

three types of loss compensations involve different portfolios, and in view of this, it is in the

insurance company’s interest to know the dependence among these types of compensations.

This is where our methodology becomes useful. Essentially, we are interested in the rare-

event probabilities and the extreme conditional quantiles described in the introduction. Here,

these tail quantities are derived respectively from the joint predictive density in (5.5) and the

conditional predictive density in (5.6).

For descriptive purposes, we investigate the dependence structures for all pairs of com-

pensatory damage categories. The Bayes estimates and 95% pointwise credibility sets for

the cumulative distribution functions of the spectral measures are given in Figure 11. The

thresholds u1 and u2 are chosen as the 90th percentiles of the respective margins.

We now focus on the first couple X1 and X2. Figure 11(a) clearly indicates that the two

variables are not independent in the region [u1,∞)×[u2,∞). The joint predictive density (5.5)

is shown in Figure 9. Finally, the mean of the conditional predictive density (5.6), that is the

predicted value of the claim X2 given the claim X1 = x1 and given X2 > u2, together with

the 95% quantile of the predictive conditional distribution are shown in Figure 10.

8 Discussion

We have provided a nonparametric Bayesian framework for analysis of bivariate extremes.

On the one hand, the nonparametric nature of the dependence structure (spectral measure)

is fully respected. On the other hand, for purposes of prediction of future high levels (even

1http://www.ma.hw.ac.uk/~mcneil/data.html

25



0 20 40 60 80 100 120 140
X1

0

20

40

60

80

100

120
X

2

(a) Damage to building (X1) vs Damage to

furniture and personal property (X2)

0 20 40 60 80 100 120 140
X1

0

10

20

30

40

50

60

X
3

(b) Damage to building (X1) vs Loss of

profits due to the incident (X3)

0 20 40 60 80 100 120
X2

0

10

20

30

40

50

60

X
3

(c) Damage to furniture and personal

property (X2) vs Loss of profits due to

the incident (X3)

Figure 8: Pairwise scatter plots of loss claims.
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Figure 9: Image of the joint density (5.5), on log scale, in the region [u1,∞)× [u2,∞).
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Figure 10: The data points, the predicted value of X2 (black line) given the claim X1 = x1,

along with the 95% pointwise quantiles (grey line) of the conditional predictive density (5.6).

conditionally), the predictive distribution incorporates both process and estimation uncer-

tainty. Actual computations are performed using a trans-dimensional MCMC algorithm.

Software written in (parallel) C++ wrapped in a Python environment may be obtained from

the authors.

Conceptually, it is not hard to see how to generalise the approach to arbitrary dimensions.

Practically, however, there are some serious obstacles to be overcome. In dimension d the

spectral measure may be an arbitrary probability measure on the (d − 1)-dimensional unit

simplex satisfying a certain number of moment constraints. It may have a density on each of

the 2d−1 faces of the unit simplex (Coles and Tawn, 1991). First, a prior needs to be specified

on a manageable but still dense submodel of spectral measures, for instance by specifying the

densities via splines or polynomials or some other set of basis functions. Second, efficient

MCMC methodology should be proposed for numerical computations.

Finally, the bivariate tail approximation via extreme-value distributions is not well-suited

to deal with asymptotic independence, in which case the tail approximation degenerates to

exact independence, an approximation which may be unsatisfactory for instance in case of the

bivariate Gaussian distribution with a high correlation. A distributional model encompassing

both asymptotic independence and dependence has been proposed in Ramos and Ledford

(2009), based on Ledford and Tawn (1996) and Ledford and Tawn (1997); see also Resnick

(2003) and Beirlant et al. (2004).
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Figure 11: Bayes estimates (thick line) and 95% pointwise credibility sets for the spectral measure

for each couple of compensatory damage category are shown in (a), (b) and (c).
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A Appendix

A.1 Censored likelihood

We give explicit formulas for the censored density f∗. Let

Fj(xj) = exp

{
−ζj

(
1 + ξj

xj − uj
σj

)−1/ξj
}
, j ∈ {1, 2},

so that

fj(xj) =
d

dxj
Fj(xj) =

ζj
σj

(
1 + ξj

xj − uj
σj

)−1/ξj−1

Fj(xj), j ∈ {1, 2},

for xj such that σj + ξj(xj − uj) > 0. Let

F (x1, x2) = exp
{
−`
(
− logF1(x1),− logF2(x2)

)}
,

where

`(s, t) = 2

∫
[0,1]

max
(
ws, (1− w)t

)
dH(w), (s, t) ∈ [0,∞)2.

Write ha = H({a}) for a ∈ {0, 1}. Assume H is absolutely continuous on (0, 1) with Radon-

Nikodym derivative h( · ). The mean constraint
∫ 1

0 w dH(w) together with H([0, 1]) = 1

implies ∫ 1

0
w h(w) dw = 1/2− h1 and

∫ 1

0
(1− w)h(w) dw = 1/2− h0.
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Furthermore,

∂

∂s
`(s, t) = 2

(
h1 +

∫ 1

t
s+t

w h(w) dw

)
,

∂

∂t
`(s, t) = 2

(
h0 +

∫ t
s+t

0
(1− w)h(w) dw

)
,

∂2

∂s ∂t
`(s, t) = −2

st

(s+ t)3
h

(
t

s+ t

)
,

and we have the representation

`(s, t) = s+ t+

∫ s

0

∫ t

0

∂2

∂σ ∂τ
`(σ, τ) dσ dτ, (s, t) ∈ [0,∞)2.

Finally, recall (x∗1, x
∗
2) = (x1 ∨ u1, x2 ∨ u2) and d = (1[u1,∞)(x1),1[u2,∞)(x2)). For {(x∗1, x∗2) :

σj + ξj(x
∗
j − uj) > 0, j = 1, 2}, f∗(x∗1, x∗2) is equal to:

F (u1, u2) if d = (0, 0),

f1(x1)
F1(x1)

∂

∂s
`(s,− logF2(u2))

∣∣∣∣
s=− logF1(x1)

F (x1, u2) if d = (1, 0),

f2(x2)
F2(x2)

∂

∂t
`(− logF1(u1), t)

∣∣∣∣
t=− logF2(x2)

F (u1, x2) if d = (0, 1),(∏2
j=1

fj(xj)
Fj(xj)

)
∆`(− logF1(x1),− logF2(x2))F (x1, x2) if d = (1, 1),

where

∆`(s, t) =
∂

∂s
`(s, t)

∂

∂t
`(s, t)− ∂2

∂s∂t
`(s, t).

A.2 Construction of an interpolating monotone cubic spline

Let 0 = y0 < y1 < y2 < · · · < yk < yk+1 = 1 be a set of abscissas, and let ϕ0 6 ϕ1 6 ϕ2 6

· · · 6 ϕk 6 ϕk+1 be a set of ordinates. We construct a piecewise cubic polynomial function

ϕ(·) such that

ϕ(yi) = ϕi, for all i = 0, . . . , k + 1,

and such that ϕ(·) is nondecreasing and continuously differentiable on (0, 1).

On every interval [yi, yi+1], i = 0, . . . , k, we expand ϕ around yi and we get

ϕ(y) =
di + di+1 − 2∆i

h2
i

(y − yi)3 +
−2di − di+1 + 3∆i

hi
(y − yi)2 + di(y − yi) + ϕi,

for all y ∈ [yi, yi+1], where ∆i = (ϕi+1−ϕi)/hi, hi = yi+1− yi, and where di and di+1 are the

endpoint derivatives. Thus, the construction of the spline depends only on the specification

of the set of endpoint derivatives 0 6 d0, d1, d2, · · · , dk, dk+1. Fritsch and Carlson (1980)

give necessary and sufficient conditions on these values in order to guaranty monotonicity

throughout [0, 1]. In particular, setting di = 0 for all i = 0, . . . , k + 1, always produces a
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continuously differentiable nondecreasing interpolant, although the resulting curve is not very

smooth. On the other hand, Fritsch and Butland (1984) propose a method for determining the

endpoint derivatives which produces smoother curves. In fact, it suffices to set d0 = 0 = dk+1

and

di =


∆i−1∆i

α∆i + (1− α)∆i−1
if ∆i−1∆i > 0,

0 otherwise,

where α = 1
3(1 + hi

hi−1+hi
), for i = 1, . . . , k.

A.3 Proof of Lemma 4.1

Write Θm,h0,h1 as

Θm,h0,h1 = m
1/2− h1

1− h0 − h1
Sm,h0,h1 ,

where, in view of (4.3),

Sm,h0,h1 =

{
(x1, . . . , xm−1) : 0 < x1, . . . , xm−1, xm <

1− h0 − h1

m(1/2− h1)
,where xm = 1−

m−1∑
i=1

xi

}
.

We have Sm,h0,h1 ⊂ Sm, with Sm = {(x1, . . . , xm−1) ∈ [0, 1]m−1 :
∑

i xi 6 1} the (m − 1)-

dimensional unit simplex. Therefore

λm−1(Θm,h0,h1) =

(
m(1/2− h1)

1− h0 − h1

)m−1

λm−1(Sm,h0,h1).

It is well known that λm−1(Sm) = 1/(m − 1)!, which is the normalising constant of the

Dirichlet(1, . . . , 1) distribution, with (1, . . . , 1) ∈ Rm. As a consequence,

λm−1(Sm,h0,h1) =

∫
Sm,h0,h1

dλm−1,

= λm−1(Sm)

∫
Sm,h0,h1

dλm−1

λm−1(Sm)
,

=
1

(m− 1)!
P

(
Y(m) <

1− h0 − h1

m(1/2− h1)

)
,

where Y(m) = max{Y1, . . . , Ym}, with Ym = 1−(Y1 +· · ·+Ym−1) and (Y1, . . . , Ym−1) uniformly

distributed on Sm, that is, Y = (Y1, . . . , Ym) follows a Dirichlet(1, . . . , 1) distribution. Finally,

equation (4.8) is derived from a result which can be found in Fisher (1929), namely

P(Y(m) < y) = 1−
b1/yc∑
k=1

(−1)k−1

(
m

k

)
(1− ky)m−1, for all y ∈ [1/m, 1].

Equation (4.7) follows.
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A.4 Proof of Proposition 6.1

The proof of Proposition 6.1 rests upon two ideas: first, any two points in an open and path-

connected set E can be connected by a finite number of overlapping cubes; second, within a

d-dimensional cube, every destination set can be reached in at most d moves. These ideas are

formalised in the following two lemmas. The proof of the proposition comes at the end.

Lemma A.1 (Chain of Cubes). Let ∅ 6= E ⊂ Rd be open and path-connected, and let C(x, r)

and C(y, s) be two cubes in E. Then there exists a finite number of cubes C0, . . . , CM in E

such that C0 = C(x, r), CM = C(y, s), and Ci−1 ∩ Ci 6= ∅ for every i ∈ {1, . . . ,M}.

Proof of Lemma A.1. Let ϕ : [0, 1] → E be a continuous path from ϕ(0) = x to ϕ(1) = y.

Since ϕ([0, 1]) is a compact subset of the open set E, there exists 0 < ε 6 min(r, s) such that

C(z, ε) ⊂ E for every point z on ϕ([0, 1]). Otherwise, for every integer n > 1, we could find

a point zn ∈ ϕ([0, 1]) such that C(zn, 1/n) would not be contained in E, that is, such that

there would exist qn ∈ Rd \ E with ‖zn − qn‖∞ < 1/n. By compactness, there would exist a

subsequence (znk)k>1 such that znk → z ∈ ϕ([0, 1]) as k →∞. Then necessarily also qnk → z

as k →∞. The limit point z would therefore belong to the boundary of E, contradicting the

fact that E is open.

Since ϕ is uniformly continuous, there exists an integer M > 2 such that ‖ϕ(t)− ϕ(s)‖∞ 6

ε/2 for all s, t ∈ [0, 1] such that |t− s| 6 1/M .

Let Ci = C(ϕ(i/M), ε) for i ∈ {0, . . . ,M}. By construction, Ci ⊂ E for all i ∈ {0, . . . ,M}
and ϕ(i/M) belongs to both Ci−1 and Ci, for every i ∈ {1, . . . ,M}.

Lemma A.2 (Within-Cube Transitions). Let ∅ 6= E ⊂ Rd be open and let (Yt)
∞
t∈0 be a

homogeneous Markov chain on E with transition mechanism given in Proposition 6.1. Let

C ⊂ E be a cube and let B ⊂ C be a Borel set such that λE(B) > 0. Then

P[Yd ∈ B | Y0 = y] > 0, for all y ∈ C.

Proof of Lemma A.2. For notational convenience, we treat the case d = 2. Write C = I1× I2

for some non-empty open intervals I1 and I2. From y = (y1, y2) in C, we will make two moves

within C:

y = (y1, y2)
coordinate i = 1−−−−−−−−−−→ y′ = (y′1, y2)

coordinate i = 2−−−−−−−−−−→ y′′ = (y′1, y
′
2).

More specifically:

1. first, coordinate i = 1 is chosen with probability p1(y), a new value y′1 ∈ I1 is proposed

according to the proposal density q1(y′1 | y), and this new value is accepted with probability

α1(y′1 | y), the new point being y′ = (y′1, y2);

2. next, coordinate i = 2 is chosen with probability p2(y′), a new value y′2 ∈ I2 is proposed

according to the proposal density q2(y′2 | y′), and this new value is accepted with probability

α2(y′2 | y′), the final point being y′′ = (y′1, y
′
2).
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The final point y′′ may or may not belong to B. By the Chapman–Kolmogorov equations,

P[Y2 ∈ B | Y0 = y] > p1(y)

∫
y′1∈I1

q1(y′1 | y)α1(y′1 | y)

p2(y′)

(∫
y′2∈I2

q2(y′2 | y′)α2(y′2 | y′)1(y′′ ∈ B) dy′2

)
dy′1.

The right-hand side is positive, being the integral of a nonnegative function which is positive

on a set of positive measure.

Proof of Proposition 6.1. Since E is open, we can write E as a countable union of open cubes

(for instance, cubes inside E with rational vertices). At least one of these cubes, say C, must

be such that λE(B∩C) > 0. Replacing B by B∩C, we can without loss of generality assume

that B ⊂ C.

By Lemma A.1, we can find a chain of cubes C0, . . . , CM , such that CM = C and Ri :=

Ci−1 ∩ Ci 6= ∅ for every i ∈ {1, . . . ,M}; see Figure 4. From y ∈ C0, the chain can move via

the rectangles R1, . . . , RM into B in at most k = (M + 1)d steps:

y
d steps−−−−→ R1

d steps−−−−→ R2
d steps−−−−→ · · · d steps−−−−→ RM

d steps−−−−→ B,

each arrow being justified by Lemma A.2. For instance, if M = 2, then for every y ∈ C0,

P[Y3d ∈ B | Y0 = y] >
∫
y(1)∈R1

P[Yd ∈ dy(1) | Y0 = y]∫
y(2)∈R2

P[Y2d ∈ dy(2) | Yd = y(1)] P[Y3d ∈ B | Y2d = y(2)],

which is positive, since for all y ∈ C0, y(1) ∈ R1, and y(2) ∈ R2, each of the probabilities

P[Yd ∈ R1 | Y0 = y], P[Y2d ∈ R2 | Yd = y(1)], P[Y3d ∈ B | Y2d = y(2)]

is positive by Lemma A.2.

A.5 Path-connectedness

Lemma A.3. For every integer m > 1, the set Θm is path-connected.

Proof. As Θ1 = (0, 1/2)2 is convex, only the case m > 2 needs consideration. For h0, h1 ∈
(0, 1/2)2, write ȳ(h0, h1) = (1/2− h1)/(1− h0 − h1). Note that the point (h0, ȳ, . . . , ȳ, h1) ∈
Rm+1 belongs to Θm.

Let θ = (h0, y1, . . . , ym−1, h1) and θ′ = (h′0, y
′
1, . . . , y

′
m−1, h

′
1) be two points inside Θm.

Write ȳ = ȳ(h0, h1) and ȳ′ = ȳ(h′0, h
′
1). A continuous path from θ to θ′ is constructed by

joining the following three pieces:

(h0, y1, . . . , ym−1, h1)
(1)−−→ (h0, ȳ, . . . , ȳ, h1)

↓ (2)

(h′0, ȳ
′, . . . , ȳ′, h′1)

(3)−−→ (h′0, y
′
1, . . . , y

′
m−1, h

′
1).
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The pieces (1) and (3) are just straight line segments, which belong to Θm by convexity of the

set Θm,h0,h1 in (4.5). For the second piece, let [0, 1] 3 t 7→ (h0(t), h1(t)) be the straight line

segment connecting (h0, h1) and (h′0, h
′
1), and write ȳ(t) = ȳ(h0(t), h1(t)). Then the second

piece in the diagram above is given by the path t 7→ (h0(t), ȳ(t), . . . , ȳ(t), h1(t)).

A.6 Models used in the simulation study

In the simulation study in Subsection 7.1, random samples were drawn from the following

distributions:

• The bivariate mixture distribution function

F (x, y) =

(
1− 1

x

)(
1− 1

y

)(
1 +

r

x+ y

)
, x > 1, y > 1,

with parameter r ∈ [0, 1], see de Haan and Resnick (1977, Example 3) and Einmahl and

Segers (2009, Example 5.2). Its margins are unit Pareto and its extreme-value attractor

has spectral measure Hr given by

Hr(w) =
1

2
(1− r) + rw, w ∈ [0, 1).

In particular, it has atoms given by Hr({0}) = Hr({1}) = (1− r)/2. We set r = 1/2 in

the simulation.

• The bivariate distribution function with unit Pareto margins and with extreme-value de-

pendence structure given by the asymmetric logistic model in Tawn (1988), the spectral

measure being

Hr,ψ1,ψ2(w)

=
1

2

(
1 + ψ1 − ψ2 − (ψr1(1− w)r−1 − ψr2wr−1)(ψr1(1− w)r + ψr2w

r)1/r−1
)
,

for 0 6 w < 1, in terms of parameters r > 1 and ψ1, ψ2 ∈ [0, 1]. The atoms are given

by Hr,ψ1,ψ2({0}) = (1− ψ2)/2 and Hr,ψ1,ψ2({1}) = (1 + ψ1)/2. We look at a symmetric

case with ψ1 = 1 = ψ2 and r = 2, also called the logistic model, while in the asymmetric

case we consider ψ1 = 0.45, ψ2 = 0.55, and r = 3.
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