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Abstract

This paper further considers the composite Lognormal-Pareto model proposed by Cooray

& Ananda (2005) and suitably modified by Scollnik (2007). This model is based on
a Lognormal density up to an unknown threshold value and a Pareto density thereafter.
Instead of using a single threshold value applying uniformly to the whole data set, the model
proposed in the present paper allows for heterogeneity with respect to the threshold and let
it vary among observations. Specifically, the threshold value for a particular observation is
seen as the realization of a positive random variable and the mixed composite Lognormal-
Pareto model is obtained by averaging over the population of interest. The performance of
the composite Lognormal-Pareto model and of its mixed extension is compared using the
well-known Danish fire losses data set.

Key words and phrases: Mixture, loss model, Danish fire losses, extreme value.



1 Introduction and Motivation

In nonlife insurance business, large losses sometimes occur: costs faced by insurance com-
panies often originate from a mix of moderate and large claims. However, no standard
parametric model seems to emerge as providing an acceptable fit to both small and large
losses. Several distributions for modelling positive and right–skewed data arising in the in-
surance industry have been proposed by actuaries. For an extensive presentation, the reader
is referred to Klugman, Panjer & Willmot (2004). Let us also mention the augmented
mixture of exponentials distribution proposed in Klugman & Rioux (2004). When the
main interest is in the tail of loss severity distributions, it is essential to have a good model
for the largest claims. Distributions providing a good overall fit can be particularly bad at
fitting the tails. Empirical actuarial analyses usually proceed in two steps: large losses are
first isolated and then modelled separately.

Usually, being a large claim means exceeding some threshold, depending on the portfolio
under study. Extreme Value Theory and Generalized Pareto distributions can be used to
set the value of this threshold, as described in Cebrian, Denuit & Lambert (2003).
Specifically, graphical tools including the Pareto index plot and the Gertensgarbe plot can
be used to estimate the threshold defining the large losses. In the former case, the maximum
likelihood estimator of the Pareto tail parameter is computed for increasing thresholds until
it becomes approximately constant. The Gertensgarbe plot is based on the assumption
that the optimal threshold can be found as a change point in the ordered series of claim
costs and that the change point can be identified by mean of a sequential version of the
Mann-Kendall test as the intersection point between a normalized progressive and retograde
rank statistics. Once the threshold defining large claims has been selected, losses above this
threshold are modelled using the Generalized Pareto distribution. Different models can be
used to describe the behavior of the moderate claims (i.e. claims with an incurred cost less
than the threshold), including Gamma, Inverse Gaussian and Lognormal distributions.

Another approach is proposed by Cooray & Ananda (2005) who combined a Log-
normal probability density function together with a Pareto one. Specifically, these authors
introduced a two-parameter smooth continuous composite Lognormal-Pareto model that is
a two-parameter Lognormal density up to an unknown threshold value and a two-parameter
Pareto density for the remainder. Continuity and differentiability are imposed at the un-
known threshold to ensure that the resulting probability density function is smooth, reduc-
ing the number of parameters from 4 to 2. The resulting two-parameter probability density
function is similar in shape to the Lognormal density, yet its upper tail is thicker than the
Lognormal density (and accomodates for the large losses observed in liability insurance).
This approach clearly outperforms the classical two-step strategy described above, in that
all the parameters (including the threshold) are estimated in the same model. However,
the proposal made by Cooray & Ananda (2005) has been amended by Scollnik (2007)
who pointed out that this model fixes the proportion of large claims, which appears very
restrictive. Let us also mention the work by Tancredi, Anderson & O’Hagan (2006)
who modelled data with a distribution composed of a piecewize constant density from a
low threshold up to an unknown end point and a Generalized Pareto distribution for the
remaining tail part.

In the composite Lognormal-Pareto models proposed by Cooray & Ananda (2005) and
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Scollnik (2007), a threshold parameter is estimated from the data and the exceedances
over this threshold obey the Pareto distribution. Estimating the threshold together with
the other parameters account for threshold uncertainty but assuming a unique threshold
value applying to all the claims may appear quite unrealistic. In this paper, we allow for
heterogeneity with respect to the threshold, and we treat it as a random variable.

The structure of this paper is as follows. In Section 2, we describe existing compos-
ite Lognormal–Pareto models of Cooray & Ananda (2005) and Scollnik (2007). In
Section 3, we introduce a new mixed composite Lognormal–Pareto model which has a ran-
dom threshold and give its basic properties. In Section 4, we compare the performance of
our mixed composite model, existing composite models and classical distributions based on
well–known Danish fire insurance loss data set. The final Section 5 concludes.

2 Composite Lognormal–Pareto models

2.1 Cooray–Ananda’s model

Let

f1(x) =
1√

2πxσ
exp

(

−1

2

(

ln(x) − µ

σ

)2
)

, x > 0 (2.1)

be a two–parameter Lognormal density function and

f2(x) =
αθα

xα+1
, x > θ, (2.2)

be a two–parameter Pareto density function. Let Φ denote the cumulative distribution
function of the standard Normal distribution. The composite Lognormal–Pareto probability
density function defined by Cooray & Ananda (2005) is given by

f(x) =







ψ
1

Φ(k)
f1(x), 0 < x ≤ θ,

(1 − ψ)f2(x), θ < x <∞,
(2.3)

with k ≈ 0.37224, ψ = Φ(k)/(1 + Φ(k)) ≈ 0.39215 and

ln(θ) − µ

σ
= ασ = k.

The probability density function (2.3) has a scale parameter or threshold (θ > 0) and a shape
parameter or tail index (α > 0).

As noted by Scollnik (2007), this model is very restrictive because weights ψ and 1−ψ
are fixed and a priori known. Whatever the data set under study, exactly 39.215% of the
observations are expected to fall below θ. Moreover, parameters of Lognormal portion of
the distribution are determined as function of the values of threshold and tail index, which
can lead to poor adjustment to data. Finally, threshold is considered to be fixed for all
observations which may not be realistic in an actuarial context.
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2.2 Scollnik’s models

Scollnik (2007) developed a second composite Lognormal–Pareto model in order to fix some
problems identified in Cooray–Ananda’s model (2.3). Let f1 and f2 be the Lognormal and
Pareto density functions given by (2.1) and (2.2), respectively. The composite Lognormal–
Pareto probability density function defined by Scollnik (2007) is given by

f(x) =







r
1

Φ (ασ)
f1(x), 0 < x ≤ θ,

(1 − r)f2(x), θ < x <∞,
(2.4)

with

r =

√
2πασΦ(ασ) exp

(

1
2
(ασ)2

)

√
2πασΦ(ασ) exp

(

1
2
(ασ)2

)

+ 1
(2.5)

and
ln(θ) − µ

σ
= ασ. (2.6)

The probability density function (2.4) is defined by means of a threshold (θ > 0), a tail index
(α > 0) and a small loss parameter (σ > 0). One can observe in (2.4) that, contrarily to ψ
and 1 − ψ in (2.3), the mixing weights r and 1 − r are no more fixed and known values.

Scollnik (2007) also introduced an alternative composite Lognormal–Pareto model in
which the generalized Pareto distribution (GPD) with density function

h(x) =
α(λ+ θ)α

(λ+ x)α+1
, x > θ, θ > 0, α > 0 and λ > −θ, (2.7)

is used above the threshold. Theoretical grounds supporting the use of the GPD can be found
in Embrechts, Klüppelberg & Mikosch (1997). The resulting probability density
function is then given by

f(x) =







r
1

Φ (ν)
f1(x), 0 < x ≤ θ,

(1 − r)h(x), θ < x <∞.
(2.8)

with

r =

√
2παθσΦ(ν) exp

(

1
2
ν2
)

√
2παθσΦ(ν) exp

(

1
2
ν2
)

+ λ+ θ
. (2.9)

and
ln(θ) − µ

σ
=

(

αθ − λ

λ+ θ

)

σ = ν. (2.10)

For the sake of simplicity, we will develop our new model from definition (2.4). A similar
analysis could be performed on (2.8).
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3 Mixed composite Lognormal-Pareto model

3.1 Definition

The main aim of this paper is to introduce a new composite Lognormal–Pareto model based
on Scollnik’s model (2.4). Let X1, . . . , Xn denote a random sample of size n. Now we assume
that each observation may have its own threshold θ1, . . . , θn. In fact, we consider θ1, . . . , θn as
realizations of some non-negative random variable Θ with cumulative distribution function
G(·). Fisrt, we develop main properties for a general random variable Θ then we give some
examples.

Using (2.1), (2.2) and (2.5), the mixed composite Lognormal–Pareto density function is
given by

f(x) = (1 − r)

∫ x

0

f2(x) dG(θ) + r

∫ ∞

x

(

1

Φ(ασ)

)

f1(x) dG(θ), (3.1)

with
ln(θ) − µ

σ
= ασ. (3.2)

Let X be a random variable with probability density function given by (3.1). For 0 < k < α,
the kth raw moment of X is given by

E[Xk] =

(

(1 − r)

(

α

α− k

)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(k − α))) exp
(

−ασ2k + k2σ2/2
)

)

E[Θk].

Since the upper tail distribution is especially useful for reinsurance purposes, it is interesting
to derive the expresssion of the stop-loss transform

πX(d) = E[max(X − d, 0)],

corresponding to the mixed composite Lognormal-Pareto model. The stop-loss transform
πX is a continuous convex function that is strictly decreasing in the retention d as long as
FX(d) < 1. Furthermore limd→+∞ πX(d) = 0 as long as the expectation is finite. If X is
non-negative then πX(0) = E[X]. Using model (3.1), we get

πX(d) =

∫ ∞

d

(1 − FX(x)) dx

= E[X] − d(1 − FX(d)) −
∫ d

0

xfX(x) dx.

In the next two subsections, we present two examples of distributions for the threshold.

3.2 Gamma distributed threshold

We develop now basic properties of model (3.1) with Θ ∼ Gam(β, λ), that is, the probability
density function of Θ is given by

g(θ; β, λ) =
λβθβ−1 exp

(

− λθ
)

Γ(β)
, θ > 0, (3.3)
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for β > 0 and λ > 0. The probability density function defined in equation (3.1) is

f(x) =
r

Φ(ασ)yσ

∫ ∞

y

φ

(

ln(y) − ln(θ) + ασ2

σ

)

g(θ; β, λ)) dθ

+ (r + 1)g(y; β, λ)

− (1 − r)

(

Γ(α + β)

Γ(β)

)(

−α
λαyα+1

G(y;α+ β, λ) +
1

(λy)α
g(y;α+ β, λ)

)

,

where G(x; a, b) denote the Gamma cumulative distribution function with shape parameter
a and scale parameter 1/b evaluated at x and φ(x) denote the probability density function
of the standard Normal distribution evaluated at x. It can be shown that f(x) is continuous
and differentiable on the half-positive real line (0,∞).

Let us now illustrate the shape of the probability density function (3.1) compared to
(2.4). To this end, let us display the graph of the probability density function (2.4) with
parameter values α = 1.5, σ = 1 and θ = 50 together with the probability density function
(3.1) first with parameter values α = 1.5, σ = 1, β = 50 and λ = 1, and second with
parameter values α = 1.5, σ = 1, β = 5 and λ = 0.1. This is done in Figure 3.1. One
can note that model (3.1) reduces to model (2.4) as E[Θ] → θ and V[Θ] → 0. Therefore,
the probability density function (2.4) corresponds to E[Θ] = 50 and V[Θ] = 0 whereas for
the probability density function (3.1), we still have E[Θ] = 50 but with a moderate variance
V[Θ] = 50 in the former case and with a larger variance V[Θ] = 500 in the latter case. The
other parameters remain identical in the three cases. Figure 3.1, thus, illustrates the effect of
increasing the degree of heterogeneity in the thresholds within the sample data. Increasing
V[Θ] produces a higher peak and fatter tails, as expected. This clearly shows the difference
between the probability density function (3.1) compared to (2.4).

For 0 < k < α, the kth raw moment of X is given by

E[Xk] = (1 − r)

(

α

α− k

)(

Γ(β + k)

Γ(β)λk

)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(k − α))) exp
(

−ασ2k + k2σ2/2
)

(

Γ(β + k)

Γ(β)λk

)

, α > k.

In particular, for k = 1, we get the expected value

E[X] = (1 − r)

(

α

α− 1

)(

β

λ

)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(1 − α))) exp
(

−ασ2 + σ2/2
)

(

β

λ

)

, α > 1.

The variance is then derived from the second moment

E[X2] = (1 − r)

(

α

α− 2

)(

β(β + 1)

λ2

)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(2 − α))) exp
(

−2ασ2 + 2σ2
)

(

β(β + 1)

λ2

)

, α > 2.
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For the stop-loss transform, we get

πX(d) = E[X] − d(1 − FX(d))

−
(

β

λ

)

G(d; β + 1, λ)

(

(1 − r)α

α− 1
+
rΦ((α− 1)σ) exp (−ασ2 + σ2/2)

Φ(ασ)

)

− α(1 − r)Γ(α+ β)

(α− 1)dα−1Γ(β)λα
G(d;α+ β, λ),

where α > 1.
The shape of the stop-loss transform is illustated in Figure 3.2 for a moderate threshold

heterogeneity (V[Θ] = 50) and a larger threshold heterogeneity (V[Θ] = 500). We clearly see
that allowing for more dispersion in the threshold values increases the stop-loss transform.

3.3 Lognormal distributed threshold

In the same way as the previous subsection, we now use the lognormal distribution for the
threshold in model (3.1). Let Θ ∼ LN(β, λ), that is, the probability density function of Θ
is given by

g(θ; β, λ) =
1√

2πθλ
exp

(

−1

2

(

ln(θ) − β

λ

)2
)

, θ > 0, (3.4)

for −∞ < β <∞ and λ > 0.
Using model (3.1) and equation (3.4), we get

f(x) =
(1 − r)α exp

(

1
2
(2αβ + α2λ2)

)

Φ
(

ln(x)−(β+αλ2)
λ

)

xα+1

+
r exp

(

−1
2

(

(ln(x)−β)2+ασ2(2 ln(x)+ασ2−2β)
λ2+σ2

))(

1 − Φ
(

σ(ln(x)−αλ2−β)

λ
√

σ2+λ2

))

√
2πσΦ(ασ)λx

√

1
σ2 + 1

λ2

.

For 0 < k < α, the kth raw moment of X is given by

E[Xk] = (1 − r)

(

α

α− k

)

exp
(

kβ + λ2k2/2
)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(k − α))) exp
(

(β − ασ2)k + k2(σ2 + λ2)/2
)

, α > k.

For k = 1, we get the expected value

E[X] = (1 − r)

(

α

α− 1

)

exp
(

β + λ2/2
)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(1 − α))) exp
(

β − ασ2 + (σ2 + λ2)/2
)

, α > 1.
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The variance is then derived from the second moment

E[X2] = (1 − r)

(

α

α− 2

)

exp
(

2(β + λ2)
)

+ r

(

1

Φ(ασ)

)

(1 − Φ(σ(2 − α))) exp
(

2(β − ασ2) + 2(σ2 + λ2)
)

, α > 2.

In this case, the stop-loss transform formula is not particularly interesting.

4 Numerical illustration

4.1 Data set

In this example, we apply the mixed composite Lognormal–Pareto model (3.1) to a classical
insurance data set. This allows us to compare our fit with the results obtained from previous
models and several two-parameter distributions. Parameters are estimated by maximum
likelihood (ML). In order to perform the comparison, goodness-of-fit is measured by means
of the following criteria: (i) the value of the negative log-likelihood (NLL) at the values of
the ML estimators (smaller values are good), and (ii) the Akaike information criterion (AIC
equal to twice the NLL plus twice the number of parameters) evaluated at the ML estimators
(higher values are good).

The data set comprises 2, 492 Danish fire insurance losses and can be found in the R

SMPraticals add–on package available from CRAN web page http://cran.r-project.org/.
Losses are in millions of Danish Krone (DKK) from the years 1980 to 1990 inclusive and have
been adjusted to reflect 1985 values. Among others McNeil (1997) and Resnick (1997)
have analyzed upper portion of these data.

4.2 Maximum likelihood estimation of the parameters

Maximum likelihood estimators for the formulas of the Lognormal distribution, of the Pareto
distribution, of the Gamma distribution, of the Weibull distribution, of the model (2.3), of
the model (2.4), of the model (3.1) with Gamma distributed threshold, of the model (3.1)
with Lognormal distributed threshold and of the model (2.8) are presented in Table 4.1.
The maximum likelihood estimations were performed in R using actuar add–on package
(see Dutang, Goulet & Pigeon (2008) for more information). The population mean is
estimated to 3.598 with model (3.1) (Gamma) and to 3.637 with model (3.1) (Lognormal),
to be compared to the sample mean x̄ = 3.063. Since α̂ < 2, theoretical variance is infinite.
The results for model (3.1) with Gamma distributed threshold and Lognormal distributed
threshold are graphically similar. Moreover, estimated values for tail index α are quite
similar (1.3580 and 1.3508) and we retain throughout the remainder of this example the first
model (Gamma). The probability density function (3.1) satifies multiparameter Cramér–
Rao conditions for asymptotic normality (Lehmann & Casella (1999)), so we provide in
Table 4.2 confidence intervals at the 90% level for estimated parameters.

It might be interesting to compare the estimated value of tail index (α̂ = 1.3580) obtained
using model (3.1) with those calculated in McNeil (1997) using extreme value theory.
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Distributions Parameters
Lognormal µ̂ = 0.6718 σ̂ = 0.7323 – –

Pareto θ̂ = 0.3134 α̂ = 0.5460 – –

Gamma λ̂ = 0.4107 α̂ = 1.2578 – –

Weibull θ̂ = 2.9531 τ̂ = 0.9476 – –

Model (2.3) θ̂ = 1.3851 α̂ = 1.4363 – –

Model (2.4) θ̂ = 1.2075 σ̂ = 0.1965 α̂ = 1.3282 –

Model (3.1) (Gamma) σ̂ = 0.0005 α̂ = 1.3580 β̂ = 42.8038 λ̂ = 45.0955

Model (3.1) (Lognormal) σ̂ = 0.1653 α̂ = 1.3508 β̂ = 0.1554 λ̂ = 0.0995

Model (2.8) θ̂ = 1.1447 σ̂ = 0.1823 α̂ = 1.5631 λ̂ = 0.3633

Table 4.1: Estimated values of fitted models for fire Danish loss data.

Parameters Lower bounds Estimated values Upper bounds
α 1.305 1.358 1.412
σ 0.000 0.0005 0.127
λ 33.828 45.095 56.363
β 35.045 42.804 50.562

Table 4.2: Confidence intervals at level 90% for Danish fire insurance loss data.

Table 4.3 presents some estimated values of the tail index of generalized Pareto distribution
for different thresholds u. Estimations are similar to those suggested in McNeil (1997).

4.3 Goodness-of-fit

We present in Figure 4.1 empirical histogram and fitted composite Lognormal–Pareto models.
We provide in Table 4.4 the values of the NLL and AIC evaluated at the maximum likelihood
estimators. The values of NLL and AIC show that the mixed composite Lognormal–Pareto
model provides a better fit than classical distributions and models (2.3) and (2.4). Moreover,
it presents a similar adjustment to model (2.8) and it is more intuitive.

A measure that provides useful information for insurers are the high quantiles of the
distribution of the claim amounts. Usually quantiles can be estimated by their empirical
counterparts but when we are interested in the very high quantiles, this approach is no
longer valid since estimation based on a low number of large observations would be strongly

u ξ α = 1/ξ
0 0.60 1.67
3 0.67 1.49
4 0.72 1.39
5 0.63 1.59
10 0.50 2.00
20 0.68 1.47

Table 4.3: Estimated values of tail index for different thresholds.
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Distributions NLL AIC
Lognormal 4, 434 8, 872
Pareto 5, 675 11, 354
Gamma 5, 243 10, 490
Weibull 5, 270 10, 544
Model (2.3) 3, 878 7, 760
Model (2.4) 3, 866 7, 739
Model (3.1) 3, 860 7, 728
Model (2.8) 3, 860 7, 728

Table 4.4: Values of statistical criteria evaluated at the MLEs.

Fitted Lognormal–Pareto models
Quantiles Empirical Model (2.3) Model (2.4) Model (3.1) Model (2.8)
0.90 5.086 4.866 5.282 5.191 5.164
0.95 8.459 7.884 8.901 8.648 8, 249
0.99 24.870 24.177 29.901 28.288 23.750
0.999 146.010 120.121 169.123 154.158 104.808
0.9999 263.250 596.921 960.384 840.096 458.917

Table 4.5: Empirical and fitted models quantiles.

inaccurate. The QQ–plots against models (2.3), (2.4), (3.1) and (2.8) are presented in Fig-
ures 4.2 and 4.3. As usual, estimated quantiles are plotted on y–axis and ordered observations
on x–axis, where F̂−1(p) is the estimated pth quantile and p = k/(n + 1) with k = 1, . . . , n.
According to these graphs, we can see that model (3.1) is a reasonable choice for the given
data. Moreover, empirical and fitted models quantiles in the extreme portion of the tail are
presented in Table 4.5. It should be noted that the largest observations in the Danish set is
263.250 and empirical quantiles were obtained by

pk =
k − 1/3

n+ 1/3

as suggested in Hyndman & Fan (1996). One can observe than model (3.1) less dramati-
cally overstates extreme quantiles than model (2.4). However, we must remain cautious in
the conclusions drawn from Table 4.5 because sample size is only 2, 492 and, for example,
the 99.99% empirical quantiles (maximum of the data set) represents an event that occurs 1
in 10, 000 times.

We can compare models (2.4) and (3.1) by determining whether the variance of the
Gamma distribution is significantly different from 0. Defining the alternative parameters
κ = β/λ2 and τ = α for the threshold distribution, the 90% confidence interval for κ is
(0.013, 0.029), so variance is significantly different from 0. This suggests that thresholds
indeed change from one contract to another.

Finally, we can also examine the stop-loss transform. We present in Figure 4.4 stop-loss
transform curve using estimated parameters and empirical stop-loss transform curve. As one
can see, the model tends to overestimate the stop-loss transform which may be problematic
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for reinsurance applications. One can see that using a Lognormal distributed threshold does
not improve the model. Also, this problem was already present in models presented by
Scollnik (2007) and Cooray & Ananda (2005). The authors are developing a solution
to this problem.

4.4 Probable maximal loss

Finally, we can evaluate the probable maximum loss (PML) using the mixed composite
Lognormal–Pareto model. Broadly speaking, PML is the worst loss likely to happen. Let
N be a random variable with Poisson distribution with mean κ and let X1, . . . , XN be
a random sample with common cumulative distribution function F (x) corresponding to
(3.1). We define MN = max(X1, . . . , XN) and we estimate κ by average annual frequency,
κ̂ = 2, 492/11 = 226.5455.

As in Cebrian, Denuit & Lambert (2003), we set the PML equal to the solution of
equation Pr[MN ≤ PML] = q, for some high q. This means that the PML is a high quantile
of the maximum of a random sample of size N . Since the maximum MN will exceed the
so-defined PML only in 100(1− q)% of the cases, it is very unlikely that an individual claim
amount assumes a value larger than the PML. Now,

Pr[MN ≤ y] = E[(F (y))N ] = exp (−κ(1 − F (y))) .

Using respectively q = 0.05 and q = 0.01, we get PML = 460.2464 and PML = 1, 528.432.
Recall that the sample maximum is 263.25.

5 Conclusion

In this paper, we proposed an extension of the composite Lognormal–Pareto model intro-
duced by Scollnik (2007). This new model is obtained by allowing the threshold separating
the Lognormal and Pareto mixture components to become random. Several theoretical fea-
tures of the new model are discussed. The classical Danish fire insurance losses data set is
then successfully fitted with the help of the mixed composite Lognormal–Pareto model. We
also performed this analysis on a second data set which consists of 1, 797 Sweden third party
insurance loss data for year 1977 (available from http://lib.stat.cmu.edu) and previously
employed by Hallin & Ingenbleek (1983). In this case also, we obtained satisfactory
results.

Since the threshold becomes random in the model proposed in the present paper, this
allows the actuary to update its distribution using credibility mechanisms. A posteriori
distributions can be used to track the changes in the threshold behavior over calendar time
for each policy. This may be particularly interesting in industrial insurance, where the
threshold separating standard losses from large ones can be influenced by many individual
risk characteristics.

To end with, let us mention an alternative has been developed by Buch-Kromann

(2006) based on Buch-Larsen, Nielsen, Guillen & Bolance (2005). This approach is
based on a Champernowne distribution, corrected with a non-parametric estimator (that is

10



obtained by transforming the data set with the estimated modified Champernowne distribu-
tion function and then estimating the density of the transformed data set using the classical
kernel density estimator). Based on the analysis of a Danish data set, Buch-Kromann

(2006) concluded that the Generalized Pareto approach performs better than the Champer-
nowne one in terms of goodness-of-fit, whereas both methods are comparable in terms of
predicting future claims.

It might be interesting to develop a semiparametric model such as that presented in
Buch-Larsen, Nielsen, Guillen & Bolance (2005). This method improves the quality
of estimation, particularly for heavy-tailed data sets. Moreover, this approach seems to lead
to interesting results in contexts dealing with severity in insurance.
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Figure 3.1: Probability density function (2.4) corresponding to the composite Lognormal–
Pareto (solid line) together with the probability density function (3.1) corresponding to the
mixed composite Lognormal–Pareto with V[Θ] = 50 (dashed line) and V[Θ] = 500 (dotted
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Figure 3.2: Stop-loss transform for α = 1.5, σ = 0.1, β = 50 and λ = 10 in solid line and
α = 1.5, σ = 0.1, β = 5 and λ = 1 in dashed line.
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Figure 4.1: Comparison of empirical histogram of Danish fire insurance loss data, fitted
model (2.3) in dotted line, fitted model (2.4) in solid line, fitted model (3.1) in dashed line
and fitted model (2.8) in dotted–dashed line.
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Figure 4.2: Q–Q plot for Danish fire insurance loss data.
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Figure 4.3: Q–Q plot for Danish fire insurance loss data.
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