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“If my grandmother had wheels, she would be a trolley car”  

 
Abstract 
This paper contributes to the debate on the virtues and vices of counterfactuals as a basis for  
causal inference, the general goal being to put the counterfactual approach in perspective. We 
discuss a number of issues, ranging from its non-observable basis to the parallelisms drawn 
between the counterfactual approach in statistics and in philosophy. We argue that the 
question is not to oppose or to endorse the counterfactual approach as a matter of principle, 
but to decide what modelling framework to adopt depending on the research context. 
 
 
1. Introduction and Background 
 
Arguably, there are two reasons why causal analysis is important in science as well as in 
everyday life. One is that if we know the causes we are more likely to provide a good 
explanation and understanding of a given phenomenon. The other is that if we know the 
causes, we are more likely to take better action or intervention, that is to design for example 
more efficient social or public health policies or to advise on individual treatments. 
 
Controversial as it may sound at first glance, there is a sense in which causal inference is 
almost a trivial issue: it suffices to consider idealised situations. Identify the putative causes 
and effects, manipulate the causes holding fixed anything else, and see what happens. This is, 
in essence, the pillar of Baconian science. Without going into the historical details of the 
revolution Francis Bacon made in scientific method, it will suffice to recall here that, with 
Bacon, science becomes a scientia operativa (Klein 2008 and 2009): to get to know about the 
world the scientist does not just passively observe it, but she interacts with it. The modern 
scientist is a “maker” (Ducheyne 2005), she performs experiments, that is she actively 
manipulates factors to find out what causes what.   
 
But as science has evolved, methods have become more sophisticated too. A powerful tool 
introduced by Fisher in the early 1920s is randomisation. For the sake of history, the first 
historically recognised randomised experiment was run by Peirce and Jastrow (1885) in 
psychometrics, but randomisation had to wait nearly 50 years to receive an adequate 
conceptualisation and discussion (on this point see for instance Rescher (1978) and  Hall 
(2007)). 
 
Randomisation, in the original thought of Fisher, is a means for eliminating bias in the results 
due to uncontrolled differences in experimental conditions. Whilst we know that in laboratory 
experiments ideal conditions are more often met because uncontrolled variations in the 
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environment are much better known, this is certainly not the case in agricultural studies where 
Fisherian randomisation originated nor in social and biomedical contexts where phenomena 
and environmental conditions are highly complex. Randomisation is somehow a heir of 
Baconian science because it ultimately aims to make causal inference reliable implementing 
the same ideas holding up the Baconian method: manipulation and control. Randomness, in 
fact, increases the efficiency of the experiments in the sense that, because unwanted sources 
of variation are controlled for, the sought level of significance is achieved in fewer trials. 
Also, by ensuring that unwanted sources of variation are minimised or even eliminated, 
randomisation ensures that only the cause is manipulated. (See Fisher 1925 and 1935 for the 
original formulation of randomisation in experimental design, and Rescher 1978, Hacking 
1988 and Hall 2007 for historical reconstructions and critical appraisals of the meaning and 
development of Fisherian randomisation.) 
 
However, as it happens, most studies in the social sciences are constructed on the basis of 
observational data and not experimental ones. The reason is that randomisation is often 
unethical or simply not feasible. This makes the reliability of observational studies a real 
challenge because not only human populations are highly heterogeneous both with respect to 
know/unknown and non-observable/non-observed factors, but also because, being 
randomisation not performed, there is less grip on the sources of ‘unwanted variations’—as 
Fisher called them—and on the mechanisms of assignment. 
 
Here is an example that illustrate some difficulties related to heterogeneity. In developed 
societies, women using contraceptives often have a higher fertility than non-contracepting 
women of fertile ages.  This paradoxical result has been explained by the fact that many non-
contracepting women are probably sterile or sub-fecund and therefore do not have recourse to 
contraception in order to conceive.  The measure of the use-effectiveness of methods of 
fertility control must therefore take the heterogeneity of the fecundity of the population into 
account, e.g. by comparing the fertility of current contraceptors to that of contraceptors who 
stop using birth control in order to conceive. The groups one compares should therefore be as 
similar as possible, except for the fact that one group experiences the putative cause and the 
other does not.  The best situation would then be the following: to compare, at the same time, 
the outcome in the group experiencing the treatment to the outcome in the same group not 
taking the treatment. In this case, the two groups would indeed be perfectly identical, except 
for the fact that one experiences the cause and the other not. 
 
Needless to say, it is not possible that the same individuals take and do not take treatment at 
the same time. But this practical difficulty does not prevent us from imagining what would 
happen if the same individuals did take and did not take the treatment. It is this way of 
reasoning that led Donald Rubin (1974) to develop his counterfactual framework of causality 
that we will briefly present in section 2. The “Rubin Causal Model”, as it is now called 
(Holland, 1986), has become a standard reference in the literature on causality.  
 
The strength of the counterfactual approach seems to lie in the attempt to implement the 
pillars of Baconian science—that is those principles that most ensure the reliability of causal 
inference: manipulation and control. On the one hand, if the two groups (actually, the same 
group) only differ as to whether individuals receive the treatment or not, then the action of 
possible confounders is minimised if not nullified. On the other hand, once we hold fix 
everything else, the only factor subject to manipulation—albeit ideal manipulation—is the 
putative cause. Because in social science it is not always possible to manipulate or randomise, 
the counterfactual framework apparently comes to rescue because it somewhat implements 
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the same ideas of Baconian science—namely manipulation and control—without requiring 
actual manipulation. However, the counterfactual approach has its share of problems too, 
highlighted both by scientists and by philosophers (see later section 3). 
 
This paper adds to the debates on the virtues and vices of counterfactuals, but does not aim to 
take definite side with the camp of the counterfactualists or the camp of the anti-
counterfactualists. The general goal of the paper is to put the counterfactual approach in 
perspective. Our position, that we shall develop and articulate in section 3 and 4 can be 
summarised as follows.  
 
The question is not to oppose the counterfactual approach, randomisation or manipulation as 
a matter of principle. The possibility and, consequently, the decision to use manipulation or 
counterfactuals or to randomise in a given study depends on practical aspects such as the kind 
of data (for instance experimental or observational) the scientist has access to. On a more 
epistemological tone, our view is that the concept of causality does not necessarily rely on the 
concepts of counterfactuality or of manipulability. This, as we shall explain in more detail 
later, is for several reasons. One reason is that that there may be concepts other (or in addition 
to) counterfactuality and manipulation to be used in the explication of the concept of 
causality. Another reason is that the counterfactual approach should be viewed as one among 
various possible methods to perform causal analysis and that there is no principled reason 
why it should necessarily be involved. Actually, causal analysis encompasses many more 
methods and approaches than just counterfactual models or randomised trials. This is not just 
a contingency due to the richness of scientific methodology, but it is also due to the fact that 
one may need different causal methods depending on whether the goal is to explain a 
phenomenon, to measure effects of known causes, to take action in response of the causal 
knowledge gathered, etc.  
 
The paper is organised as follows. In section 2 we recall the main features of the 
counterfactual approach.  In section 3 we discuss six issues concerning the counterfactual 
approach. The first two issues have already been widely discussed in the literature. One 
concerns the soundness of the counterfactual approach: some authors have in fact argued that 
because one of the two variables is not observed this jeopardises its empirical basis. The other 
concerns the problem of preferring the counterfactual model because it measures effects of 
causes over alternative models that instead search for causes of effects. The second two issues 
have to do with the concepts backing up the experimental method: manipulation and 
randomization. The third and last two issues concern firstly the fact that we are dealing with 
complex mechanisms and secondly the analogies and parallelisms that have oft been made 
between the counterfactual model developed in statistics and the counterfactual analysis of 
causation developed by philosophers. In the final section devoted to discussion and 
conclusion, after recalling the problems raised by the counterfactual approach, we go back to 
the issue of whether alternative frameworks to deal with ‘causes of effects’ may supply the 
difficulties encountered by counterfactual models in this respect.  
 
 

2. Counterfactuals and potential outcomes 
 
Consider the classic case of a person who receives a treatment at time t. To be simple, the 
outcome or response to the treatment is observed at time t + k (k > 0). How does one conclude 
that the treatment is effective or not? In other words, how do we measure the possible causal 
effect of the treatment? Donald Rubin’s answer to estimating the causal effect of treatments in 
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randomized and nonrandomized studies is based on a counterfactual statement or ‘What-if?’ 
question. Philosophers and logicians define counterfactuals as subjunctive conditional 
statements, the antecedent of which states a contrary-to-fact situation, such as: ‘If my 
grandmother had wheels, etc.1’ Consider the aspirin example given by Rubin (1974). Suppose 
Mr Jones, suffering from headache, says that “If an hour ago I had taken two aspirins instead 
of just a glass of water, my headache would now be gone”. This conditional statement 
presupposes that Mr Jones did not take the aspirin and still has headache. Instead, had he 
taken the aspirins he wouldn’t have a headache anymore, and this is why, roughly speaking, 
we say that aspirin is an effective treatment against headaches. 
 
A number of philosophers have argued, in slightly different ways, that the notion of 
counterfactuals captures an essential aspect of causation; for a brief overview, see e.g. P. 
Menzies (2009). In philosophy, a full counterfactual account of causation has been developed 
in the Seventies by David Lewis (Lewis 1973a and 1973b) and is still very influential 
nowadays (see e.g. Woodward 2003, Collins, Hall and Paul, 2004). The intuition that 
causation has to do with ‘what if things had been different’ even traces back to Hume, 
according to some authors. Lewis, in particular, thought that the second part of the well-
known definition of cause given by Hume was not just a restatement of the first claim, but a 
clear encouragement to think of causality in counterfactual terms. As Hume (1748) said, “a 
cause is [. . . ] an object followed by another, and where all the objects similar to the first are 
followed by objects similar to the second. Or, in other words, if the first object had not been, 
the second had never existed” (italics ours).  
 
Lewis thinks that counterfactual reasoning captures something essential about causality. In 
particular, this is the way we find out about causes of effects. Lewis develops a formal 
framework to analyse counterfactual statements that hinges upon the axioms and rules of 
inference of modal logic. Nevertheless, the core idea can be grasped distilling from the 
complex technicalities of the so-called ‘possible-worlds semantics’. Here is how we proceed 
according to Lewis. Suppose we wonder whether it is true that, had Mr Jones taken the aspirin 
half an hour ago, his headache would have gone now. We know that in the actual world Mr 
Jones did not take the aspirin and still has headache. We now imagine another situation (or 
possible world) that is in all respects equal to the actual world, except that, there, Mr Jones 
does take the aspirin. Everything else being equal (e.g., aspirin is still supposed to be a 
powerful analgesic, Mr Jones does not take other drugs interfering with aspirin, etc.) the 
course of events is such that Mr Jones’ headache is gone because he took the aspirin. 
 
Rubin somehow exploits the same intuition—that counterfactual reasoning grasps something 
essential about causality—but in a slightly different way. He is in fact interested in finding out 
the effects of causes and therefore wonders, to echo the usual example, what are the effects on 
headache of taking or not taking aspirin. 
 
Rubin formalised the basic ideas behind counterfactual reasoning as follows. Consider 
comparing two ‘treatments’, E and C, in the case of a headache.  Let E represent taking two 
aspirins and C drinking just a glass of water. The potential outcomes Y relating to these two 
treatments may then be written as two random variables, namely Y (E) and Y (C). The causal 
effect of treatment E versus treatment C on Y for a particular subject j observed at time t+k is 
then defined as Yj(E)−Yj(C), i.e. the differential headache response to taking the aspirins or 
                                                 
1 A more common but cruder Yiddish version is  “As di bubbe volt gehat beytsim volt zi gevain mayn zaidah” 
(Bubby’s Yiddish Dictionary,URL= http://www.bubbygram.com/ yiddishglossary.htm, accessed on January 4, 
2010).  
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just drinking a glass of water at time t. If we consider n subjects instead of only one subject, 
we have one causal effect Yj(E)−Yj(C) per subject j. The average causal effect for this group 
of n persons can then be written Σ [Y j(E) − Yj(C)]/n, the sum extending from j = 1 to n.  
 
Rubin’s solution is often called the potential outcome (or response) model, the two potential 
outcomes being in this simple case Yj(E) and Yj(C) for each j. Note that the causal effect may 
differ from one individual to the other; thus a “typical” causal effect (Rubin’s term) is 
obtained as  above by taking the average (or any other summary measure) of the individual 
causal effects. As pointed out by Brand and Xie (2007 p.394), “the potential outcome 
approach to causal inference extends the conceptual apparatus of randomized experiments to 
the analysis of nonexperimental data, with the goal of explicitly estimating causal effects of 
particular ‘treatments’ of interest”. 
 
In the actual world, one never observes at the same time for the same individual both Y(E) 
and Y(C). In general, people are indeed assigned either to E or to C but not to both at the 
same time. Thus one can never observe for a same individual j at the same moment of time 
the causal effect Yj(E) − Yj(C). Still following Rubin (1974), suppose there are only two 
subjects under study, denoted by 1 and 2. The typical causal effect (as defined above in the 
counterfactual situation) would then be 0.5[Y1(E) − Y1(C) + Y2(E) − Y2(C)]. In the actual 
world, one would observe in a single study either Y1(E) − Y2(C) or Y2(E) − Y1(C) depending 
on whether subject 1 or subject 2 is assigned to E, and vice versa subject 2 or subject 1 to C. If 
treatments are randomly assigned to subjects, we are equally likely to observe one or the other 
difference. The expected difference in the outcome Y under randomization is then the average 
0.5[Y1(E) − Y2(C)] + 0.5[Y2(E) − Y1(C)] which is the same result as that obtained in the 
counterfactual situation. 
 
Suppose now that subjects 1 and 2 respond similarly to the treatments E and C. In that case 
Y1(E) − Y2(C) = Y2(E) − Y1(C) and  moreover Y1(E) − Y2(C) = Y1(E) − Y1(C) or 
Y2(E) − Y1(C) = Y2(E) − Y2(C).  In the situation of perfectly matched subjects with respect to 
the effects of the treatments, the observed causal effect is therefore equal to the counterfactual 
causal effect. Results under randomization or perfect matching can easily be extended from 
two subjects to n subjects. Thus the important conclusion: randomization and matching are 
two approaches measuring the causal effect in experimental and nonexperimental studies, 
though randomization cannot often be used in the social sciences and perfect matching is 
hardly possible in practice (see the thorough review by Morgan and Harding, 2006). As 
recalled earlier, in many actual situations in nonexperimental research, the assignment of units 
to the case and control groups is often prone to selection bias. Thus the assignment procedure 
is often not “ignorable”, in the sense that the likelihood of treatment on the one hand and of 
the outcome on the other hand are not independent. For example, if the sickest take the new 
treatment and the healthier the older one, the outcome (e.g. recovery) in the treatment group 
will be due both to the new drug and to the characteristics of the patients at onset. In this case, 
one must control as best as possible for the assignment factors which have an impact on the 
outcome. In the above example, one would try to control, e.g. by stratification, for the state of 
health of both groups at the beginning of the trial.   
 
It should be noticed that Rubin requires that all subjects be potentially exposable to either E 
or C, i.e. to the various k treatments (E1, E2, E3, ...,Ek) - including possibly no treatment -being 
compared. In this approach, “causes are only those things that could, in principle, be 
treatments in experiments” (Holland, 1986). Therefore, an attribute (such as gender or 
ethnicity) cannot be a cause because potential exposability does not apply to it. In other 
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words, in this framework there is “no causation without manipulation” (Holland op. cit.). For 
example, a study on gender differences in starting salaries cannot be addressed by randomized 
experiments and therefore gender cannot be a cause of differential salaries among subjects 
(Rubin, 1986). Gender is an attribute and cannot be considered in the search of effects of 
causes. According to Rubin, there is no clear causal answer to this issue. We will deal more 
about this later on. 
 
Let us point out at first that a major contribution of Donald Rubin’s potential outcome model 
has been to stress the importance of carefully planning the design stage in observational 
studies. In particular, the assignment mechanism by which some units are subjected to the 
putative cause (“treatment” group) and others are not (“control” group) should be studied in 
depth prior to any data analysis of the outcomes, and thoroughly explicated if possible: “we 
should objectively approximate, or attempt to replicate, a randomized experiment when 
designing an observational study” (Rubin 2007, p.25). For this purpose, Rubin with others has 
developed propensity score methods destined to eliminate bias, at the stage of the initial study 
design; a propensity score is the probability of being treated given the observed value of a 
vector of observed covariates, without reference to the outcome data (see e.g. Rosenbaum and 
Rubin, 1983; Rubin, 2001). Propensity score methods can be used to construct treatment and 
control groups similar as to their distributions of background variables.  This approach 
requires of course that the assignment mechanism is otherwise unconfounded, i.e. it assumes 
that there are no latent confounders influencing the assignment of units between the treatment 
and control groups. This requirement is less demanding in experimental studies where the 
units are randomly assigned to the treatment and control groups.  
 
 
3.  Counterfactuals: epistemological issues 
 
Though Rubin’s potential outcome framework is a significant contribution to analysing the 
cause–effect relation in observational studies, its counterfactual basis nevertheless raises some 
important epistemological issues, which are now examined.  The first two issues are quite 
often discussed in the literature. One concerns the soundness of the counterfactual approach, 
given that one of the two variables is not observed, thus resulting in a lack of sound empirical 
basis. The other concerns the alternative between a counterfactual model measuring effects of 
causes and other models concerned instead with the causes of effect. The second two issues 
concern the concepts that, as we recalled in the introduction, back up the experimental 
method: manipulation and randomization. The third issue deals with complex mechanisms 
and the last makes a critical assessment of the too quick and simplistic analogies and 
parallelisms that have oft been made between the counterfactual model developed in statistics 
and the counterfactual analysis of causation developed by philosophers. 

 
Potential outcomes: a “Platonic heaven”?  
A major criticism that has been addressed to Rubin’s potential outcome (or potential 
response) model is its counterfactual basis (Dawid, 2000; Dawid, 2007). Paul W. Holland 
(1986) has even called it ‘the fundamental problem of causal inference’. The individual causal 
effect, as proposed by Rubin, requires taking the difference Yj(E) − Yj(C), though one of the 
two potential outcomes will never be observed. As Dawid said: “There is no world, actual or 
conceivable, in which both variables could be observed together. Their simultaneous 
existence must therefore be confined to some “Platonic heaven” of ideal forms, not fully 
accessible to real-world observation” (Dawid 2007, p. 510). It is impossible for the same 
subject j at the same time t to be assigned to both C and E. Rubin himself points out that “E 
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and C are exclusive of each other in the sense that a trial cannot simultaneously be an E trial 
and a C trial” (Rubin 1974, p.689).   
 
In order to get out of the ‘Platonic heaven’, the following modelling strategy may be 
implemented. Either different individuals are assigned to E or to C at the same time, or the 
same individual is assigned to E and C in different times. In the first case, unknown factors 
may intervene and bias the causal effect, even when the individuals are matched as best as 
possible. The second case is known as a cross-over trial: contrary to a parallel-group design, 
the same subject first takes treatment A and then after a first period of time crosses-over to 
taking treatment B during a second period of time. The effects of A and B are then compared 
on the same individuals. Two major assumptions however limit the scope of this approach 
(Jones, 2008). A first one is that subjects are in the same state at the beginning of period two 
as they were at the start of period one, which is a strong assumption indeed. A second limiting 
factor is a possible carry-over effect: the effect of treatment A might be carried over from the 
first to the second period, biasing the difference of effects between the two treatments at the 
end of the trial. Neither approach solves therefore the ‘fundamental problem of causal 
inference’. Thus, the ‘true’ causal effect remains latent.  Actually, we usually have to face the 
problems of unit heterogeneity and temporal instability in observational studies, though this 
might not always be the case in experimental ones (see Holland, 1986, section 4).  
 
Although ways out of the ‘Platonic heaven’ may be found, a conceptual problem about the 
lack of empirical basis remains at the individual level. Take the aspirin example again: “Had 
Mr Jones swallowed the aspirin half an hour ago, his headache would have gone now”.  The 
fact is that Mr Jones did not swallow the aspirin half an hour ago. This makes it impossible to 
say what would have happened if he had taken the aspirin based on empirical evidence. Since 
he did not take the aspirin, this hypothesis is completely equivalent to many others: what if 
Mr Jones went for a walk, or took paracetamol instead, or consulted a holy man or had taken 
the aspirin later rather than sooner?  Here, several putative causes would be equally effective 
in relieving headache, and consequently there is no a priori reason to claim the counterfactual 
‘Had Mr Jones take an aspirin half an hour ago, his headache would have gone now’ picks out 
the right cause whilst ‘Had Mr Jones consulted with a holy man, his headache would have 
gone now’ instead doesn’t. Moreover, some of these putative causes are statistically not 
independent; for instance paracetamol would typically be exclusive of aspirin. In this case, the 
counterfactual itself is clear but more information on facts, here on Mr. Jones’ actual 
behaviour, is needed. 

Causes of effects 

The potential outcome model focuses on the ‘effects of cause’ problem and can hardly tackle 
the ‘causes of effect’ issue, which is central to much of the social sciences (Ni Bhrolchain and 
Dyson, 2007). Counterfactualists are of course well aware of this problem, Rubin’s causal 
model having been specifically developed to examine the effects of causes and not the causes 
of effects.  Though disputable, the argument is that causal effects come first in the process of 
causal inference; therefore one should focus on the measurement of the effects of causes, as in 
the case of randomised experiments, rather than vice versa on the causes of effects (Holland, 
1988).  Actually, in many situations one focuses on the causes, such as on the causes of death 
and on the factors determining mortality and morbidity, rather than on the effects (death, in 
this case).  Though favouring a counterfactual approach to causality himself, Heckman (2005, 
p.2) has nevertheless pointed out that “science is all about constructing models of the causes 
of effects”, and insists on the need of understanding the causes producing the effects, or in 
other words the determinants of the outcomes.  Clearly, both issues, namely “causes of 



 8 

effects” and “effects of causes” are relevant, one or the other or both according to the problem 
at hand, and moreover both issues should be based on a same concept of causality. 

 

The preference for models that measure effects of causes or find out causes of effects brings 
up more general questions about a unique approach for causal inference. Even if we take  for 
granted that counterfactual models are successful tools to measure effects of causes, it 
remains an open question of what to do with causes of effects, since this seems an important 
task in science too. In the final section on discussion and conclusion we will get back to this 
issue and suggest that alternative frameworks—notably a structural framework—are needed 
to answer questions about causes of effects. 

 
Manipulation  
A major difficulty with the potential outcome framework is that it can hardly take attributes 
into account (Ni Bhrolchain and Dyson, 2007). Holland (2001) is quite explicit in saying that 
attributes such as race cannot be manipulated and therefore counterfactuals involving 
attributes make no sense.  For example, the question “What would your life have been had 
your race been different?” can be viewed as ridiculous (Holland op. cit., p. 226).  If one 
accepts the counterfactual/manipulation framework, attributes (such as age, gender, race,…) 
cannot indeed be causes. Nevertheless, many scientists would consider gender as a cause of 
initial salary discrimination in many countries, ethnicity as a cause of differential HIV 
prevalence in Sub-Saharan Africa, ageing as a cause of hearing loss, etc.  This is because 
these attributes are not only associated with their respective effects—they are part of the 
causal mechanism itself. For example, belonging to different ethnic groups in Africa results in 
having different reproductive norms, values, and sexual behaviours (such as multi- or single-
partnership), and these characteristics are major determinants of exposure to HIV. Any 
explanatory framework in the social sciences that cannot take attributes into account is 
therefore necessarily incomplete. The statement “no causation without manipulation” 
(Holland, 1986) is not adequate in those cases and different test settings have to be developed 
in order to evaluate effects of non-manipulable causes.  
 
As discussed in the introduction, the manipulative account of causation is based on the idea 
that one manipulates an independent variable and sees how the value of a response variable 
depends upon the value of the manipulated variable. If feasible, it has several advantages, as 
discussed in Sobel (1995). Among others, issues concerning causal priority are easily solved, 
as manipulation of the putative cause comes first and the possible effects later.  However, as 
manipulation is only a means among others for testing causal relations, our point is that it is 
inappropriate to consider manipulability as an essential condition for causality. In other 
words, manipulation is only one of the possible ways to test for causal relations, and, more to 
the point, most often not the one that is actually feasible in observational contexts. 
 
Because many variables cannot be manipulated, e.g attributes and causes that have occurred 
in the past, the key question around which model building and model testing turn around is: 
are variations among units in the treatment variable followed by variations in the outcome 
variable or not?  For example, does ageing (a change in the input variable) lead to an increase 
in physical and mental deficiencies (a change in the outcome variable)? No manipulation and 
no counterfactuals actually need to be evoked here: one compares individuals of different ages 
or the same individuals at different ages in order to see if deficiencies are usually more 
common among the older population than among the younger one. Most probably we will 
observe that they are. The main problem in a complex situation is however controlling as best 
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as one can for possible confounders, such as period effects in this case.  See for example the 
interesting discussion of gender effects on earnings in Sobel op.cit., pp. 21-22. 
 
Rather than manipulation, the basic idea or rationale underpinning causal analysis is that some 
form of joint variation between variables of interest has to be evaluated. In an experimental 
context variations come from the manipulation of variables, in the counterfactual approach 
variations come from thought experiments, in purely observational contexts variations come 
from the marginal-conditional decomposition of multivariate distributions;; for a more 
systematic exposition of model building and model testing based on the notion of variation, 
see Russo (2009 and 2010). 
 
To give yet another example taken from Sobel (1995), take the association between a father’s 
occupation and his son’s intelligence, measured e.g. by his performance at school.  A 
manipulation of the father’s occupation will most probably not lead to a change in the child’s 
intelligence, as Sobel rightly states, and the former should not in this case be considered as a 
cause of the latter.  We can nevertheless assume in a longer time-frame that an increase in 
fathers’ occupational level - and more generally socio-economic status - from one generation 
to another, will be accompanied by an increase in the educational level of their sons, as 
observed also cross-sectionally among social groups. In this sense, father’s SES rightly is a 
‘cause’ of the child’s education. What we need here is an understanding of the social 
mechanism (as defined for example in Hedström and Swedberg, 1998) linking father’s 
occupation and child’s intelligence, rather than seeing if wiggling one leads to a twinkle in the 
other.   
 
This example shows again that neither the concept of causality nor the methods of causal 
inference are bound to manipulation or counterfactuality. Besides considerations about 
outcomes of manipulations or counterfactuals, considerations about the underlying 
mechanism(s) are required in order to decide whether a relation is causal or not. This problem 
has received recent attention by philosophers. According to some, care is needed in 
distinguishing between the concept of causality itself and the evidence needed to establish 
causal relations.  This idea, developed by Russo and Williamson (2007 and 2011), and Russo 
(2009 and 2010) is that, simply put, causal relations have to be established on the basis of 
multi-fold evidence, in particular evidence about the underlying mechanisms and evidence 
about difference-making. Concerning the concept of causality, it has been suggested that 
causality has to be understood in epistemic terms, that is as the scientist’s rational beliefs 
about causal relations (see Williamson 2005, 2006a, 2006b). On the one hand, the concept of 
causality is not reduced to the concept of manipulation or of counterfactuals—those are some 
of the possible causal methods—and causality has to do with the opinions we come to form 
when performing such causal analyses. On the other hand, the concept of causality is not 
reduced to the concept of mechanism or of difference-making—those are its evidential 
components, that is the types of evidence the scientist needs in order to establish whether a 
relation is rightly deemed to be causal. It is important to emphasise that such an epistemic 
approach does not lead to a subjective and arbitrary view of causality, because (rational) 
causal beliefs are formed upon evidence, and evidence can be objectively evaluated.  
 
It is also worth pointing out that manipulation not only is not necessary to test causal 
relations, but also it is not part of the concept of counterfactuality. Indeed, counter-factual 
means “contrary to facts”, i.e. based on non-realised or non-observed events. However, this 
does not imply that the non-observed causes be manipulable. In short, manipulability is, when 
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possible, an aid for measuring the possible effect of a putative cause without being a 
necessary ingredient of counterfactuality nor of causality. 
 
Morgan and Winship (2007 p.280) have supported the argument concerning causal attributes 
by evoking the construction of counterfactual thought experiments. For example, “the 
counterfactual model could be used to motivate an attempt to estimate the average gain an 
employed black male working full time, full year would expect to capture if all prospective 
employers believed him to be white” (italics ours). However, there exists an ‘infinity’ of 
possible thought experiments for each case and no way of testing the validity of their claims 
with actual data.  In the previous example, one could nevertheless estimate the difference in 
income between Blacks and Whites controlling if possible for all income factors other than 
race (such as level of education, health status, etc.). No hypothetical counterfactual thought 
experiment is actually required here. The real problem is both knowing and observing the 
factors that have to be controlled for, but there is no method of testing if in this way we have 
made Blacks and Whites exchangeable with respect to the outcome (Kaufman and Cooper, 
1999).  Only the progress of knowledge can tell us if we have not left out important latent 
confounders from the analysis. 
 
Some authors such as Paul Holland and James Woodward (for both, see Woodward 2003, 
chapter 2) contend that the issue in the gender/salary example is actually not to manipulate 
gender, but in this case, to modify the beliefs concerning gender, or the attitudes and practices 
of the employer as to hiring females, i.e. variables that can be manipulated contrary to gender. 
Similarly, the Black/White dichotomy is a case of social relations, and these can eventually be 
changed over time (Muntaner, 1999). Even if we agree with this view, this proposal can 
nevertheless hardly be extended to all the cases of attributes as causes. Consider the example 
of sex (male, female) as a major risk factor of breast cancer. No manipulation of the patient’s 
or the physician’s beliefs and attitudes towards breast cancer will change the fact that breast 
cancer is about 100 times less common among men than among women (American Society of 
Clinical Oncology, 2009). The biological differences between males and females explain this 
relation, though sex, as a cause, can hardly be manipulated. 
 
Randomization  
A randomised experimental study aims to control known and unknown confounders by 
randomisation: assign randomly individuals to two groups, that then differ only by the fact 
that one ‘receives’ the putative cause (the new drug) and the other does not (it usually 
receives a placebo instead) and after a lapse of time compare them.  For simplicity, all units in 
the same group should receive the same treatment and there should be no interaction among 
the units themselves.  D. Rubin has called these constraints the ‘stable-unit-treatment-value-
assumption’, or SUTVA for short (Rubin, 1990); these conditions can be relaxed in more 
complex designs.  In addition to the major restriction that randomised studies are often 
ethically or practically unfeasible in the social sciences, experimental results of this kind are 
also influenced by the placebo/nocibo effects, i.e. a favourable or unfavourable effect of the 
placebo due to subject-expectancy (Amanzio, 2001), and also by (post-treatment) non-
compliance with assigned treatment and by missing outcomes, i.e. drop-outs (Mealli and 
Rubin, 2002; Frangakis and Rubin, 2002). 
 
We recalled in the introduction that the counterfactual model has its roots in the Fisherian 
experimental framework, where units are randomly assigned to disjoint sets of treatments 
(Rubin, 2004). Our point is that although randomization has indeed proved very useful as a 
method enabling to distinguish causal effects from non-causal ones, randomization is by no 
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means the essential element of causal modelling. This view is shared by many scientists and 
philosophers.  For instance, Heckman (2008, p.41) has stressed that “The claim that causality 
can only be determined by randomization reifies randomization as the ‘gold standard’ of 
causal inference”. Nevertheless, there are two types of problems with this view.  
 
On the one hand, the fact that a population can be affected by latent heterogeneity, i.e. it is 
composed of individuals characterised by different values of non observable but potentially 
causing variables, is a crucial issue. If all individuals were exactly identical, in the sense of 
being characterised by an identical response distribution, there would be no need to 
randomize. But because individuals are in fact not identical, randomization may still provide a 
measure of mean effect although such a measure may be misleading or irrelevant. As a trivial 
example, if in subpopulation A the treatment has a positive effect and in subpopulation B it 
has an equally negative effect, and if there is no way of distinguishing the two subpopulations 
with the available data, the mean effect for the whole population may be null without being 
the effect for any individual.  
 
On the other hand, in the social sciences, randomized experiments are often difficult to 
conduct for ethical and/or practical reasons. Nevertheless causal patterns have indeed been 
discovered in all disciplines in the absence of randomized experiments. In those cases 
randomization is replaced by a careful control of the relevant covariates and by using criteria 
supportive of causal inference (Ni Brolchain and Dyson 2007; Glasziou et al. 2007).   
 
Multiple causes-multiple effects. 
Although counterfactual reasoning is widely used also in everyday contexts, an important 
problem concerns the issue that it is usually unclear what has to be kept fixed in checking 
what would have happened, had things been different. As Lewis has said: “counterfactuals are 
infected with vagueness” (Lewis, 1979, p.457).  For counterfactualists like Lewis (2004), 
causation is a relation between events and we need to know precisely what they are.  Take the 
aspirin example again: “Had Mr Jones swallowed the aspirin half an hour ago, his headache 
would have gone now”.  The facts are that Mr Jones did not swallow the aspirin half an hour 
ago and has presently a headache. The counterfactual proposition “Had Mr Jones swallowed 
the aspirin half an hour ago, his headache would have gone now” is an assertion that aspirin is 
a putative cause of relieving headache. As recalled in section 2, the Rubin causal model would 
compare the effect of Mr Jones not taking aspirin to the effect of Mr Jones taking aspirin. The 
issue now is that the causes of a headache may be multiple and the causes for relieving a 
headache are also multiple; moreover the effect of the former causes and the effect of the 
latter causes are possibly not independent. For example, the effect of aspirin might be 
different according to the fact that the cause of the headache is indigestion or flu.  
 
More generally, even in seemingly simple situations one has to face an issue of multiple 
causes-multiple effects, involving more than one mechanism at a time. In practice, it is 
usually not sufficient to compare Jones 1 taking the aspirin to Jones 2 not taking the aspirin. 
One must control the factors possibly confounding the relationship between aspirin and 
headache. The two Jones should be matched on all the relevant covariates which could lead to 
confounding. However if there are many covariates, as is most often the case in social 
sciences, it will often be impossible to match on the relevant covariates, even using propensity 
scores.  Concerning the latter more specifically, if samples are small or if assignment bias is 
important, it can occur that there will be few individuals in the non-treatment group with 
propensity scores similar to those in the treatment group.  Individuals poorly matched are 
usually dropped from the analysis, leading to further reductions in the sample size.  Group 
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overlap (the ‘common support’ condition) must therefore be substantial for the method to 
work adequately (Dehejia and Wahba, 2002; Bryson, Dorsett and Purdon, 2002).   A major 
problem is specifying the relevant covariates possibly responsible for confounding. As Rubin 
himself (Rubin 1974) has pointed out, more well-formulated causal models are needed in the 
social sciences, because controlling for relevant covariates may not be trivial without a 
properly developed causal model.  This is the reason why Pearl (2009) is in favour of 
modelling the putative causal relations between treatments, outcomes, observed and 
unobserved covariates. 
 
Multiple-causation problems can be tackled under different causal frameworks: potential 
outcomes (e.g. Rubin 2004), causal graphs (e.g. Pearl 2000), marginal-conditional structural 
decomposition (e.g. in the spirit of the work of the Cowles Commission in the fifties, see in 
particular Hood and Koopmans 1953). Each approach stresses different specific features. The 
main issue, as Rubin(2004) has stated, is to propose the “ correct conceptual structure”, most 
probably a more difficult issue in observational studies than in experimental ones. 
 
An additional issue is whom should we compare?  It has been argued that in some cases the 
average treatment effect between the treated and the non-treated is not the quantity of interest; 
one should consider instead the treatment effect for those treated (Heckman, 2005; Winship 
and Morgan, 1999).  These are the cases where, for instance, a policy measure should be 
beneficial for those who are assigned (or who chose the assignment) to it, and not necessarily 
for all individuals.  For those taking the treatment, the latter can be effective for some 
individuals and not for others.  The heterogeneity of the population treated is the point of 
interest in this case. For example, why does aspirin work in relieving headaches for some 
people and not for others? 
 
The individual or the population?  
Many counterfactualists (e.g. Holland, 2001), both in the statistical and social science 
literature, trace the origins of the ideas behind the counterfactual approach in the work of the 
philosopher David Lewis. Is this filiation valid? We argue here that it is not. Consider again 
the example of aspirin and headache. On the one hand, the potential outcome model wants to 
establish whether aspirin is an effective treatment for headache, namely whether aspirin 
relieves headache. Of course, the fundamental unit is the individual. More explicitly, the 
model concerns a set of single cases, and the individual causal effect is measured using 
individual data.  However, the goal of the potential outcome model is not to know whether Mr 
Jones would have recovered had he taken an aspirin, but rather whether aspirin is an effective 
treatment in the target population. On the other hand, Lewis (1973a, 2004) asks what the truth 
conditions of counterfactual statements are.  Therefore he asks, given a particular situation, 
whether the counterfactual claim picks out the right cause. For instance, Mr Jones has been 
suffering from headache for the last four hours; we now ask whether had he taken the aspirin, 
his headache would have gone now. This means, in Lewis’ approach to ask whether aspirin 
would be the cause of his recovery.  True, the analogy is definitively there; Rubin’s 
counterfactual exploits the same idea behind Lewis’ counterfactual: had the cause not been, 
the effect would not have occurred either, but this does not imply that these accounts be the 
same or that their scope be the same.  
 
This leads us, following also the arguments given in Russo and Williamson (2007 and 2010), 
to draw a distinction between single-case and generic causal claims. In Lewis’ counterfactual 
reasoning, singular causal relations are established by means of an evaluation of 
counterfactual statements.  In order to know whether taking the aspirin actually relieved Mr 
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Jones’ headache, or whether it would have relieved his headache had he took it, we ascertain 
the truth of the corresponding counterfactual statement. This kind of causal relation is single-
case, namely a particular causal relation taking place at a certain time and place. Another 
story is to evaluate the causal effectiveness of aspirin in relieving headache in a target 
population, which is exactly the purpose of the potential outcome model. It is true that 
Rubin’s potential outcome model and more generally counterfactual models use individual 
data, but this does not mean that they focus on individual or single-case causal relations per 
se. The result of a counterfactual model would sound like this: more often than not, taking 
aspirins relieves headache, therefore, given any individual randomly sampled from the 
population, had s/he taken the aspirin, his/her headache would most probably have gone. This 
is not the same as saying that ‘had Mr Jones taken the aspirin, his headache would have gone 
now’. The former counterfactual, although based on individual-level data, is generic, whilst 
the latter is single-case, that is it concerns a particular causal relation taking place in a given 
time and place. The reference to Lewis’ single-case approach is therefore not relevant for a 
generic approach.  
 
4. Conclusion and discussion  
 
This paper has examined some epistemological issues raised by the counterfactual approach 
for causal inference in the social sciences, and in particular in observational studies. One 
strength of counterfactual models developed in statistics by Donald Rubin and others (e.g., 
Paul Holland) is to regain the power of the experimental (Baconian) method implementing the 
two pillars of experimental science: manipulation and control through randomisation. Rubin’s 
causal model has led to a number of improvements in the quasi-experimental methodology, 
especially by modelling more explicitly the mechanisms of assignment.  
 
The counterfactual approach raises however several issues which the present paper discusses. 
The first issue concerns the soundness of the counterfactual approach, given that one of the 
two variables is not observed, thus resulting in a lack of sound empirical basis. Another issue 
concerns the alternative between a counterfactual model measuring effects of causes and other 
models concerned instead with the causes of effect. Two other issues concern the concepts 
that back up the experimental method: manipulation and randomization. Another issue deals 
with complex mechanisms, and the last issue makes a critical assessment of the parallelism 
that has been made between the counterfactual model developed notably by D. Rubin in 
statistics and the counterfactual analysis of causation developed by philosophers, especially 
D. Lewis. 
 
So it seems that counterfactual modelling is not a necessary road for causal inference although 
it is certainly a successful approach in some circumstances. The question now arises whether 
there be an alternative framework for inferring causal relations in observational studies when 
the counterfactual approach does not apply. In his seminal book on causality, Judea Pearl 
(Pearl, 2000) upholds the opinion that there are presently two approaches to causality in 
science: the potential outcome or counterfactual framework as championed most notably by 
Donald Rubin, and the structural modelling framework à la Wright, Haavelmo, Duncan, 
Blalock, and others (including Pearl himself).  Structural modelling, as the name suggests, 
aims to model (causal) structures or mechanisms, that is it aims to make explicit how 
elements of a social system are linked as causes and effects.  A structural model or causal 
mechanism is thus a network of causes and effects proposed as an answer to an explanation-
seeking-Why?-question, i.e. a ‘How does it work?’ question instead of a ‘What-if?’ question 
as in the counterfactual framework.  Structural modelling avoids many of the issues 
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confronting the counterfactual framework.  In particular, it is based on observable outcomes, 
and manipulation – though useful - is not mandatory. Consequently, a structural approach can 
take attributes into account. Finally, structural models can deal with both effects of causes and 
causes of effects.   
 
Many counterfactualists are however sceptical about the practical usefulness of this type of 
causal framework, even if they recognize that “understanding and identifying causal 
mechanisms is, perhaps, the primary driving force of science” (Holland, 2001, p. 224).  For 
Holland, for instance, the danger lies in the fact that almost ‘anything’ can be considered as a 
cause “because we are just talking rather than doing”, i.e. setting up ‘treatments’ or 
‘interventions’ (op. cit. p. 225).  Actually, a causal mechanism does not appear from nowhere, 
like the white rabbit drawn from a conjuror’s hat. Nor it necessarily results from adding more 
and more variables to the predictive set (Sobel, 2000).   As we have argued elsewhere (e.g. 
Mouchart, Russo, and Wunsch, 2009; Mouchart and Russo, 2010), a structural model should 
be based on the best available knowledge one has of the field; all postulated relations should 
be accounted for. In particular, it should incorporate those variables deemed to be responsible 
for possible assignment bias. The postulated mechanism is then represented by a recursive 
decomposition of the initial multivariate distribution of the data, and the model should display 
invariance (i.e. replication) properties.   
 
The structural modelling framework also has its problems, of course.  First of all, to avoid loss 
of exogeneity, known confounders can be incorporated into the model only on condition that 
indicators of these confounders are available in the data set. In many situations, especially 
when one uses secondary data (i.e. data collected by others), no information has been obtained 
for some of the variables in the model. Confounding bias may not be avoidable then, though 
in some cases omitted variable bias can be controlled for by fixed effects regression or by 
instrumental variables regression (Stock and Watson, 2003). Unknown latent confounders 
may however still bias the results.  A major drawback is that in many cases one only has a 
scant knowledge of the underlying mechanism.  In this situation, descriptive analysis or 
exploratory data analysis might be more useful than poor structural modelling. And if one is 
looking for the effects of causes, the Rubin causal model could be considered of course, even 
if we do not adhere to its counterfactual underpinnings. 
 
Today’s challenge does not concern the relevance of structural modelling for causal inference 
but rather the procedure to be followed for building a suitable structural model.  Among 
others, the following questions can be raised in this respect: 

(i) How can structural models operationalise the integration of field knowledge, in 
cases of a lack of consensus among experts?  

(ii)  With respect to graph models, taking into account the criticisms that have been 
raised (Imbens and Rubin, 1995; see also Pearl’s rejoinder, 1995), to what extent 
should structural models switch the focus from structuring a set of variables, a set 
of equations, or a graph, to structuring a multivariate distribution?  

(iii)  Can one take mechanisms as a basis for explanation ? 
(iv) Can we then opt for a stochastic view of mechanisms represented by conditional 

distributions? 
 
To conclude, the counterfactual model is a major advancement in quantitative social sciences. 
However, as any other approach, it has its share of difficulties. But we do not have to throw 
away the baby with the bath water. Counterfactual modelling has its place in scientific 
methodology, but it needs to be backed up by a sound structural approach. 
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