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the distance of the individual decision making units (DMU) to the technology which
is defined as the frontier of the production set. Most of the existing methods, Farrell-
Debreu and Shephard radial measures (input or output oriented) and hyperbolic dis-
tance functions, rely on multiplicative measures of the distance and so require to deal
with strictly positive inputs and outputs. This can be critical when the data contain
zero or negative values as in financial data bases for the measure of funds performances.
Directional distance function is an alternative that can be viewed as an additive mea-
sure of efficiency. We show in this paper that using a probabilistic formulation of the
production process, the directional distance can be expressed as simple radial or hyper-
bolic distance up to a simple transformation of the inputs/outputs space. This allows
to propose simple methods of estimation but also to transfer easily most of the known
properties of the estimators shared by the radial and hyperbolic distances. In addition,
the formulation allows to define robust directional distances in the lines of α-quantile
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1 Introduction

In productivity analysis, the performance of production units is measured through efficiency

scores. These efficiency measures are typically given by the distance of the individual decision

making units (DMU) to the technology which is defined as the frontier of the production set.

In the classical setting of productivity analysis and technical efficiency study, we consider a

set of p inputs and q outputs used in the production process. The production set is the set

of technically feasible combinations of inputs and outputs. It is defined as

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y} (1.1)

and its efficient frontier (the technology) is defined by

Ψ∂ =
{
(x, y) ∈ Ψ | (γ−1x, γy

) 6∈ Ψ for all γ > 1
}

. (1.2)

The Farrell-Debreu input distance (see Debreu, 1951, Farrell, 1957) for a firm operating at

the level (x, y) is then determined by the radial distance from (x, y) to the efficient frontier.

It indicates how much all input quantities can be proportionately reduced so that the output

levels y can still be produced. Formally, the Farrell input distance for a firm at a point (x, y)

is given by

θ(x, y) = inf{θ > 0|(θx, y) ∈ Ψ}. (1.3)

In the same spirit, the Farrell output distance of (x, y)

λ(x, y) = sup{λ > 0|(x, λy) ∈ Ψ}, (1.4)

is the maximum feasible equiproportionate expansion of all outputs attainable with the input

level x. Note that the Shephard (1970) distances functions are the reciprocals of the Farrell

distance functions.

The hyperbolic graph efficiency measure, proposed by Färe et al. (1985), Färe and

Grosskopf (2000), provides an alternative measure of the distance of a firm (x, y) to the

efficient frontier. It is given by

γ(x, y) = sup{γ > 0|(γ−1x, γy) ∈ Ψ}. (1.5)

A use of hyperbolic path allows to avoid some of the ambiguity in choosing output or input

orientation. In this case, input and output levels are adjusted simultaneously.

All the above methods rely on multiplicative measures of the distance and so require to

deal with strictly positive inputs and outputs. This can be critical when the data contain

zero or negative values as in financial data bases with the measure of funds performances.
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A natural idea suggested by several authors is to translate the data to avoid negative

values, but as pointed e.g. by Lovell and Pastor (1995), if multiplicative efficiency measures

satisfy the unit invariant property they are not invariant from an affine translation of inputs

or outputs, and only additive models can satisfy the translation invariant property. As these

authors note, some specific DEA estimator can satisfy translation invariance for inputs or

outputs, but not for both. Such a restriction may strongly constraint the choice of inputs

and outputs (see Gregoriou, Sedzro and Zhu 2005).

Recently directional distance functions have been introduced (see Chambers, Chung and

Färe, 1998, Färe and Grosskopf, 2004, Färe et al., 2008) that generalize both input and

output distance functions. The directional distance function projects the input-output vector

(x, y) onto the technology frontier in a direction given by vector (−gx, gy) where g = (gx, gy) ∈
Rp+q

+ . It is defined as

D(x, y; gx, gy) = sup{β > 0|(x− βgx, y + βgy) ∈ Ψ}. (1.6)

It encompasses input or output oriented radial distance measures as special cases: it can

indeed be seen that if g = (x, 0) (resp. g = (0, y)), the input (resp. output) radial distance

introduced above can be recovered. The choice of the direction vector g is to be done by

the researcher the only restriction is that it has to be positive and in the units chosen for

the inputs and the outputs. For a discussion about this choice see Färe et al. (2008), where

several natural candidates are discussed. This direction can be different for each point to be

evaluated but it can also be the same for all the points (x, y) which would be like assuming all

the firms face the same prices. Also, as pointed by Färe et al. (2008) “assuming a common

direction would be a kind of egalitarian evaluation reflecting some underlying social welfare

function”. As discussed below, our methodology will admit very flexible choices of this

directional vector.

This directional distance function can indeed be viewed as an additive definition of effi-

ciency since to reach the frontier we substract portions of gx from the input x and add gy to

the outputs y. So, the distance can be defined with negative inputs or outputs. We can see

that D(x, y; gx, gy) ≥ 0 if and only if (x, y) ∈ Ψ and a point on the frontier is characterized

by D(x, y; gx, gy) = 0. It benefits from translation property and is also independent of unit

of measurement (such as radial distances). The translation property can be written as

D(x− ηgx, y + ηgy; gx, gy) = D(x, y; gx, gy)− η, ∀η ∈ R, (1.7)

and the independence of unit of measurement as

D(θ. ∗ x, λ. ∗ y; θ. ∗ gx, λ. ∗ gy) = D(x, y; gx, gy), where θ ∈ Rp
+, and λ ∈ Rq

+, (1.8)
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where .∗ refers to componentwise multiplication of vectors. See Färe et al. (2008), and the

references there, for more discussions and properties.

To the best of our knowledge, the statistical properties of directional distances have never

been established, robust versions (robust to outliers and extreme data points) have not been

proposed and conditional directional distances, where conditioning is on environmental factor

that may influence the production process and introduce possible heterogeneity, have not

been proposed in the literature, so far. This is the objective of this paper.

The paper is organized as follows. We show in Section 2, that using the probabilistic

formulation of the production process introduced by Cazals et al. (2002) and Daraio and

Simar (2005), the directional distances can be expressed as simple radial distances up to

a simple transformation of the inputs/outputs space. This property provides very simple

methods of estimation of the directional distance, using standard tools available for radial

measures. We show also that this perspective allows to define conditional directional distance

functions and their nonparametric estimators, where conditioning is on environmental factors

that may influence the production process (Cazals et al. 2002 and Daraio and Simar, 2005).

With this approach, we define in Section 3, robust versions of the directional distance

functions by adapting the α-quantile (Daouia and Simar, 2007) and order-m partial frontiers

(Cazals et al., 2002) introduced for radial measures. We will also show in Section 4 that most

of the known statistical properties of the estimators of the radial distances can be translated

for the directional distances, including tools for making inference. Finally, we propose in

Section 5 an empirical illustration on a database of Mutual Funds. Section 6 concludes.

2 Probabilistic Formulations

2.1 General definitions

A probabilistic formulation of the production process was first introduced by Cazals, Florens,

Simar (2002) and then developed in Daraio and Simar (2005). Consider the joint probability

measure of (X, Y ) and the associated probability function HXY (·, ·) defined as

HXY (x, y) = Prob(X ≤ x, Y ≥ y), (2.1)

and Ψ is the support of (X, Y ). It has been shown that if Ψ is a nonempty set with inputs

and outputs freely disposable, Ψ can be identified with the support of HXY (·, ·):

Ψ = {(x, y) ∈ Rp+q| HXY (x, y) > 0}, (2.2)
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where we notice that we allows for negative inputs and outputs1. If only positive inputs and

outputs are considered, we can define the radial (multiplicative) efficiency scores in terms

of the support of this probability function. For all (x, y) ∈ Ψ such that SY (y) = Prob(Y ≥
y) > 0 we have

θ(x, y) = inf{θ > 0|HXY (θx, y) > 0}, (2.3)

and similarly, for all (x, y) ∈ Ψ such that FX(x) = Prob(X ≤ x) > 0 we have

λ(x, y) = sup{λ > 0|HXY (x, λy) > 0}. (2.4)

For hyperbolic distance function we have (see Wheelock and Wilson, 2008)

γ(x, y) = sup{γ > 0|HXY (γ−1x, γy) > 0}. (2.5)

We now define, accordingly, the probabilistic version of the directional distance (1.6):

D(x, y; gx, gy) = sup{β > 0|HXY (x− βgx, y + βgy) > 0}. (2.6)

We note that only the latter formulation is valid when positive and/or negative inputs and

outputs are considered as possible. We will show below that by a simple change of variable, a

directional distance function can be viewed as a particular input/output/hyperbolic distance

function in a transformed dataset. We can then benefit from the nice properties of directional

efficiencies combined with simple tractable radial distance to compute appropriate estimators

having known statistical properties.

2.2 Link between directional and hyperbolic distances

In what follows, we assume that inputs and outputs can take either positive or negative

values. Such an assumption is rather unusual in classical production settings but is sensible

in finance context and measure of funds performances. In this case, one input can be the

lower skewness and one output the return, both taking either positive or negative values. So

we consider a vector of inputs x ∈ Rp and a vector of outputs y ∈ Rq. In order to define the

directional distance function, we consider strictly positive directional vector g = (gx, gy) ∈
Rp+q
∗+ .2 Remember that this directional vector must have the same unit as the (input, output)

1Free disposability of inputs and outputs is a minimal natural assumption we can made on Ψ. It says that
if (x, y) ∈ Ψ, any (x̃, ỹ) such that x̃ ≥ x and ỹ ≤ y is such that (x̃, ỹ) ∈ Ψ. Here inequalities between vectors
are componentwise. In a sense, free disposablity assumes that wasting ressources is technically possible,
although certainly not optimal.

2The case where one of the two components, gx or gy is set to zero is addressed in Section 2.3
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vector; we will suggest below in our empirical illustration, some natural choice for g. So we

repeat here the definition of the directional distance

D(x, y; gx, gy) = sup{β > 0|(x− βgx, y + βgy) ∈ Ψ}
= sup{β > 0|HXY (x− βgx, y + βgy) > 0}, (2.7)

where the latter equality implicitly assumes the free disposability of Ψ.

Consider now the following monotonic (increasing) transformation of the units for the

inputs and for the outputs:

x∗ = exp(x./gx) and y∗ = exp(y./gy), (2.8)

where ./ refers to componentwise division of vectors. We will denote Ψ∗ the attainable set

in this new coordinate system. We have

Ψ∗ = {(x∗, y∗) ∈ Rp+q
+ | x∗ = exp(x./gx), y

∗ = exp(y./gy) for some (x, y) ∈ Ψ}. (2.9)

We have the following property which is trivially verified due to the monotonic (increasing)

property of the transformation3.

Lemma 2.1. If Ψ is free disposal then Ψ∗ is free disposal.

Due to this Lemma we can also write Ψ∗ as

Ψ∗ = {(x∗, y∗) ∈ Rp+q
+ | HX∗Y ∗(x

∗, y∗) > 0}, (2.10)

where HX∗Y ∗(·, ·) is the transformation of the probability HXY (·, ·) for the random variables

X∗ = exp(X./gx) and Y ∗ = exp(Y./gy). By elementary algebraic manipulations we find that

for all (x∗, y∗) ∈ Rp+q
+ we have

HX∗Y ∗(x
∗, y∗) = Prob(X∗ ≤ x∗, Y ∗ ≥ y∗)

= Prob
(
X ≤ gx. ∗ log(x∗), Y ≥ gy. ∗ log(y∗)

)

= HXY

(
gx. ∗ log(x∗), gy. ∗ log(y∗)

)
(2.11)

Equivalently we have for all (x, y) ∈ Rp+q,

HXY (x, y) = HX∗Y ∗
(
exp(x./gx), exp(y./gy)

)
. (2.12)

Now by using (2.7) and (2.12) we can write

D(x, y; gx, gy) = sup{β > 0|HX∗Y ∗

(
exp

(
(x− βgx)./gx

)
, exp

(
(y + βgy)./gy

))
> 0}

= sup{β > 0|HX∗Y ∗
(
x∗ exp(−β), y∗ exp(β)

)
> 0}.

3Note that the eventual convexity assumption of Ψ is not preserved by the transformation, which is not
an issue here because only the free disposability property will be used in defining our estimators below.
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By the change of variable γ = exp(β) > 0 we finally obtain

D(x, y; gx, gy) = log(γ(x∗, y∗)),

where γ(x∗, y∗) = sup{γ > 0 |HX∗Y ∗(γ
−1x∗, γy∗) > 0}. (2.13)

We note that if (x, y) ∈ Ψ, β > 0 and so γ(x∗, y∗) > 1 and if (x, y) ∈ Ψ∂, β = 0 and

γ(x∗, y∗) = 1.

The motivation of writing the directional distances in terms of a standard multiplicative

hyperbolic distances, is multiple. First, they are very easy to estimate in a nonparametric

setup. Second, as seen in Section 3, we can define partial versions of the frontier (order-m and

order-α quantile frontiers) leading to robust estimators of the directional distance. Third,

as shown in Section 4, the resulting nonparametric estimators will share similar statistical

properties than the radial measures and inference is easy to implement. Fourth, in the lines

of Daraio and Simar (2005), we can easily introduce environmental factors in the process.

This latter point is rather immediate and we just give a sketch of the approach below.

Conditional directional distances: a summary

To summarize, if a set of environmental variables Z ∈ Rr is considered as eventually influ-

encing the production process, Daraio and Simar (2005), extending results from Cazals et

al. (2002), suggest that the production process cannot be only characterized by HXY (x, y)

but rather by the conditional probability

HXY |Z(x, y|z) = Prob(X ≤ x, Y ≥ y |Z = z). (2.14)

Then all the concepts of efficiency developped above can be rewritten by replacing HXY by

HXY |Z . This leads to

Definition 2.1. For all (x, y) ∈ Ψ, the conditional distance function of (x, y), conditional

to Z = z and relative to the directional vector (gx, gy) is defined as

D(x, y; gx, gy|z) = sup{β > 0|HXY |Z(x− βgx, y + βgy |Z = z) > 0}. (2.15)

It is easy to see that its link with hyperbolic measures is given by

D(x, y; gx, gy|z) = log(γ(x∗, y∗|z)),

where γ(x∗, y∗|z) = sup{γ > 0 |HX∗Y ∗|Z(γ−1x∗, γy∗ |Z = z) > 0}. (2.16)

The nonparametric estimation involves smoothing (kernel) methods in the Z dimension,

for estimating HX∗Y ∗|Z(·, ·|Z = z). For details on nonparametric estimation, statistical
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properties and procedure for bandwidths selection, see Daraio and Simar (2005, 2007), Jeong

et al. (2010) and Badin et al. (2010). All what is presented in the rest of the paper could

also be written in terms of this conditional directional distance with conditioning on Z = z.

To save place we will not give the details and let the reader do the exercise.

2.3 Link between input/output directional and radial distances

The links between the input or output directional distances and the radial input or output

distances follow the same scheme as above. For the input orientation, we consider the

directional vector g = (gx, 0), with gx > 0, so according (2.7) we have

D(x, y; gx, 0) = sup{β > 0|(x− βgx, y) ∈ Ψ}
= sup{β > 0|HXY (x− βgx, y) > 0}. (2.17)

This measure can be equivalently written as

D(x, y; gx, 0) = log(γ(x∗, y∗)),

where γ(x∗, y∗) = sup{γ > 0 |HX∗Y ∗(γ
−1x∗, y∗) > 0}, (2.18)

where the new coordinates are defined as x∗ = exp(x./gx) and y∗ = exp(y). We see that

γ(x∗, y∗) is the usual radial Shephard input distance (the inverse of the Farrell input distance,

θ(x∗, y∗)) in the (x∗, y∗) coordinates. Remember that the interest here is the possibility

of handling positive and negative values of the inputs, and the flexibility in choosing the

direction gx.

For the output oriented case, the choice of the directional vector is here g = (0, gy) with

gy > 0 giving

D(x, y; 0, gy) = sup{β > 0|(x, y + βgy) ∈ Ψ}
= sup{β > 0|HXY (x, y + βgy) > 0}. (2.19)

The transformation of coordinates is here given by x∗ = exp(x) and y∗ = exp(y./gy). There-

fore

D(x, y; 0, gy) = log(γ(x∗, y∗)),

where γ(x∗, y∗) = sup{γ > 0 |HX∗Y ∗(x
∗, γy∗) > 0}, (2.20)

here γ(x∗, y∗) is the usual radial Farrell output distance in the (x∗, y∗) coordinates.

Remark 2.1. It should be noticed that for the full frontier measures analyzed here, the

equations (2.18) and (2.20) could be writen in terms of conditional distribution functions.
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For the input oriented case, if y∗ is such that SY ∗(y
∗) = Prob(Y ∗ ≥ y∗) ≥ 0, the condition

appearing in (2.18) could be written FX∗|Y ∗(γ−1x∗|y∗) > 0 where FX∗|Y ∗(x∗|y∗) = Prob(X∗ ≤
x∗|Y ∗ ≥ y∗). Similarly for the output oriented case, if x∗ such that FX∗(x) = Prob(X∗ ≤
x∗) > 0 the condition in (2.20) could be written as SY ∗|X∗(γy∗|x∗) > 0 where SY ∗|X∗(y∗|x∗) =

Prob(Y ∗ ≥ y∗|X∗ ≤ x∗).

3 Robust Versions of Directional Distances

Cazals et al. (2002) introduced the concept of “partial” frontiers, i.e. defining a benchmark

frontier which is less extreme than the full frontier Ψ∂. They proposed the order-m frontier

and its corresponding order-m efficiency distances. One of the advantages of these frontiers

is that their nonparametric estimators have nice properties (
√

n-consistency and asymptotic

normal distribution) but in addition the frontier estimates do not envelop all the data points

and so are less sensitive to outliers and extreme observations. Aragon et al. (2005) and

Daouia and Simar (2007) proposed an alternative approach to define partial frontier based

on the concept of order-α quantiles frontiers. Wheelock and Wilson (2008) and Wilson

(2010) generalize these results to hyperbolic distance function. Recently Daouia et al. (2009,

2010) have shown that these partial frontiers estimators can even be exploited to build new

estimators of the full frontier Ψ∂ being robust to extreme data points and having asymptotic

normal distributions. So, these robust versions of distance functions seem to be very useful

for the practitioners and we will show here that the idea can be extended rather easily to

directional distances. We present the formulations for the general directional distance, and

summarize in the appendix the presentation for the output oriented directional distances

(the case of input oriented caseis left as an exercise for the reader).

3.1 Order-α quantile frontiers

In place of looking to the extreme support of HXY (·, ·), the order-α frontier can be determined

by points such that the order-α efficiency score is equal to 1. For instance for the Farrell

input measure, for any α ∈ (0, 1], we have (see Daouia and Simar, 2007 for details)

θα(x, y) = inf{θ > 0|FX|Y (θx, y) > 1− α}
= inf{θ > 0|HXY (θx, y) > (1− α)SY (y)},

where FX|Y (x, y) = HXY (x, y)/SY (y) under the condition that the survivor function of Y

exists, SY (y) = Prob(Y ≥ y) > 0. Remember that here (using radial distance) we restrict

the input-output as being positive. Clearly when α → 1, θα(x, y) → θ(x, y). Following the
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same argument, the order-α hyperbolic efficiency score is defined by:

γα(x, y) = sup{γ > 0|HXY (γ−1x, γy) > 1− α}.

The α-quantile frontier is characterized by units (x, y) having a order-α measure γα(x, y) = 1.

Units on the α-quantile frontier would thus have a probabilty (1− α) of being dominated.

The natural extension to order-α distance functions in the general case (allowing negative

inputs/outputs) is obtained from its probabilistic characterization given in (2.6). We have

Definition 3.1. For all values (x, y) ∈ Ψ and any α ∈ (0, 1], the order-α directional distance

of (x, y) with directional vector (gx, gy) is defined as

Dα(x, y; gx, gy) = sup{β|HXY (x− βgx, y + βgy) > 1− α}, (3.1)

It is easy to see that when α → 1, Dα(x, y; gx, gy) → D(x, y; gx, gy). Here values of

Dα(x, y; gx, gy) = 0 characterize points (x, y) lying on the order-α quantile frontier, values

Dα(x, y; gx, gy) > 0 (resp < 0) correspond to points standing below (resp. above) the order-α

frontier.

With the notations and the transformations introduced in Section 2, the conditional

distance function of order-α can be equivalently written as

Dα(x, y; gx, gy) = log(γα(x∗, y∗)),

where γα(x∗, y∗) = sup{γ > 0 |HX∗Y ∗(γ
−1x∗, γy∗) > 1− α}, (3.2)

where we recognize in γα(x∗, y∗) the usual order-α hyperbolic distance in the (x∗, y∗) coor-

dinates. This extension is rather immediate due to the monotonic (increasing) nature of

the transformations into the coordinates (x∗, y∗) and because quantiles are stable to such

monotonic transformations.

By the appropriate choices of the directional vector g and of the coordinates (x∗, y∗) we

could also recover the input and output versions of these order-α distance functions (we omit

the details, and give a summary in the Appendix).

3.2 Order-m partial frontiers

The order-m partial frontier, introduced by Cazals et al. (2002) and extended to hyperbolic

distance functions in Wilson (2010) defines, in a sense, the benchmark frontier as the expected

optimal level achieved by m peers drawn randomnly in the population, rather that the real

optimal achievable level. We give the definition here in its most general (hyperbolic) version.

Consider a set of m iid random variables Sm = {(Xj, Yj)}m
j=1 drawn from the joint density of
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(X, Y ) (this density has support Ψ and is univocally determined by HXY (x, y)). We define

now the random set

Ψ̃m =
m⋃

j=1

{(x, y) ∈ Rp+q
+ | x ≥ Xj, y ≤ Yj}. (3.3)

Then for any fixed (x, y) ∈ Rp+q
+ we define the random hyperbolic distance

γ̃m(x, y) = sup{γ|(γ−1x, γy) ∈ Ψ̃m}, (3.4)

we remark that γ̃m(x, y) is the FDH estimator of the hyperbolic distance computed with the

random sample Sm. The order-m hyperbolic distance is then defined as

γm(x, y) = E(γ̃m(x, y)). (3.5)

Explicit analytical expression involving HXY are given in Cazals et al. (2002) for the radial

measures (input/output) and in Wilson (2010) for the hyperbolic case described above.

Note that all these multiplicative distance measures require that both inputs and outputs

are positive. We also remark that the random distance given in (3.4) can be defined as

γ̃m(x, y) = sup{γ|H̃m,XY (γ−1x, γy) > 0}, (3.6)

where H̃m,XY (x, y) = (1/m)
∑m

j=1 1I(Xj ≤ x, Yj ≥ y) is the empirical version of the function

HXY defined from the random sample Sm.

Now we can extend this concept to directional distance and define directional distance

of order-m, that will be applicable when some of the inputs or outputs may be negative. As

above we consider m iid random variables Sm = {(Xj, Yj)}m
j=1 drawn from the joint density

of (X, Y ) defined on Ψ and we adapt the definition of the random set Ψ̃m to the case where

x and y are reals (not restricted to be positive)

Ψ̃m =
m⋃

j=1

{(x, y) ∈ Rp+q | x ≥ Xj, y ≤ Yj}. (3.7)

Now we define the random distance

D̃m(x, y; gx, gy) = sup{β|(x− βgx, y + βgy) ∈ Ψ̃m}, (3.8)

= sup{β|H̃m,XY (x− βgx, y + βgy) > 0}. (3.9)

We can now define our order-m directional distance

Definition 3.2. For any (x, y) ∈ Ψ and for any integer m ≥ 1, the order-m directional

distance of (x, y) with directional vector (gx, gy) is defined as

Dm(x, y; gx, gy) = E(D̃m(x, y; gx, gy)), (3.10)

where we assume the existence of the expectation.
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Note that D̃m(x, y; gx, gy) can be equivalently written in the transformed coordinate

system introduced in Section 2 as the logarithm of an hyperbolic measure

D̃m(x, y; gx, gy) = log(γ̃m(x∗, y∗)),

where γ̃m(x∗, y∗) = sup{γ > 0 | H̃m,X∗Y ∗(γ
−1x∗, γy∗) > 0}, (3.11)

where H̃m,X∗Y ∗ is the version of H̃m,XY in the (x∗, y∗) coordinate system. In our notation

here, by denoting Wm the random variable γ̃m(x∗, y∗) and Gm its distribution function4, we

have:

Gm(w) = Prob(Wm ≤ w) = Prob

[
max

j=1,...,m

{
min

k=1,...,p, `=1,...,q

(
x∗,k

X∗,k
j

,
Y ∗,`

j

y∗,`

)}
≤ w

]

=

[
Prob

{
min

k=1,...,p, `=1,...,q

(
x∗,k

X∗,k ,
Y ∗,`

y∗,`

)
≤ w

}]m

= [1− Prob (x∗ > w X∗, Y ∗ > w y∗)]m

=
[
1−HX∗Y ∗(w

−1x∗, w y∗)
]m

(3.12)

So, under the assumption that the expectation of log(Wm) exists for any m ≥ 1, the explicit

formulation of the order-m directional distance is given by

Dm(x, y; gx, gy) =

∫ ∞

0

log(w) dGm(w). (3.13)

It should be noticed that the expectation of γ̃m(x∗, y∗) is simply given by

E(γ̃m(x∗, y∗)) =

∫ ∞

0

[1−Gm(w)] dw,

but since in general, for non degenerate random variable Wm, E(log(Wm)) 6= log(E(Wm)),

the latter result is not useful to recover Dm(x, y; gx, gy). We show in the proposition below

the convergence of the order-m directional distance to the “full” directional distance when

m →∞.

Theorem 3.1. For any values (x, y) in Ψ, we have:

lim
m→∞

Dm(x, y; gx, gy) = D(x, y; gx, gy) (3.14)

Proof. Note first that the integral in equation (3.13) can be rewritten:

Dm(x, y; gx, gy) =

∫ γ(x∗,y∗)

0

log(w) dGm(w) (3.15)

4The distribution function Gm(.) depends on the coordinates of the point of interest (x∗, y∗), but to
simplify the notations, we omit to explicit this.
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Indeed, by definition of γ(x∗, y∗) given in (2.13), we have, for any values (x∗, y∗) ∈ Ψ∗:

∀w > γ(x∗, y∗), HX∗Y ∗(w
−1x∗, w y∗) = 0 and ∀m ≥ 1, Gm(w) = 1.

Under the assumption that log(w)G1(w) → 0 when w → 0, we obtain, for any m ≥ 1, by

integration by parts:5

Dm(x, y; gx, gy) = log (γ(x∗, y∗))−
∫ γ(x∗,y∗)

0

Gm(w)

w
dw

= D(x, y; gx, gy)−
∫ γ(x∗,y∗)

0

[1−HX∗Y ∗(w
−1x∗, w y∗)]m

w
dw.

Then, for all w ≤ γ(x∗, y∗) and m ≥ 1, we have Gm(w)
w

≤ G1(w)
w

and
∫ γ(x∗,y∗)
0

G1(w)
w

dw exists.

Therefore, using the Dominated convergence theorem, the integral on the right-hand side

converges to zero when m →∞ and limm→∞ Dm(x, y; gx, gy) = D(x, y; gx, gy).

4 Nonparametric Estimators

4.1 Full frontier estimation

Consider a sample of observations X = {(Xi, Yi)|i = 1, ..., n} and a fixed value (x, y). For a

given direction (gx, gy), a nonparametric estimator of the directional distance is given by

D̂(x, y, gx, gy) = log (γ̂(x∗, y∗)) (4.1)

where γ̂(x∗, y∗) is the empirical analog of the hyperbolic distance computed in the trans-

formed sample of observations X ∗ = {(X∗
i , Y ∗

i ) = (exp(Xi./gx), exp(Yi./gy))|i = 1, ..., n} at

the fixed transformed value (x∗, y∗) = (exp(x./gx), exp(y./gy)). More precisely, define the

set of observations which dominate (x∗, y∗), D∗ = {i |(X∗
i , Y ∗

i ) ∈ X ∗, X∗
i ≤ x∗, Y ∗

i ≥ y∗}.
The estimation of ĤX∗Y ∗ is given by:

ĤX∗Y ∗(x
∗, y∗) =

1

n

n∑
i=1

1I(X∗
i ≤ x∗, Y ∗

i ≥ y∗) (4.2)

and, following equation (3.2) and Wheelock and Wilson (2008), the estimation of γ̂(x∗, y∗)

is given by:

5The assumption log(w)G1(w) → 0 when w → 0 is not very restrictive. In particular, it is obtained if
the support of (X,Y ) is compact. In the latter case, the support of (X∗, Y ∗) is also compact with X∗ > 0
and Y ∗ > 0 and we have that for all (x∗, y∗) ∈ Ψ∗, HX∗Y ∗(w−1x∗, w y∗) = 1 (and so, G1(w) = 0) for all
w ≤ w∗ for some w∗ > 0.
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γ̂(x∗, y∗) = sup{γ > 0 | ĤX∗Y ∗(γ
−1x∗, γy∗) > 0}, (4.3)

= max
j∈D∗

{
min

k=1,...,p, `=1,...,q

(
x∗,k

X∗,k
j

,
Y ∗,`

j

y∗,`

)}
. (4.4)

So, the computation of γ̂(x∗, y∗) can be derived from a standard FDH estimator by consid-

ering the extended sample of p + q outputs {(1./X∗
j , Y ∗

j ), j = 1, ..., n} and one single fixed

input.

We note that the estimation of input/output directional distance can be derived similarly

by computing the associated input/output oriented FDH estimator in the transformed set

of data X ∗ and taking the logarithm of this value (see the appendix for more details).

The asymptotic properties of the estimator (4.1) are directly derived from the asymptotic

properties of the FDH estimator given in (4.4) using the functional Delta method. These

properties are obtained under standard regularity conditions, described in details in Park et

al. (2000) (see also Wheelock and Wilson, 2008 and Wilson 2010). In summary we have:

– Assumption A1. The observations (Xi, Yi) are independent and identically dis-

tributed random variables, with density function fXY defined on the support Ψ. The

support Ψ is assumed free disposal and compact.

– Assumption A2. At a frontier point (x∂, y∂) ∈ Ψ∂, the density fXY is strictly posi-

tive and sequentially Lipschitz continuous, i.e., fXY (x∂, y∂) > 0 and for all sequences

(xk, yk) ∈ Ψ converging to (x∂, y∂), |fXY (xk, yk)− fXY (x∂, y∂)| ≤ c||(xk, yk)− (x∂, y∂)||
for some positive constant c.

– Assumption A3. For all (x, y) in the interior of Ψ, θ(x, y), λ(x, y) and γ(x, y) are

twice continuously differentiable in both arguments.

Note that the density fXY appearing in Assumption A2 is determined by HXY and conversely.

Theorem 4.1. Under Assumptions A1 − A3 for any (x, y) in the interior of Ψ such that

γ(x∗, y∗) > 0, we have:

D(x, y, gx, gy)− D̂(x, y, gx, gy) = Op(n
−1/(p+q)), (4.5)

n−1/(p+q)
(
D(x, y, gx, gy)− D̂(x, y, gx, gy)

) L−→ Weibull

(
µp+q

H,0 ,
p + q

γ(x∗, y∗)

)
, (4.6)

where µH,0 is a constant.
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An expression of the Weibull parameter µH,0 is obtained by adapting Park et al. (2000)

to hyperbolic measures. It is explicitely given in Wilson and Wheelock (2008) (see Definition

A.2, in their Appendix).

Proof. The proposition follows from a straitghforward application of the functional delta

method (see e.g. van der Vaart 1998) applied on γ(x∗, y∗) with the functional log as contin-

uously differentiable mapping. More precisely, we have:

n−1/(p+q) (log (γ(x∗, y∗))− log (γ̂(x∗, y∗))) =
1

γ(x∗, y∗)
n−1/(p+q) (γ(x∗, y∗)− γ̂(x∗, y∗))+oP (1).

We know from Park et al. (2000) and Wheelock and Wilson (2008) that under the above

assumptions, γ(x∗, y∗)− γ̂(x∗, y∗) = Op(n
−1/(p+q)) and that

n−1/(p+q) (γ(x∗, y∗)− γ̂(x∗, y∗)) L−→ Weibull(µp+q
H,0 , p + q).

Multiplying a Weibull distribution by a strictly positive constant preserves the Weibull dis-

tribution with a new scalar argument, which completes the proof.

From a practical point of view, the result is difficult to use because the constant µH,0

depends on many unknown parameters. Park et al. (2000) suggest a way to estimate this

constant in the input (or output) oriented case but claim that it is only useful with large

data sets (in particular if p + q increases). So, the bootstrap seems to be an attractive way

to provide statistical inference involving the measures log(γ(x∗, y∗)). The consistency of the

bootstrap using FDH estimators has been established in Jeong and Simar (2006), it is based

on a subsampling approach. In Simar and Wilson (2009), it is shown how to determine the

subsampling size by data driven methods.

4.2 Order-α frontier estimation

The estimation of order-α directional distance is driven from the estimation of α quantile

hyperbolic estimator and the multivariate approach proposed by Daouia and Simar (2007).

We simply have

D̂α(x, y, gx, gy) = log(γ̂α(x∗, y∗)), (4.7)

where the algorithm from Daouia and Simar is adapted as follows. Define:

X ∗
i = min

k=1,...,p, `=1,...,q

(
x∗,k

X∗,k
i

,
Y ∗,`

i

y∗,`

)
, i = 1, ..., n.
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Let M∗ =
∑n

i=1 1I(X∗
i ≤ x∗, Y ∗

i ≥ y∗) be nonnull. For j = 1, ..., M∗, denote by X ∗
(j) the j-th

order statistic of the observations X ∗
i such that X∗

i ≤ x∗ and Y ∗
i ≥ y∗. Then it follows

γ̂α(x∗, y∗) =

{
X ∗

((1−α)M∗) if (1− α)M∗ ∈ N,

X ∗
([(1−α)M∗]+1) otherwise.

(4.8)

As for the full frontier estimation, the asymptotic properties of (4.7) follows from the

known asymptotic results for (4.8) using the functional Delta method and the log mapping.

This provides the next theorem.

Theorem 4.2. Under Assumptions A1 − A3, for 0 < α < 1, and for any (x, y) in the

interior of Ψ such that γα(x∗, y∗) > 0 let the function φ(w) = HX∗Y ∗(w
−1x∗, w y∗). If

φ(w) is differentiable at w = γα(x∗, y∗), D̂α(x, y, gx, gy) is a
√

n-consistent estimator of

Dα(x, y, gx, gy) and

√
n

(
D̂α(x, y, gx, gy)−Dα(x, y, gx, gy)

) L−→ N (0, σ2
α(x, y)), (4.9)

where

σ2
α(x, y) =

α(1− α)

γα(x∗, y∗)2
[φ′(γα(x∗, y∗))]−2

. (4.10)

Proof. The argument is similar to the proof in Theorem 4.1 above. Daouia and Simar (2007)

derive the
√

n-consistency and the asymptotic normality for the α-quantile estimator (input

or output orienttation). These asymptotic properties have been extended to the hyperbolic

α-quantile estimator in Wheelock and Wilson (2008) which we need here. The delta method

allows, in a straightforward way, to transfer these asymptotic properties to the directional

estimator (4.7), which completes the proof.

It is obvious that for a given n, if α → 1, the order-α estimator of the directional distance

converges to the “full” directional distance: limα→1 D̂α(x, y, gx, gy) = D̂(x, y, gx, gy). But we

know (see Wheelock and Wilson, 2008) that if α(n) is a sequence in n with α(n) → 1 as

n → ∞ fast enough, the order-α estimator γ̂α(n)(x
∗, y∗) shares the same properties as the

FDH estimator γ̂(x∗, y∗). This result still holds for the directional distances.

Theorem 4.3. Under Assumptions A1 − A3 for any (x, y) in the interior of Ψ such that

γ(x∗, y∗) > 0, and with the order α(n) > 0 such that n(p+q+1)/(p+q)(1−α(n)) → 0 as n →∞,

D̂α(n)(x, y, gx, gy) is a consistent estimator of D(x, y, gx, gy) and

n−1/(p+q)
(
D(x, y, gx, gy)− D̂α(n)(x, y, gx, gy)

) L−→ Weibull

(
µp+q

H,0 ,
p + q

γ(x∗, y∗)

)
(4.11)

where µH,0 is the constant defined in Theorem 4.1.
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Proof. The result derives immediately from the functional Delta method and from the The-

orem 4.4 in Wheelock and Wilson (2008).

The last results allows to define a robust estimator of the directional distance D(x, y, gx, gy)

since even if α(n) → 1 when n →∞, for finite n, the estimator D̂α(n)(x, y, gx, gy) is not ob-

tained by envelopping all the data points and so will be more robust to extreme data points.

Note that here, if inference on the order-α measures is desired (with fixed α), Theorem

4.2 allows to use the normal approximation, and in practice, the bootstrap is useful to

approximate the variance term. Note that here, as explained in Florens and Simar (2005),

the naive bootstrap can be used because we are not estimating a boundary. If Theorem 4.3

is advocated to make inference on the full frontier estimate, here the subsampling bootstrap

has to be used, as explained above for the full frontier estimate.

4.3 Order-m frontier estimation

The computation of the order-m directional distance estimator D̂m(x, y, gx, gy) follows the

same vein with a Monte Carlo procedure, adapted from Cazals et al. (2002), to estimate the

expectation in (3.10). The estimator is defined by the empirical version of (3.10). We have

D̂m(x, y, gx, gy) = Ê (log(γ̃m(x∗, y∗))) , (4.12)

=
∫∞
0

log(w) dĜm(w), (4.13)

with Ĝm(w) =
[
1− ĤX∗Y ∗(w

−1x∗, w y∗)
]m

. An simple algorithm to compute the expectation

is as follows:

(1) For b = 1, ..., B, where B is large, redo the following steps (i)-(ii):

(i) Draw a sample of size m with replacement from D∗ and denote it by {(X∗
i,b, Y

∗
i,b), i =

1, ..., m}

(ii) Compute γ̃b
m(x∗, y∗) = max

j=1,...,m

{
min

k=1,...,p, `=1,...,q

(
x∗,k

X∗,k
j,b

,
Y ∗,`

j,b

y∗,`

)}
.

(2) Finally, D̂m(x, y, gx, gy) ≈ 1

B

B∑

b=1

log(γ̃b
m(x∗, y∗)).

For the quality of the Monte-Carlo approximation B should be large. The computations are

so fast that B = 1000 is quite reasonable in practice.

Contrary to the previous estimators (full and order-α frontiers), the order-m directional

distance estimator is not defined as a log transformation of the order-m hyperbolic estimator
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and its properties cannot be directly inferred using this previous estimator. However, we

can still use the Delta method to derive asymptotic properties of D̂m(x, y, gx, gy) . The first

result shows the convergence of D̂m(x, y, gx, gy) to the FDH estimator D̂(x, y, gx, gy) when

m →∞.

Theorem 4.4. Under Assumptions A1 − A3, for any (x, y) in the interior of Ψ, and for

fixed n,

lim
m→∞

D̂m(x, y, gx, gy) = D̂(x, y, gx, gy) (4.14)

Proof. Note first that the integral in equation (4.13) can be rewritten:

D̂m(x, y; gx, gy) =

∫ γ̂(x∗,y∗)

kw

log(w) dĜm(w) (4.15)

Indeed, by the definition of γ̂(x∗, y∗), for any values (x∗, y∗) ∈ Ψ∗ we have that for all

w > γ̂(x∗, y∗), ĤX∗Y ∗(w
−1x∗, w y∗) = 0 and so, Ĝm(w) = 1. In addition, under the assump-

tion that (X, Y ) have compact support, there exist a w∗ > 0 such that for all w ≤ w∗,

ĤX∗Y ∗(w
−1x∗, w y∗) = 1 and therefore Ĝm(w) = 0 for all w ≤ w∗ (see footnote 5). Now we

obtain by integration by parts:

D̂m(x, y; gx, gy) = log (γ̂(x∗, y∗))−
∫ γ̂(x∗,y∗)

w∗

Ĝm(w)

w
dw

= D̂(x, y; gx, gy)−
∫ γ̂(x∗,y∗)

w∗

[
1− ĤX∗Y ∗(w

−1x∗, w y∗)
]m

w
dw (4.16)

The integrand of the right side term is bounded by
[
ĤX∗Y ∗(w

−1x∗, w y∗)
]m

/w∗ which con-

verges to zero as m →∞, since
[
ĤX∗Y ∗(w

−1x∗, w y∗)
]

< 1. This gives the desired result.

Now we have to establish the convergence of the order-m estimator of the directional

distance to the true order-m directional distance, as n →∞, with m fixed.

Theorem 4.5. Under Assumptions A1 − A3, for any (x, y) in the interior of Ψ, and for

any m ≥ 1 we have, as n →∞

D̂m(x, y, gx, gy)
a.s.−→ Dm(x, y, gx, gy), (4.17)

√
n

(
D̂m(x, y, gx, gy)−Dm(x, y, gx, gy)

) L−→ N (0, σ2(x, y)), (4.18)

with

σ2(x, y) = E
[∫ ∞

0

m

w

(
1−HX∗Y ∗(w

−1x∗, w y∗)
)m−1

1I(X∗
i ≤ w−1x∗, Y ∗

i ≥ w y∗)dw

]2
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Proof. We have to adapt the argument in Cazals et al.(2002) and use the functional delta

method. Consider, for any (x, y) in the interior of Ψ and for any m ≥ 1, the operator T

defined as

T (H) =

∫ ∞

0

log(w)dGm(w),

where Gm is the function depending on H defined in (3.12). The operator T associates a

real value to any probability function H. This operator is Frechet-differentiable w.r.t. the

sup norm, that is:

T (H + R)− T (H) = DTH(R) + oP (‖R‖) (4.19)

Before applying the Frechet differentiability of T , we first decompose it into two integrals and

apply integration by parts on each of them, in order to have a more appropriate expression

for T (H) to define its Frechet derivative. Therefore, we have:

T (H) =

∫ 1

0

log(w)dGm(w) +

∫ ∞

1

log(w)dGm(w)

=

∫ 1

0

log(w)dGm(w)−
∫ ∞

1

log(w)(−dGm(w))

= (I) + (II)

We have seen above in Section 3 that Gm(w) = 0 for all w ≤ w∗ for some w∗ > 0 and that

Gm(w) = 1 for all w ≥ γ(x∗, y∗). Note that since (x∗, y∗) is in the interior of Ψ∗, w∗ < 1 and

γ(x∗, y∗) > 1. So the two integrals above simplifies and by integrating by parts, we obtain

(I) =

∫ 1

w∗
log(w)dGm(w)

= −
∫ 1

w∗

Gm(w)

w
dw.

In the same way,

(II) = −
∫ γ(x∗,y∗)

1

log(w)(−dGm(w))

= − [log(w) (1−Gm(w))]γ(x∗,y∗)
1 +

∫ γ(x∗,y∗)

1

1−Gm(w)

w
dw.

Therefore, under our regularity conditions, the operator T can be rewritten as:

T (H) = −
∫ 1

0

Gm(w)

w
dw +

∫ ∞

1

1−Gm(w)

w
dw (4.20)
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The Frechet derivative is then obtained by standard calculus:

Gm(H + R) =
[
1− (H + R)(w−1x∗, w y∗)

]m

=
m∑

k=0

(
m

k

)
(
1−H(w−1x∗, w y∗)

)m−k (−R(w−1x∗, w y∗)
)k

=
[
1−H(w−1x∗, w y∗)

]m

−m
[
1−H(w−1x∗, w y∗)

]m−1
R(w−1x∗, w y∗)

+ . . . .

Therefore we get:

DTH(R) =

∫ ∞

0

m

w

{[
1−H(w−1x∗, w y∗)

]m−1
R(w−1x∗, w y∗)

}
dw

Now, applying equation (4.19) we have:

√
n

[
T (Ĥ)− T (H)

]
=

∫ ∞

0

m

w

[
1−H(w−1x∗, w y∗)

]m−1√
n(Ĥ −H)(w−1x∗, w y∗)dw

+oP (
√

n‖Ĥ −H‖) (4.21)

We are now back to the standard form (equation (3.10)) as in Cazals et al. (2002), our

theorem then follows from the central limit theorem applied to the first term of (4.21) (see

Cazals et al. for details).

Our final result concerns the behavior of D̂m(n)(x, y, gx, gy) for a sequence m(n) with

m(n) →∞ fast enough, as n →∞. We know by Cazals et al. (2002) that under appropriate

rates for m(n), the asymptotic behavior of γ̂m(n) is similar to the FDH estimator as estimator

of the full frontier measure γ, with the limiting Weibull distribution. The following theorem

indicates that this property is preserved for directional distance estimators.

Theorem 4.6. Under Assumptions A1−A3, for any (x, y) in the interior of Ψ, and let m(n)

be a sequence such that m(n) →∞ as n →∞, with m(n) = O(βn log(n)) with β > 1/(p+q).

Then we have as n →∞

n−1/(p+q)
(
D̂m(n)(x, y, gx, gy)−D(x, y, gx, gy)

) L−→ Weibull

(
µp+q

H,0 ,
p + q

γ(x∗, y∗)

)
(4.22)

where µH,0 is the constant introduced in Theorem 4.1.

Proof. Now, using the decomposition (4.16) we obtain:

n−1/(p+q)
(
D̂m(x, y, gx, gy)−D(x, y, gx, gy)

)
= n−1/(p+q)

(
D̂(x, y, gx, gy)−D(x, y, gx, gy)

)

−n−1/(p+q)

∫ γ̂(x∗,y∗)

0

[
1− ĤX∗Y ∗(w

−1x∗, w y∗)
]m

w
dw. (4.23)
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Following Cazals et al. (2002), the issue is to find m(n) such that the last integral is oP (1)

as n →∞. Note first that

∀(x∗, y∗) ∈ Ψ∗, ∀w ∈ [0, γ̂(x∗, y∗)], ĤX∗Y ∗(w
−1x∗, w y∗) ≥ 1

n
,

and
[
1− ĤX∗Y ∗(w

−1x∗, w y∗)
]m

≤ (
1− 1

n

)m
. Under the assumption that X and Y have

compact support, then for all (x∗, y∗) ∈ Ψ∗, ĤX∗Y ∗(w
−1x∗, w y∗) = 1 for all w ≤ w∗ for

some constant w∗ > 0. Now, using a mean value theorem, we can bound the integral in

(4.23) by γ̂(x∗, y∗) 1
w∗

(
1− 1

n

)m
. So, to achieve our goal, it is sufficient that m(n) is such that(

1− 1
n

)m(n)
= Op(n

−β) where β > 1/(p + q). This completes the proof.

Again this property indicates that the order-m directional distance estimator can be

viewed as a robust estimator of the full directional distance measure, because even if m(n) →
∞ fast enough as n → ∞, for finite n, the corresponding estimator is not based on an

estimator of Ψ that envelops all the data points and so D̂m(n)(x, y, gx, gy) will be more

resistant to outliers and extreme data points.

For practical inference for deriving confidence intervals and/or testing issues, here again,

the bootstrap can be used, with the same caveats carefully described for “full” and order-α

directional distances above at the end of Sections 4.1 and 4.2.

5 Empirical Illustration

We illustrate our methodology using a cross-section database of US mutual funds collected

from Morningstar and updated at May 2002, with one specific category of Mutual Funds

(aggressive growth) and a final number of observations equal to 129. Note that a more

complete version of this database was previously analyzed in Daraio and Simar (2006, 2007).6.

In this setting the traditional output is Y , the total annual return, expressed in percentage

terms and we consider three inputs: X1 is a measure of risk given by the standard deviation of

return, X2 is the expense ratio which is a measure of transaction costs (operating expenses

and management fees, administrative fees, and all other asset-based costs) and X3, the

turnover ratio that measures the fund’s trading activity (funds with higher turnover incur

greater brokerage fees for affecting the trades). Due to the aggressive strategies chosen by

the funds, annual returns can take either positive or negative values and it is mandatory to

take this specificity into account in the estimation of efficiencies. As a matter of fact, most

of the returns in our data were negative over this period (spanning the 11 September 2001).

6We are grateful to Cinzia Daraio who kindly let us use her database
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Table 1 below gives the directional distances obtained for full and partial frontiers. The

table presents the different variants of the measure: input oriented Din(x, y) = D(x, y; gx, 0),

output oriented Dout(x, y) = D(x, y; 0, gy) and the more general directional distance D(x, y) =

D(x, y; gx, gy). The direction we have chosen for gx is the average values for the inputs (all

are positive in our case) and we obtain gx = (34.98, 155.19, 1.68)′. For the output we choose

the mean of the absolute values and obtain gy = 18.36. Comparing the efficiency level along

an average benchmark direction sounds meaningful, although from a theoretical view point,

any other direction could be chosen.

Note that for the robust estimation methods, the orders α and m were chosen in order to

fix a proportion of points staying outside the partial frontier nearly equal for both approaches.

In the illustration below we choose m = 40 (we choose 1000 Monte-Carlo replications to

compute the order-m estimates) and α = 0.98 providing in both cases around 23% of points

outside the robust estimated frontier. Among these points the most extremes may be warned

as potential outliers. In order to save place, the tables below give the results only for 20

funds randomly chosen in the full set of 129 funds. The average values at the bottom line

have been computed with the full sample.

Table 1 gives the results for the different estimates. Choosing the orientation is let to the

analyst but of course, the advantage of the global measures (D(x, y), Dα(x, y) and Dm(x, y))

is that they do not force to privilege one particular orientation (input or output). We will

thus mainly focus the comments on the 3 last columns of the table. When D̂n(x, y) = 0, it

means that the fund is estimated as being efficient. It is the case of the funds #3, #122,

#123, #56 and #31 (we can see since they are on the efficient frontier, they are also efficient

for the input oriented case (column 2) and for the output oriented case (column 5). Looking

to the partial measures for these funds give an idea how far they are outside the partial

frontier. For instance for the fund #3, we see that it stands, as expected, outside the partial

frontiers (D̂α,n = −0.1361 and D̂m,n = −0.0904). This means that it has to reduce its

output (the annual return) by 0.0904× gy = 1.66 and simultaneously increase its inputs by

an amount (in original units) of 0.0904×gx = (3.16, 14.03, 0.15)′ to be on the partial frontier

of order m = 40. So, fund #3 seems not to be so far above the order-40 frontier.

As pointed above, these partial scores can be useful to detect the most extreme (efficient)

funds and warn for potential outliers. For instance, the fund #56 seems to be very extreme to

this respect (very high negative values of D̂α,n and of D̂m,n) . This idea has been suggested in

Simar (2003), proposing to do this kind of analysis in a more systematic way. The procedure

could be extended with our directional distances. On the other extreme the fund #99 and

#91 seems particularly inefficient among the 20 selected funds. For instance fund #91 should

increase its return by an amount of 0.7256∗ gy = 13.33 and reduce its outputs by an amount
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of 0.7256 ∗ gx = (25.38, 112.61, 1, 22)′ for being on the efficient frontier. We see that these

inefficient funds would also be considered as being inefficient using other measures (input

and output oriented); even the less extreme benchmark provided by the partial frontier seem

very distant for these inefficient funds.

These distance of the data points to the frontier, in original units, are quite informative

because they give, in the original units the size of the effort to become ‘efficient’. These

distances from the frontier are called “slacks” in the literature. Table 2 gives the slacks and

the corresponding original data of the selected 20 funds. To save place we only give the

slacks for the full directional measure D(x, y) (estimated by the 8th column of Table 1.We

see that of course for efficient funds the slacks are zero. The last row of the table gives the

average slacks with the average levels of inputs and outputs in the full sample of 129 funds.

6 Conclusion

In this paper, we have shown that a probabilistic formulation of the production process allows

to give an original characterization of the directional distances introduced by Chambers et

al. (1998) and Färe and Grosskopf (2004). This is not only a simple theoretical exercise

because by doing this we were able to define the robust versions of these directional distance

function, introducing order-m and order-α quantile version of the distances. In addition we

indicate that it is straightforward to extend the concept of conditional efficiency measures to

the directional distances, which allows to introduce environmental factors or heterogeneity

in the production process.

Finally we show that most of the known statistical properties of the nonparametric

estimators of radial efficiency scores can be transferred to the nonparametric estimators of

the directional distances. Even statistical inference is available by using the appropriate

bootstrap algorithms. We provide also very simple and fast algorithms to compute these

nonparametric estimators.

Directional distance are quite attractive, since they generalize in a sense the usual Farrell-

Shephard radial distances when all the input and the outputs are all strictly positive. But

when some of the inputs and/or the outputs could take negative values, there provide the

most natural way to measure efficiencies. The procedure is illustrated in a real data example

on Mutual Funds. This example illustrates how useful and informative are these directional

measures to analyses the performance of the funds.
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A Appendix: Output-oriented Directional Distances

A.1 Full frontier estimation.

We have seen in Section 2.3 that for the output oriented case, the choice of the directional

vector is g = (0, gy) with gy > 0 provides D(x, y; 0, gy) = sup{β > 0| HXY (x, y + βgx > 0}.
The transformation of coordinates is here given by x∗ = exp(x) and y∗ = exp(y./gy), so

D(x, y; 0, gy) = log(λ(x∗, y∗)) where λ(x∗, y∗) is the usual radial Farrell output distance in

the (x∗, y∗) coordinates.

Consider a sample of observations X = {(Xi, Yi)|i = 1, ..., n} and a fixed value (x, y).

Given the direction (0, gy), a nonparametric estimator of the output directional distance is

given by

D̂(x, y, 0, gy) = log
(
λ̂(x∗, y∗)

)
(A.1)

where λ̂(x∗, y∗) is the empirical analog of the output distance computed in the transformed

sample of observations X ∗ = {(X∗
i , Y ∗

i ) = (exp(Xi), exp(Yi./gy))|i = 1, ..., n} at the fixed

transformed value (x∗, y∗) = (exp(x), exp(y./gy)). More precisely, define the set of observa-

tions which dominate (x∗, y∗), D∗ = {i |(X∗
i , Y ∗

i ) ∈ X ∗, X∗
i ≤ x∗, Y ∗

i ≥ y∗}. The estimation

of λ̂(x∗, y∗) is given by:

λ̂(x∗, y∗) = sup{λ > 0 | ĤX∗Y ∗(x
∗, λy∗) > 0} = max

j∈D∗

{
min

`=1,...,q

(
Y ∗,`

j

y∗,`

)}
. (A.2)

A.2 Order-α quantile estimation

For the Farrell output measure, for any α ∈ (0, 1] and if x such that FX(x) = Prob(X ≤
x) > 0 we have (Daouia and Simar, 2007)

λα(x, y) = sup{λ > 0|SY |X(x, λy) > 1− α}
= sup{λ > 0|HXY (x, λy) > (1− α)FX(x)},

where SY |X(x, y) = HXY (x, y)/FX(x) = Prob(Y ≥ y|X ≤ x) and where (using radial

distance) we restrict the input-output as being positive. Clearly when α → 1, λα(x, y) →
λ(x, y).

The natural extension to order-α distance functions is obtained from its probabilistic

characterization. We can define

Definition A.1. For any points (x, y) ∈ Ψ and for all α ∈ (0, 1] the order-α output direc-

tional distance of (x, y) with respect to the output directional vector gy is defined as

Dout
α (x, y; gy) = sup{β|SY |X(x, y + βgy) > 1− α}, (A.3)

27



It is easy to show that, here again, Dout
α (x, y; gy) → D(x, y; 0, gy) when α → 1. The order-

α distance function can also be written as Dout
α (x, y; gy) = log(λα(x∗, y∗)) where λα(x∗, y∗) =

sup{λ > 0 |SY ∗|X∗(x∗, λy∗) > 1 − α} is the usual order-α output distance in the (x∗, y∗)

coordinates. A nonparametric estimator of order-α directional distance is thus given by

D̂α(x, y, 0, gy) = log(λ̂α(x∗, y∗)), (A.4)

where λ̂α(x∗, y∗) can be computed from the algorithm described in Daouia and Simar (2007)

for the output-oriented case with reference sample X ∗.

A.3 Order-m partial estimation

For a given level of inputs x in the interior of the support of X, we consider a m i.i.d. random

variables Yi, i = 1, . . . , m generated by the conditional distribution function FY |X(y|x) =

Prob(Y ≤ y|X ≤ x) and define the random set Ψ̃x
m = {(x′, y) ∈ Ψ|x′ ≤ x, y ≤ Yi}. then we

can define the random distances

β̃m(x, y; gy) = sup{β|(x, y + βgy) ∈ Ψ̃x
m},

= sup{β|F̃m,Y |X(y + βgy|x) < 1}, (A.5)

where F̃m,Y |X(y|x) is the empirical version of FY |X(y|x) computed from the random sample

of size m. Now we can formally define our order-m output directional distance.

Definition A.2. For any point (x, y) ∈ Ψ and for all m ≥ 1 the order-m output directional

distance of (x, y) with respect to the output directional vector gy is defined as

Dout
m (x, y; gy) = E(β̃m(x, y; gy)|X ≤ x), (A.6)

where we assume the expectation exists.

Note that β̃m(x, y; gy) can be equivalently written as the logarithm of a radial Far-

rell output measure in the coordinates (X∗, Y ∗): β̃m(x, y; gy) = log(λ̃m(x∗, y∗)), where

λ̃m(x∗, y∗) = sup{λ > 0 | F̃m,Y ∗|X∗(λy∗|x∗) < 1}, where F̃m,Y ∗|X∗ is the version of F̃m,Y |X
in the (X∗, Y ∗) coordinates. Then, by denoting W out

m the random variable λ̃m(x∗, y∗) and

Gout
m its distribution function, we have:

Gout
m (w) = Prob(W out

m ≤ w|X∗ ≤ x∗) = Prob

[
max

j=1,...,m

{
min

`=1,...,q

(
Y ∗,`

j

y∗,`

)}
≤ w|X∗ ≤ x∗

]

=
[
1− SY ∗|X∗(w y∗|x∗)]m

, (A.7)
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where SY ∗|X∗(y∗|x∗) = Prob(Y ∗ ≥ y∗|X∗ ≤ x∗). Here it would be easy to obtain the

E(λ̃m(x∗, y∗)|X∗ ≤ x∗) and its nonparametric estimator (see Theorem 2.2 in Daraio and

Simar, 2005) but this would be of little interest for the directional distance Dout
m (x, y; gy)

because E(log(·)) is not equal to log(E(·)). But, under the assumption that the conditional

expectation of log(W out
m ) exists for any m ≥ 1, the explicit formulation of the order-m

directional distance can be obtain trough

Dout
m (x, y; gy) =

∫ ∞

0

log(w) dGout
m (w). (A.8)

By adapting the proof of Theorem 3.1, we could also prove that as m →∞, Dout
m (x, y; gy) →

D(x, y; 0, gy).

The computation of a nonparametric estimator of the order-m output directional distance

D̂out
m (x, y; gy) follows the same vein with a Monte Carlo procedure adapted from Cazals et

al. (2002) and Daraio and Simar (2005).

D̂out
m (x, y; gy) = Ê

(
log(λ̃m(x∗, y∗)|X∗ ≤ x∗)

)
,

=

∫ ∞

0

log(w) dĜout
m (w). (A.9)

where Ĝout
m (w) =

[
1− ŜY ∗|X∗(w y∗|x∗)

]m

. A Monte-Carlo algorithm for approximating the

expectation may be the following:

(1) For b = 1, ..., B, where B is large, redo the following steps (i)-(ii):

(i) Draw a sample of size m with replacement from those Y ∗
i such that X∗

i ≤ x∗ and

denote it by {Y ∗
j,b, j = 1, ..., m}

(ii) Compute λ̃b
m(x∗, y∗) = max

j=1,...,m

{
min

`=1,...,q

(
Y ∗,`

j,b

y∗,`

)}

(2) Finally we obtain D̂out
m (x, y; gy) ≈ 1

B

B∑

b=1

log(λ̃b
m(x∗, y∗)).
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Table 2: Original data and output- and input-slacks obtained with measure D̂n(x, y).

Units Y SY X1 SX1 X2 SX2 X3 SX3

3 -3.92 0.00 39.69 0.00 250.00 0.00 1.15 0.00
99 -24.74 9.23 39.31 -17.58 105.00 -78.00 1.85 -0.85

107 -25.90 2.96 34.25 -5.63 44.00 -25.00 2.62 -0.27
39 -18.71 7.93 31.19 -15.10 228.00 -67.00 1.38 -0.73
51 -17.72 2.51 38.18 -4.78 181.00 -21.23 0.80 -0.23

121 -25.42 5.09 36.87 -9.69 70.00 -43.00 1.75 -0.47
122 -10.84 0.00 19.46 0.00 50.00 0.00 1.09 0.00
15 -15.97 2.84 34.74 -5.41 144.00 -24.00 1.35 -0.26

123 -6.42 0.00 32.66 0.00 78.00 0.00 1.01 0.00
28 -20.89 4.97 32.85 -9.47 69.00 -42.00 1.42 -0.46
65 -31.98 5.92 46.91 -11.27 69.00 -50.00 2.50 -0.54
56 -7.88 0.00 15.05 0.00 161.00 0.00 0.48 0.00

115 -14.92 6.55 34.26 -12.48 126.00 -55.38 1.76 -0.60
27 -21.86 7.68 29.90 -14.63 124.00 -64.91 1.39 -0.70
6 -21.38 6.66 29.72 -12.69 104.00 -56.30 1.18 -0.61

31 -7.82 0.00 40.16 0.00 50.00 0.00 2.05 0.00
61 -22.49 7.37 29.30 -14.03 105.00 -62.25 1.55 -0.67
45 -16.04 7.45 31.65 -14.20 224.00 -63.00 2.01 -0.68
91 -25.65 13.33 40.43 -25.38 305.00 -112.61 1.96 -1.22

129 -18.73 5.18 37.74 -9.87 84.00 -43.78 1.28 -0.47

meann -18.17 4.95 34.98 -9.43 155.19 -41.86 1.68 -0.45
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