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Abstract

In this paper, we discuss how to define conservative biometric bases in life insurance. The
first approach is based on cumulative hazard (or survival probabilities), the second one on
the hazard itself, and the third one on the hazard ascent. The second case has been studied
in the literature and the sum-at-risk plays a central role in defining safe-side requirements.
The two other cases appear to be new and concepts related to sum-at-risk are defined.

Key Words: variations in the technical basis; calculating on the safe side; Solvency II;
first-order basis; second-order basis; sum at risk.



1 Introduction and motivation

The calculation of premiums and reserves on the safe side has always attracted a lot of interest
in life insurance. Life insurance calculations are performed either with first-order technical
bases or with second-order technical bases. First-order bases include a safety margin whereas
second-order ones do not contain any margin and are assumed to be close to reality.

Practical experience shows that mortality rates can change significantly within one decade.
Typically, we are in a situation as exemplified by Figure 1.1. The real mortality rate differs
from the estimated one (black solid line) because of, for example, an unforeseen catastrophe
(upper dashed line) or a longevity effect (lower dashed line). By applying statistical methods
on data of the past, we can usually narrow future uncertainties down to a confidence band
(grey area with grey solid curves as bounds). Premiums and reserves should now be chosen
in such a way that they are on the safe side with respect to all kinds of mortality scenarios
that are within that confidence band.
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Figure 1.1: Log mortality rates: best
estimate (black solid curve), alternative
scenarios (black dashed curves), and
confidence band (grey area with grey
solid curves as bounds)
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Figure 1.2: Log mortality rates: best
estimate (black solid curve) with confi-
dence bounds (grey solid curves), alter-
native scenarios (black dashed curves),
and safe side area with respect to the
best estimate (grey area)

So far, the literature offers three concepts for the construction of first-order mortality
scenarios. First, there is the method based on the sum-at-risk, which was developed by
Lidstone (1905), Norberg (1985), Hoem (1988), Ramlau-Hansen (1988), and Linnemann
(1993). The sum-at-risk quantifies the financial consequence of a death occurring at time
t, in which case the insurer has to pay the death benefit and the reserve is released. For a
given first-order mortality rate with corresponding sum-at-risk, these authors showed that
premiums and reserves are on the safe side if the second-order mortality rate is smaller there
where the sum-at-risk is positive and if the second-order mortality rate is greater there where
the sum-at-risk is negative. This is exemplified in Figure 1.2. Assume that the sum-at-risk
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– here calculated on the basis of the best estimate (black solid line) – is positive until the
policyholder reaches age 50 and negative afterwards. Think, for example, of a combination
of a pure endowment insurance and a temporary life insurance. The sum-at-risk method
yields now that premiums and reserves are on the safe side with respect to any second-order
mortality rate within the grey area. Unfortunately, we can not say anything about our two
alternative scenarios (dashed lines), because they are not completely within the grey area.
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Figure 1.3: Log mortality rates: first-
order basis (black solid curve), confi-
dence bounds (grey solid curves), alter-
native scenarios (black dashed curves),
and desired safe side area with respect
to the first-order basis (grey area)
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Figure 1.4: Log mortality rates: first-
order basis (black solid curve), confi-
dence bounds (grey solid curves), alter-
native scenarios (black dashed curves),
and true safe side area with respect to
the first-order basis (grey area)

The worst second-order basis with respect to our best estimate first-order basis is shown
in Figure 1.3. It is on the upper and lower bound of the confidence band there where the
sum-at-risk is positive and negative, respectively. Now we take that worst-scenario as our
new first-order basis. Seemingly, we expanded the safe-side area in a way we wished for. The
safe side area presumably contains now the whole confidence band, illustrated in Figure 1.3.
Unfortunately, Figure 1.3 is in general wrong, because changing the first-order basis changes
at the same time the sum-at-risk. The effect is shown in Figure 1.4. The switching point
between positive and negative sums-at-risk moved in our example to age 45, and the grey
area illustrates the actual safe-side area according to the sum-at-risk method with respect
to our new first-order basis. We see that between age 45 and age 50 our confidence band
is even completely outside the safe side area, which means that for all scenarios within the
confidence band the sum-at-risk method can not decide whether they are on the safe side or
not. To put it into a nutshell, the sum-at-risk method does not yield a first-order basis that
is definitely on the safe-side with respect to all scenarios within a confidence band.

The second method to be found in the literature is based on derivatives. References using
such an approach include Dienst (1995), Bowers et al. (1997), Kalashnikov and Norberg
(2003), Christiansen and Helwich (2008), or Christiansen (2008a, 2008b). The problem
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is here that differentiation in general is a local concept. Strictly speaking, we can only
study infinitesimal changes of the mortality rate. We get good approximations for realistic
changes of the mortality rate if the confidence band for the second-order basis is not too
wide, but still the approximation error is generally difficult to control. Thus, the method
based on derivatives works only for narrow confidence bands and yields not exact but only
approximative results.

A third method for the construction of first-order mortality scenarios is given in Chris-
tiansen (2009). Based on Thiele’s integral equation, another integral equation is developed
whose solution yields the maximal prospective reserve with respect to all cumulative mortal-
ity intensities whose ascent is within some confidence band. In contrast to the first and the
second method, the third method yields a first-order basis that is definitely on the safe-side
with respect to a confidence band, and the results are always exact regardless of the width of
the confidence band. However, by bounding the ascent of the cumulative mortality intensity
and not the cumulative mortality intensity itself, it may happen that we exclude mortality
scenarios that can occur in reality. On the other hand, the method of Christiansen (2009)
includes scenarios that might be seen as rather unrealistic, for example, scenarios where the
mortality intensity is not always rising with increasing age.

In the present paper we describe three approaches for the calculation of a first-order
basis, that all yield scenarios that are definitely on the safe side with respect to a confidence
band, that all offer exact results regardless of the width of the confidence band, and that
mainly differ in the sets of mortality scenarios that are included and excluded. Specifically,

(a) in approach 1, we allow for any cumulative hazard rate within a lower and an upper
bound.

(b) in approach 2, we allow for cumulative hazard rates whose ascent is within a lower and
an upper bound. In case of differentiability, that is equivalent to have a lower and an
upper bound for the hazard rate.

(c) in approach 3, we allow for cumulative hazard rates whose acceleration is within a
lower and an upper bound. In case of twice differentiability, that is equivalent to have
a lower and an upper bound for the ascent of the hazard rate.

The second approach is based on the method of Christiansen (2009). The first and third
approaches seem to be new in the literature. Suppose that confidence bands for (a), (b), and
(c) are given. Then approach (a) includes the biggest set of mortality scenarios. In return
we obtain premiums and reserves that have a strong safety loading, but the first-order basis
is not necessarily a true cumulative hazard rate itself. Approach (b) makes stronger restric-
tions and includes less mortality scenarios than (a), thus the first-order basis is always a
true cumulative hazard rate, and premiums and reserves now have a smaller safety loading.
Approach (c) makes the strongest restrictions on the set of admissible mortality scenarios,
now hazard rates are never decreasing, and in return we obtain the smallest safety loading
for premiums and reserves. It is not obvious which of the restrictions of (a) to (c) on the
set of admissible mortality scenarios are really satisfied in reality. Therefore, we present and
compare in this paper all three approaches and let it to the practitioner to decide which a-
priori assumptions he is willing to accept. The following tabular gives a condensed overview:

3



construction of a first-order basis cumulative hazard rates
on the safe side with respect to of second-order within the

a confidence band confidence band are ...

method based on no

sum-at-risk
method based on approximately, confidence band arbitrary

derivatives for cumulative hazard rate
method (a), yes, confidence band for arbitrary

section 3 cumulative hazard rate
method (b), yes, confidence band for ascent increasing

section 4 of cumulative hazard rate
method (c), yes, confidence band for acceleration increasing with
section 5 of cumulative hazard rate increasing speed

2 Basic modeling

Consider a life insurance policy that is issued at time 0. We write x for the age of the
policyholder at the beginning of the contract period, T for his or her total lifetime, and ωx

for the limiting age for individuals with age x at contract time zero.
The cash-flows of the contract are described by the following functions:

1. The lump sum c(t) is payable upon death at time t. We assume that the function
c has bounded variation on [0, ωx] and is left-continuous (left-continuity ensures that
when the death benefit corresponds to the reserve or to the part of a loan still to be
reimbursed, the payment at the time of death is not taken into account).

2. The functions B(t) and Π(t) give the accumulated annuity benefits and premiums in
case of survival up to t. We assume that B and Π have bounded variation on [0, ωx]
and are right-continuous.

We write v(s, t) for the value at time s of a unit payable at time t > s and assume that it
has a representation of the form

v(s, t) = e
−

∫
(s,t] ϕ(u) du

with ϕ being the interest intensity.
The cumulative mortality intensity (or cumulative hazard rate) is defined by

Λx(t) := − ln P (T > x + t | T > x) .

We assume that Λx is continuous. In order to distinguish between different cohorts, we do
not further simplify this notation to Λx(t) = Λ(x + t). If Λx is differentiable, we can also
define a mortality intensity (or hazard rate),

λx(t) :=
d

dt
Λx(t) .
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If Λx is even twice differentiable, we define

αx(t) :=
d

dt
λx(t) =

d2

dt2
Λx(t)

and denote it as mortality intensity ascent (or hazard rate ascent).

3 Worst-case if the cumulative hazard rate is bounded

The prospective reserve at time s is obtained as the expected present value of future benefits
minus the expected present value of future premiums, that is,

V (s) := E

[∫

(s,T−x)

v(s, t) d(B − Π)(t) + v(s, T − x) c(T − x)
∣∣∣T − x > s

]

=

∫

(s,ωx]

eΛx(s)−Λx(t) v(s, t) d(B − Π)(t) −

∫

(s,ωx]

v(s, t) c(t) eΛx(s) de−Λx(t) .

Now we regard V (s) as a mapping of the conditional survival function

[s, ωx] ∋ t 7→ eΛx(s)−Λx(t) = P (T > x + t | T > x + s) .

What happens to the prospective reserve if the conditional survival function is shifted by
an amount of Q(·) to exp{Λx(s) − Λx(·)} + Q(·) ? In the following we assume that Q(·) is
right-continuous, has bounded variation on [s, ωx], and is equal to zero at s and ωx . Using
the linearity of V (s) with respect to the conditional survival function and applying Fubini’s
Theorem, we get in obvious notation

V (s, eΛx(s)−Λx(·) + Q(·)) − V (s, eΛx(s)−Λx(·))

=

∫

(s,ωx]

Q(t) v(s, t) d(B − Π)(t) −

∫

(s,ωx]

v(s, t) c(t) dQ(t)

=

∫
1(s,ωx](u)

(∫

[u,ωx]

v(s, t) d(B − Π)(t) − v(s, u) c(u)
)
dQ(u)

=:

∫

(s,ωx]

Ss(u) dQ(u)

(3.1)

where

Ss(u) := v(s, u)
(∫

[u,ωx]

v(u, t) d(B − Π)(t) − c(u)
)

(3.2)

can be seen as cumulative survival cost at time s for survival at and after u. To motivate
that definition, look at the example where Q = ε 1[t0,ωx) for some fixed t0 > s and an ε > 0.
For a homogeneous portfolio that means that we have from time t0 on throughout (100ε)%
more policyholders that are still alive. According to (3.1), the effect of shift Q = ε 1[t0,ωx) on
the prospective reserve V (s) is ε Ss(t0). Coming back to the homogeneous portfolio, ε Ss(t0)
is the increase of the discounted cost per policy due to increasing the survival rate on [t0, ωx)
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by ε. We can get another interesting interpretation of function Ss after applying partial
integration on the last term of (3.1), which gives

V (s, eΛx(s)−Λx(·) + Q(·)) − V (s, eΛx(s)−Λx(·)) =

∫

(s,ωx]

Ss(u) dQ(u)

=

∫

(s,ωx)

−Q(u) dSs(u) .

(3.3)

(Note that Q is right-continuous, Ss is left-continuous, and that we assumed that Q(s) =
Q(ωx) = 0.) Now we see that −dSs(u) describes the effect that the increase Q(u) of the
survival function at time u has on the prospective reserve V (s). Therefore, we denote
−dSs(u) as survival cost at time s for survival at time u, and by differentiating (3.2) we can
show that

−dSs(u) = v(s, u)
(
dB(u) − dΠ(u) − ϕ(u) c(u) du + dc(u)

)
=: v(s, u) dS(u) (3.4)

for all u ≥ s, where dS(u) is denoted as survival cost for survival at time u. This repre-
sentation allows for an intuitive interpretation: By infinitesimally delaying the death of the
policyholder at time u, additional benefits of dB(u) fall due, additional premiums of dΠ(u)
are paid, the insurer gets a discounting advantage for the death benefit of ϕ(u) c(u) du, and
the contractual liabilities concerning death change by dc(u).

Now we assume that the conditional survival function exp{Λx(s) − Λx(·)} has a lower
and an upper bound,

eUx(s)−Ux(t) ≤ eΛx(s)−Λx(t) ≤ eLx(s)−Lx(t) , t ∈ [s, ωx] , (3.5)

where the bounds shall be continuous survival functions with respect to t. Instead of studying
shifts of the survival function of the form exp{Λx(s) − Λx(·)} + Q(·) within the boundaries
(3.5), we will study shifts of the form Λx + H and use the equivalent bounds

Lx(t) − Lx(s) ≤ Λx(t) − Λx(s) ≤ Ux(t) − Ux(s) , t ∈ [s, ωx] , (3.6)

where the bounds have to be continuous cumulative hazard rates with limiting age ωx. From
now on we see the prospective reserve V (s) = V (s, Λx) as a mapping of the cumulative
hazard rate Λx.

3.1 Construction of a worst-case scenario

We are interested in the maximal value that the prospective reserve V (s) can take if the con-
ditional survival function may be chosen arbitrarily within the bounds (3.5) or, equivalently,
if the cumulative mortality intensity may be chosen arbitrarily within the bounds (3.6). In
other words, we are looking for the worst-case prospective reserve (or at least an upper bound
for it) from the perspective of the insurer. Let Y and Z be random variables with survival
functions eΛx(s)−Λx(·) and eΛx(s)+H(s)−Λx(·)−H(·). If Ss is non-increasing or, equivalently, dS(t)
is never negative, then the fact that

V (s, Λx) =

∫

(s,ωx]

Ss(t) deΛx(s)−Λx(·)(t) = E
(
− Ss(Y )

)
,
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leads to

P (Y > t) ≥ P (Z > t) for all t ⇒ V (s, Λx) = E
(
− Ss(Y )

)
≥ E

(
− Ss(Z)

)
= V (s, Λx + H)

or equivalently

H(s)−H(t) ≤ 0 for all t ∈ [s, ωx] ⇒ V (s, Λx) = E
(
−Ss(Y )

)
≥ E

(
−Ss(Z)

)
= V (s, Λx +H).

The same relation holds for the prospective reserves if Ss is non-decreasing and H(s)−H(t) ≥
0 for all t ∈ [s, ωx]. Thus, we get that Λx = Lx maximizes the prospective reserve if Ss is
non-increasing and Λx = Ux maximizes the prospective reserve if Ss is non-decreasing. In
other words, the lower bound Lx and the upper bound Ux are worst-case scenarios if the
survival cost dS is throughout non-negative and throughout non-positive, respectively. This
result can be generalized to cases where dS may change its sign, as shown next.

Property 3.1. Let dS be the survival cost according to (3.4). Then, for all continuous

functions H with bounded variation on [s, ωx], we have

sign
(
H(s) − H(t)

)
= sign

(
dS(t)

)
for all t > s =⇒ V (s, Λx + H) ≥ V (s, Λx) (3.7)

and

sign
(
H(s) − H(t)

)
= −sign

(
dS(t)

)
for all t > s =⇒ V (s, Λx + H) ≤ V (s, Λx) . (3.8)

Proof. Because of (3.3), the difference

V (s, Λx + H) − V (s, Λx) =

∫

(s,ωx)

eΛx(s)−Λx(t)
(
eH(s)−H(t) − 1

)
v(s, t) dS(t)

is always non-negative and non-positive under conditions (3.7) and (3.8), respectively.

Property 3.1 allows us to calculate an upper bound for the prospective reserve:

Proposition 3.2. Let dS be the survival cost according to (3.4). Then Λx defined by

Λx(t) − Λx(s) :=





Lx(t) − Lx(s) : dS(t) > 0
Ux(t) − Ux(s) : dS(t) < 0
1
2
Lx(t) −

1
2
Lx(s) + 1

2
Ux(t) −

1
2
Ux(s) : dS(t) = 0

(3.9)

with arbitrary but fixed initial value Λx(s) satisfies V (s, Λx) ≥ V (s, Λx) for all cumulative

mortality intensities Λx that are within the bounds (3.6).

Proof. Apply Property 3.1, and note that in the proof of Property 3.1 the function eΛx(s)−Λx(t)+
Q is not necessarily a survival function but only has to be right-continuous and of bounded
variation on [s, ωx] .

We denote Λx as worst-case scenario with respect to the bounds (3.6). Note that Λx(·)
is not necessarily monotone and, hence, not always a true survival function. The worst-case
scenario can in fact be arbitrarily defined on {t|dS(t) = 0} without loosing the maximality
property.
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Remark 3.3 (Time invariance). What happens to the worst-case scenario of V (s) if time s

is moving forward? The worst-case scenario according to Proposition 3.2 depends only on
the sign of dS which does not depend on s. That means that if we once calculated Λx at
the beginning of the contract period s = 0, it remains to be a worst-case scenario during the
whole contract time.

However, the approach presented in this section has a significant disadvantage. In many
examples the worst-case scenario Λx is not monotone and, hence, not a true cumulative
hazard rate anymore. This implies that the upper bound for the prospective reserve is in
fact not sharp. This is why in Section 4 we bound the increase of Λx instead of Λx itself.

4 Worst-case if the ascent of the cumulative hazard

rate is bounded

In contrast to (3.6), we assume now that the ascent of the cumulative hazard rate is bounded,

dLx(t) ≤ dΛx(t) ≤ dUx(t) , t ∈ [s, ωx] , (4.1)

where Lx and Ux are continuous and increasing functions with bounded variation on [s, ωx].
In case of differentiability, that is equivalent to

lx(t) ≤ λx(t) ≤ ux(t) , t ∈ [s, ωx] , (4.2)

where lx and ux are the derivatives of Lx and Ux. The monotony of Lx implies that Λx is
monotone and, hence, is always a true cumulative hazard rate.

The prospective reserve at time s can be written as

V (s) =

∫

(s,ωx]

eΛx(s)−Λx(t) v(s, t) d(B − Π)(t) +

∫

(s,ωx]

v(s, t) c(t) eΛx(s)−Λx(t)dΛx(t) . (4.3)

Alternatively, we can see the prospective reserve as the unique solution of Thiele’s integral
equation

V (s) =(B − Π)(ωx) − (B − Π)(s) −

∫

(s,ωx]

V (t−) ϕ(t) dt +

∫

(s,ωx]

R(t) dΛx(t) (4.4)

with initial value V (ωx) = 0, where R(s) := c(s) − V (s) − ∆(B − Π)(s) is the so-called
sum-at-risk for occurrence of dead at time s.

What happens to the prospective reserve if Λx is shifted by an amount of H to Λx + H ?
By generalizing the ideas of Lidstone (1905), Norberg (1985), Hoem (1988), Ramlau-Hansen
(1988), and Linnemann (1993) to a model with a cumulative mortality intensity, we obtain
the following result, which is the basis for the ’sum-at-risk method’.

Property 4.1. Let R(s, Λx) be the sum-at-risk that corresponds to Λx. If the shifted cu-

mulative mortality intensity Λx + H is still a continuous cumulative hazard rate, then we

have

sign
(
dH(t)

)
= sign

(
R(t, Λx)

)
for all t > s =⇒ V (s, Λx + H) ≥ V (s, Λx) (4.5)
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and

sign
(
dH(t)

)
= −sign

(
R(t, Λx)

)
for all t > s =⇒ V (s, Λx + H) ≤ V (s, Λx) . (4.6)

Proof. Let W (s) := V (s, Λx + H) − V (s, Λx) be the difference between the prospective
reserves at time s. By replacing V (s, Λx +H) and V (s, Λx) with the right hand side of (4.4),
we get an integral equation for W ,

W (s) = −

∫

(s,ωx]

(
V (t−, Λx + H) − V (t−, Λx)

)
ϕ(t) dt

+

∫

(s,ωx]

(
R(t, Λx + H) d(Λx + H)(t) − R(t, Λx) dΛx(t)

)

with initial value W (ωx) = 0. With defining C by

C(ωx) − C(s) =

∫

(s,ωx]

R(t, Λx) dH(t) ,

we can write the above integral equation for W in the form

W (s) = C(ωx) − C(s) −

∫

(s,ωx]

W (t−) ϕ(t) dt +

∫

(s,ωx]

−W (t) d(Λx + H)(t) .

We can interpret this integral equation as a Thiele integral equation for a policy with no
death benefits and accumulated annuity benefits and premiums of C. (In the actuarial
literature, C(s) is interpreted as the accumulated surplus at time s.) Hence, the integral
equation has the solution (see (4.3))

W (s) =

∫

(s,ωx]

eΛx(s)+H(s)−Λx(t)−H(t) v(s, t) dC(t)

=

∫

(s,ωx]

eΛx(s)+H(s)−Λx(t)−H(t) v(s, t) R(t, Λx) dH(t) .

(4.7)

Under the conditions of (4.5) and (4.6) we obtain W (s) ≥ 0 and W (s) ≤ 0 and, hence,
V (s, Λx + H) − V (s, Λx) = W (s) ≥ 0 and V (s, Λx + H) − V (s, Λx) = W (s) ≤ 0.

Defining

Rs(t) := eΛx(s)+H(s)−Λx(t)−H(t) v(s, t) R(t, Λx) (4.8)

as the sum-at-risk at time s for occurrence of death at time t, we get from (4.7) an expression
similar to (3.3):

V (s, Λx + H) − V (s, Λx) =

∫

(s,ωx]

Rs(t) dH(t) . (4.9)

While the survival cost −dSs(t) describes the effect that a Q(t) shift of the survival function
has on V (s), it is here Rs(t) that quantifies the effect that a dH(t) shift of the ascent of the
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cumulative mortality intensity has on V (s). Property 4.1 is similar to Property 3.1. While
sign(dS(t)) describes the direction of the effect that a H(t) shift of the cumulative mortality
intensity at time t has on V (s), it is here sign(R(t)) that quantifies the direction of the
effect that a dH(t) shift of the ascent of the cumulative mortality intensity at time t has on
V (s). It is then tempting to believe that we can find a worst-case scenario analogously to
Proposition 3.2 by letting dΛx be equal to dLx and dUx there where R(t, Λx) is negative and
positive, respectively. As already indicated in the introduction of the present paper, this idea
does not work. The problem is here that quantity (4.8) depends on shift H , whereas −dSs

did not depend on shift Q. Therefore the worst-case problem is more complicated here.

4.1 Construction of a worst-case scenario

Property 4.1 guarantees that the valuation basis Λx is on the safe side with respect to
all alternative mortality scenarios Λx + H that meet condition (4.6). This safe side area
usually does not contain the whole confidence band (4.1). (See also the explanations in the
introduction of the present paper.) But if we had a mortality scenario Λx that satisfies

dΛx(t) =

{
dLx(t) : R(t, Λx) < 0
dUx(t) : R(t, Λx) > 0

, (4.10)

then Property 4.1 would yield a safe side area for Λx that indeed contains the whole confidence
band (4.1), because all possible shifts H meet (4.6). The natural questions are therefore:

• Does such a special scenario Λx always exist?

• If so, how do we find Λx ?

Answers to that questions can be found in Christiansen (2009). By replacing the cumulative
mortality intensity in Thiele’s integral equation (4.4) with the right hand side of (4.10), we
get a new integral equation that does not directly depend on Λx anymore,

V (s) = (B − Π)(ωx) − (B − Π)(s) −

∫

(s,ωx]

V (t−) ϕ(t) dt

+

∫

(s,ωx]

R(t) − |R(t)|

2
dLx(t) +

∫

(s,ωx]

R(t) + |R(t)|

2
dUx(t)

(4.11)

with initial value V (ωx) = 0, where we use the short notation V (s) := V (s, λx) and R(s) :=
R(s, λx). Christiansen (2009) showed that the integral equation (4.11) has a unique solution
in

{
V : [0, ωx] → R

∣∣∣ V is right-continuous and has bounded variation, V (ωx) = 0
}

.

If we once have a solution V for (4.11), then we can construct a worst-case mortality scenario
as follows.
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Property 4.2. Let V be the unique solution of integral equation (4.11) with corresponding

sum-at-risk R. Then Λx defined by

dΛx(t) =





dLx(t) : R(t) < 0
dUx(t) : R(t) > 0
d(1

2
Lx + 1

2
Ux)(t) : R(t) = 0

(4.12)

and an arbitrary but fixed initial value Λx(0) is a cumulative mortality intensity with V (s, Λx) ≥
V (s, Λx) for all s ∈ [0, ωx] and all Λx that satisfy (4.1).

Proof. Christiansen (2009) showed that Λx is indeed a cumulative mortality intensity. In
the same way that we derived (4.11) from (4.10), we can verify that V (·, Λx) is equal to
the unique solution V of (4.11). Thus, we also have R = R(·, Λx), which means that (4.12)
satisfies (4.10). By applying Property 4.1 now for each s ∈ [0, ωx], we get the maximality of
V (s, Λx) for all s ∈ [0, ωx].

We denote Λx according to (4.12) as worst-case scenario with respect to (4.1). Note that
dΛx(t) can in fact be arbitrarily defined on {t : R(t) = 0} without losing the maximality
property.

Remark 4.3 (Time invariance & characterization of the worst-case). Note that the worst-case
scenario Λx maximizes not only the prospective reserve at some fixed time s, but also at any
other time t ∈ [0, ωx]. That means that if we once calculated Λx at the beginning of the
contract period, it remains to be a worst-case scenario during the whole contract time. This
implies that R(t, Λx) = c(t)− V (t, Λx)−∆(B −Π)(t) is minimal for all t, and consequently

sign
(
R(t, Λx)

)
= inf

Λx

sign
(
R(t, Λx)

)

for all t. By interpreting a positive sum-at-risk as occurrence character and a negative sum-
at-risk as survival character, we get that the worst-case scenario is always that scenario that
has the biggest share of survival character during the contract period.

The worst-case method in this section fixes the problem of the previous section that
the worst-case scenario Λx is in general no cumulative hazard rate anymore. However, we
still get unrealistic scenarios where the mortality intensity jumps between extremes and
where mortality rates can also fall with increasing age. Such scenarios make sense in risk
management if one is interested not in usual but in extreme developments of mortality.

Still, we can ask the question if it is possible to calculate worst-case scenarios which
additionally have the following two properties: (a) they never fall with increasing age and
(b) they have no extreme jumps. An answer to that question is given in Section 5.

4.2 Alternative construction of a worst-case scenario

Earlier in this section we discussed that, in contrast to (3.3), formula (4.9) does not yield
a construction method for a worst-case scenario because the integrand depends on shift
H . The ’method based on derivatives’ (see the introduction of this paper) gets rid of that
dependence on H by just allowing for local shifts H . Christiansen (2008a) shows that

∣∣∣∣V (s, Λx + H) − V (s, Λx) −

∫

(s,ωx]

eΛx(s)−Λx(t) v(s, t) R(t, Λx) dH(t)

∣∣∣∣ = o(‖H‖) , (4.13)
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where ‖H‖ is the total variation of H on [0, ωx]. Thus, given that o(‖H‖) is negligible, the
prospective reserve V (s, Λx +H) can be maximized by choosing d(Λx +H) equal to dLx and
dUx there where R(t, Λx) is negative and positive, respectively. This is the same scenario as
the one suggested by the sum-at-risk method. The difference to the true worst-case scenario
rises with o(‖H‖). Christiansen (2008a) interpreted the integrand of (4.13) as some of form
of generalized gradient

(∇Λx
V )(t) := eΛx(s)−Λx(t) v(s, t) R(t, Λx)

which gives us a new idea for the construction of a worst-case scenario. In the same way
that gradient ascent methods are used to find local maxima of differentiable functions on
R

n, we could do iterated small steps in direction of the generalized gradient ∇Λx
V in order

to find a maximizing mortality scenario:

1. Choose a starting mortality scenario Λ
(0)
x .

2. Calculate a new scenario by using the iteration

dΛ(n+1)
x (t) := dΛ(n)

x (t) + K (∇
Λ

(n)
x

V )(t) dt .

If the right hand side is below dLx or above dUx, we cut dΛ
(n+1)
x off at dLx or dUx,

respectively. Here, K > 0 is some step size that has to be chosen.

3. Repeat step 2 until
∣∣V (s, Λ

(n+1)
x ) − V (s, Λ

(n)
x )

∣∣ is below some error tolerance.

In order to increase the speed of convergence, we could try to increase K to infinity. As the
sign of (∇

Λ
(n)
x

V )(t) is equal to the sign of R(t, Λ
(n)
x ), and since we cut dΛ

(n+1)
x off at dLx and

dUx, we obtain the following algorithm:

1. Choose a starting mortality scenario Λ
(0)
x .

2. Calculate a new scenario by using the iteration

dΛ(n+1)
x :=





dLx(t) : R(t, Λ
(n)
x ) < 0

dUx(t) : R(t, Λ
(n)
x ) > 0

dΛ
(n)
x (t) : R(t, Λ

(n)
x ) = 0

. (4.14)

3. Repeat step 2 until
∣∣V (s, Λ

(n+1)
x ) − V (s, Λ

(n)
x )

∣∣ is below some error tolerance.

For n = 0, step 2 yields the same scenario as the one that is suggested by the sum-at-risk
method or the method based on derivatives in order to maximize the prospective reserve
V (s). Hence, the second algorithm is just an iteration of the sum-at-risk method or the
method based on derivatives. The question is whether that algorithm converges to the true
worst-case. The following result provides the answer.

Proposition 4.4. Let Λ
(0)
x , Λ

(1)
x , Λ

(2)
x , ... be a series of cumulative mortality intensities cal-

culated by iterating (4.14). Then

lim
n→∞

V (s, Λ(n)
x ) = V (s, Λx) ,

where Λx is the worst-case scenario according to (4.12).
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Note that Proposition 4.4 states the convergence of the prospective reserves V (s, Λ
(n)
x )

and not the convergence of the scenarios Λ
(n)
x . The latter do not necessarily converge on

{t : R(t, Λx) = 0}.

Proof. We only give a sketch of the proof here. The series V (s, Λ
(0)
x ), V (s, Λ

(1)
x ), V (s, Λ

(2)
x ), ...

is equivalent to the series that we obtain if we change (4.11) into an iteration equation
by adding the superscript ’(n + 1)’ on the left hand side and the superscripts ’(n)’ on the
right hand side. Christiansen (2009) defined such a series and showed that it converges to
the unique solution of (4.11) in order to proof Property 4.2. Thus, following that proof of
Christiansen (2009), we can verify that our iteration method converges.

We see that the sum-at-risk method yields an approximation of the true worst-case, and
we can improve this approximation by just iterating the sum-at-risk method.

5 Worst-case if the acceleration of the cumulative haz-

ard rate is bounded

Here we generally assume that λx exists. In contrast to (4.2) we do not bound the mortal-
ity intensity but the mortality intensity ascent, in other words, the speed with which the
mortality increases with respect to age. Specifically, assume that the inequalities

dlx(t) ≤ dλx(t) ≤ dux(t) , t ∈ [s, ωx] , (5.1)

are valid where lx and ux are hazard rates, and let λx(s) be an arbitrary but fixed starting
value at present (time s). If Λx is twice differentiable, (5.1) is equivalent to bounding the
mortality intensity ascent αx on [s, ωx]. If we choose a lower bound dlx that is positive, then
the mortality intensity is always monotonic increasing on [s, ωx],

λx(t) − λx(s) ≥

∫

(s,t]

dlx(u) .

We now regard the prospective reserve at time s as a mapping of the mortality intensity λx

and are looking for a scenario within the bounds (5.1) and with fixed starting value λx(s)
that maximizes V (s, λx). Let λx be some starting point that is shifted by a function h that is
right-continuous and has bounded variation on [s, ωx]. By applying Fubini’s Theorem, (4.9)
can be transformed to

V (s, λx + h) − V (s, λx) =

∫

(s,ωx]

Rs(t)

( ∫

(s,t]

dh(u)

)
dt =

∫

(s,ωx]

( ∫

[u,ωx]

Rs(t) dt

)
dh(u) .

With writing H for the cumulative version of h, we denote

CRs(u) :=

∫

[u,ωx]

Rs(u) dt =

∫

[u,ωx]

eΛx(s)−Λx(t)+H(s)−H(t) v(s, t) R(t, Λx) dt
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as cumulative sum-at-risk at time s for occurrence of death at and after u. This gives an
expression similar to (3.3) and (4.9), that is,

V (s, λx + h) − V (s, λx) =

∫

(s,ωx]

CRs(u) dh(u) . (5.2)

The cumulative sum-at-risk CRs(u) describes the effect that a change dh(u) of the ascent of
the mortality intensity (the acceleration of the cumulative mortality intensity) has on V (s).
Analogously to Property 3.1 and Property 4.1 we get the following result:

Property 5.1. If the shifted mortality intensity λx + h is a still a regular hazard rate, then

sign
(
dh(t)

)
= sign

(
CRs(t)

)
for all t > s =⇒ V (s, λx + h) ≥ V (s, λx) (5.3)

and

sign
(
dh(t)

)
= −sign

(
CRs(t)) for all t > s =⇒ V (s, λx + h) ≤ V (s, λx) . (5.4)

For the proof just apply (5.2). In contrast to dS(t) in Property 3.1 and R(t) in Property
4.1, the sign of CRs(t) depends on shift h. Thus we can not just transform the ideas of
the previous sections in order to find a maximizing scenario. Again, we can get rid of the
dependence on h by allowing just for local shifts. Applying Fubini’s Theorem, the integral
in (4.13) can be transformed to

∫

(s,ωx]

eΛx(s)−Λx(t) v(s, t) R(t, Λx)

( ∫

(s,t]

dh(u)

)
dt

=

∫

(s,ωx]

(∇λx
V )(u) dh(u) ,

(5.5)

where ∇λx
V is interpreted as some form of generalized gradient defined by

(∇λx
V )(u) :=

∫

[u,ωx]

eΛx(s)−Λx(t) v(s, t) R(t, Λx) dt .

If o(‖H‖) in (4.13) is negligible, then the prospective reserve V (s, λx +h) can be maximized
by choosing d(λx + h) equal to dlx and dux there where (∇λx

V ) is negative and positive,
respectively. If the confidence band (5.1) is not very narrow, o(‖H‖) might not be negligible.
But the first-order Taylor expansion (4.13) in the version of (5.5) allows at least to formulate
a characteristic of global maxima.

Property 5.2. Let λx be a scenario within the bounds (5.1) that maximizes V (s, λx). Then

λx satisfies

dλx(t) =

{
dlx(t) : (∇λx

V )(t) < 0
dux(t) : (∇λx

V )(t) > 0
(5.6)

on (s, ωx].
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Proof. Assume that λx does not satisfy (5.6). Then

∫

(s,ωx]∩{(∇
λx

V )(t)<0}

(∇λx
V )(t) d(lx − λx)(t) +

∫

(s,ωx]∩{(∇
λx

V )(t)>0}

(∇λx
V )(t) d(ux − λx)(t)

is strictly positive. Let λ̃x be defined by the right hand side of (5.6). Applying (4.13) in the
version of (5.5), we obtain for ε > 0

V
(
s, λx + ε(λ̃x − λx)

)
= V

(
s, λx

)
+ ε

∫

(s,ωx]

(∇λx
V )(u) d(λ̃x − λx)(u)

︸ ︷︷ ︸
>0

+o(ε) .

Now choose ε small enough such that the integral (linear Taylor term) is greater than the

absolut value of the remainder o(ε). Then we have V
(
s, λx + ε(λ̃x − λx)

)
> V

(
s, λx

)
, which

means that λx is not maximal.

If λx is a maximizing scenario, then the characteristic (5.6) that λx is mainly on the
bounds is analogous to (3.9) and (4.12) (or (4.10)). However, a worst-case integral equation
similar to (4.11) seems to be out of reach here. The crux of (4.11) is that the discontinuities
at R(t) = 0 of the integrator (4.10) in the last integral in (4.4) are annihilated by the
integrand R(t). We do not have such a property for (5.6) since the signs of CRs(t) and
(∇λx

V )(t) can differ. However, in order to find a worst-case scenario, we can at least design
gradient ascent methods similar to the algorithms in Section 4.2:

1. Choose a starting mortality scenario λ
(0)
x .

2. Calculate a new scenario by using the iteration

dλ(n+1)
x (t) := dλ(n)

x (t) + K (∇
λ
(n)
x

V )(t) dt .

If the right hand side is below dlx or above dux, we cut dλ
(n+1)
x off at dlx or dux,

respectively. Here, K > 0 is some step size that has to be chosen.

3. Repeat step 2 until
∣∣V (s, λ

(n+1)
x ) − V (s, λ

(n)
x )

∣∣ is below some error tolerance.

If we increase K to infinity, we obtain the following algorithm:

1. Choose a starting mortality scenario λ
(0)
x .

2. Calculate a new scenario by using the iteration

dλ(n+1)
x :=






dlx(t) : (∇
λ
(n)
x

V )(t) < 0

dux(t) : (∇
λ
(n)
x

V )(t) > 0

dλ
(n)
x (t) : (∇

λ
(n)
x

V )(t) = 0

. (5.7)

3. Repeat step 2 until
∣∣V (s, λ

(n+1)
x ) − V (s, λ

(n)
x )

∣∣ is below some error tolerance.
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If these algorithms converge, the limit satisfies (5.6). The second algorithm makes better
use of the fact that maximizing scenarios are always of the form (5.6).

Remark 5.3 (Bounds for higher order derivatives). In sections 3 and 4 and in this section
we looked for worst-case mortality rates with respect to confidence bounds for Λx, dΛx, and
d(Λ′

x) = dλx. The ideas in this section can be generalized to confidence bounds of higher
order d(Λ′′

x), d(Λ′′′
x ), ... by applying Fubini’s Theorem in (5.5) not only once but consecutively

in order to obtain generalized gradients (∇Λ′′

x
V ), (∇Λ′′′

x
V ), etc. With this gradients, one

can find characterizations of the maximizing scenario similar to (5.6) and design iteration
methods similar to (5.7).

6 Numerical illustrations

6.1 Confidence bands for the underlying hazard

Under the Lee-Carter model, the (central) death rate applying to age x in calendar year t is
assumed to be of the form

mx(t|κ) = exp(αx + βxκt) (6.1)

where the parameters βx and κt are subject to constraints ensuring model identification.
Here, the parameters are estimated from the mortality surface available from the Belgian
Federal Planning Bureau. The ages considered here range from 30 to ω = 115, and the obser-
vation period is 1970-2006. The time index κt is viewed as a stochastic process. Box-Jenkins
techniques are therefore used to estimate and forecast κt within an ARIMA times series
model. First, the κt’s are differenced, to remove the downard linear trend. Considering the
first differences of the time index, the autocorrelation functions and partial autocorrelation
functions (which both tail off) clearly suggests that an ARIMA(0,1,0) process is appropriate.
Running a Shapiro-Wilk test indicates that the residuals seem to be approximately Normal.
The corresponding Jarque-Bera statistics confirms that there is no significant departure from
Normality. The random walk with drift model outperforms its competitor on the basis of
standard information criteria. So, the κt’s obey the dynamics

κt = κt−1 + θ + ξt with iid ξt ∼ N or(0, σ2), (6.2)

where θ is known as the drift parameter and N or(0, σ2) stands for the Normal distribution

with mean 0 and variance σ2. The estimated parameters are θ̂ = −1.117411 and σ̂2 =
1.226763. The projected κt’s are then obtained from last κ̂2006 by adding a linear trend with
slope θ̂.

Consider the cohort reaching age x0 in year t0. We take as a reference mref
x0+k the central

forecast produced by the Lee-Carter approach, that is,

mref
x0+k = exp(αx0+k + βx0+k(κt0 + kθ)).

The mref
x0+k’s thus correspond to the deterministic projected life table produced by the

Lee-Carter approach to mortality forecasting. For this cohort, we determine the band
(πlowmref

x0+k, πupm
ref
x0+k) such that

Pr[exp(αx0+k + βx0+kκt0+k) 6∈ (πlowmref
x0+k, πupm

ref
x0+k) for some k = 1, 2, . . .] ≤ ǫmort

16



for some probability level ǫmort small enough.
In order to fix the values of πlow and πup, we require that

Pr[ln πup ≥ βx0+k(κt0+k − (κt0 + kθ)) ≥ ln πlow for all k = 1, 2, . . .] ≥ 1 − ǫmort.

These values can then be determined as a quantile of the random vector

(
βx0+1

(
κt0+1 − (κt0 + θ)

)
, . . . , βω

(
κt0+ω−x0 − (κt0 + (ω − x0)θ)

))T

that is multivariate Normal with 0 mean and variance-covariance matrix

Σ̃ =




σ2β2
x0+1 σ2βx0+1βx0+2 · · · σ2βx0+1βω

σ2βx0+1βx0+2 2σ2β2
x0+2 · · · 2σ2βx0+2βω

...
...

. . .
...

σ2βx0+1βω 2σ2βx0+2βω · · · (ω − x0)σ
2β2

ω


 .

Consider the generation aged x0 = 30 in year t0 = 2006. Imposing that the future life
table should be in the band (πlowmref

x0+k, πupm
ref
x0+k) with probability at least 99%, we get

πlow = 0.9393242 and πup = 1.064595. These values have been found using the qmvnorm
function of the R package mvtnorm.

6.2 Annuity with death benefits

Consider an annuity insurance with additional death benefits. A constant premium is paid
yearly in advance from age 30 on till retirement at age 65. From then on a constant annuity
benefit of 1 is paid yearly in advance till death. The functions Π and B are thus given by

Π(t) = const

34∑

k=0

1[k,∞)(t) , B(t) =

ωx∑

k=35

1[k,∞)(t) .

If the policyholder dies before age 65, a death benefit is paid that has the size of the prospec-
tive reserve just before retirement. If the policyholder dies after retirement but before age
85, a death benefit is paid that equals the prospective reserve at that time. The function c

is thus given by

c(t) = V (35−) · 1[0,35)(t) + V (t−) · 1[35,55)(t) .

We assume that the yearly interest rate is at 2.25% and that interest is paid continuously
with an intensity of ϕ(t) = ln(1.0225) . For our exemplary calculations we use the mortal-
ity intensity mref

x0+k derived from (6.1) with parameters estimated from Belgian mortality
statistics as best estimate and confidence bands where

(A) the lower and upper bound are −6.59131% and +6.4595% below and above the best
estimate as obtained from the coefficients πlow and πup.

(B) the lower and upper bound are −25% and +15% below and above the best estimate as
suggested in Consultation Paper no. 49 of the Committee of European Insurance and
Occupational Pensions Supervisors (CEIOPS) for the Solvency II project.
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The equivalence principle and the best estimate mortality rate yield a constant yearly pre-
mium of 0.4133781786. Figure 6.1 shows the death benefit function c(t). Figures 6.2, 6.3,
and 6.4 illustrate the cumulative survival cost S0(t) at time zero for survival at and after
time t, the sum-at-risk R(t) for occurrence of death at time t, and the cumulative sum-at-risk
CR0(t) at time zero for occurrence of death at and after time t. All illustrations are based
on the best estimate mortality scenario. For the calculation of CR0(t), we assumed that the
shift H is zero, which implies that the cumulative sum-at-risk is equal to the generalized
gradient (∇λx

V )(t) here. The following tabular shows the prospective reserve V (0−) before
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Figure 6.1: Death benefit function c(t)
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Figure 6.2: Approach I: Cumulative
survival cost S0(t)
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Figure 6.3: Approach II: Sum-at-risk
R(t) with respect to the best estimate
mortality rate
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Figure 6.4: Approach III: Cumulative
sum-at-risk CR0(t) with respect to the
best estimate mortality rate and zero
shift

beginning of the contract with respect to different mortality scenarios:
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prospective reserve V (0−) prospective reserve V (0−)
valuation basis w.r.t. confidence band (A) w.r.t. confidence band (B)

best estimate 0.000000 0.000000
lower bound 0.009744 0.083661
upper bound -0.003088 0.001069

separated contract 0.299774 0.981273
worst-case method I 0.156119 0.539246
worst-case method II 0.081861 0.298761
worst-case method III 0.058308 0.233918
sum-at-risk method 0.079849 0.265951

2× sum-at-risk method 0.080565 0.276372
3× sum-at-risk method 0.081848 0.298761

’Separated contracts’ means that the policy is unbundled into an annuity policy and a tem-
porary life insurance policy, and the two parts are valuated on the basis of the lower bound
and the upper bound. The results ’2× sum-at-risk method’ and ’3× sum-at-risk method’
are obtained by applying the sum-at-risk method iteratively. The rows ’worst-case method
I, II, and III’ refer to the methods of sections 3, 4, and 5. The bounds are given by

Lx(t) − Lx(s) = πlow (Λx(t) − Λx(s)) , Ux(t) − Ux(s) = πup (Λx(t) − Λx(s))

for approach I, by

lx(t) = πlow λx(t) , ux(t) = πup λx(t)

for approach II and the sum-at-risk method, and by

dlx(t) = ∆lx(t) = min{πup ∆λx(t), πlow ∆λx(t)} ,

dux(t) = ∆ux(t) = max{πup ∆λx(t), πlow ∆λx(t)}

for integers t = 1, ..., ωx , and dlx(t) = dux(t) = 0 else for approach III. As starting value
λx(0) we use the best estimate. The following table shows the (numerically calculated) mor-
tality scenarios, which all are at any time t either equal to a bound or equal to the best
estimate:

ages where the valuation ... the upper bound ... the best ... the lower bound
basis is equal to ... of confidence band (A) estimate of confidence band (A)

best estimate (30, ω)
worst-case method I (30, 65] ∪ (84, 85] (65, 84] ∪ (85, ω]
worst-case method II (30, 64.762) (64.762, ω)
worst-case method III {31, .., 58} {59, ..., ω}
sum-at-risk method (0, 65) (65, 85) (85, ω)
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ages where the valuation ... the upper bound ... the best ... the lower bound
basis is equal to ... of confidence band (B) estimate of confidence band (B)

best estimate (30, ω)
worst-case method I (30, 65] ∪ (84, 85] (65, 84] ∪ (85, ω]
worst-case method II (30, 63.888) (63.888, ω)
worst-case method III {31, .., 56} {57, ..., ω}
sum-at-risk method (0, 65) (65, 85) (85, ω)

Worst-case method I sets the cumulative mortality intensity equal to the upper and lower
bound there where the cumulative survival cost S0 is increasing and decreasing. The shifting
times are independent of the confidence band, because S0 does not depend on the bounds.
Note that we have two negative jumps for the cumulative mortality intensity. The sum-at-
risk method sets the mortality intensity equal to the upper and lower bound there where the
sum-at-risk R (with respect to the best estimate) is positive and negative. We see that the
result differs from the true worst-case calculated by worst-case method II. For the sum-at-risk
method, the shifting times do not depend on the confidence band, but for worst-case method
II they do. For worst-case method III, our choice of the bounds dlx and dux allows only for
changes of λx at integer times. The shift between high and low mortality intensity ascent is
for both confidence bands earlier than the shift between high and low mortality intensity in
method II, which is a result from the facts that the cumulative sum-at-risk aggregates the
future sums-at-risk and that the sum-at-risk is first throughout positive and then throughout
negative. While the mortality intensity of method II shows an extreme jump from ux to lx
near the age of retirement, the mortality intensity of method III evolves gradually with small
steps ∆lx or ∆ux.
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