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Abstract

In this paper, we compare conditional distributions derived from bivariate archimedean cop-
ulas in terms of their respective variability using the dispersive stochastic order. Specifically,
we consider the effect of increasing the second component on the variability of the conditional
distribution of the first component. Characterizations are provided in terms of the generator
and of the marginal distributions. Several examples involving standard parametric copulas
such as Clayton and Frank are discussed.
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1 Introduction and motivation

In this paper, we consider random couples (X, X5) with joint distribution function Fx of
the form

Fx(l’l,l‘z) = C¢(F1(£I)1),FQ(ZL’2)) (11)

where for t € R, F;(t) = Pr[X; < t], i = 1,2, and Cy is the archimedean copula with
generator ¢ defined as

Oy (ur, uz) = { P (d(wr) + @us)) if dur) + duz) < ¢(0), (12)

0 otherwise,

for 0 < uy,us < 1. The generator ¢ : [0,1] — R™ entering (1.2) is a continuous, possibly
infinite, strictly decreasing convex function such that ¢(1) = 0. The pseudo-inverse of ¢ is
the function ¢!~ given by

ol=1(¢) = { ¢~ (t) for 0 <t < $(0), (1.3)
0 for ¢(0) <t < 4o0.

Clearly, ¢!~ is continuous and non-increasing on R*, and strictly decreasing on [0, ¢(0)].
For a strict generator (i.e. a generator ¢ such that limy_o¢(t) = +o00), ¢l is just the
inverse ¢~ of ¢. For a non-strict generator (i.e. a generator ¢ such that ¢(0) < +00), @I~
coincides with the inverse ¢—! of ¢ on [0, #(0)] and is set equal to 0 after ¢(0). Throughout
the paper, we assume that the marginal distribution functions F} and F; are continuous
and strictly increasing on their support. If needed, we also assume that F; and F5 possess
probability density functions, denoted as f; and fs, respectively.

Archimedean copulas (1.2) enjoy numerous convenient mathematical properties and are
therefore appreciated for modelling or simulating bivariate data. See, e.g., Nelsen (2006,
Chapter 4) for a review. In particular, archimedean copulas naturally appear in relation
with frailty models for the joint distribution of two survival times depending on the same
latent factor (the generator being then the inverse of the Laplace transform of this latent
factor).

Here, we examine the behavior of one component of a random vector when the other
component gets larger, or ages, that is, we compare the distribution of X; given X, = x5
to the distribution of X; given Xy = zi, with x5 < x,. We refer to this phenomenon as
cross-aging. Random couples with joint distribution function (1.1) often possess positive
dependence properties, ensuring that X; “increases” in X,, and vice versa. Formally, recall
the definition of stochastic dominance, which translates into mathematical terms the intuitive
idea of “being larger than” for random variables: given the random variables X and Y, X
is said to be smaller than Y in the stochastic dominance (denoted as X =g Y) if Pr[X <
t] > Pr[Y > t] for all t. Whatever the threshold ¢, it is thus more likely that X falls below ¢
compared to Y. Given a random variable X and an event A, let us denote as [X|A] a random
variable with distribution function x — Pr[X < x|A]. Under appropriate conditions on the
generator ¢, we have that [X;| Xy = x5] =g [X1| X2 = 2] for zo < 2f, when (X, X3) has
distribution function (1.1). This property is referred to as conditional increasingness in the
literature. If C is obtained from the frailty construction (i.e. the generator ¢ is the inverse of
a Laplace transform) then the above stochastic inequality holds with the stronger likelihood
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ratio order replacing <. This property is known in the literature as total positivity of
degree 2 (TP2) and is fulfilled by most parametric families of archimedean copulas. For
more results in that direction, we refer the interested readers, e.g., to Denuit et al. (2005,
Chapter 5).

Whereas X; generally “increases” in X5, a natural question that has to the best of our
knowledge not yet been addressed in the literature concerns the variability of X; given Xo.
When X, is known to increase, does X; become more or less variable? In this paper, we
answer this question using the dispersive order which turns out to be the appropriate tool
to study the variability of conditionals derived from archimedean copulas provided some
conditions are met.

The paper proceeds as follows. Section 2 recalls basic facts about dispersive order. In
Section 3, we examine the case of unit uniform marginals. The strictness of the generators
turns out to play an important role in the analysis conducted there. Then, in Section 4, we
allow for arbitrary marginals. It turns out that this general case is not a direct consequence
of the preceding section as the marginal behavior does matter. In Section 5, we establish
comparative results where cross-aging (in the dispersive sense) provides the appropriate
theoretical argument. The final Section 6 concludes.

2 Dispersive order

The dispersive order can be used for comparing spread among probability distributions.
Considering two random variables X and Y, X is smaller than Y in the dispersive order
when the difference between any two quantiles of X is smaller than the difference between
the corresponding quantiles of Y. The dispersive order has a long history in statistics. We
refer the reader e.g. to the review paper by Jeon et al. (2006) as well as to the reference
book by Shaked and Shanthikumar (2007) for a detailed presentation of the stochastic order
relation =<gisp. In the context of lifetime distributions, it has been used by Belzunce et al.
(1996) and Pellerey and Shaked (1997) to characterize IFR and DFR distributions.

Define the generalized inverse (or quantile function) of the distribution function F' for
a € (0,1) by

FYa)=inf{z e R|F(z) > a}.

Recall that given the random variables X and Y with distribution functions F'x and Fy and
inverses [y I and y 2 ! respectively, X is said to be smaller than Y in the dispersive order
(denoted as X =gisp V) if

FHB) — Fx'l(a) < Y (B) — Fy''(a) whenever 0 < a < <1 (2.1)
& a— Fyl(a) — Fy'(a) non-decreasing on [0, 1].

It is clear that the order =gy, indeed corresponds to a comparison of X and Y by variability
because it requires the difference between any two quantiles of X to be smaller than the
corresponding difference in quantiles of Y. It is easy to prove that X =g, Y implies
Var[X] < Var[Y]. In addition to the definition (2.1), the following characterization is useful:

X =aisp Y © = F, Y (Fx () — 2 non-decreasing. (2.2)
See formula (3.B.10) in Shaked and Shanthikumar (2007).
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3 Unit uniform marginals

If the support of the conditionals is finite with common endpoints then it is easy to see that
the dispersive order cannot hold. This can be deduced from (2.1): F},! — Fy' cannot be
monotone on [0, 1] if F'(0) = F,1(0) > —oo and Fy'(1) = Fy'(1) < 4+oc. Therefore, in
case the support is bounded, we need different endpoints for a possible comparison in terms
of the dispersive order. This is only possible if the generator is non-strict, as shown next.

Let (U, Us) be a couple of random variables with joint distribution function Cy given in
(1.2). The distribution function of [U;|Us; = us] is given by

o g iy > 67 (6(0) — B(un))
Prith < s = w] = { 0 it ur < 6 (3(0) — oluw)).

The corresponding quantile function is given by

o () — { o7 (0 () (£42)) = 6(wn)) i 0 > S,

671 (6(0) — Blun)) if o < Sl

Note that for strict generator the quantile function simplifies to

bt =07 (o (007 (2222)) - o).

Now, for a = 1 we get ¢~ 1(0) = 1 whatever ¢ (be it strict or not) and the conditioning value
ue. On the contrary, letting o tend to 0 gives 0 if ¢ is strict, whatever uy, but the limit may
depend on ¢ and on us if ¢ is non-strict. More precisely, when ¢ is non strict the support is
[~ (p(0) — ¢(uz)), 1]. Therefore, for a strict generator ¢, the support for both [U;|Us = uy]
and [U1|Uy = ub] is the interval [0, 1] and no dispersive order relation can hold whereas if ¢
is non strict then a dispersive comparison may be possible.

We also consider conditionals of the form [U;|Us < us] in this paper. The distribution
function of [U1|Us < ug] is

MW";—W if ur > ¢~ ($(0) — P(us)),
0if uy < ¢~ (¢(0) — p(uz)) .

The corresponding quantile function is given by

Uy, () = (b_l((b(uza) - ¢(U2))-

Also here, we see that for « = 1 we get ¢~ (0) = 1 whereas the limit for o tending to 0 is 0
for a strict generator but may depend on ¢ and on wus if the generator is non-strict. Hence,
no dispersive order relation is possible between [U;|Uy < ug| and [Up|Uy < wh] if ¢ is strict.

The next result investigates the effect of increasing one component of the archimedean
vector.

Pf[Ul S u1|U2 S UQ] = {

Proposition 3.1. Let (Uy, Us) be a couple of unit uniform random variables with archimedean
copula with non-strict generator ¢. Then,



(i) The stochastic inequality [Uy|Us = us] <aisp [U1|Us = ufy] holds for uy < ufy € [0,1] if,
and only if, o+ o w;;(a) — « 1s non-decreasing or, equivalently, if and only if

%wm(a) < %zbug(a) for all c.

(i) The stochastic inequality [Uy|Us < us] =gy [U1|Us < uh] holds for uy < uly € [0,1] if,
and only if, a +— zpz,z o Z;l(a) — « is mon-decreasing or, equivalently, if and only if

25, (0) < 25, (a) for all o

Proof. The first part of the statements in (i)-(ii) is a direct application of (2.2). To prove
the second part of the statement in (i), note that

Py © w;; (o) — o is non-decreasing in «
g Uy (U3, () — 52t (U3, (@)
o o (¢ ‘1( )

& w%( Ha)) — ¢u2(¢ Y(a)) > 0 for all o

= ¢U2( ) < aizﬁ (a) for all «

=

> 0 for all «

which ends the proof of (1) The reasoning leading to (ii) is similar. O
Let us now examine an example.

Example 3.2 (Family 7 in Table 4.1 of Nelsen (2006)). Consider the generator ¢y(t) =
—1In (0t + (1 — 0)) indexed by 0 € (0,1]. The corresponding copula function is

Cg,(u1, us) = max {9u1u2 + (1 =0)(ug +uz — 1), 0}.

Consider (Uy, Us) with joint distribution function Cy,. For § = 1, we get the lower bound
copula C'(uy, us) = max{u;+us—1,0} which gives the minimum in the dispersive sense since
[U1|Us = ug] is constantly equal to 1 — uy in that case. For § = 0, we get the independent
case.

For fixed 6 € (0, 1], we have

a—1+46 - 1-60
Wy (@) = 5 ifa > 5o,
w2l ) (Qw)-0) 4 ) 16
Ous+1—0 Ouo+1—-67

so that for ¢’ < t,

0if v >

9'+1 0’
_ = 0)(1 t') 1460 -
ve(@) =~ Gula) = (19 9)(1 (i/) - ?1 00)(1 1f) oLt o= 2 < WH ”
0U+1-0 0110 1fa < 9t+1 g

Since Yy — 1y is non-increasing in «, we finally get by (2.1)
Uy < UIQ = [U1|U2 = Ug] jdisp [U1|U2 = U,Q]
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Now, as
t

g .
V) =g

increases in ¢, we also have
uy <uy = [Uh|Us < us) Raisp [U1]Us < uh).

For this copula, we thus see that increasing the second component increases the conditional
distribution in the dispersive order.

4 Arbitrary marginals

Now that we have an effective condition for the conditionals to be ordered in the dispersive
order for the unit uniform case, it is natural to wonder whether this condition also applies to
random couples with arbitrary marginals connected through an archimedean copula. How-
ever, the results obtained in Section 3 do not allow to treat this more general situation.
The reason is that the implication X =<gisp ¥ = g(X) =aisp 9(Y) is not necessarily true for
increasing transformations ¢ unless additional assumptions about the shape of the function
g and the respective distributions of X and Y are fulfilled.

There is nevertheless one particular case where the results derived in Section 3 extend to
other marginals than unit uniform ones, as discussed next.

Proposition 4.1. Let (X1, X3) be a random vector with distribution function (1.1). If F
is concave then [X1|Xy = x2] increases in xy in the =gsp-sense if the non-strict generator
¢ fulfills the condition of Proposition 3.1(i). Similarly, if Fy is concave then [X1]|Xy <
To] increases in Ty in the = gsy-sense if the non-strict generator ¢ fulfills the condition of
Proposition 3.1(ii).

Proof. Assume that the condition in Proposition 3.1(i) is met by ¢. If we define U; = F;(X;),
i = 1,2, then (Uy, Us) fulfills the conditions of Proposition 3.1(i). Since the common right
endpoint of the supports of [U1|Us = ug] and of [U;|Uy = uh] is 1, we have [Uy|Usy = uhy] =g
[U1|Uy = us]. Also, we have from Proposition 3.1(i) that [U;|Us = us] Saisp [U1|U2 = uh)].
From Theorem 3.B.10 in Shaked and Shanthikumar (2007), we see that provided and F, ! is
convex (or, equivalently, F} is concave, that is, the corresponding probability density function
is decreasing), we have

[U1|Us = o] Zaip [Un|U = wh] = [FTH(U)|Uz = ua] Zaisp [Fy ' (U1)|Uz = uh]
= [X1|X2 = 5132] jdisp [X1|X2 = IJQ]

The same type of result holds for the other conditioning. O

Concave distribution functions are unimodal about 0 (i.e. they possess decreasing densi-
ties). For such distributions, the assumptions of Proposition 3.1 are thus enough to ensure
that the conditionals are ordered in the <gis,-sense. Concave distribution functions arise in
a number of ways in applied probability. In particular, all the DFR (for decreasing failure
rate) distributions have concave distribution functions. Moreover, this class is closed under
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change of scale, power transformation, left truncation, limits, mixtures and the formation of
arbitrary series systems.

Let us now consider arbitrary marginals. Note that switching from unit uniform to
arbitrary marginals allows us to consider a strict generator ¢ as long as the supports of
the conditional distributions do not coincide with some bounded interval. For instance,
considering a strict generator ¢ with marginals F; and F, with common support (0, 4+00)
makes a =gisp comparison possible. For these reasons, we do not repeat the conditions on
the generator, keeping in mind that we exclude the case with identical bounded supports in
the next result.

Proposition 4.2. Let X = (X1, X3) be a random vector with distribution function (1.1).
Then,

(i) the stochastic inequality [X1| X2 = 2] Raisp [X1|Xo = ] holds for x4 < iy if, and only
if,
a = F (Ymy (@) = FTH @k () (@) non-decreasing on [0, 1]. (4.1)

i1) the stochastic inequality [ X1| X < 23] Raisp [X1| X2 < )] holds for xo < xf if, and only
p 2 2

if,
o Fl_l(zﬁ}k;z(wé)(a)) — F! (zﬁ}%(m)(a)) non-decreasing on [0, 1]. (4.2)

Proof. The result is a consequence of (2.1)-(2.2) together with Proposition 3.1. Define
U; = Fi(X;), i = 1,2. Considering (i), the conditional distribution of X is given by
Pr[X1 S $1|X2 = SCQ] = PI‘[F1_1(U1> S .T1|F2_1(U2> = .TQ]
Pr[U1 S F1($1)|U2 = FQ(ZEQ)]
= ¢;21(x2)(F1(331))

so that the corresponding quantile function is Fy ' 0 ¢p,(,,). The proof for (i) is similar. O

Note that only [} matters in Proposition 4.2, not F,. This comes from the fact that
the condition Xy = x5 or Xy < x5 can equivalently be expressed in terms of Uy = Fy(X5),
coming back to the unit uniform distribution whatever F5.

Another way to state the results in Proposition 4.2 consists in imposing that the first
derivative of (4.1)-(4.2) is non-negative. For instance, this gives for (4.1)

%sz(xz)

Ji <F1_1 (wF2($2) <Oz)))
where f; denotes the probability density function corresponding to Fj.

Let us now consider a couple of examples involving standard families of parametric
archimedean copulas.

To non-decreasing,

Example 4.3. Consider Frank’s copula given by

(exp(—0Quy) — 1)(exp(—0usy) — 1)
exp(—0) — 1 ) 070

1
Cop (U1, uz) = —51n <1 +



This is an archimedean copula with generator ¢,(t) = In(e™® — 1) —In(e™* — 1). Then, we
obtain

1 e—QFQ(:)JQ) + O{(l _ 6—9F2(:)32))
Vry(an) (@) = 9 In <€—0F2(x2) +afe? — 6—6‘F2(x2)>> (4.3)
and
\ 1 e 0F(®2) _ 1
Vhen(@) = gl <e—0Fz<mz> 1 (e OPa(e2)a — 1)(e=0 — 1)> ' (44)

For instance, with unit Exponential marginal F}, that is, Fi(z) = 1 — exp(—x), we get

1 — Vpya
A (Urepfa)) = P () = —1n (T 2200 (45)
and o o
— ! (6%
F ($y) (@) = T (€00 (@) = —In (ﬁ) (4.6)
Fo(xo

For # > 0, Frank’s copulas express positive dependence, i.e. large values of one component
tend to be associated with large values of the other one. Considering Fy(zs) = 0.25 and
Fy(x,) = 0.75, Figure 4.1 (top left panel) shows that the difference (4.5) is increasing for
values of 0 corresponding to Kendall’s 7 equal to 0.1, 0.4, 0.7, and 0.9, respectively. This
means that increasing the value of X, makes X; more variable in the <gisp-sense. On the
contrary, for # < 0, the dependence is negative, that is, large values of one component tend
to be associated with small values of the other one. For such s, we see from Figure 4.1 (top
right panel) that the difference (4.5) is now decreasing. Increasing X, now makes X less
variable in the <yg4,-sense. Moving from the center of the distribution to the tails does not
modify the conclusion, as it can be seen from Figure 4.2 (top panels) where we consider
and x, such that Fy(zs) = 0.99 and Fy(z) = 0.995. Figure 4.3 shows the difference (4.5)
as a function of o and 6. The different behavior according to the sign of # is clearly visible
there.

In addition to the unit Exponential case, we also consider in Figures 4.1-4.2 the case of
Pareto marginal Fi, that is, Fi(z) =1 — 2% for z > 1 and some a > 0, standard Normal
marginal F;, and Gamma marginal F;. We can see there that the results obtain in the unit
Exponential case are also valid in the Pareto case. However, no dispersive order relation
holds in the Normal case whereas in the Gamma case, the dispersive order relation is valid
only for sufficiently high correlation. This illustrates the effect of marginal distributions on
cross-aging.

Example 4.4. Consider Clayton’s copula defined by
Clgy (11, 2) = (u7? + 37 — 1) 6> 0. (4.7)

This copula belongs to the archimedean class, generated by ¢g(t) = t—99—17 6 > 0, which is
strict. In this case, we find ¢, '(t) = (0t +1)71/% and

V() (@) = <1 + (Fy(xa)) ™ (a—e/(eﬂ) -1) )_1/9 (4.8)

7



-20

aaaaaaaaaa

-05

.
m g ““'“:__»_»__» >>>>>>>>
T

. :
) :

| m‘
| ?

DID DI2 DIA DIS DIE | ID

Figure 4.1: Graph of (4.1) for Frank copula with x5 and 2}, such that Fy(xs) = 0.25 and
Fy(x}) = 0.75 and values of 6 corresponding to Kendall’s 7 equal to 0.1 (solid), 0.4 (dashed),
0.7 (dotted), and 0.9 (dotdash) in the left panels and to -0.1 (solid), -0.4 (dashed), -0.7
(dotted), and -0.9 (dotdash) in the right panels. From top to bottom: unit Exponential
marginal Fy, Pareto marginal F} (with a = 5), standard Normal marginal F;, and Gamma
marginal F; (with shape parameter 3 and scalg parameter 1, that is, with mean and variance
equal to 3).
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Figure 4.2: Graph of (4.1) for Frank copula with x5 and 2}, such that Fy(xs) = 0.99 and
Fy(xh) = 0.995 and values of 6 corresponding to Kendall’s 7 equal to 0.1 (solid), 0.4 (dashed),
0.7 (dotted), and 0.9 (dotdash) in the left panels and to -0.1 (solid), -0.4 (dashed), -0.7
(dotted), and -0.9 (dotdash) in the right panels. From top to bottom: unit Exponential
marginal Fy, Pareto marginal F} (with a = 5), standard Normal marginal F;, and Gamma
marginal F; (with shape parameter 3 and scalg parameter 1, that is, with mean and variance
equal to 3).
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and Fy(x}) = 0.995 (bottom panel) with uni‘rl(l;lxponential marginal F7.



and
~1/6

Uinen (@) = ((Balw2)a) ™ = Fo(a) " +1) . (4.9)
For instance, with Pareto marginal F7, we get

—1/a

F (W) (@) = 7 (@ (@) = (1= Yy @) = (1= (@) (410)

and
—1/a

F (W (@) = 7 (W (@) = (1= V@) = (1= (@) - (1)

Note that the dependence expressed by Clayton copula (4.7) is always positive (an exten-
sion of (4.7) to negative s is possible but is not considered here). The limiting case § = 0
corresponds to independence and increasing 6 strengthens the positive relationship between
the two components of the random couple. Figure 4.4 is the counterpart of Figure 4.1 and
Figure 4.5 is the counterpart of Figure 4.3 for Clayton copula. The conclusions drawn for
Frank copulas in the case 6 > 0 still apply to Clayton copulas.

5 Conditional comparison of random vectors with iden-
tical copulas

Consider two random couples, (X1, X3) and (Y7,Y3), say, sharing the same archimedean
copula Cy. We assume that (X, Xy) possesses the dispersive cross-aging property and we
would like to compare conditional distributions [X1|Xs = x5] and [Y;]Ys = x3] when the
marginals are ordered. The next result provides an answer to this problem.

Proposition 5.1. Let (X1, X5) and (Y1, Y3) be two random couples with the same archimedean
copula Cy. Assume that [X1|Xe = xa] <aisp [X1| X2 = 4] holds for all x5 < z,. Then,

Xy Saisp Y1 and Yo < Xo = [X1|Xo = 22] <uisp [Y1|Ya = 23] for all xs.

Proof. Denote as F; the distribution function of X;, ¢ = 1,2, and as G; the distribution
function of Y;, ¢ = 1, 2. Clearly,

Gl_l (sz(xz) (Oé)) o Fl_l (sz(wz)(OO) = <G1_1 (1/16‘2(902)(05)) - Fl_l (sz(xz) (Oé)) )
+<F1_1 (¢G2(1‘2) (Oé)) - Fl_l (¢F2(J}2) (Oé)) >(51)

Since X =gisp Y1 we know that a — G '(a) — F, *(a) is non-decreasing. This, in turn, im-
plies that o — GT (Vg (a0) (@) — FI M (Y6, (0) (@) is non-decreasing, since @ — g, () (@) is
non-decreasing. The function inside the first bracket of (5.1) is thus non-decreasing. Let us
now consider the function inside the second bracket of (5.1). Putting x5, = F, *(Ga(xs), we
have xo < zf, since Yo =y Xo. Now using the fact that [Xi|Xy = xs] Zaisp [X1|X2 =
4], we see that Fy (V) (@) — Fy (¥p,()(@)) is non-decreasing and coincides with
Fl_l(,gbi(m)(a)) - Fl_l(sz(m)(a)' Hence, Gl_l(dez(@)(a)) - Ff1(¢F2(x2)(a)) appears as the
sum of two non-decreasing functions and is therefore also non-decreasing, which ends the
proof. O
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Figure 4.4: Graph of (4.1) for Fy(z3) = 0.25 and Fy(z)) = 0.75 (left panel) and Fy(z5) =
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bottom: unit Exponential marginal Fy, Pareto marginal F; (with a = 5), standard Normal
marginal F}, and Gamma marginal F; (with shape parameter 3 and scale parameter 1, that

is, with mean and variance equal to 3). 19
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A similar result holds for conditional distributions [X1|Xs < 23] and [Y1|Y2 < 5], Tak-
ing Iy = (G, we see that provided (X7, X3) possesses the dispersive cross-aging property,
increasing the first marginal distribution in the <gis,-sense also increases the conditional
distributions in the <gis,-sense.

6 Conclusion

In this paper, we have established necessary and sufficient conditions for dispersive inequali-
ties between conditionals of bivariate distribution functions built from archimedean copulas,
a phenomenon called dispersive cross-aging. Given the importance of the dispersive stochas-
tic order relation in many applications, the results derived in this paper allow for a deeper
understanding of the dependence structure induced by archimedean copulas. The conditions
derived in this paper are easy to verify (at least numerically) and are satisfied by standard
copulas including Clayton and Frank families.
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