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Abstract

This paper shows that the notions of prudence, temperance, edginess, and, more generally,

risk apportionment of any degree are the consequences of the natural idea that the sensitivity

to detrimental changes should decrease with initial wealth. In the setting of Epstein &

Tanny (1980), this turns out to be equivalent to the supermodularity of the expected utility

for some specific 4-state lotteries.
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1 Introduction and motivation

In this paper we show that the natural feeling of a sensitivity to detrimental changes de-

creasing with initial wealth can be used to explain the notions of prudence, temperance, and

edginess which are now often used in the analysis of risky choices besides that of risk aver-

sion. Formally, in the expected utility model prudence, temperance, and edginess are defined

respectively by a positive third derivative, by a negative fourth derivative, and by a positive

fifth derivative of the utility function. Note that these concepts appear at least indirectly in

non-expected utility models (Bleichrodt & Eeckhoudt (2005)). These assumptions are

traditionally justified by reference to a specific decision problem: the analysis of precaution-

ary savings for prudence1 (Kimball (1990)), the demand for risky assets in the presence

of background risks for temperance (Kimball (1992), Gollier & Pratt (1996)), and

the reactivity to multiple risks on precautionary motives for edginess (Lajeri-Chaherli

(2004)). This explanation of the sign of the third, the fourth, and the fifth derivatives of

the utility function based upon specific decision models is in sharp contrast with the usual

interpretation of the negative sign of the second derivative which relies on a very broad type

of preference unrelated to a specific choice problem. In this paper, we show that risk ap-

portionment of any degree can be interpreted as a lower sensitivity to detrimental changes

when the decision-maker gets richer. This sensitivity is measured by an expected utility

premium, that is, by means of the difference between the expected utilities after and before

the detrimental change. In other words, the expected utility premium measures the loss in

expected utility induced by the detrimental change. Then, using the elementary correlation

increasing transformation defined by Epstein & Tanny (1980) we show that prudence,

temperance, and edginess are based on the natural idea that aversion to probability spreads

in specific 4-state lotteries should decrease as wealth increases. From a mathematical point of

view, this amounts to require that the expected utility is supermodular in the initial wealth

level and Epstein-Tanny correlation parameter when the decision-maker is faced with these

specific lotteries.

1The role of prudence has also been recently illustrated in other contexts: self-protection activities (Chiu
(2005)), optimal audits (Fagart & Sinclair-Desgagné (2007)).
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Starting from a different premise, Eeckhoudt & Schlesinger (2006) and Eeck-

houdt et al. (2009) also justify prudence and temperance, as well as general risk appor-

tionments, on the basis of another general preference. In the first paper they state it as a

preference for “pain disaggregation” while in the second one they rely upon the tendancy

to “combine good with bad”. Notice that these two papers include references to previous

papers that had partially used similar ideas. In the present paper, we show that prudence

and temperance, as well as general risk apportionments, all result from the natural tendency

of getting less sensitive to detrimental changes as wealth increases. The same idea is then

used with specific 4-state lotteries where these notions follow from the aversion to probability

spreads decreasing with initial wealth.

The present work is organized as follows. In Section 2, we first introduce some concepts

needed in the paper. Then, we prove that the signs of the successive derivatives of the

utility function control the monotonicity of the aversion to detrimental changes. In Sec-

tion 3, we present the concept of an “elementary correlation increasing transformation” and

we recall the seminal result by Epstein & Tanny (1980) relating risk aversion to “(posi-

tive) correlation aversion”. Measuring the dislike for correlation by the approach based on

utility premium developed after Friedman & Savage (1948) (see also Eeckhoudt &

Schlesinger (2006)), we show that prudence, like risk aversion, is a consequence of the

intuitive idea that a decision-maker should be less sensitive to an increase in correlation

when he gets richer. This result is then extended to general risk apportionments in Section

4 by means of specific 4-state lotteries. In that context, we show that decision-makers dis-

like probability spreads, i.e. transfers of probability mass from the inner cases to the outer

cases. Given the importance of the concept of temperance and edginess, their equivalence to

probability spread aversion is discussed in details in Section 4. The closing Section 5 briefly

concludes the paper.

2



2 Decreasing sensitivity to detrimental changes

2.1 Notation

Henceforth, we denote as u′, u′′, and u′′′ the first derivative, the second derivative, and the

third derivative of the utility function u. More generally, we write u(n) for the nth derivative

of u, n = 1, 2, 3, 4, . . .; the notations u′, u′′, and u′′′ and u(1), u(2), and u(3), respectively, will

be used interchangeably. As decision-makers are usually assumed to be non-satiated and

risk-averse, u is non-decreasing and concave. If u is differentiable, this means that u′ ≥ 0

and u′′ ≤ 0.

More recently, it has been shown that higher derivatives of u also matter. Therefore,

let us consider the non-decreasing utility functions with derivatives of degrees 1 to s of

alternating signs. This property is satisfied by the utility functions most commonly used in

mathematical economics including all the completely monotone utility functions such as the

logarithmic, exponential and power utility functions. Formally, let us define the class Us−icv,

s = 1, 2, . . ., of the regular s-increasing concave functions as the class containing all the utility

functions u such that (−1)k+1u(k) ≥ 0 for k = 1, . . . , s. To get all the s-increasing concave

utilities, we need to supplement Us−icv with all the pointwise limits of elements in Us−icv.

This gives the class Us−icv of all the utilities such that (−1)k+1u(k) ≥ 0 for k = 1, . . . , s − 2

and (−1)s−2u(s−2) is non-decreasing and concave.

The class U s−icv can be characterized by sign properties of divided differences. Recall

that the kth divided difference, k = 1, 2, . . ., of the function u at distinct points x0, x1, . . .,

xk, denoted by [x0, x1, . . . , xk]u, is defined recursively by

[x0, x1, . . . , xk]u =
[x1, x2, . . . , xk]u − [x0, x1, . . . , xk−1]u

xk − x0

, (2.1)

starting from [xi]u = u(xi), i = 0, 1 . . . , k. These divided differences extend derivatives to

less regular functions. Then, u ∈ U s−icv if, and only if, (−1)k+1[x0, x1, . . . , xk]u ≥ 0 for any

distinct x0, x1, . . . , xk, k = 1, 2, . . . , s.

The class Us−icv of the s-increasing concave functions is the largest class of functions u

for which the implication X �s−icv Y ⇒ E[u(X)] ≤ E[u(Y )] holds true for every pair (X, Y )
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of ordered random variables. For this reason, Us−icv is often called the maximal generator of

the order �s−icv. This means that Us−icv corresponds to the largest class of decision-makers

whose preferences are in accordance with �s−icv. We refer the reader, e.g., to Denuit, De

Vijlder & Lefèvre (1999) for more details about the maximal generator of �s−icv.

Letting s tend to +∞ gives utilities with all odd derivatives positive and all even deriva-

tives negative. In this case, utility functions are completely monotone and express mixed

risk aversion, as studied in Caballé & Pomansky (1996).

2.2 Higher degree stochastic dominance relations

The common preferences of all the decision-makers with s-increasing concave utility functions

generate the s-increasing concave dominance rule, called the s-increasing concave order.

More precisely, given two random variables X and Y , X is said to be smaller than Y in the

s-increasing concave order, denoted by X �s−icv Y when

E[u(X)] ≤ E[u(Y )] for all u in Us−icv

⇔ E[u(X)] ≤ E[u(Y )] for all u in Us−icv,

provided the expectations exist. For more details about these orders, we refer the interested

readers to Denuit, Lefèvre & Shaked (1998) and Denuit, De Vijlder & Lefèvre

(1999).

These orders are closely related to the sth degree increase in risk of Ekern (1980),

denoted here as �s−cv. Specifically,

X �s−icv Y

E[Xk] = E[Y k]
for k = 1, 2, . . . , s − 1







⇔ E[u(X)] ≤ E[u(Y )] for all u such that (−1)s+1u(s)
≥ 0.

If we define as Us−cv the class of the regular s-concave utilities, i.e. those with (−1)s+1u(s) ≥

0, and as Us−cv the class of all the s-concave utilities, i.e. those such that (−1)s−2u(s−2) is

concave we can then define the s-concave orders �s−cv as

X �s−cv Y ⇔ E[u(X)] ≤ E[u(Y )] for all u in Us−cv

⇔ E[u(X)] ≤ E[u(Y )] for all u in Us−cv

⇔ X �s−icv Y and E[Xk] = E[Y k] for k = 1, 2, . . . , s − 1.
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Utility functions in Us−cv are those which satisfy risk apportionment of degree s in the

terminology of Eeckhoudt & Schlesinger (2006).

2.3 Aversion to detrimental changes and s-increasing utility func-

tions

The following result is at the core of our analysis. It states that a decision-maker with a

s-increasing concave utility function becomes less sensitive to detrimental changes as wealth

increases. Using this result, we will be able to examine how the preference for risk appor-

tionment is changing with wealth.

We know from the proof of Theorem 3 in Eeckhoudt, Schlesinger & Tsetlin (2009)

that given u ∈ U(s+t)−icv and X �s−icv Y the function g defined by

g(w) = E[u(w + X)] − E[u(w + Y )] (2.2)

belongs to Ut−icv. In the next result, we study the equivalence between the non-decreasingness

of g and u ∈ U (s+1)−icv, thus allowing for utilities with non-differentiable u(s−2).

Proposition 2.1. Consider X �s−icv Y , u ∈ U s−icv, and g defined in (2.2). Then, u ∈

U (s+1)−icv ⇒ g non-decreasing. Conversely, if whatever X and Y such that X �s−icv Y , g

defined in (2.2) is non-decreasing then u ∈ U (s+1)−icv.

Proof. Note that u ∈ U (s+1)−icv ⊂ U s−icv ⇒ g ≤ 0. Define for h ≥ 0 the function ∆hu as

∆hu(w) = u(w + h) − u(w). Then,

[x0, . . . , xk](−∆hu) = [x0, . . . , xk]u − [x0 + h, . . . , xk + h]u.

Recall that if u ∈ U (2j+1)−cv then [x0, . . . , x2j ]u is non-decreasing in x0, . . . , x2j whereas if u ∈

U (2j)−cv then [x0, . . . , x2j−1]u is non-increasing in x0, . . . , x2j−1. Hence, [x0, . . . , xk](−∆hu) is

non-negative if k = 2j−1 and non-positive if k = 2j for k = 1, . . . , s, that is, −∆hu ∈ Us−icv.

Hence,

X �s−icv Y ⇒ E[−∆hu(w + X)] ≤ E[−∆hu(w + Y )]

⇔ E[u(w + X)] − E[u(w + h + X)] ≤ E[u(w + Y )] − E[u(w + h + Y )]

⇔ g(w) ≤ g(w + h)
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so that g is non-decreasing.

Let us now establish the converse. The non-decreasingness of g ensures that g(w + h) ≥

g(w) for any h ≥ 0 which in turn means that

E[−∆hu(w + X)] ≤ E[−∆hu(w + Y )]

holds for any h ≥ 0 and for any ordered pair (X, Y ). This implies −∆hu ∈ U s−icv since

Us−icv is the maximal generator of �s−icv (else, proceeding as in Denuit, De Vijlder &

Lefèvre (1999) it would be possible to construct two random variables X and Y such that

X �s−icv Y but E[−∆hu(w +X)] > E[−∆hu(w+Y )], contradicting our assumption). Thus,

−∆hu ∈ Us−icv for any h ≥ 0. To prove that then u ∈ U (s+1)−icv, we need to establish that

(−1)s−1u(s−1) is non-decreasing and concave, or equivalently that the increments

(−1)s−1
(

u(s−1)(w + h) − u(s−1)(w)
)

of (−1)s−1u(s−1) are non-negative and non-increasing. This is indeed the case since −∆hu ∈

Us−icv implies that

w 7→ (−1)s−2(−∆hu)(s−2)(w) = (−1)s−1
(

u(s−2)(w + h) − u(s−2)(w)
)

is non-decreasing and concave.

We see that the pain E[u(w +X)]−E[u(w +Y )] caused by the deterioration of Y into X

decreases as the initial wealth w increases. The decision-maker thus becomes less sensitive

to detrimental changes of Y into X as he gets richer.

3 Correlation aversion, risk aversion and prudence

3.1 Elementary correlation increasing transformation

Let us recall the concept of an “elementary correlation increasing transformation”. This

concept links correlation aversion to risk aversion, as was already shown in Epstein &

Tanny (1980, Theorem 4). Let I1 and I2 be a couple of binary random variables such that

Pr[Ii = 0] = 1 − Pr[Ii = 1] = pi, i = 1, 2.
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Without loss of generality, we assume that p1 ≤ p2. Let us now consider ρ such that

−p1p2 ≤ ρ ≤ p1(1 − p2) and define the joint distribution of (I1, I2) as

Pr[I1 = 0, I2 = 0] = p1p2 + ρ

Pr[I1 = 1, I2 = 0] = (1 − p1)p2 − ρ

Pr[I1 = 0, I2 = 1] = p1(1 − p2) − ρ

Pr[I1 = 1, I2 = 1] = (1 − p1)(1 − p2) + ρ.

Compared to the case when I1 and I2 are mutually independent, we see that ρ is added to

the probability mass at (0,0) and (1,1), whereas the same quantity is subtracted from the

probability mass at (0,1) and (1,0). Clearly,

Cov[I1, I2] = Pr[I1 = 1, I2 = 1] − Pr[I1 = 1] Pr[I2 = 1] = ρ

so that ρ can be considered as a correlation parameter.

When ρ increases we face a correlation increasing transformation as defined by Epstein

& Tanny (1980)2 and a correlation averse decision-maker should then dislike an increase in

ρ. Let us now prove that correlation aversion implies risk aversion in the expected utility

model. Consider a decision-maker with utility function u and initial wealth w facing the

risky outcome a1I1 + a2I2 for some non-negative constants a1 and a2. Clearly, a1I1 + a2I2

corresponds to the 4-state lottery

a1I1 + a2I2 =















0 with probability p1p2 + ρ

a1 with probability (1 − p1)p2 − ρ

a2 with probability p1(1 − p2) − ρ

a1 + a2 with probability (1 − p1)(1 − p2) + ρ.

The corresponding expected utility is

U(w, ρ) = E[u(w + a1I1 + a2I2)]

= (p1p2 + ρ)u(w) + ((1 − p1)p2 − ρ)u(w + a1) (3.1)

+(p1(1 − p2) − ρ)u(w + a2) + ((1 − p1)(1 − p2) + ρ)u(w + a1 + a2).

2A similar set-up is used by Doherty & Schlesinger (1983) but their objective was quite different
from ours.
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It is easily seen that U(w, ρ) non-increasing in ρ ⇔ u is concave. Indeed the partial derivative

of U(w, ρ) with respect to ρ equals

∂

∂ρ
U(w, ρ) = u(w + a1 + a2) − u(w + a1) − (u(w + a2) − u(w)) (3.2)

which is non-positive when u is concave (so that marginal utility is non-increasing). This

shows that an increase in the correlation parameter ρ is welfare deteriorating for a risk-averse

decision-maker, as pointed out by Epstein & Tanny (1980).

Note that increasing ρ increases the correlation between the random variables a1I1 and

a2I2 faced by the decision-maker. Considering the 4-state lottery a1I1 + a2I2, we also see

that increasing ρ transfers some probability mass from the inner outcomes a1 and a2 to the

outer outcomes 0 and a1 + a2. Any risk-averse decision-maker dislikes such a probability

spread, i.e. an increase in the probability of getting the outer outcomes and a corresponding

decrease in the probability of getting the inner ones.

As explained in the introduction, we measure here the strength of dislike for correlation

by means of a correlation utility premium defined as

CUP (w, ρ) = U(w, ρ) − U(w, 0).

In words, CUP (w, ρ) measures the degree of “pain” associated with facing the correlation

ρ, where pain is measured by the loss in expected utility resulting from the correlation ρ

between the random variables a1I1 and a2I2 compared to independence. Considering (3.1),

we see that

CUP (w, ρ) = ρ
(

u(w + a1 + a2) − u(w + a1) − u(w + a2) + u(w)
)

so that ∂CUP (w,ρ)
∂ρ

≤ 0 for all w, a1, a2 ⇔ u is concave.

Remark 3.1. As pointed out by Friedman & Savage (1948) for the cost of risk, there are

also to ways for measuring the impact of the correlation. The first way refers to a monetary

measure, the correlation premium π(w, ρ) such that U(w, ρ) = U(w − π(w, ρ), 0). Here,

π(w, ρ) is the amount of money that the agent is ready to pay to eliminate the correlation

level between risks. The second way refers to a non monetary measure, the “correlation
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utility premium” CUP (w, ρ) defined above. It measures the degree of “pain” e.g. the

disutility associated with facing the correlation ρ. Note that

sign
(

− CUP (w, ρ)
)

= sign
(

π(w, ρ)
)

.

We refer the reader, e.g., to Jindapon & Neilson (2007) for an extensive discussion about

these two ways of measuring the cost of a deterioration in the decision-maker’s wealth. In

this paper, we only consider Friedman-Savage utility premiums.

To propose an interpretation more grounded on observable data for the sensitivity to

an increase in correlation, let us consider the willingness to pay to decrease the correlation.

Should ρ be transformed into ρ0 with ρ0 < ρ, expected utility would remain constant if the

wealth level w were changed by a compensating variation v such that:

U(w, ρ) = U(w − v, ρ0).

When ρ0 is marginally changed around ρ, the willingness to pay is given by a total differen-

tiation of equation (3.1), that is,

WTPρ =
dw

dρ
= −

∂U(w,ρ)
∂ρ

∂U(w,ρ)
∂w

.

Thus, WTPρ is defined by the marginal rate of substitution between wealth w and the

correlation level ρ. It captures the tradeoff between a change in wealth and a change in

correlation level. Notice that the sign of WTPρ is the sign of −∂U(w,ρ)
∂ρ

that coincides with

the sign of −∂CUP (w,ρ)
∂ρ

.

3.2 Prudence

As indicated in the introduction prudence is defined by the non-negativity of the third

derivative of the utility function. It is usually justified by reference to the decision of building

up precautionary savings in order to better face future income risk. We now show that in fact

prudence, like risk aversion, can be justified by the decision-maker’s attitude to an increase

in the correlation parameter ρ.
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In order to stress the intuitive nature of the concept of prudence, let us notice that it is

pretty reasonable to assume that a decision-maker becomes less sensitive to an increase in

the correlation parameter when he is richer, i.e. an increase in the initial wealth w should

moderate the negative impact of an higher value of ρ on welfare.

To analyze the implications of this assumption, let us consider the random variable

I1a1 + I2a2 where I1 and I2 are as described in Section 3.1. For given positive values of a1

and a2, an increase in ρ should reduce welfare less when w is large since then it affects a

smaller share of the initial wealth. Considering that under correlation aversion the derivative

of the expected utility U(w, ρ) with respect to ρ is negative and that this derivative should

approach 0 as w increases, this means that we expect

∂2

∂w∂ρ
U(w, ρ) =

∂

∂w

(

∂

∂ρ
E[u(w + a1I1 + a2I2)]

)

≥ 0, (3.3)

that is, the function (w, ρ) 7→ U(w, ρ) is supermodular. This derivative equals

∂2

∂w∂ρ
U(w, ρ) = u′(w) + u′(w + a1 + a2) − u′(w + a1) − u′(w + a2), (3.4)

which is non-negative when u′ is convex ⇔ u ∈ U 3−cv. If u is thrice differentiable, u′ is

convex ⇔ u′′′ ≥ 0 ⇔ u ∈ U3−cv. Consequently, prudence can also be interpreted as an

implication of the lower sensitivity to an increase in ρ due to increased initial wealth w.

4 Risk apportionment of higher degrees

4.1 Decreasing aversion to probability spreads in 4-state lotteries

Considering Section 3, we know that risk aversion means that the decision-maker dislikes an

increase in the correlation parameter ρ when final wealth is given by w + a1I1 + a2I2 and

that prudence means that the decision-maker is less sensitive to an increase in ρ when he

gets richer. This section shows that the same idea can be used to characterize temperance,

edginess, and higher degree risk apportionment, substituting more general lotteries for w +

a1I1 + a2I2. Specifically, we show that any risk apportionment can be defined as a lower

sensitivity to an increase in the correlation parameter ρ as wealth increases.
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Recall that according to Eeckhoudt & Schlesinger (2006), preferences are said to

satisfy risk apportionment of degree s if (−1)s+1u(s) ≥ 0 ⇔ u ∈ Us−cv. This notion ex-

tends prudence, temperance, and edginess to any degree s and can be defined by means of

comparison of specific lotteries. Here, we show that risk apportionment can be alternatively

characterized by supermodularity of the expected utility viewed as a function of initial wealth

w and correlation parameter ρ.

We are now ready to state our main result.

Proposition 4.1. Assume that the decision-maker is faced with the final wealth

w + (1 − I1)X1 + I1Y1 + (1 − I2)X2 + I2Y2

where (I1, I2) is as described in Section 3.1. The non-negative random variables X1, X2,

Y1, and Y2 are assumed to be mutually independent, independent from (I1, I2), and such that

X1 �s1−icv Y1 and X2 �s2−icv Y2. Then,

u ∈ U (s1+s2+1)−icv ⇒ U(w, ρ) is supermodular.

Conversely, if U(w, ρ) is supermodular whatever (I1, I2), X1, X2, Y1, and Y2 fulfilling the

requirements listed above then u ∈ U (s1+s2+1)−icv.

Proof. The final wealth w + (1 − I1)X1 + I1Y1 + (1 − I2)X2 + I2Y2 can be seen as a lottery

with the following four outcomes:

w+(1−I1)X1+I1Y1+(1−I2)X2+I2Y2 =















w + X1 + X2 with probability p1p2 + ρ,

w + X1 + Y2 with probability p1(1 − p2) − ρ,

w + Y1 + X2 with probability (1 − p1)p2 − ρ,

w + Y1 + Y2 with probability (1 − p1)(1 − p2) + ρ.

Let us now consider another random vector ((1−I ′

1)X1+I ′

1Y1, (1−I ′

2)X2+I ′

2Y2) where (I ′

1, I
′

2)

has the same distribution as (I1, I2), except that the correlation parameter ρ is replaced with

ρ′ > ρ, that is,

Pr[I ′

1 = 0, I ′

2 = 0] = p1p2 + ρ′

Pr[I ′

1 = 1, I ′

2 = 0] = (1 − p1)p2 − ρ′

Pr[I ′

1 = 0, I ′

2 = 1] = p1(1 − p2) − ρ′

Pr[I ′

1 = 1, I ′

2 = 1] = (1 − p1)(1 − p2) + ρ′.
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Taking

X = w + (1 − I ′

1)X1 + I ′

1Y1 + (1 − I ′

2)X2 + I ′

2Y2

and

Y = w + (1 − I1)X1 + I1Y1 + (1 − I2)X2 + I2Y2

we know from Proposition 2.1 in Denuit, Eeckhoudt & Rey (2009) that X �(s1+s2)−icv Y .

Invoking our Proposition 2.1 then ends the proof.

Taking s1 = s2 = 1, and noting that Xi = 0 �1−icv ai = Yi holds for i = 1, 2 (since the

ai’s are non-negative), we get the result established in Section 3.2 for prudence.

Let us discuss the meaning of Proposition 4.1. The stochastic order relation X �(s1+s2)−icv

Y expresses the preference between a pair of 4-state lotteries offering either w + X1 + X2,

w + X1 + Y2, w + Y1 + X2, or w + Y1 + Y2. Because X �(s1+s2)−icv Y , any decision-maker

with a utility function u ∈ U (s1+s2)−icv dislikes a simultaneous increase in the probability

of getting the extreme outcomes w + X1 + X2 (the worst one) and w + Y1 + Y2 (the best

one) and a corresponding decrease in the probability of getting the intermediate outcomes

w+X1+Y2 and w+Y1+X2. Proposition 4.1 states that the pain caused by such a probability

mass shift is decreasing in the initial wealth level w provided u ∈ U (s1+s2+1)−icv. Hence, the

extent to which the decision-maker dislikes a spread in the probabilities from the inner cases

w + X1 + Y2 and w + Y1 + X2 to the outer cases w + X1 + X2 and w + Y1 + Y2 is decreasing

with wealth w.

Note that even if the correlation parameter ρ controls the amount of dependence between

I1 and I2, Proposition 4.1 does not really deal with correlation aversion. Among the different

terms in the final wealth, some are positively related, such as I1Y1 and I2Y2 or (1 − I1)X1

and (1− I2)X2, but others are negatively related, like (1− I1)X1 and and I2Y2, for instance.

Of course, (1 − I1)X1 and I1Y1 are mutually exclusive (that is, only one of them can be

nonzero), an extreme form of negative dependence studied in Dhaene & Denuit (1999).

We will come back to this issue in the next sections where the special cases of temperance

and edginess are discussed in details.
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4.2 Temperance

Temperance, defined by u(4) ≤ 0 ⇔ u ∈ U4−cv, was introduced by Kimball (1992) in

a context of risk management in the presence of background risk. A decision maker is

temperant when “an unavoidable (background) risk leads him to reduce exposure to another

risk even if the two risks are statistically independent”. Note that again the definition is

given in the context of a specific decision problem, and not as the expression of a preference.

As it was the case for prudence, temperance also can be interpreted as an implication

of the lower sensitivity to an increase in the correlation parameter ρ due to an increase in

initial wealth. This is a consequence of Proposition 4.1 taking Yi = ai ≥ 0 for i = 1, 2,

X2 = 0 and X1 ≥ 0 independent of (I1, I2) and such that E[X1] ≤ a1. The final wealth faced

by the decision-maker is w + (1 − I1)X1 + I1a1 + I2a2. Note that (1 − I1)X1 + I1a1 can be

interpreted as a lottery giving X1 with probability p1 and a1 with probability 1 − p1. Since

X1 �2−icv a1 and 0 �1−icv a2 we are in a position to apply Proposition 4.1 with s1 = 2 and

s2 = 1. For such X1, a1 and a2, an increase in ρ reduces welfare less for a larger value of w,

that is, the second mixed derivative of the expected utility

U(w, ρ) = E[u(w + (1 − I1)X1 + a1I1 + a2I2)] (4.1)

with respect to w and ρ is non-negative if, and only if, the decision-maker is temperant. Like

prudence, we see that temperance is the consequence of a lower sensitivity to a change in

the correlation parameter ρ when wealth increases.

In Epstein & Tanny (1980) as well as in our Section 3, a correlation increasing trans-

formation is applied to the pair (I1, I2). It indeed increases the correlation between the

variables I1 and I2 of interest. In (4.1), increasing ρ increases correlation between a1I1 and

a2I2. However, increasing ρ decreases the correlation between (1 − I1)X1 and a2I2 since

Cov[(1 − I1)X1, a2I2] = −a2E[X1]Cov[I1, I2] = −ρa2E[X1].

Therefore, the interpretation given here to temperance does not really refer to correlation

aversion, but to a more subtle relationship between the underlying random variables as

explained in Section 4.1.

13



4.3 Edginess

Edginess, defined by u(5) ≥ 0 ⇔ u ∈ U5−cv, was introduced by Lajeri-Chaherli (2004) in

a context of multiple risks in a two-period model. Specifically, edginess captures the reactivity

to multiple risks on precautionary motives. It is a necessary condition to have preferences

exhibiting standard prudence or precautionary vulnerability (we refer to Lajeri-Chaherli

(2004) for more details). Like prudence and temperance, edginess can be interpreted as the

consequence of a lower sensitivity to a change in the correlation parameter ρ when wealth

increases.

To illustrate this, let us consider I1 and I2 as defined in Section 3.1. Let us apply

Proposition 4.1 with Yi = ai ≥ 0 for i = 1, 2 and two independent non-negative random

variables X1 and X2 such that E[Xi] ≤ ai holds for i = 1, 2. Then, as Xi �2−icv ai is valid

for i = 1, 2, we are in a position to apply Proposition 4.1 with s1 = s2 = 2.

For such X1, X2, a1 and a2, an increase in the correlation parameter ρ reduces welfare

less for a larger value of w, that is, the second mixed derivative of the expected utility

U(w, ρ) = E[u(w + (1 − I1)X1 + a1I1 + (1 − I2)X2 + a2I2)] (4.2)

with respect to w and ρ is non-negative if, and only if, the decision-maker exhibits edginess.

Like prudence and temperance, edginess can thus be defined as a lower sensitivity to a change

in the correlation parameter as wealth increases.

5 Conclusion

Very often in decision problems, many results depend upon the signs of successive derivatives

of the utility function. The present paper has provided new and unified interpretations of

these signs. It is first shown that a decision-maker whose non-decreasing utility function

has derivatives alternating in signs becomes less sensitive to detrimental changes as he gets

richer. This underlies many aspects of a decision-maker’s behavior under risk, including

risk aversion, prudence, temperance, and edginess. Exactly as risk aversion that has been

presented from the very beginning as a form of preference independently of the context in

14



which risk arises, the more recent notions of prudence, temperance, and edginess (and more

generally the notion of risk apportionment of any degree) are defined here using the idea of

aversion to detrimental changes decreasing in wealth. Thus, these notions appear as natural

as that of risk aversion.

This paper then considers a class of 4-state lotteries with a simple dependence structure

indexed by a single correlation parameter ρ. Risk apportionment turns out to be equivalent

to decreasing aversion to probability spreads, that is, to shifts of the probability mass from

the inner to the outer lottery outcomes. This allows us to provide a better understanding

of the meaning of the sign of the successive derivatives of a utility function, complementing

previous studies. Our contribution may also be adapted to experimental testing.

In order to deal with general correlation increasing transformation in the sense of Ep-

stein & Tanny (1980), we need bivariate stochastic dominance relations, as explained next.

Consider a utility function u defined on the real plane and denote as u(i,j) the (i, j)th mixed

partial derivative of u with respect to x1 and x2, that is, u(i,j) = ∂i+j

∂xi
1
∂x

j
2

u. Then, (X1, X2)

is said to be smaller than (Y1, Y2) in the bivariate (s1, s2)-increasing concave order, denoted

by (X1, X2) �(s1,s2)−icv (Y1, Y2), when E[u(X1, X2)] ≤ E[u(Y1, Y2)] for all the utility functions

u such that (−1)k1+k2+1u(k1,k2) ≥ 0 for all k1 = 0, . . . , s1, k2 = 0, . . . , s2, with k1 + k2 ≥ 1.

See Denuit, Eeckhoudt & Rey (2009) and the references therein for more details. For

s1 = s2 = 1 we get the general increasing transformation of Epstein & Tanny (1980).

Since the bivariate function (x1, x2) 7→ u(w + α1x1 + α2x2) has derivatives exhibiting the

required signs whatever w, α1 and α2 ≥ 0 when u ∈ U(s1+s2)−icv, we have that

(X1, X2) �(s1,s2)−icv (Y1, Y2) ⇒ w + α1X1 + α2X2 �(s1+s2)−icv w + α1Y1 + α2Y2,

for all w, α1 and α2 ≥ 0.

For s1 = s2 = 1 we get that w + α1X1 + α2X2 precedes w + α1Y1 + α2Y2 in second degree

stochastic dominance.
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