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Abstract

Copulas are used to depict dependence among several random variables. Both parametric

and non-parametric estimation methods have been studied in the literature. Moreover, profile

empirical likelihood methods based on either empirical copula estimation or smoothed copula

estimation have been proposed to construct confidence intervals of a copula. In this paper, a

jackknife empirical likelihood method is proposed to reduce the computation with respect to

the existing profile empirical likelihood methods.
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1 Introduction

Dependence among variables plays an important role in understanding and interpreting multivariate

data series in economics, finance, insurance and other fields in social sciences. Although some

commonly used dependence measures such as Pearson’s correlation coefficient, Kendall’s tau and

Spearman’s rho are useful in decribing dependence, they can not completely capture the dependence

structure among variables. Instead, as a function independent of marginals, copulas become more

or less a standard tool in risk management (see McNeil, Frey and Embrechts (2005)).

Suppose (X1, Y1), · · · , (Xn, Yn) are independent and identically distributed random vectors with

a joint distribution function F . The copula of F is defined as C(x, y) = F (F−
1 (x), F−

2 (y)), where

F1(x) = F (x,∞), F2(y) = F (∞, y) and (·)− denotes the generalized inverse function of (·). We
1School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA. Email:

peng@math.gatech.edu

2Department of Mathematics ad Statistics, University of Minnesota Duluth, 1117 University Drive, Duluth, MN

55812, USA. Email: yqi@d.umn.edu
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refer to Nelsen (1998) and Joe (1997) for an overview of copulas. A wide range of applications

of copulas can be found in the literature of economics, econometrics and finance. For example,

Zimmer and Trivedi (2006) used copulas to study self-selection and interdependence between health

insurance and health care demand among married couples; Frees and Wang (2006) employed copula

to insurance pricing; Van de Goorbergh, Genest and Werker (2005) applied dynamic copulas to

option pricing; Cameron et al. (2004) modeled counted data by copulas; Hennesy and Lapan (2002)

used copulas to study portfolio allocations; Junkers and May (2005) proposed to use transformed

copulas to study the aggregate financial risk on a portfolio level; Smith (2003) employed copulas to

model data with selectivity bias; Chen and Yan (2006) used copulas to model errors of multivariate

nonlinear time series.

For estimating a copula, both nonparametric and parametric methods have been proposed in

the literature. A simple nonparametric estimator is the so-called empirical copula :

Cn(x, y) =
1
n

n∑
i=1

I(Fn1(Xi) ≤ x, Fn2(Yi) ≤ y), (1.1)

where

Fn1(x) =
1
n

n∑
i=1

I(Xi ≤ x) and Fn2(y) =
1
n

n∑
i=1

I(Yi ≤ y)

are the two marginal empirical distribution functions; see Deheuvels (1979). For a detailed study

of the asymptotic limit of the empirical copula estimate, we refer to Fermanian, Radulovic and

Wegkamp (2004). Smoothing estimation of a copula was investigated by Fermanian and Scaillet

(2003) and Chen and Huang (2007).

Recently, Chen, Peng and Zhao (2009) and Molanes Lopez, Van Keilegom and Veraverbeke

(2009) proposed empirical likelihood methods, based on smoothed copula estimation or empirical

copula estimation, to construct confidence intervals for a copula. The basic idea is to introduce

linking variables s = F−
1 (x) and t = F−

2 (y) and then apply profile empirical likelihood methods to

the following constraints :

F (s, t) = θ, F1(s) = x, F2(t) = y,

where θ = C(x, y) is the quantity which we like to construct a confidence interval for. The important

reason for introducing the linking variables is to take the unknown marginals in (1.1) into account

so as to obtain a chi-square limit. However, the constraints due to the linking variables cause

computational burden in the empirical likelihood methods, especially for a high dimensional copula.

Since we are only interested in a confidence interval for θ, one may ask whether it is possible to

have an empirical likelihood method with only one constraint and which has a chi-square limit.
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Recently, Jing, Yuan and Zhou (2009) proposed to apply empirical likelihood methods to jack-

knife pseudo samples for a U-statistic so as to avoid a non-linear minimization problem caused by

direct application of the empirical likelihood method. In this paper, we show that the idea in Jing,

Yuan and Zhou (2009) can be employed to remove unnecessary constraints in the setup of copulas.

However, one has to work with smoothed copula estimation. That is, a smoothed jackknife em-

pirical likelihood method is needed. This new method has a great computational advantage over

the existing profile empirical likelihood methods for constructing confidence intervals for a copula

especially for a high dimensional copula.

We organize this paper as follows. The new methodology is given in Section 2. Section 3

presents some simulation results. All proofs are put in Section 4.

2 Methodology

Define

Fn1,i(x) =
1

n− 1

∑
j 6=i

I(Xj ≤ x), Fn2,i(y) =
1

n− 1

∑
j 6=i

I(Yj ≤ y),

Cn,i(x, y) =
1

n− 1

∑
j 6=i

I(Fn1,i(Xj) ≤ x, Fn2,i(Yj) ≤ y).

As in Jing, Yuan and Zhou (2009), the jackknife pseudo sample may be defined as

Vi(x, y) = nCn(x, y)− (n− 1)Cn,i(x, y), i = 1, · · · , n.

Based on the above pseudo sample, one can define the empirical likelihood function as

Ln(x, y; θ) = sup{Πn
i=1pi : p1 > 0, · · · , pn > 0,

n∑
i=1

pi = 1,
n∑

i=1

piVi(x, y) = θ},

where θ = C(x, y) is the quantity for which we like to construct a confidence interval. Unfortunately,

the above procedure does not work although only one constraint is involved. The reason is as follows.

It is known that a key feature of the empirical likelihood method is the automatic standardiza-

tion, see Owen (2001) for an overview on empirical likelihood methods. In order to have the above

procedure work, one needs to show that 1
n

∑n
i=1{Vi(x, y) − C(x, y)}2 is a consistent estimator of

nV ar(Cn(x, y)), i.e.,

νn(x, y) =
1
n

n∑
i=1

{Vi(x, y)− 1
n

n∑
j=1

Vj(x, y)}2

is a consistent estimator of nV ar(Cn(x, y)). Note that νn(x, y) is the jackknife variance estimate,

see Shao and Tu (1995) for details on jackknife methods. Unfortunately, a brief simulation study,
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not reported here, shows that νn(x, y) is an inconsistent estimator of nV ar(Cn(x, y)). At first

sight, one may argue that the definition of copula involves quantiles and the jackknife variance

estimate for a quantile is inconsistent, see Martin (1990). This is not the exact reason as we show

that a smooth version of νn(x, y) works with the non-smoothed marginal empirical distributions

Fn1,i, Fn2,i, Fn1, Fn2 remained.

Let k be a density function and put K(x) =
∫ x
−∞ k(y) dy. Then we smooth Cn(x, y) and Cn,i(x, y)

by  Ĉn(x, y) = 1
n

∑n
j=1 K(x−Fn1(Xj)

h )K(y−Fn2(Yj)
h )

Ĉn,i(x, y) = 1
n−1

∑
j 6=i K(x−Fn1,i(Xj)

h )K(y−Fn2,i(Yj)
h ),

(2.1)

where h = h(n) > 0 is a bandwidth, and define the smoothed jackknife pseudo sample as

V̂i(x, y) = nĈn(x, y)− (n− 1)Ĉn,i(x, y).

Therefore, the jackknife variance estimate of nV ar(Ĉn(x, y)), based on the pseudo sample of

V̂i(x, y)′s is

ν̂n(x, y) =
1
n

n∑
i=1

{V̂i(x, y)− 1
n

n∑
j=1

V̂j(x, y)}2.

Note that the asymptotic variance of
√

n{Ĉn(x, y)− C(x, y)} is

σ2(x, y) = C(x, y){1− C(x, y)}+ x(1− x){ ∂
∂xC(x, y)}2

+y(1− y){ ∂
∂yC(x, y)}2 − 2C(x, y)(1− x) ∂

∂xC(x, y)

−2C(x, y)(1− y) ∂
∂yC(x, y) + 2{C(x, y)− xy}{ ∂

∂xC(x, y)}{ ∂
∂yC(x, y)},

(2.2)

which is the same as that of
√

n{Cn(x, y)−C(x, y)}, see Fermanian, Radulovic and Marten (2004).

Our first result shows that ν̂n(x, y) is consistent.

Theorem 1. Assume that k is a symmetric density with support [−1, 1] and that h = h(n) → 0,

nh2 → ∞ and nh4 → 0 as n → ∞. Further assume that C(x, y) has continuous first derivatives.

Then,

ν̂n(x, y)/σ2(x, y)
p→ 1.

Based on Theorem 1, one can expect that an application of the empirical likelihood method

to the above smoothed jackknife pseudo sample of V̂i(x, y)′s works. Now we define the empirical

likelihood function as

L̂n(x, y; θ) = sup{Πn
i=1pi : p1 > 0, · · · , pn > 0,

n∑
i=1

pi = 1,
n∑

i=1

piV̂i(x, y) = θ}.

An application of the Lagrange multiplier method gives

pi =
1
n

1
1 + λ(V̂i(x, y)− θ)

,
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where λ = λ(x, y; θ) satisfies
1
n

n∑
i=1

V̂i(x, y)− θ

1 + λ(V̂i(x, y)− θ)
= 0. (2.3)

Hence the log empirical likelihood ratio becomes

l̂n(x, y; θ) = −2 log{n−nL̂n(x, y; θ)} = 2
n∑

i=1

log{1 + λ(V̂i(x, y)− θ)}.

Theorem 2. Under the conditions of Theorem 1, we have

l̂n(x, y;C(x, y)) d→ χ2(1)

as n →∞.

Based on Theorem 2, a confidence interval of level γ for C(x, y) is given by

Iγ(x, y;h) = {θ : l̂n(x, y; θ) ≤ χ2
1,γ},

where χ2
1,γ is the γ quantile of χ2(1).

3 Simulation study

In this section we investigate the finite sample behavior of the proposed jackknife empirical likeli-

hood method and compare it with the bootstrap confidence interval based on the empirical copula.

We employ the same setting as in Chen, Peng and Zhao (2009) and Molanes Lopez, Van Keilegom

and Veraverbeke (2009) so that the comparison with the smoothed and the empirical profile method

is obtained without repeating the procedure in the above two papers.

We draw 1,000 random samples of size n = 200 and 400 from the following mixture copula :

C(x, y; θ1, θ2, λ) = λ{x−θ1 + y−θ1 − 1}−1/θ1 + (1− λ) exp{−((− log x)θ2 + (− log y)θ2)1/θ2}

with marginals being a standard normal, where θ1 > 0, θ2 > 1 and λ ∈ [0, 1]. Note that the above

mixture copula becomes the Clayton copula and the Gumbel copula when λ = 0 and 1, respectively.

In particular, we consider

(θ1, θ2, λ) = (2, 3, 0.0), (2, 3, 0.5), (2, 3, 1.0), (x, y) = (0.25, 0.25), (0.5, 0.5), (0.75, 0.75)

and confidence levels γ = 0.9, 0.95. For computing the jackknife empirical likelihood based confi-

dence interval, we employ the kernel k(x) = 3
4(1− x2)I(|x| ≤ 1) and the bandwidth

h = 0.2n−1/3, 0.5n−1/3, 0.8n−1/3,
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since the optimal rate of the bandwidth in smoothing distribution estimation is of order n−1/3. The

bootstrap confidence intervals are obtained by using 1, 000 bootstrap samples.

In Tables 1 and 2 we report the empirical coverage probabilities for the jackknife empirical

likelihood confidence intervals Iγ(x, y; 0.2n−1/3), Iγ(x, y; 0.5n−1/3) and Iγ(x, y; 0.8n−1/3) and the

bootstrap confidence interval I∗γ(x, y) based on Cn(x, y). These two tables show that, in most

cases, the jackknife empirical likelihood method has better coverage accuracy than the bootstrap

method based on the empirical copula estimator. Also, the choice of h = 0.5n−1/3 gives good

results in general. Comparing with Tables 1 and 2 in Chen, Peng and Zhao (2009) and Table 1

in Molanes Lopez, Van Keilegom and Veraverbeke (2009), we found that the jackknife empirical

likelihood method is comparable to the profile empirical likelihood methods in the above two

papers. However, as explained in the introduction, the computation of the proposed jackknife

empirical likelihood method is much less intensive than the profile empirical likelihood method.

4 Proofs

Lemma 1. Under the conditions of Theorem 1, we have

√
n{Cn(x, y)− C(x, y)} D→ W (x, y) := B(x, y)− ∂

∂x
C(x, y)B(x, 1)− ∂

∂y
C(x, y)B(1, y),

where B(x, y) is a Gaussian process with zero mean and covariance

E{B(x1, y1)B(x2, y2)} = C(x1 ∧ x2, y1 ∧ y2)− C(x1, y1)C(x2, y2).

Further, for any fixed x, y ∈ (0, 1),

√
n{Ĉn(x, y)− C(x, y)} d→ N(0, σ2(x, y)),

where σ2(x, y) is defined in (2.2), and

∂Ĉn(x, y)
∂x

p→ ∂C(x, y)
∂x

,
∂Ĉn(x, y)

∂y

p→ ∂C(x, y)
∂y

. (4.1)

Proof. See Fermanian, Radulovic and Wegkamp (2004).

Lemma 2. Under the conditions of Theorem 1, we have

√
n{ 1

n

n∑
i=1

V̂i(x, y)− C(x, y)} d→ N(0, σ2(x, y))

for any fixed x, y ∈ (0, 1).
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Proof. Write

V̂i(x, y) =
∑n

j=1{K(x−Fn1(Xj)
h )K(y−Fn2(Yj)

h )−K(x−Fn1,i(Xj)
h )K(y−Fn2,i(Yj)

h )}

+K(x−Fn1,i(Xi)
h )K(y−Fn2,i(Yi)

h )

= V̂i,1(x, y) + V̂i,2(x, y).

(4.2)

Since 
sup1≤i≤n |Fn1,i(x)− Fn1(x)| = sup1≤i≤n | 1

n−1Fn1(x)− 1
n−1I(Xi ≤ x)| ≤ n−1

sup1≤i≤n |Fn2,i(y)− Fn2(y)| = sup1≤i≤n | 1
n−1Fn2(y)− 1

n−1I(Yi ≤ y)| ≤ n−1∑n
i=1{Fn1,i(x)− Fn1(x)} =

∑n
i=1{Fn2,i(y)− Fn2(y)} = 0,

(4.3)

it follows from the mean-value theorem that for fixed x, y ∈ (0, 1)

1
n

∑n
i=1 V̂i,1(x, y)

= 1
n

∑n
i=1

∑n
j=1

Fn1,i(Xj)−Fn1(Xj)
h k(x−Fn1(Xj)

h )K(y−Fn2(Yj)
h )

+ 1
n

∑n
i=1

∑n
j=1

Fn2,i(Yj)−Fn2(Yj)
h K(x−Fn1(Xj)

h )k(y−Fn2(Yj)
h )

+ 1
n

∑n
i=1

∑n
j=1{

1
2(Fn1,i(Xj)−Fn1(Xj)

h )2k′(x−ξn1,i,j

h )K(y−ξn2,i,j

h )

+1
2(Fn2,i(Yj)−Fn2(Yj)

h )2K(x−ξn1,i,j

h )k′(y−ξn2,i,j

h )

+Fn1,i(Xj)−Fn1(Xj)
h

Fn2,i(Yj)−Fn2(Yj)
h k(x−ξn1,i,j

h )k(y−ξn2,i,j

h )}

= 1
n

∑n
i=1

∑n
j=1{

1
2(Fn1,i(Xj)−Fn1(Xj)

h )2k′(x−ξn1,i,j

h )K(y−ξn2,i,j

h )

+1
2(Fn2,i(Yj)−Fn2(Yj)

h )2K(x−ξn1,i,j

h )k′(y−ξn2,i,j

h )

+Fn1,i(Xj)−Fn1(Xj)
h

Fn2,i(Yj)−Fn2(Yj)
h k(x−ξn1,i,j

h )k(y−ξn2,i,j

h )},

(4.4)

where ξn1,i,j is between Fn1,i(Xj) and Fn1(Xj) and ξn2,i,j is between Fn2,i(Yj) and Fn2(Yj). By

(4.3), we have sup1≤i≤n I(|x−ξn1,i,j

h | ≤ 1) ≤ I(x− h− n−1 ≤ Fn1(Xj) ≤ x + h + n−1)

sup1≤i≤n I(|y−ξn2,i,j

h | ≤ 1) ≤ I(x− h− n−1 ≤ Fn2(Yj) ≤ x + h + n−1).
(4.5)

Hence, (4.3) and (4.5) imply that for some M1 > 0

| 1
n

n∑
i=1

V̂i,1(x, y)| ≤ M1

n3h2

n∑
i=1

n∑
j=1

{I(|x− ξn1,i,j

h
| ≤ 1) + I(|y − ξn2,i,j

h
| ≤ 1)} ≤ 2M1

nh
, (4.6)

which is of order o(1/
√

n). Since

K(
x− Fn1,i(Xi)

h
)K(

y − Fn2,i(Yi)
h

) = K(
n−1

n x− 1
n + Fn1(Xi)

(n− 1)h/n
)K(

n−1
n y + 1

n − Fn2(Yi)
(n− 1)h/n

),

Lemma 1 implies that

√
n{ 1

n

n∑
i=1

V̂i,2(x, y)− C(x, y)} d→ N(0, σ2(x, y)).
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Hence, the lemma follows from (4.6) and (4.4).

Lemma 3. Under the conditions of Theorem 1, we have

1
n

n∑
i=1

{V̂i(x, y)− C(x, y)}2 p→ σ2(x, y)

for fixed x, y ∈ (0, 1).

Proof. It is straightforward to check that 1
n

∑n
i=1{Fnj,i(x1)− Fnj(x1)}{Fnj,i(x2)− Fnj(x2)} = 1

(n−1)2
{Fnj(x1 ∧ x2)− Fnj(x1)Fnj(x2)}

1
n

∑n
i=1{Fn1,i(x1)− Fn1(x1)}{Fn2,i(x2)− Fn2(x2)} = 1

(n−1)2
{Fn(x1, x2)− Fn1(x1)Fn2(x2)}

(4.7)

for j = 1, 2 and x1, x2 ∈ R. Let V̂i,1(x, y) and V̂i,2(x, y) be defined as in decomposition (4.2). Then,

as in the proof of (4.6), we can show that

1
n

∑n
i=1 V̂ 2

i,1(x, y)

= 1
n

∑n
i=1{

∑n
j=1

Fn1,i(Xj)−Fn1(Xj)
h k(x−Fn1(Xj)

h )K(y−Fn2(Yj)
h )

+
∑n

j=1
Fn2,i(Yj)−Fn2(Yj)

h K(x−Fn1(Xj)
h )k(y−Fn2(Yj)

h )}2 + op(1),

where by (4.7), we have that

1
n

∑n
i=1 V̂ 2

i,1(x, y)

=
∑n

j=1

∑n
k=1

1
(n−1)2h2 {Fn1(Xj ∧Xk)− Fn1(Xj)Fn1(Xk)}×

k(x−Fn1(Xj)
h )K(y−Fn2(Yj)

h )k(x−Fn1(Xk)
h )K(y−Fn2(Yk)

h )

+
∑n

j=1

∑n
k=1

1
(n−1)2h2 {Fn2(Yj ∧ Yk)− Fn2(Yj)Fn2(Yk)}×

K(x−Fn1(Xj)
h )k(y−Fn2(Yj)

h )K(x−Fn1(Xk)
h )k(y−Fn2(Yk)

h )

+2
∑n

j=1

∑n
k=1

1
(n−1)2h2 {Fn(Xj , Yk)− Fn1(Xj)Fn2(Yk)}×

k(x−Fn1(Xj)
h )K(y−Fn2(Yj)

h )K(x−Fn1(Xk)
h )k(y−Fn2(Yk)

h ) + op(1)

= {x− x2}{ ∂
∂xC(x, y)}2 + {y − y2}{ ∂

∂yC(x, y)}2

+2{C(x, y)− xy}{ ∂
∂xC(x, y)}{ ∂

∂yC(x, y)}+ op(1).

(4.8)

Note that in the last step we have used (4.1). Similarly, we can show that

1
n

∑n
i=1 V̂i,1(x, y)V̂i,2(x, y)

= 1
n

∑n
i=1

∑n
j=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h )Fn1,i(Xj)−Fn1(Xj)

h k(x−Fn1(Xj)
h )K(y−Fn2(Yj)

h )

+ 1
n

∑n
i=1

∑n
j=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h )Fn2,i(Yj)−Fn2(Yj)

h K(x−Fn1(Xj)
h )k(y−Fn2(Yj)

h ) + op(1)

=
∑n

j=1
1
n

∑n
i=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h ) 1

(n−1)h{Fn1(Xj)− I(Xi ≤ Xj)}k(x−Fn1(Xj)
h )K(y−Fn2(Yj)

h )

+
∑n

j=1
1
n

∑n
i=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h ) 1

(n−1)h{Fn2(Yj)− I(Yi ≤ Yj)}×

K(x−Fn1(Xj)
h )k(y−Fn2(Yj)

h ) + op(1)
(4.9)
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= 1
(n−1)h

∑n
j=1{

1
n

∑n
i=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h )}Fn1(Xj)k(x−Fn1(Xj)

h )K(y−Fn2(Yj)
h )

− 1
(n−1)h

∑n
j=1{

1
n

∑n
i=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h )I(Fn1(Xi) ≤ Fn1(Xj))}k(x−Fn1(Xj)

h )K(y−Fn2(Yj)
h )

+ 1
(n−1)h

∑n
j=1{

1
n

∑n
i=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h )}Fn2(Yj)K(x−Fn1(Xj)

h )k(y−Fn2(Yj)
h )

− 1
(n−1)h

∑n
j=1{

1
n

∑n
i=1 K(x−Fn1(Xi)

h )K(y−Fn2(Yi)
h )I(Fn2(Yi) ≤ Fn2(Yj))}×

K(x−Fn1(Xj)
h )k(y−Fn2(Yj)

h ) + op(1)

= C(x, y)x ∂
∂xC(x, y)− C(x, y) ∂

∂xC(x, y)

+C(x, y)y ∂
∂yC(x, y)− C(x, y) ∂

∂yC(x, y) + op(1).
(4.10)

It follows from (4.3) that

max
1≤i≤n

sup
x
|Fnj,i(x)− Fj(x)| p→ 0 (4.11)

for j = 1, 2. By Lemma 1 and (4.11), we have

1
n

n∑
i=1

V̂ 2
i,2(x, y)

p→ C(x, y). (4.12)

Hence, the lemma follows from (4.8), (4.9), (4.12) and the fact that

1
n

n∑
i=1

V̂i(x, y)
p→ C(x, y),

which is implied by Lemma 2.

Proof of Theorem 1. This follows from Lemmas 2 and 3.

Proof of Theorem 2. It follows from the mean-value theorem that

V̂i,1(x, y) =
∑n

j=1{
Fn1,i(Xj)−Fn1(Xj)

h k(x−ξn1,i,j

h )K(y−ξn2,i,j

h )

+Fn2,i(Yj)−Fn2(Yj)
h K(x−ξn1,i,j

h )k(y−ξn2,i,j

h )},

where ξn1,i,j lies between Fn1,i(Xj) and Fn1(Xj), ξn2,i,j lies between Fn2,i(Yj) and Fn2(Yj), and

V̂i,1(x, Y ) is defined in the proof of Lemma 2. By (4.3) and (4.5), we can show that max1≤i≤n |V̂i,1(x, y)|

is bounded, and so is max1≤i≤n |V̂i(x, y)|. By standard arguments of the empirical likelihood method

(see Owen (1988)), we can show that

l̂n(x, y;C(x, y)) = {
n∑

i=1

V̂i(x, y)− C(x, y)}2/

n∑
i=1

{V̂i(x, y)− C(x, y)}2 + op(1) d→ χ2(1)

as n →∞. The details are omitted here.
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Table 1: Empirical coverage probabilities for the Jackknife empirical likelihood based confidence

interval Iα(x, y;h) and the bootstrap confidence interval I∗α(x, y) based on Cn(x, y) with sample

size n = 200. Bandwidths are chosen as h1 = 0.2n−1/3, h2 = 0.5n−1/3 and h3 = 0.8n−1/3.

(λ, x, y) I0.90(x, y;h1) I0.90(x, y;h2) I0.90(x, y;h3) I∗0.90(x, y)

I0.95(x, y;h1) I0.95(x, y;h2) I0.95(x, y;h3) I∗0.95(x, y)

(0.0, 0.25, 0.25) 0.876 0.903 0.815 0.860

0.936 0.945 0.897 0.910

(0.0, 0.50, 0.50) 0.864 0.893 0.815 0.870

0.919 0.942 0.904 0.933

(0.0, 0.75, 0.75) 0.876 0.876 0.594 0.879

0.939 0.938 0.744 0.926

(0.5, 0.25, 0.25) 0.867 0.890 0.877 0.834

0.921 0.940 0.936 0.909

(0.5, 0.50, 0.50) 0.838 0.873 0.910 0.778

0.903 0.931 0.954 0.859

(0.5, 0.75, 0.75) 0.865 0.874 0.789 0.885

0.921 0.927 0.874 0.934

(1.0, 0.25, 0.25) 0.862 0.907 0.846 0.826

0.929 0.947 0.918 0.880

(1.0, 0.50, 0.50) 0.848 0.880 0.884 0.842

0.907 0.938 0.941 0.904

(1.0, 0.75, 0.75) 0.825 0.814 0.768 0.849

0.905 0.908 0.868 0.913
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Table 2: Empirical coverage probabilities for the Jackknife empirical likelihood based confidence

interval Iα(x, y;h) and the bootstrap confidence interval I∗α(x, y) based on Cn(x, y) with sample

size n = 400. Bandwidths are chosen as h1 = 0.2n−1/3, h2 = 0.5n−1/3 and h3 = 0.8n−1/3.

(λ, x, y) I0.90(x, y;h1) I0.90(x, y;h2) I0.90(x, y;h3) I∗0.90(x, y)

I0.95(x, y;h1) I0.95(x, y;h2) I0.95(x, y;h3) I∗0.95(x, y)

(0.0, 0.25, 0.25) 0.888 0.890 0.832 0.861

0.937 0.942 0.900 0.923

(0.0, 0.50, 0.50) 0.889 0.904 0.857 0.897

0.941 0.945 0.917 0.933

(0.0, 0.75, 0.75) 0.880 0.876 0.666 0.869

0.934 0.934 0.800 0.927

(0.5, 0.25, 0.25) 0.874 0.881 0.887 0.826

0.926 0.932 0.942 0.895

(0.5, 0.50, 0.50) 0.793 0.807 0.853 0.765

0.865 0.890 0.910 0.844

(0.5, 0.75, 0.75) 0.854 0.865 0.765 0.883

0.929 0.915 0.871 0.946

(1.0, 0.25, 0.25) 0.875 0.881 0.875 0.835

0.932 0.939 0.929 0.889

(1.0, 0.50, 0.50) 0.877 0.887 0.896 0.861

0.927 0.940 0.941 0.920

(1.0, 0.75, 0.75) 0.771 0.754 0.701 0.817

0.855 0.843 0.809 0.897
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