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Abstract

We discuss the use of Bayesian P-spline and of the composite link model to estimate survival
functions and hazard-ratios from interval-censored data. If one further assumes proportionality
of the hazards, the proposed strategy provides a smoothed estimate of the baseline hazard along
with estimates of global covariate effects. The frequentist properties of our Bayesian estimators
are assessed by an extensive simulation study. We further illustrate the methodology by three
examples showing that the proportionality of the hazards might also be found inappropriate
from interval-censored data.
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1 Introduction

There has been increasing interest in statistical analysis of interval-censored time-to-event data.
Examples of interval-censored time-to-event data naturally arise in diverse fields, such as medicine,
demography, economics, epidemiology, etc. In medicine, this type of data is quite usual for clin-
ical trials or longitudinal studies especially in practical settings of AIDS and cancer research
where the individuals have prescheduled visits. Data are collected at every visit: hence, when a
change of state is diagnosed, the event time is often only known to have happened since the last
visit. Then, time-to-event data takes the form of an interval (L, R) of irregular length where L
represents the time of the last negative test result and R represents the time of the first positive
test result. Irregular intervals arise when e.g. patients may miss or delay some of the visits.

Interval-censored data is a natural generalization of right censored time-to-event data. For
right censored data, extensive number of statistical techniques are available to tackle most re-
search questions under a variety of assumptions. However, for interval-censored data less well
developed procedures are available, and the basic strategies such as mid-point imputation lead
to invalid inferences. Lack of statistical software packages for this type of censoring has driven
many researchers to use imputation techniques, especially right-point or mid-point imputation.
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In imputation approach, it is often assumed that the event occurred at the middle of the interval,
resulting in biased estimates. As shown by Law and Brookmeyer [27], the statistical properties
of the midpoint imputation depend strongly on the width of the interval between visits and the
shape of the time to event density. The authors assessed the performance of midpoint imputation
to estimate the regression parameter in a proportional hazards model: it was shown that biased
estimates may be observed if the intervals are wide. In addition, midpoint imputation wrongly
assumes that failure times are known exactly: this leads to underestimated standard errors [17].

Alternatively, one could assume a parametric form for the time-to-event density and fit
a regression model to the available interval-censored failure times using standard statistical
softwares (e.g. Proc LIFEREG in SAS). When the underlying density has a simple shape, the
parametric method can work quite well, but when it is skewed or multimodal, or both, a lot of
effort is needed to find the right model. A nonparametric model will be more attractive then.

The first nonparametric method for estimating a survival function from interval-censored
data was suggested by Peto [29]. Afterwards, Turnbull [35] derived the same estimator using
a different approach. He proposed a ‘self-consistency method’ for univariate interval-censored
data, but the solution was not always unique [38]. Kooperberg and Stone [22] developed logspline
density estimation for univariate data (right-, left-or interval-censored) using cubic B-spline
basis. Hansen and Kooperberg [14] investigated the problem of logspline density estimation in a
Bayesian context for non-censored data. The authors constructed the logarithm of a density as a
sum of natural cubic regression splines (with number of knots and their location to be estimated)
and then introduced specialized priors.

The most popular regression model for time-to-event data is the Cox proportional hazards
(PH) model [6] for assessing the effect of covariates on a response. If T denotes the observed
time-to-event, then the Cox PH model assumes that:

h(t|x) = h0(t) exp(x′β), (1)

where h0(t) is the baseline hazard at time t and h(t|x) conditional hazard at time t given
covariates x and regression coefficients β. The primary interest is usually in the estimation of
the regression coefficients β. However, the shape of the baseline hazard function might be of
specific interest (see e.g. [25, 32, 39]).

Several authors discussed the use of Cox PH model for left- or right-censored time-to-event
data. However, Finkelstein [9] was the first to discuss a PH model for interval-censored time-
to-event data, proposing a generalization of log-rank test for comparison of survival curves.
Goetghebeur and Ryan [12] proposed to use of an approximate likelihood by employing an EM
algorithm to fit a semiparametric Cox PH model for interval-censored data. Then in 2002, Beten-
sky et al. discussed the local likelihood methods to fit a PH model for interval-censored data
where an interpretable smoothed baseline hazard function was estimated along with estimates
of log hazard ratio[3]. A recent approach proposed for regression analysis of interval-censored
data considered a reparametrization of the log hazard function through a mixed model approach
[5]. The authors obtained a smooth estimate of the hazard function by maximizing the penal-
ized likelihood. Komarek et al. [18] proposed a methodology that implemented a maximum
likelihood-based approach for an accelerated failure time model. Smoothed estimates of the
baseline density and of the regression coefficients were obtained by Komarek et al. [18] by as-
suming a mixture of normal distributions for the conditional distributions in accelerated failure
time model. More recently Zhang and Davidian [40] proposed a general regression framework
for arbitrarily-censored data. It includes as special cases, the Cox PH and accelerated failure
time models. They provided an attractive approximation to basically any plausible time-to-
event density by assuming a broad class of densities which elements may be approximated by
the semi-nonparametric density estimator [10].
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Following Eilers and Marx [8] and Lambert and Eilers [25, 26] in a Bayesian framework, we
propose to model the log density as a linear combination of B-splines associated to a large number
of equidistant knots. This flexibility is counterbalanced by a suitable smoothness prior on the
spline coefficients. The composite link model (CLM; [36]) was successfully used by Lambert and
Eilers [26] to estimate density from grouped (histogram) data. Here we extend their methodology
to deal with arbitrarily interval-censored data in a Cox PH model framework.

The organization of the rest of this paper is as follows. In the next section, after having
introduced some notation we present our strategy for estimating the time-to-event density from
interval-censored data. The building blocks are penalized B-splines and the composite link model
[36]. In the third section, we show how this can be extended to the Cox PH model. Section
4 is devoted to the Bayesian variant of the model allowing the uncertainties to be quantified
in the model parameters and derived quantities. Markov chain Monte Carlo (MCMC) is used
to explore the joint posterior. In the fifth section, the results of a large simulation study are
reported. Illustrations are proposed in Section 6. We conclude the paper by a discussion.

2 Density Estimation for Interval-Censored Data

Denote by Tj the (continuous) time until the event of interest occurs for unit j (j = 1, ...., N).
Assuming independence and a common distribution for T1, . . . TN , let f be the probability density
and F the corresponding cumulative distribution function for Tj . Time Tj is not observed exactly,
but instead only known to lie in an interval (Lj , Rj) in the support (a, b). Based on interval
censored data {(Lj , Rj) : j = 1, . . . , N}, we want to obtain an estimate of f on (a, tcens) ⊂ (a, b)
where tcens ≤ b and ζ = P (Tj > tcens). Following Lambert and Eilers [26], we partition
(a, tcens) into many (100 or more grid points, say ) small intervals Ii = (ai−1, ai) of equal
width ∆ with midpoints ui = ai−1 + 0.5∆ (i = 1, ..., I). Then, the quantities of interest are
πi =

∫
Ii

f(t)dt ≈ f(ui)∆i where πi denotes the probability to observe Tj in Ii. The relationship

between the partition and the observed intervals is provided by an n by I matrix C = [cji],
where cji = 1 if Ii ⊂ (Lj , Rj) and 0 otherwise. Let dj = 1 if Rj > tcens and 0 otherwise. Then,
the probability γj to observe (Lj , Rj) for unit j could be expressed as

γj =
∑

i

cji × πi + dj × (1 − ζ). (2)

In Figure 1, the construction of the C matrix is illustrated for a simulated data set assuming
that the study ended at time tcens=80 (see Section 5 for further details). Only ten ‘small’ bins
of width 8 were considered for visual purposes (while around 100 of them were taken in the
example below).

Hence, the likelihood is expressed as proportional to:

l =

N∏

j=1

P [Lj < Tj < Rj ] =
∏

j

γj .

The estimation of the πi’s is an ill-conditioned problem since the available data only refer to
the interval probabilities γj (j = 1, . . .N). Therefore we require the πi’s to change smoothly over
time. Using the approach of Eilers and Marx [8], the πi’s are modeled using penalized B-splines.
Some familiarity with penalized B-splines is assumed from the reader as only a brief summary
is given here, see [8] for more details. A B-spline of degree q consists of q + 1 polynomial pieces
of degree q connected in a smooth way at q inner knots. It is positive on the interval spanned
by q + 2 consecutive knots and zero elsewhere. The solid curve in Figure 2 (left panel) was
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Time
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ui

Subj. 1

0 1 1 0 0 0 0 0 0 0 00
Subj. 2

0 0 1 1 1 1 1 1 1 0 0
Subj. 2

Subj. 3

0 0 0 0 0 0 0 1 1 1 1

P(T < 80) = ζ P(T > 80) = 1 − ζ

Figure 1: Illustrative data: Construction of C matrix for interval censored data on [0,120] where
study ends at time 80 (tcens=80) and small bins have width of 8

approximated using a linear combination of cubic B-splines corresponding to a large number of
equidistant knots on [-1,1]. The bell shape curves on the same graph are the B-splines of the
basis multiplied by an estimate (see below) of their multiplying coefficient. Thanks to the large
number of knots the target curve and its estimate cannot be distinguished. From the right panel
of Figure 2, one can notice that the B-spline coefficients depict the same shape as the target
curve. This suggests that desired properties (such as monotonicity, concavity, etc.) for the fitted
curve can be ensured by enforcing these properties on the spline coefficients.

Consider now the B-spline basis {bk(., q) : k = 1, ....., K} of degree q associated to a rich grid
(say 20) of equidistant knots on (a, tcens). Let ζ denote the probability to observe the event
before tcens. Given the partition of (a, tcens) into I intervals Ii (i = 1, ....., I) of equal width (see
above), the probability πi that T ∈ Ii can be modeled using polytomous regression as:

πi = ζ ×
eηi

eη1 + eη2 + ... + eηI

,

where ηi =
∑

k φkbik and ui is the midpoint of Ii (i=1, ...., I). An identifiability constraint is
imposed on the spline coefficients, φk, such that

∑
k φk = 0 since πi(φ) = πi(φ + c) for any

constant c.
In order to counterbalance the flexibility of the generous B-spline basis, we apply a dis-

crete roughness penalty on (rth order) changes in the B-spline coefficients [8]. The roughness
penalty for the B-spline coefficients is based on squared finite (rth order) differences of the coef-
ficients of adjacent B-splines. For example, a second-order (r=2) difference penalty is given by∑

k (φk − 2φk−1 + φk−2)
2=φ′D′Dφ where:
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Figure 2: (a): Curve approximated by linear combination of B-splines. (b): Estimated spline
coefficients.
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Apart from the penalty, the model for γ in Equation (2) can be seen as a composite link
model [36] with composing matrix [C, d]. It was used in a Bayesian framework by Lambert and
Eilers [26] to estimate a density from grouped (histogram) data.

3 Extension to the Cox Proportional Hazards Model

We have specified a model for the density when the available data are interval-censored. Before
examining Bayesian inference in Section 4, here is an an extension to the Cox PH model. Denote
the smooth model for the density f0 (see Section 2) for reference values of the covariates (x = 0)

by f̃0. By definition, it is clear that

S0(t) = Pr(T > t|x = 0) = 1 − F0(t) = 1 −

∫ t

0

f0(s)ds, (3)

where S0(t) denotes the baseline survival function. The density and the survival functions are
related to the baseline hazard by:

h0(t) =
f0(t)

S0(t)
. (4)

The consecutive expressions for the modeled reference survival and hazard functions, S̃0(t; φ, ζ)

and h̃0(t; φ, ζ), can be derived by substituting f̃0 for f0 in Eqs. (3) and (4).
Under the hypothesis of a Cox PH model, the conditional survival function is:
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S(T | X = x) = Pr(T > t|X = x) = S0(t)
exp(x′β), (5)

and conditional hazard function is given by (1). Thus, after substitution by the spline approxi-
mation to S0(t), the likelihood for the Cox PH model for interval censored data is proportional
to

ℓ = ℓ(φ, ζ, β) =
∏

j

P̃ [Lj < Tj < Rj |xj] =
∏

j

[S̃(Lj |xj) − S̃(Rj |xj)]. (6)

4 Bayesian Model Formulation

Having introduced the Cox PH model based on P-splines in the previous section, let us now
specify the prior distributions for the model parameters.

Denote by τ the penalty parameter in a Bayesian framework: the frequentist roughness
penalty for B-splines is translated into a prior distribution on finite (rth order) differences of
spline coefficients as:

(∆rφ|τ) ∼ N(0, τ−1).

As a result, the joint prior for the B-splines coefficients is given by:

p(φ|τ) ∝ τK/2 exp
{
−

τ

2
φ′Pφ

}
, (7)

where P = D′D + ǫI is a full-rank matrix for some small quantity ǫ (say 10−6). It corresponds
to a multivariate normal distribution with mean 0 and variance-covariance matrix P−1. This
idea was successfully used in many context (see e.g. [23] - [26]). The inverse variance τ plays
the role of the penalty parameter in the penalized likelihood of the frequentist setting. A large
variance hyperprior is usually advocated for τ , say a gamma distribution G(a=1, b=0.0001) with
mean a/b and variance a/b2 [23]. Alternative priors are proposed in [15] and in [34].

We propose to take an improper flat prior for the set of regression parameters β and a
uniform prior on (0,1) for ζ = P (T ≤ tcens|X = 0). More conveniently, we shall work with
ξ = log [ζ/(1 − ζ)]. The consequent prior for ξ is thus proportional to

ζ(1 − ζ) =
exp(ξ)

(1 + exp(ξ))2
.

In summary, our priors for the Bayesian Cox PH model based on P-splines are:

p(φ|τ) ∝ τK/2 exp
{
− τ

2φ′Pφ
}

,
p(τ) ∝ τa−1 exp(−bτ),

p(ξ) ∝ exp(ξ)
(1+exp(ξ))2 with ξ = log

(
ζ

1−ζ

)
,

p(β) ∝ 1.

Combined with the likelihood, one gets the joint posterior:

p (φ, τ, ξ, β | data) ∝ ℓ × τK/2+a−1 exp

{
−τ

(
φ′Pφ

2
+ b

)}
exp(ξ)

(1 + exp(ξ))2
, (8)
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where ℓ is a function of γj =
∑

ui<=tcens
cji × πi + dj × (1− ζ) given by Equation (6) and ‘data’

represents the intervals corresponding to all subjects in the study. The joint posterior will be
explored using MCMC (see Section 4.2). Notice that the conditional posterior distribution of
the roughness penalty can be identified:

(τ | φ, data) ∼ G

(
K

2
+ a,

φ′Pφ

2
+ b

)
. (9)

4.1 Frequentist Estimation

Before going into the details of MCMC, we shall begin with a frequentist estimation of the
time-to-event density when the covariates are ignored (β = 0). This will be used to define good
starting values for the chains. For obtaining an accurate density estimate of time-to-event, we
have partitioned the support of T into small bins as described previously in Section 2. Then, we
follow an approach similar to [8] and hence we calculate the number of observations in each small
bin, namely the pseudo-counts. These pseudo-counts, which are later used to build the density
estimate, are calculated from the C matrix of the composite link model defined in Section 2. In
this spirit, each element of a row in the C matrix is divided by the sum of the elements in that
row. The so-obtained numbers provide the contribution of the concerned unit (e.g. a patient)
for each small bin partitioning (a, tcens). Then, the contributions for the ith small bin, Ii, are
summed over all individuals and rounded to the nearest integer value yi in order to get the
pseudo-count for that small bin. Remembering that πi denotes the probability to have an event
time in Ii, the likelihood for these pseudo-counts is proportional to

∏I
i πyi

i . Alternatively, using
the well known link between the Poisson and the multinomial distributions one can assume that
the pseudo-counts, yi, have a Poisson distribution with mean µi = πiy+ conditional on the total

number of observations y+ =
∑I

i yi. Using a log-linear model for the mean with a rich B-spline
basis (over the time axis, see Section 2) as regressors:

log (µi) = ηi =

K∑

k=1

φkbik,

one gets the log likelihood:

L(y, φ) =

N∑

i=1

yi log(µi) −

N∑

i=1

µi.

The penalized log likelihood function is constructed by subtracting the 2nd order penalty (say)
from the Poisson log likelihood L(y; φ) as

Lp = L(y; φ) −
τ

2
φ′Pφ,

such that

φ′D′Dφ =
∑

k

(φk − 2φk−1 + φk−2)
2,

where P = D′D + ǫI. The optimization of Lp requires solving the score equations

BT (y − µ) = τPφ.

These can be solved using iteratively reweighted least squares (IRWLS) with
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(BT W̃B + τP )φ = BT W̃ (y − µ̃) + BT W̃Bφ̃,

where φ̃ and µ̃ are current approximations to the solution, and W̃ is a diagonal matrix with
elements µi(φ̃). The variance-covariance matrix for the estimated spline coefficients φ is, at
convergence,

Σ0 = (BT WB + τP )−1. (10)

For a detailed explanation, see [8].
The initial optimal (plausible) value of the penalty parameter τ could be selected using

information criteria such as AIC or BIC. In our experience, BIC is preferable to AIC that tends
to undersmooth the target curve, this point is also emphasized in [33]. BIC is defined as

BIC = dev(y; φ, τ) + 2 × log(I) × dim(φ, τ). (11)

The effective dimension, dim(φ, τ), of the P-spline fit is defined as the trace of the smoother
matrix,

B(B′WB + τP )−1B′W.

4.2 Exploring the Posterior using MCMC

Let ϑ = (φ, τ, ξ, β) be the vector of parameters of length H where H = K +p+2 and p denotes
the number of regression parameters. The samples

{
ϑ(m) : m = 1, ...., M

}
will be drawn from

the joint posterior via Markov chain Monte Carlo (MCMC) methods. In our Bayesian model,
only the conditional distribution for τ is identified as a known density. Hence, we shall follow
a Metropolis within Gibbs strategy to sample from the joint posterior p(ϑ|data) presented in
Eq. (8). The H components of ϑ will be updated sequentially using a univariate Metropolis
procedure [42].

The algorithm consists of the four main steps for updating the chains of the parameters
ϑ = (φ, τ, ξ, β):

• Draw φ(m) from p(φ | τ (m−1), ξ(m−1), β(m−1),data) by univariate Metropolis steps.

• Generate τ (m) from G
(
K + a, (φ

′(m)Pφ(m))/2 + b
)

by Gibbs step.

• Draw ξ(m) from p(ξ | τ (m), φ(m), β(m−1),data) by univariate Metropolis step.

• Draw β(m) from p(β | τ (m), φ(m), ξ(m),data) by univariate Metropolis step.

The initial values of the chain ϑ(0) =
(
φ(0), τ (0), ξ(0), β(0)

)T
are chosen as follows:

• A value for φ(0) can be obtained using the frequentist procedure in Section 4.1.

• We define τ (0) as the value of τ on a grid yielding the smallest BIC.

• ζ(0) is taken as the proportion of pseudo-counts corresponding to small bins located below
tcens.

• In accordance with the estimation of the spline coefficients, we start by ignoring possible
covariate effects: β(0) = 0

Starting from ϑ(0) =
(
ϑ

(0)
1 , . . . ϑ

(0)
H−1

)T

, the initial state of the chain, the update of the hth

component (h 6= K + 1) at iteration m is as follows:
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1. Denote the state of the chain after the update of the (h − 1)th component by θ(h−1) =(
ϑ

(m)
1 , . . . , ϑ

(m)
h−1, ϑ

(m−1)
h , ϑ

(m−1)
h+1 , . . . ϑ

(m−1)
H−1

)T

. Generate z such that Z ∼ N(0, 1) and build

proposal value θ(h) =
(
ϑ

(m)
1 , . . . , ϑ

(m−1)
h + δhz, . . . , ϑ

(m−1)
H−1

)T

for ϑ where δh is a tuning

parameter that is selected to achieve a target acceptance rate.

2. Accept the proposal θ(h) with probability:

α
(
θ(h), θ(h−1)

)
= min

{
1,

p
(
θ(h) | data

)

p
(
θ(h−1) | data

)
}

that is ϑh is set to ϑ
(m−1)
h + δhz if accepted and to ϑ

(m−1)
h−1 otherwise.

The chain is run long enough to achieve convergence, yielding M iterations. We ignore the
first few thousand iterations (say nb) as an appropriate burn-in period. The resulting chains of
length (M −nb) can be seen as a random sample from the joint posterior. Based on these, point
estimates and credible regions for the quantities of interest can be calculated.

As pointed out by Lambert [24], we could improve mixing and accelerate the procedure
by using the Metropolis algorithm on a reparametrized problem. This can be done using an
approximation to the 2nd order dependence structure of the conditional posterior. For this
purpose the variance covariance matrix, Σ0, of the penalized maximum likelihood estimator
of the spline parameters φ could be calculated using (10) for a fixed and reasonably chosen
value of the roughness penalty parameter τ . Then, the posterior can be reparametrized using
ϕ with φ = φ0 + Lϕ where L denotes the lower triangular matrix obtained from the Cholesky
decomposition of Σ0. Then, we use the univariate Metropolis algorithm described before on the
reparametrized posterior.

The identifiability constraint for spline coefficients is achieved in the MCMC sampling scheme
by appropriately centering the coefficients at every iteration.

4.2.1 Automatic Tuning of the Algorithm

It was recommended that the asymptotic acceptance probability should be tuned to be ap-
proximately 0.23 for optimal convergence of Metropolis algorithm in high dimensional spaces
increasing to 0.44 in one dimension [11, 31]. This can be achieved by a careful choice of the
standard deviation δh in the generation of proposals in the preceding univariate Metropolis al-
gorithm [1]. Let δ denote the tuning parameter of interest. The value of δ at iteration m + 1
can be adjusted using the value at iteration m using

√
δm+1 = h

(√
δm + γm

(
α(ϑ, ϑ(m−1)) − η

))

with η = 0.44 and

h(x) =





ǫ if x<ǫ
x if x ∈ (ǫ,A)
A if x>A

where ǫ is a very small number (say 0.0001) and A a large one (say 10000). If the targeted
acceptance level is not achieved, these constants should be changed. The series {γm} is a non-
increasing sequence of positive real numbers such that |γm − γm−1| ≤ m−1. Possible choices
for γm are 10

m or 1
m . Practically, the MCMC algorithm is run for a few hundred iterations with

the δm’s automatically updated to achieve the targeted acceptance rate. Then, the last value of
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δm in the so-generated chain can be used in a non-adaptive version of the modified Metropolis
algorithm to produce the long chain(s) that will be used for inference.

5 Simulation Study

An extensive simulation study was carried out in order to illustrate the numerical performances
of the proposed strategy. In the simulation study we considered a Cox PH model with baseline
hazard h0(t) = 5t4/705 and two binary covariates: this is a Weibull distribution with mean 64.3
and standard deviation 14.7. The covariates X1 and X2 are balanced with coding as follows:
(X1 = 0, X2 = 0) for baseline group, (X1 = 1, X2 = 0) for the first and (X1 = 0, X2 = 1) for the
second treatment groups. The corresponding regression coefficients were chosen to be β1=1.5,
β2 = 2.0. The results given below are based on 500 replications and the sample size n = 300 or
600.

For interval-censored data, the amount of censoring and the width of the intervals greatly
affect the performance of the method and thus are considered in the planning of the simulation
study. We have studied the accuracy of estimation for varying amounts of right censoring and
different widths for the intervals. Five different mean widths namely 6 (∼= 0.4σ), 10 (∼= 0.7σ),
15 (∼= 1.0σ), 19 (∼= 1.3σ), and 23 (∼= 1.6σ) combined with four different levels of right censoring
namely 10%, 20%, 35% and 50% were considered. Combined with the two possible sample sizes
this makes 5 × 4 × 2 = 40 different arrangements.

Our data generation and simulation strategy contain the following steps:

1. First, we generated the observations tj (j = 1, ..., N) using the above Cox PH model.

2. Secondly, each observation tj was converted into an interval of width wj where wj generated
from a Gamma distribution with a mean equal to the targeted mean width (see above) and
a variance equal to one fifth of the mean. The interval corresponding to tj was finally
defined as (Lj , Rj) = (tj − uj ∗ wj , tj + uj ∗ wj) where uj is randomly generated from a
uniform distribution on (0, 1).

3. For each simulated dataset, initial values for the spline parameters were obtained using the
strategy in Section 4.1.

4. We estimated the parameters of interest using MCMC (see Section 4.2). Considering the
frequentist estimates as starting values, we run the chain for M iterations and obtain the
posterior estimates after ignoring the first nb iterations.

5. Steps 1-4 were repeated for all data sets (S=500 times) to obtain the Monte Carlo estimates
corresponding the quantities of interest.

We considered the compact interval (0,120) as (an approximation to) the support of the target
Weibull distribution. The observed range of the considered distribution, (0, tcens), changing for
different amounts of right-censoring was divided into small bins of width 1 (∼= 0.07σ). We used
cubic B-splines associated to 12 equidistant knots on (0, tcens) and a third order penalty. A chain
of length M=30000 (including a burn-in period of nb=15000 runs) was constructed to explore
the posterior distribution of the model parameters. The posterior of the spline parameters was
reparametrized using Σ0 (see Section 4.2).

The fitted baseline density f̂s for the sth data set corresponds to the MCMC estimate of
1

M−nb

∑M
m=nb

f̃ (m) of the mean of the estimated posterior baseline densities. The baseline sur-

vival is obtained using the estimated baseline density in Eq. (3). These quantities can be used to
derive a point estimate for the mean, standard deviation and some selected quantiles. Further we
report on 5%, 15%, 25%, 35%, 50%, 60%, 75%, 85% and 88% quantiles of the baseline survival
function. It should however be noted that for some amounts of right censoring, we cannot get
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the estimates for baseline survival functions at some quantiles since the density is not observed
beyond tcens. Furthermore, for a given dataset, the point estimates for β’s, ζ and τ were calcu-
lated from the chain using the mean of the generated sample; (1 − α) × 100% credible interval
can be estimated using the α/2 and (1−α/2) sample quantiles of the chain. The proportions of
so-defined S credible intervals (one for each dataset) including the true value of the parameter
of interest were reported as an estimate of the corresponding coverage.

The frequentist properties of these Bayesian estimators are measured in terms of:

• relative bias (Rbias),

• empirical standard errors (ESE),

• root mean squared error (RMSE).

If β (say) is the parameter of interest, then the relative bias is defined as

100

(
¯̃
β − β

β

)

where
¯̃
β is the mean of the estimates for β over the S data sets, i.e.

¯̃
β = 1

S

∑
s β̃(s). RMSE is

estimated by: √
1

S

∑
(
¯̃
β − β)2

The results for the regression coefficients are summarized in Table 1 for n = 300 and in
Table 2 for n=600. It is worth highlighting here that regression coefficient estimates have very
small bias. The point estimates do not seem to be highly affected from increasing amounts
of right-censoring or width of intervals. ESE and RMSE increase as the mean interval width
increases; on the other hand, they decrease as sample size increases. Moreover, mean interval
width has an effect on the width of 90% credible intervals: as the mean interval width increases,
the 90% credible interval gets larger. The width of the credible intervals decreases as sample size
increases. Furthermore, the 90% and 80% credible intervals have good coverage probabilities
especially for smaller mean interval widths, (0.4σ-1.0σ). The coverage probabilities are very
close to nominal values for both sample sizes.

Table 6 and Table 7 presents the Rbias, ESE and RMSE values related to baseline survival
function estimate for n = 300 and 600 respectively. The proposed method generally underesti-
mates the target baseline survival function in the left tail whereas overestimation is observed in
the right tail. In the right tail, we can estimate the baseline survival function up to point tcens,
but after time t∗,

t∗ = tcens − (mean interval width),

we have little information and thus greater uncertainty. From the table, it is easy to notice that
for the quantiles less than the value of t∗, the relative bias is very low (0.1% -3%). For the
quantiles exceeding t∗, the bias increases with increasing mean interval width. This pattern is
appearent for all simulation settings. A marked bias is observed in the right tail of the survival
function, especially for larger mean interval widths (>1.3σ). As a result, the mean interval width
seems to have a devastating effect in terms of relative bias only in the quantiles exceeding t∗.
On the other hand, the amount of right censoring does not have any impact on the amount
of relative bias below that quantity. In that interval, we obtain quite good estimates for the
baseline survival function. Furthermore, as sample size increases, ESE and RMSE decrease for
the estimated baseline survival function. Besides, the coverages of the 90% credible intervals
were presented for the baseline survival function in Table 8 at some selected quantiles of T . The
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Figure 3: Estimated baseline hazard and survival functions for a simulated data set of sample size
n=300 with 20% right censoring and mean interval width of 19 under Cox PH model assumption

coverage probabilities deteriorates for the quantiles exceeding t∗ (due to bias), when the mean
interval width increases. Elsewhere, the coverage probabilities are close to nominal value.

It should also be emphasized that in case of 0% right censoring, although we considered a
support of (0,120) for the baseline density, tcens=98 could be a more realistic alternative since
the target density covers an area of 0.995. This explains the increased Rbias and smaller coverage
probabilities after t∗ (see Tables 3, 9).

We should point out here that for values of T > t∗, the estimated baseline survival function
has a better performance than the estimated baseline hazard function. The relative bias for the
estimated baseline survival function is less than that of the estimated baseline hazard function.
This is illustrated in Figure 3 where we produced plots of baseline survival and baseline hazard
functions, with 20% right censoring and mean interval width of 19 (n=300). For the plotted
dataset, it is obvious that estimate of the hazard function has substantial bias after 58, larger
than for the survival function. This kind of behavior is observed in all simulation settings (see
Tables 6,7 and 8). Here the study end time, tcens is taken to be 77 and the mean interval width
is 19, and thus we do not have enough information after t∗=58. However, this does not affect
the estimates for log hazard ratio as it uses information on the whole time range.

Moreover, Table 4 and Table 5 presents the results for ζ, where ζ=F (tcens)=1−S(tcens), for
sample sizes of n=300 and 600. One can see that ζ is underestimated as a consequence of the
greater uncertainty in the right tail. However, it does not affect the performance of the proposed
method to estimate log-hazard ratios or the baseline hazard function when T<t∗.
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6 Applications

In this section, we discuss three examples from the literature illustrating how the proposed
method can be applied to estimate regression coefficients under Cox PH model and to model
the baseline survival and baseline hazard curves from interval-censored data. Furthermore, by
relaxing the assumption of proportionality, we estimate the baseline survival and hazard functions
for each treatment group separately.

For the examples, we performed Bayesian computation using an R code that interface a C
function implementing MCMC. We defined a Cox PH model using the above methodology. Then
the chain was run for M=60000 iterations with a burn-in period of 40000 along the procedure
described in Section 4.2. The required CPU time for the analysis was approximately 75 seconds
for the Breast Cosmesis and Hemophiliacs datasets and 150 seconds for the AIDS data set.
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Figure 4: Breast Cancer dataset: Estimated smooth hazard and survival functions and Kaplan Meier
estimates under Cox PH model

6.1 Breast Cancer Data Set

The first example involves reanalysis of a data set that is taken from a retrospective study on
early breast cancer patients. The study was carried out to compare the long term cosmetic
effects of radiotherapy versus a combined treatment of radiotherapy and adjuvant chemotherapy
(defining the baseline group) on women with early breast cancer [41]. Forty six women received
radiotherapy alone and 48 women received radiotherapy combined with adjuvant chemotherapy.
They were followed during 5 years after treatment on a scheduled basis (on average every 6
months). Breast retraction was found to be highly correlated with cosmetic deterioration [2]. As
the patients were only assessed at their clinic visits, deterioration is only known to have occurred
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between two successive visits. By the end of the study, it was observed that 56 women had
experienced breast retraction (yielding interval-censored data), and 38 had not shown evidence
of deterioration (right-censoring) by the end of the study. However, if we investigate the data
set in detail, it is obvious that there is only one woman with an interval exceeding 48 months.
Therefore, we considered that patient as right-censored assuming that the study ended at month
48 (=tcens).
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Figure 5: Breast Cancer dataset: Estimated smooth hazard and survival functions without propor-
tionality assumption

As P-spline model, we used a cubic B-spline basis associated to 15 equidistant knots on (0,48)
and a third order penalty. Small bins of size 1 were used to divide the support.

The log hazard ratio is estimated to be 0.88 with 90% credible interval (0.39, 1.39) suggesting
that chemotheraphy increases the hazard of breast retraction for patients who had previously
been treated with radiotheraphy. This is consistent with the estimates found in [3, 5, 12].

We estimated the probability ζ that the event occurs before tcens=48 in the baseline group
as 0.89 (= 1 − S̃0(tcens)) with 90% credible interval (0.77, 0.96).

It is mentioned in [2] that the cosmetic status declined until 36 months and then stabilized.
For that reason we were also interested in estimating the probability to have experienced breast
retraction by 36 months. The point estimate and the 90% credible interval were calculated to
be 0.23 (0.14,0.34) for the radiation combined with chemotheraphy group, and 0.54 (0.40,0.67)
for the radiation group.

In Figure 4, the estimated hazard curves (left panel) and survival curves (right panel) for
each treatment group under Cox PH model are presented. Moreover the Kaplan-Meier estimates
of the survival curves obtained using midpoint imputation are also displayed in the right panel
of Figure 4. Kaplan-Meier estimates and our estimates for survival curves do not follow closely.
This is probably due to a violation of the proportionality assumption. When the proportionality
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of the hazards assumption is not satisfied, one can estimate the survival curves separately in
the two treatment groups, see Figure 5: the two survival curves cross at around month 10 and
correctly smooth the Kaplan-Meier estimates.

6.2 Hemophiliacs Data Set
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Figure 6: Hemophiliacs data set: Estimated hazard and survival curves for the lightly and heavily
treated groups with 90 % credible intervals (dashed and solid shaded, respectively) under Cox PH
model

We further illustrate the methodology by an example from [16]. The data set is an extended
version of the hemophilia data set published in De Gruttola and Lagakos [7]. The data consists of
257 individuals with Type A or B hemophilia who had been treated with two different treatments
at Hôpital Kremlin Bicêtre and Hôpital Coeur des Yvelines in France since 1978. Hemophilia
is treated by supplementing low levels of blood factor proteins with healthy replacement blood
factors. Of 257 individuals, 153 received blood factor less than 1000µg/kg in each year (lightly
treated group) whereas 104 individuals received at least 1000µg/kg of blood factor for at least
one year between 1982 and 1985 (heavily treated group). The individuals were assumed to be
infected by the contaminated blood factor that they received during their treatment against
hemophilia. Since the HIV infection status was determined by testing blood samples every 6-
months, the HIV infection time is only known to have occurred between the times of the last
negative and the first positive samples. Ninety-six individuals in the highly treated group, and
92 in the lightly treated group were infected with HIV during the study period. The primary aim
was to measure the effect of levels of treatment on time to HIV seroconversion. The covariate
of treatment is coded using a binary variable where x=1 if the subject is heavily treated and 0
otherwise. In the data set, time is measured in 6-months intervals where L = 1 denotes July 1,
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1978. In this example, the subjects are not observed over time 18 (i.e. after 9 years). Hence
we will describe the survival and hazard functions on [0,18]. We divide the support of infection
time [0,18] into small bins of width 0.2, resulting in 90 small bins.
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Figure 7: Hemophiliacs data set: Estimated hazard and survival curves for the lightly and heavily
treated groups with 90 % credible intervals (dashed and solid shaded, respectively) without propor-
tionality assumption

Figure 6 displays the estimated hazard and survival functions for individuals in heavily and
lightly treated groups under PH model, with highly treated group as the baseline. The log hazard
ratio is calculated to be 0.90 with corresponding 90% credible interval (0.65,1.15) suggesting that
the risk for HIV-seroconversion was larger in the group that received at least 1000µg/kg of blood
factor. However, one should be careful as one might argue about the proportionality (hazards)
assumption, see the Kaplan-Meier curves in Figure 6b. Therefore, the survival and hazard curves
were estimated separately for each treatment group (without proportionality assumption): these
are presented in Figure 7, the credible regions for the survival functions overlap until around
time 8. Further, log hazard ratio was plotted in Figure 8: it decreases up to time 8 where 90%
credible region includes 0 and after that time point it increases where the 90% credible region
does not include 0 anymore. Hence, after around time 8 individuals in the heavily treated group
have greater risk than individuals in the lightly treated group.

6.3 AIDS Data Set: ACTG019

Another data set for interval-censored data comes from an AIDS clinical trial, ACTG019 [13].
The clinical trial was designed to investigate the effect of zidovudine therapy on patients with an
early stage HIV infection [37]. For this reason, 1650 patients were randomly assigned to three
different groups: two different dosages of zidovudine and a deferred therapy group. The deferred

16



Time

lo
g 

(H
R

)

0 2 4 6 8 10 12 14 16 18

−
2

−
1

0
1

2
3

4
5

Figure 8: Hemophiliacs data set: Estimated log hazard ratio (heavily treated vs. lightly treated)
with 90 % credible intervals without proportionality assumption

group corresponds to patients who started (500-mg) zidovudine therapy after their CD4 cell
count decreased below 500 per cubic millimeter. In the other two groups the patients started to
take one of the two dosages of zidovudine immediately after the randomization. After exclusion
of some of the patients, there remained 541 subjects in the deferred therapy group, 538 in the
500-mg zidovudine group and 528 in the 1500-mg zidovudine group. The patients were followed
until the development of AIDS or death. CD4 cell counts were observed periodically (every
2-4 weeks) and the times at which the CD4 cell counts decrease below 500, 400 and 300 per
cubic millimeter were reported [37]. Here, we focus on the time, measured in months from
randomization, until the CD4 cell counts decrease below 400 cells per cubic millimeter. Here,
precise times are unknown but the time of the first visit when CD4 cell count was below 400 and
the time of the preceding visit are known. Thus the time until CD4 cell count falls below 400
is interval-censored. The CD4 cell counts of 289, 267 and 230 patients in the deferred, 500-mg
zidovudine and 1500-mg zidovudine therapy groups respectively, decreased below 400 during the
trial.

The treatments were coded using two dummy variables (Z1=0 and Z2=0 for deferred ther-
apy group, Z1=1 and Z2=0 for 500-mg zidovudine group, and Z1=0 and Z2=1 for 1500-mg
zidovudine group).

The estimated hazard and survival functions for deferred therapy and two different levels
of zidovudine therapy are also presented in Figure 9. The regression coefficients under Cox
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Figure 9: AIDS data set: Kaplan-Meier estimates and estimated smooth survival curves (above),
estimated smooth hazard and survival curves under Cox PH model (below)
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PH model were calculated as β500 = -0.22 with 90% credible interval (-0.37, -0.08) and β1500

= -0.37 with 90% credible interval (-0.52, -0.22). The Kaplan-Meier curves of the immediate
treatment groups are crossing around month 30, but not with the Kaplan-Meier curve of the
deferred therapy group. Again, this suggests that the proportional hazards hypothesis might not
hold. Therefore, the hazard and the survival functions were also estimated in the three groups
separately, see Figure 10. The survival curve estimates do not change markedly compared to
the results under the PH hypothesis. However, now Figure 10a suggests that the patients under
deferred therapy are significantly more at risk till about month 40. This approach is more
insightful than the PH analysis that comes out with an averaged log hazards ratio to contrast
treatments.
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Figure 10: AIDS data set: Estimated smooth hazard and survival curves without proportionality
assumption

In Figure 9, the CD4 cell counts in the deferred therapy declined more quickly than those
of the other two groups. Furthermore, the credible intervals for the 500-mg and 1500-mg ZDV
therapy groups overlap, whereas the corresponding credible interval for the deferred-therapy
group always lies below the other two groups.

The mean of the log hazard ratios with 90% credible regions are plotted for treatments pairs,
500-mg versus 1500-mg and deferred therapy versus 500-mg in Figure 11. The 90% credible
region of the log hazard ratio does not include 0 up to around month 40 for the comparison
deferred therapy versus 500-mg, whereas it always includes 0 for 500-mg versus 1500-mg therapy
comparison. Additionally, none of the log hazard ratios functions are constant over time. As
previously mentioned, these findings also support that a more insightful approach than the PH
analysis may be more appropriate.
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Figure 11: AIDS data set: Estimated log hazard ratio with 90 % credible intervals without propor-
tionality assumption

7 Discussion

Recently, much emphasis has been placed on non- or semi-parametric analysis of survival data.
In clinical trials and longitudinal studies, interval-censored data are frequently obtained. In this
research, we have extended a Bayesian density estimation procedure for grouped data to estimate
the log-hazard ratios and the survival functions from interval-censored data. Our method pro-
duces estimates of log hazard ratios as well as smooth estimates of baseline survival and hazard
functions. The performance of the proposed methodology was assessed under the proportional
hazards hypothesis by means of an extensive simulation study combining different values of the
interval widths and of the amount of right censoring. These two aspects were shown to play a
very important role in the accuracy and the precision of the obtained estimates. Clearly, the
proposed method provides very good estimates for the regression coefficients and successfully
approximates the baseline survival function when the mean interval width is less than ≈ 1.3σ.

The proposed methodology can be extended in several directions. A possible extension is
the case where the observations belong to some clusters which necessitates to include a term
accounting for the dependence within clusters, basically a shared frailty model for interval-
censored data. Another interesting extension of the model for interval-censored data is the
inclusion of time-varying coefficients.

Several applications were also presented. Despite the loss of information inherent to interval
censoring, it was shown that one can detect situations where the hypothesis of hazards pro-
portionality is arguable. Then, separate estimations of the survival and hazard functions are a
workable alternative.
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Table 1: The point estimate with corresponding 90% Credible interval (CI), estimated coverage
of 90% credible interval (EC90), estimated coverage of 80% credible interval (EC80), relative bias
(Rbias in %), empirical standard error (ESE), root mean squared error (RMSE) for β1 and β2

under different amounts of right-censoring varying between 10% and 50% and different amounts of
mean interval width varying between 6 (0.4σ) and 23 (1.6σ) for a sample of size n=300 in S=500
replications

β1=1.5 β2=2.0
r.cens. width Mean 90% CI Rbias(%) EC90 EC80 ESE RMSE Mean 90% CI Rbias(%) EC90 EC80 ESE RMSE

10%

0.4σ 1.52 1.25 - 1.80 1.3 91 84 0.165 0.166 2.01 1.72 - 2.31 0.7 92 85 0.178 0.178
0.7σ 1.51 1.24 - 1.81 0.9 89 80 0.183 0.188 2.01 1.68 - 2.34 0.4 89 80 0.189 0.194
1.0σ 1.53 1.23 - 1.82 2.2 91 78 0.180 0.182 2.03 1.72 - 2.38 1.4 89 81 0.196 0.198
1.3σ 1.50 1.17 - 1.82 0.2 89 77 0.199 0.200 2.02 1.70 - 2.38 0.8 90 80 0.212 0.213
1.6σ 1.47 1.13 - 1.85 -1.9 87 75 0.216 0.218 1.96 1.55 - 2.36 -1.9 86 75 0.241 0.243

20%

0.4σ 1.55 1.28 - 1.88 3.3 89 80 0.180 0.188 2.04 1.76 - 2.37 1.8 91 82 0.184 0.190
0.7σ 1.52 1.23 - 1.86 1.6 89 77 0.186 0.190 2.02 1.74 - 2.36 1.1 91 81 0.192 0.198
1.0σ 1.54 1.24 - 1.85 1.7 88 77 0.197 0.201 2.02 1.70 - 2.38 1.2 90 80 0.204 0.205
1.3σ 1.52 1.19 - 1.85 -1.0 89 79 0.199 0.199 1.99 1.64 - 2.34 -0.6 87 75 0.226 0.226
1.6σ 1.48 1.17 - 1.84 -0.9 85 75 0.201 0.201 1.94 1.59 - 2.35 -2.8 86 75 0.228 0.235

35%

0.4σ 1.51 1.26 - 1.83 1.6 90 79 0.177 0.180 2.00 1.69 - 2.31 -0.1 91 80 0.189 0.190
0.7σ 1.50 1.19 - 1.81 0.1 88 78 0.198 0.198 1.99 1.64 - 2.37 -0.5 86 75 0.200 0.200
1.0σ 1.53 1.22 - 1.85 1.9 91 78 0.192 0.197 2.02 1.72 - 2.38 0.9 90 82 0.213 0.214
1.3σ 1.48 1.15 - 1.95 1.6 88 77 0.215 0.216 1.95 1.61 - 2.35 -2.5 87 75 0.233 0.238
1.6σ 1.45 1.12 - 1.78 0.4 86 75 0.246 0.248 1.96 1.57 - 2.40 -2.1 86 76 0.236 0.240

50%

0.4σ 1.54 1.21 - 1.88 2.8 89 80 0.208 0.212 2.05 1.68 - 2.40 2.3 90 80 0.206 0.214
0.7σ 1.49 1.25 - 1.96 -0.7 88 77 0.217 0.232 1.98 1.74 - 2.41 -1.0 92 80 0.212 0.224
1.0σ 1.58 1.23 - 1.95 4.2 88 78 0.222 0.236 2.06 1.70 - 2.48 2.8 87 78 0.219 0.227
1.3σ 1.45 1.12 - 1.78 -3.5 91 81 0.206 0.213 1.89 1.53 - 2.23 -4.5 86 77 0.216 0.233
1.6σ 1.53 1.16 - 1.95 1.9 90 80 0.254 0.255 1.99 1.61 - 2.41 -0.5 92 81 0.249 0.249



Table 2: The point estimate with corresponding 90% Credible interval (CI), estimated coverage
of 90% credible interval (EC90), estimated coverage of 80% credible interval (EC80), relative bias
(Rbias in %), empirical standard error (ESE), root mean squared error (RMSE) for estimated β1

and β2 under Cox PH model for different amounts of right-censoring varying between 10% and 50%
and different amounts of mean interval width varying between 6 (0.4σ) and 23 (1.6σ) for a sample
of size n=600 in S=500 replications

β1 β2

r.cens. width Mean 90% CI Rbias (%) EC90 EC80 ESE RMSE Mean 90% CI Rbias (%) EC90 EC80 ESE RMSE

10%

0.4σ 1.50 1.29 - 1.70 0.2 90 79 0.125 0.125 2.02 1.81 - 2.25 1.0 90 79 0.134 0.135
0.7σ 1.50 1.29 - 1.71 0.1 90 82 0.121 0.121 2.00 1.79 - 2.22 0.1 91 82 0.133 0.133
1.0σ 1.49 1.30 - 1.70 -0.4 92 82 0.125 0.125 2.00 1.80 - 2.22 0.1 93 84 0.134 0.134
1.3σ 1.47 1.23 - 1.70 -1.8 87 79 0.140 0.145 1.98 1.71 - 2.26 -1.6 87 77 0.157 0.160
1.6σ 1.42 1.16 - 1.67 -3.4 87 78 0.150 0.169 1.94 1.69 - 2.20 -4.1 86 77 0.158 0.158

20%

0.4σ 1.51 1.31 - 1.71 0.6 90 82 0.121 0.121 2.01 1.82 - 2.23 0.4 92 83 0.130 0.130
0.7σ 1.51 1.30 - 1.73 0.4 90 82 0.125 0.125 2.00 1.77 - 2.23 0.1 89 79 0.140 0.140
1.0σ 1.49 1.28 - 1.73 -0.7 87 78 0.138 0.139 1.99 1.76 - 2.24 -0.6 89 82 0.140 0.141
1.3σ 1.49 1.25 - 1.70 -3.2 87 75 0.139 0.147 1.97 1.70 - 2.20 -1.3 87 78 0.150 0.162
1.6σ 1.45 1.22 - 1.68 -3.7 87 77 0.137 0.153 1.93 1.65 - 2.23 -3.2 86 75 0.152 0.172

35%

0.4σ 1.52 1.33 - 1.72 1.6 92 81 0.124 0.126 2.01 1.79 - 2.24 0.7 90 81 0.133 0.133
0.7σ 1.51 1.30 - 1.74 0.9 89 79 0.130 0.130 2.02 1.79 - 2.25 0.8 89 78 0.143 0.144
1.0σ 1.50 1.26 - 1.75 0.1 87 80 0.142 0.139 1.99 1.76 - 2.23 -0.7 90 82 0.148 0.149
1.3σ 1.47 1.25 - 1.68 -2.4 89 78 0.138 0.143 1.95 1.72 - 2.20 -2.8 88 75 0.145 0.156
1.6σ 1.46 1.23 - 1.70 -2.7 90 79 0.141 0.147 1.96 1.71 - 2.25 -1.7 86 75 0.166 0.175

50%

0.4σ 1.53 1.30 - 1.78 2.2 88 78 0.138 0.142 2.03 1.80 - 2.27 1.4 89 79 0.140 0.143
0.7σ 1.53 1.31 - 1.76 2.0 92 81 0.140 0.143 2.01 1.80 - 2.23 0.5 93 84 0.144 0.144
1.0σ 1.52 1.27 - 1.77 1.1 90 80 0.153 0.154 2.01 1.77 - 2.27 0.4 90 79 0.157 0.157
1.3σ 1.53 1.27 - 1.78 2.0 89 81 0.161 0.164 2.00 1.73 - 2.27 -0.1 90 79 0.169 0.169
1.6σ 1.52 1.25 - 1.82 1.6 88 77 0.181 0.182 1.98 1.70 - 2.26 -1.1 89 79 0.175 0.177

Table 3: The point estimate with corresponding 90% Credible interval (CI), estimated coverage
of 90% credible interval (EC90), estimated coverage of 80% credible interval (EC80), relative bias
(Rbias in %), empirical standard error (ESE), root mean squared error (RMSE) for estimated β1

and β2 under Cox PH model for 0% right-censoring and different amounts of mean interval width
varying between 6 (0.4σ) and 23 (1.6σ) for a sample of size n=300 and n=600 in S=500 replications

β1 β2

n width Mean 90% CI Rbias (%) EC90 EC80 ESE RMSE Mean 90% CI Rbias (%) EC90 EC80 ESE RMSE

300

0.4σ 1.49 1.23 - 1.77 -0.3 90 80 0.168 0.167 2.00 1.73 - 2.30 0.1 90 80 0.179 0.179
0.7σ 1.51 1.24 - 1.79 0.6 90 80 0.176 0.176 2.01 1.70 - 2.29 0.7 90 80 0.185 0.185
1.0σ 1.48 1.22 - 1.79 -1.6 90 80 0.175 0.177 1.98 1.69 - 2.30 -0.9 91 83 0.192 0.193
1.3σ 1.48 1.20 - 1.79 -1.4 89 81 0.187 0.188 1.98 1.67 - 2.31 -0.8 91 81 0.201 0.201
1.6σ 1.47 1.21 - 1.78 -1.7 93 81 0.186 0.188 1.96 1.65 - 2.30 -1.8 91 80 0.200 0.204

600

0.4σ 1.49 1.30 - 1.67 -0.9 92 79 0.115 0.129 1.99 1.77 - 2.20 -0.4 89 79 0.129 0.129
0.7σ 1.49 1.29 - 1.69 -0.7 90 80 0.121 0.121 1.99 1.78 - 2.22 -0.3 90 80 0.136 0.136
1.0σ 1.49 1.31 - 1.67 -1.0 93 84 0.118 0.119 1.99 1.76 - 2.20 -0.7 91 82 0.130 0.131
1.3σ 1.48 1.28 - 1.70 -1.5 90 79 0.129 0.130 1.97 1.74 - 2.20 -1.6 90 79 0.138 0.142
1.6σ 1.47 1.26 - 1.67 -1.9 91 83 0.129 0.132 1.95 1.72 - 2.18 -2.4 91 81 0.136 0.144
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Table 4: Target, mean estimated values, 90% credible interval, relative bias, 90% and 80% coverages,
empirical standard error and root mean squared error for ζ for n=300

tcens Target int.width Mean 90% CI Rbias EC90 EC80 ESE RMSE

83

0.4σ 0.87 0.81 - 0.93 -3.6 78 67 0.036 0.049
0.7σ 0.86 0.78 - 0.92 -4.8 65 48 0.039 0.068

0.90 1.0σ 0.84 0.77 - 0.91 -6.9 54 42 0.041 0.075
1.3σ 0.83 0.76 - 0.90 -8.6 46 36 0.047 0.091
1.6σ 0.80 0.72 -0.88 -11.0 31 21 0.050 0.111

77

0.4σ 0.75 0.68 - 0.82 -6.0 71 58 0.044 0.065
0.7σ 0.72 0.65 - 0.81 -8.2 55 41 0.048 0.072

0.80 1.0σ 0.71 0.62 - 0.79 -11.9 40 27 0.052 0.094
1.3σ 0.68 0.59 - 0.76 -15.3 27 15 0.053 0.133
1.6σ 0.64 0.54 - 0.75 -19.8 14 10 0.062 0.170

71

0.4σ 0.60 0.53 - 0.69 -8.6 68 55 0.048 0.074
0.7σ 0.57 0.48 - 0.66 -13.4 47 32 0.056 0.104

0.65 1.0σ 0.53 0.45 - 0.62 -18.8 24 14 0.057 0.118
1.3σ 0.51 0.41 - 0.60 -23.1 13 7 0.056 0.148
1.6σ 0.46 0.38 - 0.56 -29.8 9 5 0.055 0.204

63

0.4σ 0.45 0.36 - 0.54 -10.6 64 48 0.059 0.079
0.7σ 0.41 0.33 - 0.51 -17.0 40 29 0.056 0.102

0.50 1.0σ 0.37 0.29 - 0.46 -25.6 20 12 0.051 0.137
1.3σ 0.35 0.26 - 0.43 -30.5 12 6 0.051 0.161
1.6σ 0.31 0.23 - 0.40 -36.9 9 4 0.051 0.191
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Table 5: Target, mean estimated values, 90% credible interval, relative bias, 90% and 80% coverages,
empirical standard error and root mean squared error for ζ for n=600

tcens Target int.width Mean 90% CI Rbias EC90 EC80 ESE RMSE

83

0.4σ 0.87 0.83 - 0.91 -3.5 63 51 0.024 0.036
0.7σ 0.85 0.80 - 0.89 -6.1 31 21 0.029 0.063

0.90 1.0σ 0.83 0.78 - 0.88 -8.4 20 10 0.031 0.082
1.3σ 0.82 0.76 - 0.88 -9.4 17 10 0.034 0.092
1.6σ 0.79 0.72 -0.86 -10.9 9 4 0.040 0.106

77

0.4σ 0.75 0.70 - 0.80 -6.1 54 37 0.031 0.058
0.7σ 0.72 0.66 - 0.77 -10.2 20 11 0.035 0.089

0.80 1.0σ 0.70 0.64 - 0.75 -13.0 7 3 0.034 0.109
1.3σ 0.66 0.60 - 0.73 -16.2 4 2 0.043 0.142
1.6σ 0.63 0.56 - 0.70 -20.5 0 0 0.042 0.170

71

0.4σ 0.60 0.55 - 0.66 -8.2 53 36 0.035 0.064
0.7σ 0.56 0.50 - 0.63 -14.4 14 8 0.039 0.102

0.65 1.0σ 0.53 0.46 - 0.59 -20.2 1 1 0.037 0.138
1.3σ 0.50 0.43 - 0.56 -24.2 1 0 0.042 0.166
1.6σ 0.47 0.40 - 0.54 -28.5 1 0 0.042 0.192

63

0.4σ 0.44 0.38 - 0.50 -11.9 49 37 0.034 0.068
0.7σ 0.41 0.35 - 0.48 -20.4 10 6 0.034 0.107

0.50 1.0σ 0.37 0.30 - 0.43 -26.7 3 1 0.038 0.138
1.3σ 0.34 0.28 - 0.41 -31.2 1 0 0.038 0.160
1.6σ 0.32 0.26 - 0.39 -36.3 0 0 0.036 0.185
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Table 6: The relative bias (Rbias in %), empirical standard errors (ESE) and root mean squared
error (RMSE) for baseline survival at selected quantiles (5%, 15%, 25%, 35%, 50%, 60%, 75%, 85%
and 88%) of T under Cox PH model for different right-censoring amounts between 10% and 50%
and different mean interval width (varying between 0.4σ and 1.6σ) for a sample of size n=300 in
S=500 replications

interval width
0.4σ ∼= 6 0.7σ ∼= 10 1.0σ ∼= 15 1.3σ ∼= 19 1.6σ ∼= 23

tcens Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE

83

S(39) -0.3 0.010 0.519 -0.1 0.010 0.520 -0.3 0.011 0.519 -0.3 0.012 0.519 -0.4 0.013 0.518
S(49) -1.0 0.023 0.436 -0.4 0.024 0.441 -0.8 0.024 0.439 -1.1 0.027 0.438 -1.8 0.030 0.431
S(55) -1.6 0.033 0.363 -0.8 0.034 0.367 -1.3 0.034 0.364 -2.2 0.037 0.360 -3.5 0.038 0.345
S(59) -2.0 0.038 0.317 -1.1 0.039 0.320 -1.4 0.040 0.317 -3.0 0.043 0.313 -4.4 0.049 0.309
S(65) -1.5 0.042 0.291 -0.9 0.045 0.296 0.6 0.044 0.295 -2.5 0.048 0.294 -3.0 0.053 0.296
S(69) 0.3 0.041 0.315 0.8 0.044 0.309 4.8 0.043 0.305 1.4 0.048 0.309 2.7 0.050 0.310
S(75) 7.7 0.038 0.379 10.7 0.040 0.379 19.3 0.040 0.367 19.3 0.044 0.363 26.3 0.048 0.356
S(80) 19.9 0.035 0.447 31.1 0.037 0.435 43.6 0.039 0.422 55.6 0.046 0.411 73.1 0.054 0.396
S(81) 22.8 0.035 0.457 37.1 0.037 0.445 50.2 0.040 0.433 66.8 0.047 0.418 87.8 0.056 0.399

77

S(39) -0.1 0.010 0.520 -0.1 0.010 0.521 -0.2 0.011 0.520 -0.4 0.012 0.518 -0.6 0.012 0.517
S(49) -0.3 0.024 0.442 -0.5 0.025 0.439 -0.8 0.027 0.440 -1.8 0.029 0.431 -2.6 0.031 0.427
S(55) -0.4 0.034 0.366 -0.9 0.036 0.367 -1.2 0.039 0.364 -3.2 0.042 0.358 -4.4 0.044 0.351
S(59) -0.2 0.039 0.324 -1.0 0.043 0.320 -0.8 0.044 0.324 -3.4 0.050 0.315 -4.3 0.051 0.315
S(65) 1.6 0.044 0.293 0.9 0.048 0.294 3.4 0.047 0.291 1.5 0.053 0.295 2.5 0.053 0.296
S(69) 5.2 0.044 0.305 5.9 0.047 0.306 10.8 0.046 0.299 12.1 0.052 0.298 15.4 0.053 0.299
S(75) 16.8 0.042 0.368 24.8 0.045 0.359 34.7 0.047 0.342 49.3 0.054 0.330 58.9 0.059 0.319

71

S(39) -0.1 0.010 0.521 -0.04 0.011 0.521 -0.2 0.011 0.519 -0.3 0.013 0.518 -0.6 0.013 0.516
S(49) -0.4 0.024 0.441 -0.1 0.028 0.444 -1.2 0.026 0.436 -1.8 0.033 0.433 -2.8 0.039 0.426
S(55) -0.7 0.034 0.368 0.04 0.043 0.369 -1.1 0.036 0.364 -2.1 0.048 0.364 -2.6 0.054 0.359
S(59) -0.2 0.040 0.323 1.1 0.050 0.327 0.7 0.042 0.325 0.5 0.054 0.326 1.0 0.057 0.329
S(65) 3.9 0.046 0.293 7.8 0.051 0.296 10.4 0.047 0.299 14.0 0.053 0.299 17.0 0.054 0.300
S(69) 11.1 0.048 0.299 18.7 0.047 0.294 24.9 0.050 0.287 33.4 0.053 0.292 38.8 0.055 0.302

65

S(39) -0.1 0.011 0.521 0.1 0.011 0.521 -0.2 0.012 0.519 -0.1 0.015 0.520 -0.3 0.016 0.519
S(49) -0.5 0.027 0.440 -0.4 0.027 0.441 -0.5 0.029 0.441 -0.7 0.043 0.441 -0.5 0.045 0.442
S(55) -0.4 0.039 0.369 0.6 0.039 0.374 2.1 0.039 0.378 2.8 0.055 0.384 4.2 0.055 0.394
S(59) 1.6 0.044 0.331 4.4 0.045 0.338 7.6 0.043 0.348 9.3 0.055 0.360 12.3 0.054 0.370
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Table 7: The relative bias (Rbias in %), empirical standard errors (ESE) and root mean squared
error (RMSE) for baseline survival at selected quantiles (5%, 15%, 25%, 35%, 50%, 60%, 75%, 85%
and 88%) of T under Cox PH model for different right-censoring amounts between 10% and 50%
and different mean interval widths (varying between 0.4σ and 1.6σ) for a sample of size n=600 in
S=500 replications

interval width
0.4σ ∼= 6 0.7σ ∼= 10 1.0σ ∼= 15 1.3σ ∼= 19 1.6σ ∼= 23

tcens Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE

83

S(39) -0.3 0.007 0.519 -0.4 0.007 0.518 -0.3 0.008 0.518 -0.3 0.009 0.518 -0.7 0.009 0.516
S(49) -0.8 0.017 0.438 -1.0 0.017 0.437 -1.0 0.018 0.437 -1.3 0.021 0.434 -2.4 0.021 0.429
S(55) -1.4 0.025 0.364 -1.7 0.024 0.359 -1.7 0.25 0.362 -2.6 0.029 0.357 -4.7 0.030 0.348
S(59) -2.0 0.030 0.315 -2.4 0.028 0.316 -2.6 0.028 0.317 -4.0 0.033 0.313 -6.7 0.035 0.308
S(65) -3.1 0.033 0.294 -3.8 0.031 0.290 -3.9 0.030 0.292 -5.5 0.035 0.291 -7.6 0.038 0.292
S(69) -3.2 0.032 0.314 -3.6 0.030 0.319 -2.7 0.030 0.315 -3.4 0.034 0.319 -3.3 0.036 0.320
S(75) 1.1 0.027 0.392 3.7 0.026 0.386 9.8 0.028 0.377 14.1 0.031 0.371 20.8 0.035 0.362
S(80) 15.1 0.023 0.451 25.8 0.025 0.440 43.2 0.028 0.422 56.6 0.032 0.411 74.7 0.039 0.389
S(81) 19.9 0.023 0.460 33.3 0.026 0.446 54.4 0.029 0.427 70.7 0.033 0.412 92.3 0.040 0.397

77

S(39) -0.3 0.007 0.519 -0.3 0.007 0.518 -0.4 0.008 0.518 -0.5 0.008 0.399 -0.9 0.009 0.396
S(49) -0.8 0.017 0.438 -0.8 0.018 0.438 -1.2 0.018 0.435 -2.0 0.020 0.313 -3.0 0.022 0.307
S(55) -1.5 0.024 0.362 -1.5 0.025 0.363 -2.5 0.025 0.359 -3.0 0.028 0.254 -3.9 0.031 0.247
S(59) -2.1 0.028 0.318 -2.3 0.029 0.317 -3.8 0.030 0.312 -3.8 0.033 0.236 -4.1 0.036 0.301
S(65) -2.4 0.030 0.290 -2.3 0.032 0.290 -2.8 0.034 0.292 1.0 0.036 0.268 -0.6 0.035 0.267
S(69) -0.1 0.029 0.312 1.9 0.032 0.309 4.9 0.034 0.305 8.0 0.035 0.296 11.4 0.034 0.294
S(75) 14.4 0.028 0.371 25.3 0.032 0.355 39.6 0.034 0.337 50.1 0.038 0.328 60.8 0.037 0.312

71

S(39) -0.3 0.007 0.519 -0.3 0.007 0.519 -0.3 0.008 0.519 -0.4 0.013 0.518 -0.6 0.009 0.322
S(49) -0.8 0.017 0.439 -0.8 0.017 0.437 -1.2 0.019 0.434 -1.8 0.033 0.433 -3.6 0.022 0.231
S(55) -1.5 0.025 0.360 -1.7 0.025 0.362 -3.0 0.028 0.355 -2.1 0.048 0.364 -5.0 0.031 0.196
S(59) -1.7 0.030 0.320 -2.1 0.030 0.316 -2.9 0.034 0.316 0.5 0.054 0.326 -1.9 0.033 0.196
S(65) 1.6 0.034 0.291 3.7 0.034 0.292 7.9 0.035 0.292 14.0 0.053 0.299 16.0 0.036 0.214
S(69) 10.2 0.034 0.301 17.5 0.034 0.291 27.8 0.035 0.290 33.4 0.053 0.292 41.9 0.038 0.234

65

S(39) -0.2 0.008 0.519 -0.2 0.007 0.520 -0.2 0.008 0.519 -0.3 0.009 0.185 -0.6 0.010 0.182
S(49) -0.8 0.020 0.438 -1.1 0.019 0.436 -1.9 0.022 0.432 -2.4 0.024 0.117 -2.8 0.026 0.113
S(55) -1.2 0.029 0.364 -1.7 0.028 0.361 -1.7 0.032 0.360 -0.1 0.032 0.129 1.1 0.032 0.121
S(59) 0.3 0.034 0.321 1.6 0.032 0.328 4.3 0.034 0.336 7.7 0.034 0.149 10.0 0.033 0.136
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Table 8: The coverage estimates of 90% credible intervals for baseline survival function at selected
quantiles (5%, 15%, 25%, 35%, 50%, 60%, 75%, 85% and 88%) of T under Cox PH model for
different right-censoring amounts between 10% and 50% and different mean interval widths between
6(0.4σ) and 23(1.6σ) for sample sizes of n=300 and 600 in S=500 replications

n=300 n=600
int. width int. width

r.cens. tcens 0.4σ ∼=6 0.7σ ∼=10 1.0σ ∼=15 1.3σ ∼=19 1.6σ ∼=23 0.4σ ∼=6 0.7σ ∼=10 1.0σ ∼=15 1.3σ ∼=19 1.6σ ∼=23

10% 83

S(39) 90 90 92 90 88 90 87 87 85 85
S(49) 90 91 90 89 83 88 89 89 80 86
S(55) 90 91 90 87 80 87 88 90 75 87
S(59) 90 90 90 87 80 84 88 88 76 88
S(65) 93 93 92 89 88 85 87 89 86 82
S(69) 94 94 88 90 89 87 89 93 92 88
S(75) 85 89 68 72 58 91 91 82 65 64
S(80) 76 72 51 40 28 76 74 66 62 46
S(81) 76 67 50 36 26 71 69 60 56 35

20% 77

S(39) 89 91 89 88 84 90 89 88 92 93
S(49) 91 90 91 83 78 89 89 89 88 88
S(55) 92 90 90 82 77 88 89 86 89 92
S(59) 92 90 92 84 82 88 87 82 92 87
S(65) 92 90 89 89 89 91 90 90 93 92
S(69) 87 87 77 76 70 93 90 88 81 75
S(75) 74 61 47 25 16 70 35 11 30 31

35% 71

S(39) 89 89 91 87 84 89 89 87 89 87
S(49) 91 87 89 80 73 88 89 86 87 86
S(55) 91 88 92 83 80 87 90 91 88 86
S(59) 91 88 90 88 87 87 90 86 93 90
S(65) 88 82 70 61 52 88 87 70 65 53
S(69) 76 55 40 21 14 70 59 52 25 23

50% 65

S(39) 88 89 90 84 81 87 91 91 90 86
S(49) 88 90 90 76 76 87 88 86 79 82
S(55) 89 88 90 79 77 88 87 87 90 90
S(59) 88 83 69 62 49 89 91 79 66 51
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Table 9: The relative bias (Rbias in %), empirical standard errors(ESE) and root mean squared error (RMSE) for baseline
survival at selected quantiles (5%, 15%, 25%, 35%, 50%, 60%, 75%, 85% and 88%) of T under Cox PH model for 0% right-
censoring and different amounts of mean interval width (varying between 0.4σ and 1.6σ) for a sample of size n=300 and 600
in S=500 replications

interval width
0.4σ ∼= 6 0.7σ ∼= 10 1.0σ ∼= 15 1.3σ ∼= 19 1.6σ ∼= 23

n Rbias (%) ESE RMSE EC90 Rbias (%) ESE RMSE EC90 Rbias (%) ESE RMSE EC90 Rbias (%) ESE RMSE EC90 Rbias (%) ESE RMSE EC90

300

S(39) -0.4 0.007 0.631 89 -0.3 0.007 0.632 89 -0.3 0.007 0.632 87 -0.5 0.008 0.630 87 -0.6 0.008 0.629 87
S(49) -1.2 0.016 0.543 90 -1.1 0.018 0.544 89 -1.2 0.016 0.542 87 -1.5 0.018 0.541 87 -1.9 0.018 0.540 89
S(55) -2.0 0.023 0.462 89 -2.0 0.025 0.462 89 -2.2 0.23 0.461 85 -2.8 0.025 0.458 87 -3.0 0.024 0.457 89
S(59) -2.7 0.027 0.398 90 -2.9 0.028 0.399 88 -3.1 0.027 0.397 85 -3.9 0.028 0.392 87 -4.1 0.027 0.392 89
S(65) -4.0 0.031 0.330 90 -4.4 0.023 0.331 87 -4.5 0.029 0.329 87 -5.4 0.029 0.328 87 -5.3 0.028 0.330 92
S(69) -4.7 0.030 0.321 89 -5.2 0.018 0.320 88 -2.7 0.028 0.321 89 -5.6 0.028 0.320 91 -5.0 0.027 0.321 94
S(75) -5.0 0.025 0.361 92 -5.0 0.017 0.363 92 -3.4 0.024 0.377 94 -2.9 0.023 0.360 93 -0.4 0.023 0.357 93
S(80) -2.5 0.019 0.409 93 -1.1 0.015 0.408 92 2.8 0.019 0.422 93 5.5 0.018 0.402 87 10.9 0.018 0.398 85
S(81) -1.4 0.018 0.417 93 0.4 0.017 0.416 91 5.0 0.017 0.427 91 8.4 0.017 0.409 81 14.5 0.017 0.405 80
S(83) 1.6 0.016 0.440 93 4.6 0.015 0.439 90 10.7 0.015 0.435 86 15.7 0.015 0.432 72 23.8 0.015 0.426 70
S(87) 13.0 0.012 0.464 83 19.3 0.011 0.461 78 30.0 0.012 0.457 66 39.8 0.012 0.453 50 53.9 0.012 0.449 35

600

S(39) -0.3 0.010 0.632 87 -0.3 0.010 0.632 87 -0.5 0.011 0.630 89 -0.5 0.011 0.630 86 -0.8 0.011 0.628 85
S(49) -1.1 0.022 0.543 86 -0.9 0.024 0.545 87 -1.5 0.024 0.542 87 -1.4 0.025 0.541 84 -1.7 0.023 0.540 82
S(55) -1.9 0.031 0.462 85 -1.8 0.033 0.463 86 -2.7 0.032 0.459 86 -2.5 0.034 0.463 80 -2.9 0.031 0.457 79
S(59) -2.7 0.036 0.401 85 -2.5 0.038 0.401 86 -3.7 0.037 0.394 85 -3.4 0.038 0.396 79 -3.7 0.035 0.395 77
S(65) -3.9 0.040 0.329 83 -3.5 0.041 0.333 83 -4.9 0.039 0.331 84 -4.1 0.041 0.330 81 -4.1 0.037 0.331 81
S(69) -4.3 0.039 0.320 82 -3.6 0.039 0.320 84 -4.8 0.038 0.322 84 -3.3 0.040 0.326 87 -2.9 0.036 0.319 88
S(75) -2.7 0.032 0.362 87 -1.1 0.033 0.358 90 -1.0 0.032 0.358 91 2.4 0.034 0.354 92 4.0 0.031 0.354 93
S(80) 3.3 0.025 0.403 92 6.5 0.025 0.402 93 9.0 0.025 0.399 93 15.4 0.027 0.393 92 19.0 0.025 0.391 87
S(81) 5.4 0.023 0.411 92 9.0 0.024 0.409 93 12.2 0.023 0.407 92 19.4 0.026 0.403 90 23.7 0.024 0.397 84
S(83) 10.9 0.020 0.436 92 15.7 0.021 0.431 93 20.6 0.021 0.428 89 29.8 0.023 0.422 84 35.4 0.021 0.420 72
S(87) 29.8 0.015 0.457 89 37.8 0.016 0.455 84 47.8 0.016 0.451 73 63.3 0.018 0.445 56 73.1 0.017 0.442 35
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