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Abstract
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Analysis (DEA) estimators in nonparametric frontier models. It is well-known that a
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show that a simple, data-based rule for selecting m gives confidence interval estimates
with good coverage properties. In addition, we show that subsampling performs well
for testing hypotheses about returns to scale and other features of the model when a
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1 Introduction

This paper develops testing procedures based on sub-sampling while using the ideas devel-

oped by Bickel and Sakov (2008) and Politis et al. (2001) for choosing the appropriate size

of the sub-samples. We provide evidence from extensive Monte Carlo experiments showing

that these procedures work rather well in finite samples, both in terms of the achieved level

of the tests as well as power of the tests. The computational burden of our procedure is

modest, and is comparable to the computational requirements of the method proposed by

Kneip et al. (2009) for estimating confidence intervals for efficiency of a particular point. Al-

though the methods proposed here can be used to estimate confidence intervals, their main

usefulness is for testing hypotheses about the structure of the underlying non-parametric

model.

Non-parametric data envelopment analysis (DEA) estimators have been widely used in

studies of productive efficiency by firms, government agencies, national economies, and other

decision-making units; Gattoufi et al. (2004) cite more than 1,800 published articles appear-

ing in more than 400 journals. DEA estimators rely on linear programming methods along

the lines of Charnes et al. (1978, 1979) and Färe et al. (1985) to estimate efficiency measures

proposed by Debreu (1951), Farrell (1957), Shephard (1970), and others. DEA estima-

tors measure efficiency relative to an estimate of an unobserved true frontier, conditional

on observed data resulting from an underlying data-generating process (DGP). Under cer-

tain assumptions the DEA frontier estimator is a consistent, maximum likelihood estimator

(Banker, 1993), with rates of convergence given by Korostelev et al. (1995). Consistency and

convergence rates of DEA efficiency estimators have been established by Kneip et al. (1998);

see Simar and Wilson (2000b) for a survey of the statistical properties of DEA estimators.

Although DEA estimators have been widely used, inference about the underlying model

structure or the efficiencies that are estimated remains problematic. Gijbels et al. (1999)

derived the asymptotic distribution of a DEA efficiency estimators in the case of one input

and one output, permitting classical inference in this special, limited case. However, one of

the attractive features of DEA estimators is that they simultaneously allow both multiple

inputs as well as multiple outputs. Simar and Wilson (1998, 2000a) proposed bootstrap

methods for inference about efficiency based on DEA estimators in a multivariate framework,
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and Simar and Wilson (2001a, 2001b) proposed bootstrap methods for testing hypotheses

about the structure of the underlying nonparametric model of production, but consistency

of these procedures has not been established. Banker (1993, 1996) proposed tests of model

structure based on ad-hoc distributional assumptions, but simulation results obtained by

Kittelsen (1999) and Simar and Wilson (2001a) show that these tests perform poorly in

terms of both size and power.

Jeong (2004) derived the limiting distribution of DEA efficiency estimators under variable

returns to scale for the special case p = 1, q ≥ 1 in the input orientation (or p ≥ 1, q =

1 in the output orientation), where p and q denote the numbers of inputs and outputs,

respectively. Kneip et al. (2008) and Park et al. (2009) derived the limiting distributions

of DEA efficiency estimators under variable returns to scale and constant returns to scale

(respectively), with arbitrary numbers of inputs and outputs. These distributions contain

several unknown quantities, and are not useful in a practical sense for inference. Kneip

et al. (2008) also proposed two bootstrap procedures for inference about efficiency, and

proved consistency of both methods. The first approach uses sub-sampling, where bootstrap

samples of size m < n are drawn (independently, with replacement) from the empirical

distribution of the original n sample observations. Simulation results provided by Kneip

et al. (2008) indicate that in finite-sample scenarios, coverages of confidence intervals for

efficiency estimated by bootstrap sub-sampling are quite sensitive to the choice of the sub-

sample size m; Kneip et al. (2008) did not provide a method for choosing m in applied

work.

The second, full-sample bootstrap procedure described by Kneip et al. (2008) requires for

consistency not only smoothing of the distribution of the observations as proposed in Simar

and Wilson (1998, 2000a) but also smoothing of the initial DEA estimate of the frontier

itself. This double-smoothing necessitates choosing values for two smoothing parameters.

One of these can be optimized using existing methods from kernel density estimation, while

a simple rule-of-thumb is provided for selecting the bandwidth used to smooth the frontier

estimate. Simulation results presented in Kneip et al. indicate that the method works

moderately well if smoothing parameters are chosen appropriately. However, the method

requires solving n auxiliary linear programs (each with (p + q + 1) constraints and (n + 1)

weights, where (p + q) is the sum of input and output dimensions and n represents sample
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size) for each of B bootstrap replications, leading to a formidable computational burden.

The naive bootstrap—based on re-sampling from the empirical distribution of the data—

is attractive for its simplicity and low computational burden, but is inconsistent in situations

where DEA efficiency estimators are used. As discussed by Simar and Wilson (1999a, 1999b),

the inconsistency arises in part from the fact that when drawing from the empirical distri-

bution, observations lying on the initial DEA frontier estimate are too-frequently selected.

Kneip et al. (2009) developed a consistent bootstrap method that retains the simple features

of the naive bootstrap to construct the part of a bootstrap sample lying “far” from the

estimated frontier, while drawing from a smooth, uniform distribution to construct the part

of the bootstrap sample lying “near” the estimated frontier. The distinction between “near”

and “far” is controlled by a smoothing parameter, while a second smoothing parameter con-

trols the degree of smoothing applied to the estimated frontier. Since no distributions are

estimated, and no auxiliary linear programs are needed, the speed of the procedure is com-

parable to that of the naive bootstrap. However, the method of Kneip et al. (2009) requires

complicated coding and is not appropriate for approximating the sampling distribution of

a test statistic or of a function of efficiency estimators corresponding to different points in

the sample space (which is needed for testing features of the model such as convexity of the

production set, returns to scale, etc.).

The remainder of the paper unfolds as follows. In Section 2 we introduce a statistical

model of a generic production process along with notation useful for describing features of

the model that one might want to test. Section 3 describes the relevant estimators and their

properties. In Section 4 we explain the sub-sampling method for testing hypotheses about

the model and for estimating confidence intervals for the efficiencies of individual points. In

Section 5 we present results from our Monte Carlo experiments and give practical advice for

empirical researchers. Summary and conclusions are given in Section 6.

2 A Statistical Model of Production

Let x ∈ R
p
+ denote a vector of p input quantities, and let y ∈ R

q
+ denote a vector of q output

quantities. Firms transform quantities of inputs into various quantities of outputs; a firm

becomes more technically efficient if it increases at least some of its output levels without

increasing its input levels (output orientation), or alternatively if it reduces its use of at least
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some inputs without decreasing output levels (input orientation).

The set of feasible combinations of input and output vectors is given by the production

set

P = {(x,y) ∈ R
p
+ × R

q
+ | x can produce y}. (2.1)

The technical efficiency of a given point (x,y) ∈ P is determined by the distance from the

point to the boundary, or efficient frontier,

P∂ =
{
(x,y) ∈ P |

(
γx, γ−1y

)
6∈ P for any γ < 1

}
(2.2)

of the attainable set P.

The boundary P∂ of P constitutes the technology. Microeconomic theory of the firm

suggests that in perfectly competitive markets, firms operating in the interior of P will be

driven from the market, but makes no prediction of how long this might take; moreover, a

firm that is inefficient today might become efficient tomorrow. The following assumptions

on P are standard in microeconomics; e.g., see Shephard (1970) and Färe (1988).

Assumption 2.1. P is compact and convex.

Assumption 2.2. (x,y) 6∈ P if x = 0, y≥
6=

0; i.e., all production requires use of some inputs.

Assumption 2.3. for x̃ ≥ x, ỹ ≤ y, if (x,y) ∈ P then (x̃,y) ∈ P and (x, ỹ) ∈ P, i.e.,

both inputs and outputs are strongly disposable.

Here and throughout, inequalities involving vectors are defined on an element-by-element

basis; e.g., for x̃, x ∈ R
p
+, x̃ ≥ x means that some number ℓ ∈ {0, 1, . . . , p} of the

corresponding elements of x̃ and x are equal, while (p− ℓ) of the elements of x̃ are greater

than the corresponding elements of x. Assumption 2.3 is equivalent to an assumption of

monotonicity of the technology.

The Shephard (1970) input distance function

θ(x,y | P) ≡ sup
{
θ > 0 | (θ−1x,y) ∈ P

}
(2.3)

measures technical efficiency in the input direction, i.e., in the direction parallel to the

vector x and orthogonal to y. This measure is “radial” in the sense that efficiency of a point
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(x,y) is defined in terms of how much all input quantities can be contracted, by the same

proportion, without altering output levels to arrive at the boundary P∂ . By construction,

θ(x,y | P) > 1 for all (x,y) in the interior of P, and θ(x,y | P) = 1 for all (x,y) ∈ P∂ . For

a given point (x,y) ∈ P, (θ(x,y | P)−1x,y) is its projection onto P∂ in the input direction.

Alternatively, the Shephard (1970) output distance function

λ(x,y | P) ≡ inf
{
λ > 0 | (x, λ−1y) ∈ P

}
(2.4)

measures technical efficiency in the output direction, i.e., in the direction orthogonal to x

and parallel to y; λ(x,y | P) gives the maximum, proportionate, feasible expansion of y,

holding input quantities x0 fixed. By construction, λ(x,y | P) < 1 for (x,y) in the interior

of P, and λ(x,y | P) = 1 for (x,y) ∈ P∂ . For a given point (x,y) ∈ P, (x, λ(x,y | P)−1y)

is its projection onto P∂ in the output direction.

Since P (and hence P∂) is unknown, it must be estimated from an observed sample

Sn = {(xi,yi)}n
i=1 of data on firms’ input and output quantities. The next assumptions

define a DGP; the framework here is similar to that in Simar (1996), Kneip et al. (1998),

Simar and Wilson (1998, 2000a), and Kneip et al. (2008).

Assumption 2.4. The n observations in Sn are identically, independently distributed (iid)

random variables on the convex attainable set P.

Assumption 2.5. (a) The (x,y) possess a joint density f with support P; (b) f is contin-

uous on P; and (c) f (θ(x,y | P)−1x,y) > 0 and f (x, λ(x,y | P)−1y) > 0 for all (x,y) in

the interior of P.

Assumption 2.5(c) imposes a discontinuity in f at points in P∂ ensuring a strictly positive,

non-negligible probability of observing production units close to the production frontier. For

points lying outside P, f ≡ 0.

Assumption 2.6. The functions θ(x,y | P) and λ(x,y | P) are twice continuously differ-

entiable for all (x,y) ∈ P.

Assumption 2.6 imposes some smoothness on the boundary P∂ . This assumption is

slightly stronger, but simpler, than a corresponding assumption needed by Kneip et al.

(1998) to establish consistency of the DEA estimators. We have adopted Assumption 2.6

from Kneip et al. (2008), where additional discussion is given.

5



In order to consider testing of hypotheses about the shape of P or P∂ , some additional

notation is needed. Let the operator F(·) denote the free-disposal hull of a set in R
p+q
+ so

that

F(P) =
⋃

(x,y)∈P

{(x̃, ỹ) ∈ R
p+q
+ | ỹ ≤ y, x̃ ≥ x}. (2.5)

The assumption of disposability of inputs and outputs (Assumption 2.3) ensures P = F(P).

Now let C(P) denote the convex hull of F(P), and let V(P) denote the conical hull of

F(P). In general, if the convexity assumption is dropped and only disposability of inputs

and outputs is assumed, then

P = F(P) ⊆ C(P) ⊆ V(P). (2.6)

Under the additional assumption of convexity given by Assumption 2.1, we have

P = F(P) = C(P) ⊆ V(P). (2.7)

If, in addition, we assume that returns to scale are globally constant, then

P = F(P) = C(P) = V(P). (2.8)

Among (2.6)–(2.8), the latter is the most restrictive or constrained model. Alternatively,

assuming P is convex with Pδ exhibiting varying returns to scale,

P = F(P) = C(P) ⊂ V(P). (2.9)

If the empirical researcher accepts Assumption 2.3, implying P = F(P), he may wish to

test the assumption of convexity in Assumption 2.1 by testing the null hypothesis H0 : P =

C(P) ⊆ V(P) versus the alternative H1 : P = F(P) ⊂ C(P). Alternatively, if the assumption

of convexity is accepted, one might test H ′
0 : P = C(P) = V(P) versus H ′

1 : P = C(P) ⊂
V(P), which amounts to a test of globally constant returns to scale of the technology P∂

versus variable returns to scale.

Other hypotheses may also be of interest. For example, one might wish to test whether

a subset of inputs (or outputs) can be aggregated, whether an input or output is irrelevant,

whether returns to scale are non-increasing, etc. Or, one might want to estimate confidence

intervals for θ(x,y | P) or λ(x,y | P). We show in the following sections how subsampling
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can be used to test the null hypotheses of convexity versus non-convexity or constant returns

to scale versus variable returns; it is easy to extend these ideas to test other hypotheses about

the production process. Sub-sampling can also be used to consistently estimate confidence

intervals for technical efficiency measures and perhaps other quantities of interest.

3 Non-parametric Efficiency Estimators

The distance functions in (2.3)–(2.4) are defined in terms of the unknown, true production set

P, and must be estimated from a set Sn = {xi,yi}n
i=1 of observed input/output combinations.

Traditional non-parametric approaches used in analyses of efficiency and production typically

assume Pr((xi,yi) ∈ P) = 1 ∀ i = 1, . . . , n and replace P in (2.3)–(2.4) with an estimator of

the production set to obtain estimators of the Shephard input- and output-oriented distance

functions. Several possibilities exist.

Deprins et al. (1984) proposed estimating P by the free-disposal hull (FDH) of the ob-

servations in Sn, i.e.,

P̂FDH(Sn) = F(Sn) =
⋃

(xi,yi)∈Sn

{(x,y) ∈ R
p+q
+ | y ≤ yi, x ≥ xi}. (3.1)

This estimator is consistent under Assumptions 2.1–2.6, but also remains consistent when

the assumption of convexity is dropped. Alternatively, the convex hull of P̂FDH,

P̂VRS(Sn) = C(F(Sn)) =
{

(x,y) ∈ R
p+q
+ | y ≤

n∑

i=1

ωiyi, x ≥
n∑

i=1

ωixi,

n∑

i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}
, (3.2)

can be used to estimate P. If we want to estimate the more restricted model with globally

constant returns to scale (P = V(P)), then P can be estimated consistently by the conical

hull of P̂VRS(Sn) (or, equivalently, the conical hull of P̂FDH(Sn)), denoted P̂CRS(Sn) and

obtained by dropping the constraint
∑n

i=1 ωi = 1 in (3.2).

As a practical matter, DEA estimates of input or output distance functions are obtained

by solving the resulting familiar linear programs obtained after substituting P̂VRS(Sn) or

P̂CRS(Sn) for P in (2.3) or (2.4). For example, when P̂VRS(Sn) is substituted for P in (2.3),

7



one obtains the estimator

θ̂VRS(x,y | Sn) = min
θ,ω1, ..., ωn

{
θ > 0 | y ≤

n∑

i=1

ωiyi, θx ≥
n∑

i=1

ωixi,

n∑

i=1

ωi = 1, n ωi ≥ 0 ∀ i = 1, . . . , n
}
. (3.3)

Similarly, substituting P̂CRS(Sn) for P in (2.3) leads to the estimator

θ̂CRS(x,y | Sn) = min
θ,ω1, ..., ωn

{
θ > 0 | y ≤

n∑

i=1

ωiyi, θx ≥
n∑

i=1

ωixi,

ωi ≥ 0 ∀ i = 1, . . . , n
}
, (3.4)

which resembles θ̂VRS(x,y | Sn) defined in (3.3), except that the constraint
∑n

i=1 ωi = 1

does not appear on the right-hand side of (3.4).

Although FDH efficiency estimators can be written in terms of integer programming

problems, estimates based on (3.1) can be obtained using simple numerical calculations. In

particular, in the input orientation, one can compute

θ̂FDH(x,y | Sn) = min
i=1,..., n

|yi≥y

(
max

j=1, ..., p

(
xj

x
j
i

))
, (3.5)

where xj, x
j
i denote the jth elements of x (i.e., the input vector corresponding to the fixed

point of interest) and xi (i.e., the input vector corresponding to the ith observation in Sn).

Asymptotic properties of estimators of the input and output distance functions in (2.3)–

(2.4) based on P̂FDH(Sn) and P̂VRS(Sn), as well as the assumptions needed to establish con-

sistency of the estimators, are summarized in Simar and Wilson (2000b). In particular, under

Assumptions 2.1–2.6, θ̂VRS(x,y) is a consistent estimator of θ(x,y | P), with convergence

rate n−2/(p+q+1) (Kneip et al., 1998). If in addition P = V(P), then θ̂CRS(x,y) is a consis-

tent estimator of θ(x,y | P), with convergence rate n−2/(p+q) (Park et al., 2009). Finally,

if P is compact (but perhaps not convex), then under Assumptions 2.2–2.6, θ̂FDH(x,y) is a

consistent estimator of θ(x,y | P), but with convergence rate n−1/(p+q) (Park et al., 2000).

As noted in Section 1, Kneip et al. (2008) derived the limiting distribution for the DEA

estimator θ̂VRS(x,y) and proved consistency of two bootstrap procedures for inference about

θ(x,y | P). One procedure requires smoothing not only the density of the observations

in Sn, but also the initial frontier estimate; consequently, the method is computationally
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burdensome. Kneip et al. (2009) offer a simpler bootstrap based on naively resampling

from the empirical distribution of the estimated efficiencies, and replacing any draws in a

neighborhood of the frontier estimated with a draw from a uniform distribution over this

neighborhood. This procedure avoids some of the computational difficulty of the earlier

double-smooth bootstrap in Kneip et al., but nonetheless remains complicated and is not

suitable for approximating the sampling distribution of test statistics involving efficiency

measures at several data points.

The second bootstrap procedure suggested by Kneip et al. (2008) is based on sub-

sampling, but no guidance was given for choosing the size of the subsamples. For purposes of

testing hypotheses about the structure of P∂ or other features of the model, there is to date

no viable alternative to using subsampling techniques—the smoothing methods proposed by

Kneip et al. (2008) and Kneip et al. (2009), due to their focus on a single point, cannot be

adapted to more general testing situations. Recent papers by Politis et al. (2001) and Bickel

and Sakov (2008) provide theoretical results and practical suggestions for choosing the size

of subsamples when using a subsampling bootstrap for inference. In the next section, we

provide additional results needed to adapt their results to the particular circumstances of the

nonparametric production model presented in Section 2 in order to make inference about the

shape of P or Pδ, or to make inference about the efficiency of a particular point (x,y) ∈ P.

4 The Subsampling Bootstrap

4.1 Confidence intervals for efficiency of a particular point

For situations where DEA estimators are used while maintaining the convexity assumption,

Kneip et al. (2008) develop the asymptotic theory needed for using subsampling to estimate

confidence intervals for the efficiency of a particular point (x,y) ∈ P and in addition give

an algorithm with computational details. Jeong and Simar (2006) provide similar theory

for the case of FDH estimators, where the convexity assumption may be relaxed. In the

case of VRS estimators, the bootstrap principle is based on the following approximation: as

n,m→ ∞ with m/n→ 0,

m2/(p+q+1)

(
θ̂VRS(x,y | Sn)

θ̂VRS(x,y | S∗
m)

− 1

)
approx.∼ n2/(p+q+1)

(
θ(x,y)

θ̂VRS(x,y | Sn)
− 1

)
, (4.1)
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where S∗
m is a naive bootstrap sample of size m drawn from Sn. Note that the resampling

can be done either with or without replacement. Then a (1 − α) confidence interval for

θ(x,y) is given by

[
θ̂VRS(x,y | Sn)

(
1 + n−2/(p+q+1)ψα/2,m

)
, θ̂VRS(x,y | Sn)

(
1 + n−2/(p+q+1)ψ1−α/2,m

)]
, (4.2)

where ψα,m is the a-quantile of the bootstrap distribution of m2/(p+q+1)
(

bθVRS(x,y|Sn)
bθVRS(x,y|S∗

m)
− 1
)
.

Kneip et al. (2008) proved that the approximation in (4.1) is consistent for any choice

m = nγ with γ ∈ (0, 1); however, the quality of the approximation in finite samples depends

crucially on γ. Below, in Section 5.4, we discuss results from extensive Monte Carlo experi-

ments designed to determine whether ideas discussed by Bickel and Sakov (2008) and Politis

et al. (2001) for choosing m (or equivalently, choosing γ) yield confidence interval estimates

with reasonable coverage properties. Both Bickel and Sakov and Politis et al. proposed com-

puting the object of interest (e.g., a confidence interval estimate or critical value of a test) for

various values ofm, and then choosing the value ofm that minimizes some measure of volatil-

ity of the object of interest. In the case of confidence intervals for θ(x,y), one might estimate

confidence intervals of size α using various bootstrap sub-sample sizes m1 < m2 < . . . < mJ ,

and then measure volatility corresponding to mj by computing the standard deviations of

the bounds of the estimated confidence intervals corresponding to mj−k, . . . , mj, . . . , mj+k

where k is a small integer (e.g., k = 1, 2, or 3) and j = (k+1), . . . , (J−k). The sub-sample

size m would then be chosen as the mj yielding the smallest measure of volatility; explicit

details are given below in Section 5.

When the sub-sampling is done without replacement, the bootstrap distribution in (4.1)

will become too concentrated asm→ n; if fact, ifm = n, the bootstrap distribution collapses

to a single probability mass. On the other hand, as m→ 0, the resulting confidence interval

estimates will either under- or over-cover θ(x,y) since too much information is lost. An

optimal value of m will lie between these extremes; the idea is to choose a value of m that

yields “stable” estimates for confidence intervals.

Politis et al. (2001) also discussed how these ideas can be used for hypothesis testing. In

the remainder of this section, we expand their ideas to incorporate the particular features of

the model and estimators presented above in Sections 2 and 3.
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4.2 A Probabilistic Framework for Testing

In order to test hypotheses about the shape of the frontier P∂ defined in (2.2), we must first

define a probabilistic framework within which the model characteristic to be tested can be

described. This allows us to define test statistics that discriminate between the conditions of

null and alternative hypotheses. Let (Ω,A,P) be the probability space on which the random

variables X and Y are defined; by Assumption 2.5, P is the support of the joint distribution

of (X,Y ). Denote the DGP by P ∈ P. Let P0 denote the restricted DGPs where the

null hypothesis is true, and let P1 denote the complement of P0, so that P0 ∩ P1 = ∅ and

P = P0 ∪ P1. Under the null, P ∈ P0.

Now consider a particular model P ∈ P with model characteristic τ(P ) defined as

τ(P ) = E (h(g0(X,Y ), g(X,Y ))) (4.3)

where h : R
2 → R

1 is a given smooth (differentiable) function of g0(·), g(·), and where

g(·) : R
p+q
+ → R and g0(·) : R

p+q
+ → R. We assume all these functions are Borel (measurable)

functions, so that the expectation τ(P ) is well-defined. We will also assume that the variance

of h(g0(X,Y ), g(X,Y )), denoted by σ2(P ), is finite.

The choice of h(·) depends on the hypothesis to be tested; in the cases we consider,

g0(·) will be some Shephard distance function measuring distance from (X,Y ) to the fron-

tier P∂ under the null (i.e., when P ∈ P0), whereas g(·) will be a less-restrictive distance

measure appropriate for P ∈ P. As will become apparent below, in all of the testing situ-

ations we consider, it will be possible to define the function h(·) such that for all P ∈ P,

h(g0(X,Y ), g(X,Y ))
a.s.
≥ 0, while if P ∈ P0, then h(g0(X,Y ), g(X,Y ))

a.s.
= 0.

To be explicit, for purposes of testing convexity, i.e., for testing H0 : P = C(P) versus

H1 : P = F(P) ⊂ C(P), we might consider

τ(P ) = E

(
g0(X,Y )

g(X,Y )
− 1

)
, (4.4)

where g(X,Y ) := θ(X,Y | P) and g0(X,Y ) := θ(X,Y | C(P)) with θ(X ,Y | ·) defined

by (2.3). Alternatively, for testing globally constant returns to scale versus non-constant,

variable returns to scale, i.e., for testing H ′
0 : P = V(P) versus H ′

1 : P = C(P) ⊂ V(P), we

might use the expression for τ(P ) in (4.4) while defining g(X,Y ) := θ(X,Y | C(P)) and

g0(X,Y ) := θ(X ,Y | V(P)). In all situations we define τ(P ) so that τ(P ) ≥ 0 ∀ P ∈ P,
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but τ(P ) = 0 if P ∈ P0 and τ(P ) > 0 if P ∈ P1. Hence testing the null amounts to testing

H0 : τ(P ) = 0 versus H1 : τ(P ) > 0.

A consistent estimator of τ(P ) is easy to derive. Let the sample empirical mean replace

of the expectation in (4.3) and replace the unknown functions g(·) and g0(·) with their

appropriate estimators (e.g., depending on the framework, the DEA or FDH estimators

defined in (3.3), (3.4), or (3.5)). Given a random sample Sn = {(X i,Y i)}n
i=1, we obtain

τn(Sn) = n−1

n∑

i=1

(h(ĝ0(X i,Y i), ĝ(X i,Y i)) . (4.5)

Note that ĝ0(X i,Y i) is abbreviated notation for ĝ0(X i,Y i | Sn), and similarly for ĝ(X i,Y i);

the estimators are evaluated at the point (X i,Y i) using a reference sample Sn. Below, it

will be useful to use this explicit notation, in particular when using the bootstrap.

To simplify notation, let Z = (X,Y ) denote a generic observation. Define

T (Z) = h(g0(Z), g(Z)) (4.6)

and

T̂ (Z | Sn) = h(ĝ0(Z), ĝ(Z)), (4.7)

where Sn = {Zi}n
i=1. Then

τ(P ) = E(T (Z)) (4.8)

and

τn(Sn) = n−1
n∑

i=1

T̂ (Zi | Sn). (4.9)

4.3 Asymptotic Behavior of T̂ (Z | Sn)

The framework introduced above ensures that for all P , T (Z)
a.s.
≥ 0 and if P ∈ P0, then

T (Z)
a.s.
= 0. In addition, under regularity conditions (i.e., Assumptions 2.1–2.6), for all fixed

z ∈ P,

nκ
(
T̂ (z | Sn) − T (z)

)
L−→ G(· | z), (4.10)

where G(. | z) is a nondegenerate distribution whose characteristics depends on z. The

value of κ is known and depends on the problem at hand. This rate is governed by the

smallest rate of convergence of the DEA or FDH estimators used to define T (Z); for example,
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κ = 2/(p + q + 1) when testing constant returns to scale, and κ = 1/(p + q) when testing

convexity. This implies that

lim
n→∞

Pr
[
nκ
(
T̂ (z | Sn) − T (z)

)
≤ a
]

= G(a | z). (4.11)

Since T̂ (Z | Sn) and T (Z) are well-defined random variables on (Ω,A), (4.11) can be

considered as a conditional statement, with conditioning on Z = z; hence

lim
n→∞

Pr
[
nκ
(
T̂ (Z | Sn) − T (Z)

)
≤ a | Z = z

]
= G(a | z). (4.12)

By marginalizing on Z, we have

lim
n→∞

Pr
[
nκ
(
T̂ (Z | Sn) − T (Z)

)
≤ a
]

=

∫

P

G(a | z)fZ(z)dz = Q(a). (4.13)

Note that the density introduced in Assumption 2.5 has been re-written here as fZ(·). Since

G(· | z) and fZ(·) are nondegenerate, Q(·) is a nondegenerate distribution. It follows that

nκ
(
T̂ (Z | Sn) − T (Z)

) L−→ Q(·). (4.14)

Now let µQ and σ2
Q denote the finite mean and strictly positive variance of Q(·). Since

T̂ (Z | Sn)) = T (Z) + n−κW (Z), W (Z) must have limiting distribution Q(·) as n → ∞.

Combining this result with (4.8), we have

E(T̂ (Z | Sn)) = τ(P ) + µQ/n
κ (4.15)

and

VAR(T̂ (Z | Sn)) = σ2(P ) + σ(P )O(n−κ) + σ2
Q/n

2κ, (4.16)

where the second term in (4.16) accounts for the covariance between T (Z) and n−κW (Z)

(which is bounded by the product of their standard deviations). Note that when the null is

true, i.e., P ∈ P0, τ(P ) = σ2(P ) = 0 and the formulae (4.15) and (4.16) simplify accordingly.

4.4 Asymptotic Behavior of τn(Sn)

From the results in (4.15) and (4.16), it is easy to derive the asymptotic mean and the

variance of τn(Sn). For the latter, we have to consider the asymptotic covariance between

T̂ (Zj;Sn) and T̂ (Zk;Sn), for j 6= k. The local nature of the asymptotic distribution of DEA
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efficiency estimators is given by Theorem 1(i) in Kneip et al. (2008) and Theorem 4.1 in

Kneip et al. (2009). The value of the DEA estimator at a point is essentially determined by

those observations which fall into a small neighborhood of the projection of this point onto

the frontier. Using the reasoning in the proof of Theorem 4.1 in Kneip et al. (2009), consider

a point z ∈ P where the DEA score (i.e., efficiency estimate) is evaluated and let Cz(h) be

a neighborhood of the frontier point z∂ determined by the projection of the point z on the

true frontier; h is a bandwidth that controls the size of this neighborhood. If h2 = O
(
n−κ

)
,

Cz(h) will contain the DEA estimate of the frontier at z with probability 1. Since h→ 0 as

n→ ∞, the probability of an observation Zi falling in Cz(h) is approximated by

πn = Pr
(
Z ∈ Cz(h)

)
≈ fZ(z∂)(2h)p+q−1h2 = O

(
n−1
)
. (4.17)

For large n, the distribution of the number of points Zi falling in Cz(h) follows approxi-

mately a Poisson distribution with parameter nπn = O(1). As shown in Kneip et al. (2009),

when n→ ∞, only points falling in this neighborhood influence the distribution of the DEA

estimator at the point z. The number of such points is O(1). Consequently, the covariances

between the DEA estimator at Zj and the (n − 1) DEA estimators at the other points Zk

is nonzero for at most O(1) of these (n − 1) estimators. Moreover, each of the nonzero

covariances is bounded by the product of the standard deviations derived from (4.16); there-

fore, the n covariance terms sum to nO(1)[σ2(P )+σ(P )O(n−κ)+σ2
Q/n

2κ]. Combining these

results, we obtain

E(τn(Sn)) = τ(P ) +
µQ

nκ
(4.18)

and

VAR(τn(Sn)) =
1

n2

{
n× [σ2

Q/n
2κ +O(n−κ)σ(P ) + σ2(P )]

}
= O(n−1). (4.19)

Hence for all P ∈ P, τn(Sn)
P−→ τ(P ) and τn(Sn) is a consistent estimator of τ(P ). From

(4.18) we also see that µQ/n
κ acts as a bias term that disappears asymptotically. Under the

null, since τ(P ) = σ(P ) = 0, we obtain for all P ∈ P0,

E(τn(Sn)) = µQ/n
κ (4.20)

and

VAR(τn(Sn)) = σ2
Q/n

1+2κ = O(n−(1+2κ)), (4.21)
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indicating that the rate of convergence of τn(Sn) is faster when the null is true as opposed

to when it is false.

Consistency of the subsampling approximation in (4.1) follows from Theorem 3.1 of Politis

et al. (2001), which requires that under the null, nκ
√
nτn(Sn) converge to a nondegenerate

distribution. It is sufficient to assume an additional technical regularity condition on fZ(·),
in order to obtain a normal limiting distribution.

Proposition 4.1. If the joint density f(x,y) of (X,Y ) is such that the moments of Q(·)
exist up to the fourth order, then under the null hypothesis H0 : P ∈ P0,

nκ
√
n (τn(Sn) − µQ/n

κ)
L−→ N (0, σ2

Q). (4.22)

This proposition follows directly when considering the triangular array (see e.g. Serfling,

1980, Section 1.9.3, p.31)

T̂ (Z1;S1);

T̂ (Z1;S2) T̂ (Z2;S2);
...

T̂ (Z1;Sn) T̂ (Z2;Sn) . . . T̂ (Zn;Sn);
....

The mean and the variance of the sums were derived above. Proposition 4.1 follows from

the Lyapunov condition with ν = 3 (see the corollary in Section 1.9.3 of Serfling), i.e.,

nE
∣∣T̂ (Zj ;Sn) − µQ/n

κ
∣∣3

(
nσ2

Q/n
2κ
)3/2

= o(1), (4.23)

which holds provided moments of Q(·) exist up to fourth order.1

1The argument used here is standard; in addition, it is straightforward to verify that the result also holds
in the unrestricted case where P ∈ P. The only difference will be in the expressions for the mean and
the variance of τn(Sn) that appear in (4.18) and (4.19). Of course, to satisfy the Lyapunov condition an
additional technical regularity condition on the random variable T (Z) is needed. In particular, T (Z) must
have finite moments up to order 4 (when H0 is true, P ∈ P0 and T (Z) is a degenerate random variable equal
to zero). Hence, for P ∈ P,

√
n
(
τn(Sn) − (τ(P ) + µQ/nκ)

) L−→ N
(
0, σ2

Q/n2α + O(n−κ)σ(P ) + σ2(P )
)
.

Note that the rate of convergence is slower when the null is false.
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4.5 Testing by Subsampling

Since τn(Sn) is a consistent estimator of τ(P ), we will reject the null if τn(Sn) is “too

large.” For m < n, let τm(S∗
m) denote the test statistic evaluated using the pseudo data

set S∗
m obtained by drawing m observations from Sn without replacement. Due to the

results derived above, for a test of level α we reject the null hypothesis H0 if and only

if nκ
√
nτn(Sn) > qm,n(1 − α), where qm,n(1 − α) is the (1 − α) quantile of the bootstrap

distribution of mκ
√
mτm(S∗

m) approximated by

Ĝm,n(a) =
1

B

B∑

b=1

1I
(
mκ

√
mτm(S∗,b

m ) ≤ a
)
, (4.24)

where 1I() denotes the indicator function, B ≤
(
n
m

)
is the number of bootstrap replications,

and
{
τm(S∗,b

m )
}B

b=1
is the set of bootstrap estimates, each computed from different random

subsamples of size m. Theorem 3.1 of Politis et al. (2001) ensures that this testing procedure

is asymptotically of size α and is consistent (i.e., the probability of rejecting the null when

it is false converges to 1), provided m,n→ ∞ with m/n→ 0.

Note that in the procedure proposed here, we neglect the bias term µQ/n
κ appearing

in (4.22). This bias term could be estimated while performing the bootstrap computations,

but results from our Monte-Carlo experiments suggest that this introduces substantial noise;

results (both in term of achieved level and of power) are better when the bias term is simply

ignored.

The procedure for selecting the subsample size m is in practice very similar to the idea

explained above in Section 4.1 in connection with estimation of confidence intervals. In test-

ing situations, the “optimal” m can be selected by minimizing the volatility of the quantiles

qm,n(1 − α), viewed as a function of m.

5 Monte Carlo Evidence

5.1 Experimental Framework

We perform three sets of Monte Carlo experiments to examine the performance of the sub-

sampling bootstrap is situations faced by applied researchers under real-world conditions. In

the first two sets of experiments, we consider size and power properties of tests of convexity
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of the production set P and returns to scale of the technology P∂. In the third set of

experiments, we examine the coverages of confidence intervals for technical efficiency of a

fixed point.

In each of the three sets of experiments, we consider two sample sizes, n ∈ {100, 1000},
and DGPs with either two dimensions (with p = q = 1) or four dimensions (with p = 3,

q = 1).2 In each experiment, we perform 1,024 Monte Carlo trials. On each Monte Carlo

trial, we perform 2,000 bootstrap replications for each of 49 sub-sample sizes m ∈ Mn =
{

n
50
, 2n

50
, 3n

50
, . . . , 49n

50

}
. For each sub-sample size m, we use k ∈ {1, 2, 3} to select the

“optimal” sub-sample size as described above in Section 4. We conduct experiments using

resampling without replacement as well as resampling with replacement.

In the first two experiments where we test a null hypothesis H0 against an alternative

hypothesis H1, on a particular Monte Carlo trial, we generate n observations and then

compute the relevant test statistic. Next, for each sub-sample size mj ∈ Mn, we perform

2,000 bootstrap replications and compute corresponding critical values {c1, c2, . . . , c49} for

(one-sided) tests of size α ∈ {.1, .05, .01}. Then, for a given test size α, we minimize critical

value volatility along the lines of Politis et al. (2001) using the following steps:

[i] For j ∈ {Jlo, . . . , Jhi} and for a small integer value k, compute volatility indices given

by the standard deviations ŝj of the critical values {cj−k, . . . , cj+k}.

[ii] Choose ĵ corresponding to the smallest volatility index, and take cbj as the final critical

value, with corresponding sub-sample size m̂ = mbj .

The procedure for estimating confidence intervals is similar. On a particular Monte Carlo

trial, we generate data from the relevant DGP, and compute an estimate θ̂ corresponding

to the point of interest (x0,y0), where θ̂ is either θ̂V RS(x0,y0 | Sn) defined in (3.3) or

θ̂FDH(x0,y0 | Sn) defined in (3.5). Then for each sub-sample size mj ∈ Mn, we perform

2,000 bootstrap replications yielding bootstrap values {θ̂∗mb}2000
b=1 corresponding to the initial

estimate θ̂. For confidence intervals of size α, we next compute the ψα/2,mj
and ψ1−α/2,mj

percentiles of the empirical distribution of the bootstrap values mκ
j

(
bθ

bθ∗
mb

− 1
)
, where κ equals

either 2/(p+ q + 1) if θ̂ is the VRS-DEA estimator defined in (3.3), or 1/(p+ q) if θ̂ is the

2Of course, situations involving more than one output can be easily handled using our methods; here, we
use only one output to simplify the process of simulating data.
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FDH estimator defined in (3.5). The confidence interval estimate of nominal size α is then[
θ̂
(
1 + n−κψα/2,mj

)
, θ̂
(
1 + n−κψ1−α/2,mj

)]
.3

After performing the bootstrap for each subsample size mj ∈ Mn, we have 49 confidence

interval estimates {(ĉlo,j(α), ĉhi,j(α))} for a particular size α. We then choose among the

various confidence interval estimates by minimizing volatility as in Algorithm 6.1 appearing

in Politis et al. (2001); in particular, we use the following steps:

[i] For each j ∈ {Jlo, . . . , Jhi} and for a small integer value k, compute the volatility

index ŝj given by the sum of the standard deviations of {ĉlo,j−k(α), . . . , ĉlo,j+k(α)}
and {ĉhi,j−k(α), . . . , ĉhi,j+k(α)}.

[ii] Choose ĵ corresponding to the smallest volatility index, and take
[
ĉlo,bj, ĉhi,bj

]
as the

final confidence interval estimate, with corresponding sub-sample size m̂ = mbj .

The remainder of this section describes results from specific Monte Carlo experiments

designed to gage the performance of the sub-sampling bootstrap for testing convexity and

returns to scale, as well as for estimating confidence intervals for technical efficiency of a

given point.

5.2 Testing Convexity

Suppose that a sample Sn of n input-output vectors is observed. For purposes of testing

convexity, i.e., testing H0 : P = F(P) = C(P) versus H1 : P = F(P) ⊂ C(P), we consider

two different test statistics, namely

τ̂1(Sn) = n−1
n∑

i=1

(
θ̂VRS(xi,yi | Sn)

θ̂FDH(xi,yi | Sn)
− 1

)
≥ 0 (5.1)

and

τ̂2(Sn) = n−1

n∑

i=1

D2i
′D2i ≥ 0, (5.2)

where D2i =
(
xiθ̂VRS(xi,yi | Sn)−1 − xiθ̂FDH(xi,yi | Sn)−1

)
is a (p×1) vector. The statistic

τ̂1(Sn) exploits the multiplicative structure of the non-parametric efficiency estimators. The

statistic τ̂2(Sn) gives an estimate of the mean integrated square difference between the VRS

3The interval given by (4.2) is a special case of this, where θ̂ is the VRS-DEA estimator.
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and FDH frontier estimates; a similar statistic was proposed by Härdle and Mammen (1993)

to test parametric regression model fits against non-parametric alternatives. In terms of

the discussion in Section 4, the statistics defined in (5.1) and (5.2) are estimators of the

population quantities τ1 and τ2, respectively, obtained by replacing the distance function

estimators in (5.1)–(5.2) with the corresponding true distance function values. Under the

null hypothesis H0, it is clear that τ1 = τ2 = 0, whereas under the alternative hypothesis

H1, τ1 > 0 and τ2 > 0. Hence under H0, both τ̂1(Sn) and τ̂2(Sn) are expected to be “small,”

whereas under H1, τ̂1(Sn) and τ̂2(Sn) are expected to be “large,” and the question is whether

the statistics defined in (5.1)–(5.2) are large enough to reject the null hypothesis H0. The

sub-sampling bootstrap described in Section 4 can be used to determine the necessary critical

values.

We simulate DGPs for the two-dimensional case (i.e., p = q = 1) by drawing (efficient)

input values x̃ from the uniform distribution on the interval [0, 1], and then setting

y = x̃δ (5.3)

for some δ > 0 to obtain the corresponding efficient output levels. Next, we set x = x̃eu,

where u ∼ Exp(1/3) (i.e., u is exponentially distributed with parameter equal to 3, so that

E(u) = 1/3) to obtain simulated observations (x, y). For the four-dimensional case (i.e.,

p = 3, q = 1), we first draw a triplet of efficient input quantities x̃1, x̃2, x̃3 from the uniform

distribution on [0, 1], and then set

y =
[
x0.33

1 x0.33
2 x0.34

3

]δ
(5.4)

where again δ > 0. Next, we draw u ∼ Exp(1/3) and set xj = x̃je
u for each j ∈ {1, 2, 3} to

obtain a simulated observations (x1, x2, x3, y).

In our experiments, we simulate the DGPs described above using values δ ∈
{0.5, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.4, 3.0}. When δ = 0.5, the production set is

strictly convex, while it is weakly convex when δ = 1.0. For δ > 1, the production set is

not convex, with increasing departures from the null hypothesis of convexity as δ increases

above one. Experiments were conducted using resampling without replacement as well as re-

sampling with replacement. To conserve space, we report here only results from experiments

using resampling without replacement.4

4Results from the experiments using resampling with replacement are available in a separate appendix,
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In each experiment, we estimate rejection rates corresponding to each of 49 values mj ∈
Mn by counting, for each mj , the number of trials where the null hypothesis is rejected and

then dividing these counts by the number of Monte Carlo trials (1,024). Overall, tests based

on the statistic τ̂2n(Sn) out-performed those based on τ̂1n(Sn) in terms of both achieved size

and power; consequently we focus the discussion that follows on the tests using τ̂2n(Sn).

Figure 1 shows the results of this analysis using the test statistic τ̂2(Sn) defined in (5.2)

for the two sample sizes and the two dimensionalities that we considered in our experiments.

Each panel of Figure 1 shows 10 curves corresponding to the 10 different values of δ plotted

as alternating solid and dashed lines. Each curve represents rejection rate as a function of

bootstrap sub-sample size. In each panel, starting from the southwest corner and moving

toward the northeast corner, we encounter the first solid curve which corresponds to δ = 0.5

and the first dashed curve, corresponding to δ = 1. We next encounter alternating solid and

dashed curves corresponding to δ = 1.1, δ = 1.2, and so on. Also in each panel, a horizontal

line is plotted at height 0.05 on the vertical axis which measures rejection rates.

The two panels in the top half of Figure 1 show rejection rates for the two-dimensional

case where p = q = 1. Comparing the two lowest curves (where H0 is true) in these panels

confirms that as n increases from 100 to 1,000, the range of values of m that yield rejection

rates “close” to five percent becomes wider; i.e., the cures depicting rejection rates for various

values of m become flatter and closer to the horizontal line at 0.05 when the sample size is

increased. The two panels also illustrate that the test has good power for a wide range of

values of m, and that power increases over all but the larges values of m as the sample size

increases.

The two panels in the bottom half of Figure 1 show rejection rates for the four-dimensional

case where p = 3 and q = 1. The story here is similar, but there is a cost of increasing

dimensionality. With the same sample size (either n = 100 or n = 1000), the range of values

of m that yield rejection rates near five percent when H0 is true is narrower in this case

than in the two-dimensional case. Nonetheless, the two panels in the bottom half of Figure

1 confirm again that as n increases, the curves corresponding to δ = 0.5 and δ = 1 become

flatter and closer to the horizontal line drawn at 0.05 on the vertical axis.5

available on-line at http://www.stat.ucl.ac.be/ISpub/ISdp.html/.
5Figure A.1 in the separate appendix mentioned in footnote 4 shows plots of rejection rates versus sub-

sample sizes analogous to those in Figure 1, except that the rejection rates depicted in Figure A.1 are those
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Overall, the results shown in Figures 1 confirm the theoretical results in Section 4. How-

ever, the results shown in the Figures give average rejection rates for fixed values of sub-

sample sizes m. The applied researcher, by contrast, must choose a single value of m using

the procedure described in Section 4. In order to assess expected rejection rates when m

is chosen by minimizing volatility of critical values, we employed the method described in

Section 5.1 using Jlo = 15, Jhi = 45, and k ∈ {1, 2, 3} on each of 1,024 Monte Carlo trials

in each experiment. For each experiment using resampling without replacement, we report

in Tables 1–2 the proportion of Monte Carlo trials where H0 was rejected using the test

statistic τ̂2(Sn) defined in (5.2) with critical values chosen by minimizing volatility; Table 1

gives results for the two-dimensional case (with p = q = 1), while Table 2 gives results for

the four-dimensional case (with (p = 3, q = 1). On a given Monte Carlo trial, either k = 1,

2, or 3 was used to optimize the choice of sub-sample size m at .90, .95, and .99 significance

levels. The optimization was done independently for each significance level and each value

of k to produce the nine columns of results in Tables 1–2.6

The results reported in Tables 1–2 have clear implications for implementing tests of

convexity based on sub-sampling. First, setting k = 1 typically results in greater test power

than k = 2 or 3. Second, power increases rapidly as the sample size increases. Even in

the four-dimensional case, when k = 1 and resampling without replacement is used, the

probability of rejecting the null at .95 significance rises from 0.01 when δ = 1.0 to 0.36 when

δ = 1.1 with n = 1, 000 as shown in Table 2. Third, regardless of the value of k, the tests

are conservative; i.e., when δ = 0.5 or 1.0 (and H0 is true), the average rejection rates are

less than the nominal size or one minus the significance level. Nonetheless, power typically

increases rapidly as δ is increased above one; i.e., power increases rapidly with departures

from the null.7 Finally, comparing results in Tables 1–2 with similar results from experiments

using resampling with replacement (reported in Tables A.1–A.2 in the separate appendix

obtained using resampling with replacement. Comparing the results shown in the two figures, it is apparent
that for given dimensionality (p + q) and sample size n, the optimal sub-sample size m is smaller when
resampling is done with replacement as opposed to without replacement. In addition, holding dimensionality
and sample size constant, resampling with replacement typically results in less test power than resampling
without replacement for given subsample sizes and departures from the null.

6Results for tests of convexity based on the statistic τ̂1(Sn) defined in (5.1) are available in the separate
appendix mentioned in footnote 4.

7Of course, the null hypothesis in our test is a composite hypothesis. We have considered only two values
of δ where the null is true while the size of the test is equal to the supremum of rejection rates for each value
of δ ∈ (0, 1].
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mentioned earlier), it is apparent that for given dimensionality and given k, resampling

without replacement yields greater test power than resampling with replacement when m is

optimized for each Monte Carlo trial.

Delving further into the results of our experiments, Figure 2 shows, for p = q = 1

and n = 1, 000, results from six individual Monte Carlo trials chosen at random.8 Figure

2 contains six panels; those in the first column show results from individual trials in the

experiment where δ = 1.0 (where P is weakly convex), while those in the second column

give results from trials in the experiment where δ = 1.1 (where P is not convex). In each

panel, estimated 95-percent critical values are plotted (using small crosses) as a function of

the various sub-sample sizes mj ∈ Mn. The solid horizontal line in each panel intersects the

vertical axis at the value of the test statistic τ̂2(Sn), while the vertical dotted line represents

the value m̂ (and hence the corresponding critical value) chosen by minimizing volatility

using k = 1 as described in Section 5.1.

In the three panels in the left column of Figure 2, where the null is true, most of the

estimated critical values lie above the horizontal line showing the values of the test statistic;

in these trials, the null is not rejected. Meanwhile, in the right-hand column, most of the

estimated critical values lie below the horizontal line showing the values of the test statistic;

in each of these trials, the null is rejected. In the Monte Carlo trial represented in the lower

right-hand panel, the test statistic is 2.360, while the critical value chosen by minimizing

volatility is equal to 2.357; hence the null is rejected.

In an applied setting, the researcher could examine plots of estimated critical values

versus sub-sample sizes as we have done in Figure 2. With dimensionality larger than we

have considered here, or with smaller sample sizes, the results may be less clear-cut than

those shown in Figure 2. Nonetheless, visual examination of the results is likely to give useful

information in addition to information obtained using the mechanism described in Section

5.1 to minimize volatility.

We also considered tests of convexity based on statistics similar to those defined in (5.1)

and (5.2), but where the linearly interpolated FDH (LFDH) estimator proposed by Jeong

and Simar (2006) replaces the FDH estimator used to define τ̂1n(Sn) and τ̂2n(Sn). The per-

8Trials represented in Figure 2 were chosen by generating uniform random integers between 1 and 1,024
(inclusive).

22



formance of these modified tests were similar to those of the original statistics; consequently,

there seems to be no reason to incur the extra computational burden involved when the

LFDH estimator is used.9

5.3 Testing Returns to Scale

To examine rejection rates of tests of returns to scale, we modified the DGPs described by

(5.3) and (5.4) to allow for variable returns to scale under departures from the null hypothesis

of constant returns to scale. In the case of one input and one output (p = q = 1), we draw

(efficient) input values x̃ from the uniform distribution on the interval [1−δ, 2−δ] and then

set

y = (x̃− (1 − δ))δ (5.5)

to obtain the corresponding efficient output levels. Next, we set x = x̃eu, where u ∼ Exp(1/3)

to obtain a simulated observation (x, y). For the case of three inputs and one output, (i.e.,

p = 3, q = 1), we first draw a triplet of efficient output quantities x̃1, x̃2, x̃3 from the

uniform distribution on [1 − δ, 2 − δ], and then set

ỹ =
[
(x1 − (1 − δ))0.33 (x2 − (1 − δ))0.33 (x3 − (1 − δ))0.34]δ (5.6)

to obtain the corresponding output quantity. Next, we draw u ∼ Exp(1/3) and set xj = x̃je
u

for each j ∈ {1, 2, 3} to obtain a simulated observation (x1, x2, x3, y). In both the two- and

four-dimensional cases, we consider values of δ ∈ {1.0, 0.95, 0.90, . . ., 0.60, 0.50}. When

δ = 1, the technologies in (5.5) and (5.6) exhibit constant returns to scale; as δ decreases

from unity, the technologies are characterized by (increasingly) variable returns to scale and

greater departures from the null hypothesis of constant returns to scale.

We examined two statistics for testing the null hypothesis of constant returns to scale

versus the alternative hypothesis of variable returns to scale (i.e., testing H ′
0 : P = V(P)

versus H ′
1 : P = C(P) ⊂ V(P)), namely

τ̂3(Sn) = n−1
n∑

i=1

(
θ̂CRS(xi,yi | Sn)

θ̂VRS(xi,yi | Sn)
− 1

)
≥ 0 (5.7)

9Results for convexity tests based on the LFDH estimator are available in the separate appendix mentioned
in footnote 4.
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and

τ̂4(Sn) = n−1

n∑

i=1

D4i
′D4i ≥ 0, (5.8)

where D4i =
(
xiθ̂CRS(xi,yi | Sn)−1 − xiθ̂VRS(xi,yi | Sn)−1

)
is a (p×1) vector. These statis-

tics are similar to those defined in (5.1) and (5.2) for testing convexity (versus non-convexity)

of P. In addition, the statistics defined in (5.7)–(5.8) estimate the corresponding population

quantities τ3 and τ4 obtained by replacing the distance function estimators in (5.7)–(5.8) with

the corresponding true values. Under the null, τ3 = τ4 = 0, whereas under the alternative,

τ3 > 0 and τ4 > 0.

As in the experiments involving the convexity tests, we conducted experiments using

resampling without replacement as well as resampling with replacement. In all of our exper-

iments analyzing tests of returns to scale, the statistic τ̂3(Sn) dominated the statistic τ̂4(Sn)

in terms of achieved size and power. This result contrasts with our experience with the

tests of convexity described in Section 5.2, where the statistic τ̂2(Sn) based on mean inte-

grated difference dominated the statistic τ̂1(Sn), which is analogous to τ̂3(Sn); both τ̂1(Sn)

and τ̂3(Sn) are based on ratios of distance function estimators. In order to save space, we

report only results for tests using τ̂3(Sn); results for tests based on τ̂4(Sn) are available in

the separate appendix mentioned in Section 5.2.

Tables 3 shows results for tests of returns to scale using τ̂3(Sn) and resampling without

replacement in the two-dimensional case, while Table 4 shows similar results for the four-

dimensional case.10 The results from our experiments reveal some clear patterns. First,

as was the case in Section 5.2, resampling without replacement produces tests with better

size and power properties than resampling with replacement, holding sample size, k, and

dimensionality constant. Second, setting k = 1 again dominates k = 2 or 3 in terms of size

and power. Third, with k = 1 and resampling with replacement, the test has good power.

Moreover, power increases rapidly with sample size as well as with departures from the null.

5.4 Confidence Interval Estimation

In order to examine the performance of the sub-sampling bootstrap for inference regarding

technical efficiency of a given point or firm, we simulate DGPs using the technologies defined

10Similar results from experiments using resampling with replacement appear in Tables A.7–A.8 of the
separate appendix.
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by (5.3) for the two-dimensional case and by (5.4) for the four-dimensional case, setting

δ = 0.8 and drawing observations as described in Section 5.2. In our experiments, we

consider the coverage of estimated confidence intervals for the technical efficiency of a single

fixed point (x0,y0). For p = q = 1, we set y0 = 0.5745 and x0 = θ0
(
0.57451/δ

)
, where θ0 = 2

is the “true” value of the Shephard input distance function defined in (2.3). For the four-

dimensional case with p = 3, q = 1, the fixed point of interest is given by y0 = 0.4902 and

x0 = θ0
[
0.49021/δ 0.49021/δ 0.49021/δ

]
; again, θ0 = 2 is the “true” value of the Shephard

input distance function defined in (2.3).

We consider resampling both with and without replacement. In addition, we consider

balanced as well as unbalanced sampling. Unbalanced sampling amounts to drawing m ob-

servations from Sn, without regard to the position of the fixed point of interest. Balanced

sampling, by contrast, involves dividing the observations in Sn into the set S1n of n1 obser-

vations where yi 6≥ y0 and the set S2n of n2 = n − n1 observations where yi ≥ y0. Define

the operator Nint(·) as returning the whole number nearest its argument, with fractional

portions equal to 0.5 rounded to the nearest whole number that is larger in magnitude than

the argument of the function. Then for a sub-sample of size m, m2 = Nint
(

m n2

n

)
observa-

tions are drawn from S2n, and m1 = m−m2 observations are drawn from S1n (in both cases,

either with or without replacement). Balanced (sub)-sampling avoids situations where, on

a given bootstrap replication, the bootstrap efficiency estimate is infeasible. This will occur

whenever the sub-sample contains only observations where yi < y0 ∀ i = 1, . . . , m (or, in

the output orientation, where xi > x0 ∀ i = 1, . . . , m). When using unbalanced resampling,

in bootstrap replications where the bootstrap efficiency estimator is infeasible, we set the

estimate equal to one.11

Table 5 gives estimated coverages of confidence intervals obtained using the input-oriented

DEA efficiency estimator θ̂VRS(x0,y0 | Sn) defined in (3.3). Comparing rows 1–4 with rows

5–8, and rows 9–12 with rows 13–16, it is apparent that resampling with replacement yields

coverages closer to nominal levels than resampling without replacement. This is in contrast

to the results for testing convexity and returns to scale. The choice of balanced versus

11In our experiments with unbalanced resampling, setting the bootstrap efficiency estimator equal to one
when the estimate is infeasible amounts to recognizing that the particular bootstrap replication has no useful
information for inference, and avoids imposing conditioning in the bootstrap world that is not present in the
real world. This does not alter the asymptotic properties of our bootstrap. A similar device was used by
Jeong and Simar (2006).
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unbalanced resampling seems to make little difference in the coverages that are achieved. In

addition, the choice of value for k used to construct the volatility indices seems less critical

than in the tests of convexity and returns to scale examined previously in Sections 5.2 and

5.3. Here, setting k = 1 seems to give slightly better results than k = 2 or 3, but the

differences are small and insignificant when resampling is done with replacement.

Overall, the coverages achieved using resampling with replacement and k = 1 in the

volatility minimization are typically farther from the nominal coverages than obtained using

the bootstrap proposed by Kneip et al. (2009, Table 2). For example, with α = 0.05 and

two dimensions, the Kneip et al. (2009) bootstrap yields coverages of 0.929 and 0.941 with

n = 100 and 1,000 (respectively), whereas in Table 5 the best coverages with α = 0.05 and

two dimensions are 0.902 and 0.883 with n = 100 and 1,000 (respectively). Note also that the

results obtained with the sub-sampling bootstrap in Table 5 show little or no improvement

as sample size increases from n = 100 to n = 1000, while the results reported in Kneip et al.

(2009) show clear improvement as sample size increases. Clearly, there is a price to pay for

throwing away data when inferences are made by subsampling.

Table 6 gives results similar to those displayed in Table 5, but the results in Table 6

show achieved coverages of confidence intervals estimated using the FDH efficiency estimator

defined in (3.5). The pattern of results obtained with the FDH estimator are similar to

those obtained with the DEA estimator. In particular, resampling with replacement gives

better coverages than resampling without replacement, while using balanced or unbalanced

sampling makes little difference. Also, as was the case with the DEA estimator, using k = 1

to minimize volatility typically gives better coverages than k = 2 or 3, but the differences are

neither large nor significant. Overall, the coverages obtained with the FDH estimator are

worse than those obtained with the DEA estimator. This is perhaps not surprising, given

the slower convergence rate of the FDH estimator.

6 Conclusions

Sub-sampling is an attractive option for inference in situations where DEA efficiency esti-

mators are used. The substantial computational burden of the double-smooth procedure

proposed by Kneip et al. (2008) is avoided, and the method is much simpler than the

computationally-efficient method of Kneip et al. (2009). However, lunch is not free. For
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purposes of estimating confidence intervals, our simulation results discussed above indicate

that the achieved coverages of confidence intervals estimated by sub-sampling are farther

from the corresponding nominal coverages than the coverages of intervals estimated using

the method of Kneip et al. (2009). This is not surprising—the sub-sampling gives up data,

and hence information, in order to avoid the inconsistency problems discussed by Simar and

Wilson (1999a, 1999b). The method proposed by Kneip et al. (2009) also trades informa-

tion to avoid inconsistency, but only in a small neighborhood near the frontier; since less

information is sacrificed, coverages are better with the Kneip et al. (2009) method.

For purposes of testing hypotheses about the nature of the production set where the

test statistic involves a function of DEA and perhaps FDH or other estimators, there seems

to be no viable alternative to sub-sampling. The double-smooth bootstrap proposed by

Kneip et al. (2008) as well as the computationally-efficiency method proposed by Kneip et

al. (2009) are specific to a single point. These methods give the sampling distribution of

a DEA efficiency estimator for a specific point, but cannot give the sampling distribution

of a function of DEA estimators corresponding to different points. Hence sub-sampling is

required if the goal is to test hypotheses about the structure of the production set.

Our simulation results indicate that when the sub-sample size m is chosen using the

methods we employed in our Monte Carlo experiments, tests of convexity and returns to

scale yield reasonable size properties and good power. To the extend that the realized sizes

of our tests differs from nominal sizes, evidence from our experiments indicate that the

tests are conservative; i.e., when testing a null hypothesis at nominal size α, the probability

of rejecting the null may be less than α. At the same time, the probability of rejection

increases rapidly with even small departures from the null, and hence the tests have good

power properties.

Although choosing the sub-sample size m requires performing bootstraps for an array

of sub-sample sizes, the computational burden remains much smaller than methods that

involve smoothing which require cross-validation to choose bandwidths. Moreover, we have

discussed in Section 5.2 how one might use graphical methods to choose the sub-sample size

and to determine whether the null hypothesis should be rejected. These methods would be

easy for the applied researcher to implement using the FEAR software library developed by

Wilson (2008) or perhaps other software, and therefore should be useful.
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Table 1: Rejection Rates of Convexity Test using τ̂2(Sn) (p = q = 1, resampling without
replacement)

k = 1 k = 2 k = 3
(1 − α) (1 − α) (1 − α)

n δ .90 .95 .99 .90 .95 .99 .90 .95 .99

100 0.5 0.042 0.013 0.000 0.026 0.008 0.001 0.023 0.004 0.000
1.0 0.032 0.009 0.000 0.019 0.008 0.000 0.018 0.005 0.000
1.1 0.137 0.044 0.007 0.047 0.012 0.001 0.033 0.008 0.000
1.2 0.263 0.118 0.021 0.088 0.032 0.006 0.046 0.015 0.001
1.3 0.425 0.229 0.080 0.188 0.049 0.021 0.109 0.019 0.003
1.4 0.497 0.263 0.147 0.279 0.062 0.033 0.202 0.014 0.002
1.6 0.688 0.383 0.253 0.495 0.136 0.049 0.435 0.054 0.006
1.8 0.763 0.477 0.302 0.632 0.197 0.041 0.580 0.114 0.005
2.4 0.914 0.665 0.397 0.857 0.419 0.080 0.838 0.319 0.010
3.0 0.926 0.714 0.444 0.890 0.534 0.117 0.880 0.447 0.013

1000 0.5 0.035 0.009 0.001 0.021 0.004 0.000 0.020 0.006 0.000
1.0 0.019 0.002 0.000 0.009 0.001 0.000 0.004 0.000 0.000
1.1 0.925 0.818 0.568 0.911 0.727 0.321 0.900 0.678 0.182
1.2 0.995 0.974 0.938 0.996 0.965 0.899 0.991 0.960 0.873
1.3 0.999 0.993 0.979 0.998 0.991 0.966 0.997 0.990 0.964
1.4 0.998 0.993 0.978 0.998 0.985 0.971 0.999 0.984 0.960
1.6 0.999 0.995 0.987 0.999 0.990 0.981 0.999 0.990 0.977
1.8 0.998 0.997 0.992 0.998 0.997 0.987 0.998 0.996 0.985
2.4 1.000 0.999 0.998 1.000 0.998 0.995 1.000 0.998 0.992
3.0 0.998 0.995 0.998 0.999 0.994 0.988 0.998 0.993 0.987
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Table 2: Rejection Rates of Convexity Test using τ̂2(Sn) (p = 3, q = 1, resampling without
replacement)

k = 1 k = 2 k = 3
(1 − α) (1 − α) (1 − α)

n δ .90 .95 .99 .90 .95 .99 .90 .95 .99

100 0.5 0.061 0.028 0.006 0.021 0.002 0.003 0.014 0.001 0.000
1.0 0.038 0.023 0.005 0.007 0.003 0.000 0.003 0.002 0.000
1.1 0.113 0.063 0.012 0.021 0.009 0.003 0.010 0.004 0.000
1.2 0.159 0.095 0.032 0.035 0.012 0.006 0.020 0.002 0.000
1.3 0.242 0.122 0.054 0.079 0.021 0.007 0.057 0.009 0.001
1.4 0.312 0.171 0.107 0.150 0.032 0.019 0.114 0.016 0.004
1.6 0.463 0.246 0.158 0.284 0.056 0.013 0.241 0.017 0.001
1.8 0.581 0.281 0.199 0.412 0.107 0.035 0.361 0.064 0.007
2.4 0.776 0.461 0.290 0.690 0.250 0.046 0.666 0.192 0.009
3.0 0.812 0.560 0.290 0.737 0.341 0.061 0.723 0.285 0.009

1000 0.5 0.032 0.014 0.000 0.010 0.002 0.000 0.002 0.001 0.000
1.0 0.026 0.010 0.001 0.007 0.000 0.000 0.000 0.000 0.000
1.1 0.619 0.360 0.186 0.486 0.136 0.039 0.448 0.093 0.013
1.2 0.974 0.887 0.660 0.970 0.853 0.367 0.968 0.837 0.231
1.3 0.992 0.970 0.875 0.989 0.955 0.782 0.989 0.950 0.731
1.4 0.995 0.979 0.947 0.997 0.972 0.917 0.996 0.971 0.896
1.6 0.999 0.995 0.984 0.998 0.989 0.971 0.998 0.988 0.959
1.8 1.000 0.993 0.983 0.998 0.989 0.976 0.999 0.988 0.965
2.4 0.999 0.995 0.990 0.999 0.994 0.979 0.998 0.992 0.974
3.0 1.000 0.999 0.994 1.000 0.995 0.983 1.000 0.994 0.982
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Table 3: Rejection Rates of Returns to Scale Test using τ̂3(Sn) (p = q = 1, resampling
without replacement)

k = 1 k = 2 k = 3
(1 − α) (1 − α) (1 − α)

n δ .90 .95 .99 .90 .95 .99 .90 .95 .99

100 1.00 0.147 0.071 0.020 0.115 0.064 0.007 0.103 0.047 0.008
0.95 0.940 0.840 0.698 0.917 0.789 0.561 0.911 0.778 0.531
0.90 0.971 0.889 0.778 0.957 0.871 0.696 0.957 0.859 0.658
0.85 0.966 0.906 0.822 0.965 0.882 0.739 0.964 0.877 0.715
0.80 0.983 0.929 0.848 0.977 0.904 0.758 0.977 0.900 0.715
0.75 0.984 0.927 0.835 0.982 0.906 0.727 0.981 0.898 0.698
0.70 0.983 0.933 0.847 0.979 0.898 0.739 0.980 0.893 0.692
0.65 0.977 0.914 0.794 0.975 0.884 0.652 0.975 0.874 0.610
0.60 0.987 0.927 0.793 0.983 0.894 0.642 0.980 0.880 0.580
0.50 0.970 0.883 0.728 0.961 0.831 0.527 0.960 0.815 0.476

1000 1.00 0.096 0.043 0.009 0.071 0.035 0.003 0.062 0.027 0.006
0.95 0.996 0.983 0.979 0.997 0.979 0.963 0.997 0.977 0.959
0.90 0.995 0.987 0.982 0.995 0.987 0.977 0.997 0.983 0.971
0.85 0.995 0.993 0.994 0.997 0.991 0.987 0.997 0.991 0.984
0.80 0.999 0.995 0.995 1.000 0.993 0.991 0.999 0.991 0.988
0.75 1.000 1.000 0.998 1.000 0.999 0.995 1.000 0.999 0.995
0.70 1.000 0.999 0.999 1.000 0.999 0.997 1.000 0.999 0.997
0.65 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.999
0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Rejection Rates of Returns to Scale Test using τ̂3(Sn) (p = 3, q = 1, resampling
without replacement)

k = 1 k = 2 k = 3
(1 − α) (1 − α) (1 − α)

n δ .90 .95 .99 .90 .95 .99 .90 .95 .99

100 1.00 0.072 0.044 0.009 0.024 0.009 0.001 0.018 0.004 0.000
0.95 0.446 0.254 0.118 0.379 0.133 0.018 0.368 0.117 0.007
0.90 0.520 0.288 0.147 0.462 0.181 0.024 0.456 0.165 0.007
0.85 0.639 0.370 0.161 0.578 0.243 0.038 0.575 0.229 0.017
0.80 0.660 0.382 0.197 0.608 0.288 0.036 0.606 0.273 0.017
0.75 0.681 0.396 0.207 0.634 0.275 0.038 0.626 0.264 0.012
0.70 0.720 0.390 0.225 0.661 0.278 0.040 0.659 0.260 0.019
0.65 0.691 0.370 0.198 0.637 0.241 0.031 0.634 0.229 0.010
0.60 0.698 0.388 0.192 0.637 0.244 0.030 0.633 0.230 0.009
0.50 0.651 0.349 0.228 0.569 0.207 0.039 0.562 0.189 0.012

1000 1.00 0.056 0.031 0.010 0.008 0.006 0.004 0.006 0.003 0.000
0.95 0.930 0.900 0.837 0.923 0.877 0.782 0.923 0.875 0.768
0.90 0.957 0.930 0.890 0.950 0.918 0.857 0.946 0.915 0.838
0.85 0.969 0.949 0.931 0.965 0.939 0.899 0.965 0.938 0.888
0.80 0.983 0.972 0.952 0.980 0.967 0.938 0.980 0.966 0.934
0.75 0.988 0.981 0.975 0.987 0.980 0.960 0.987 0.980 0.950
0.70 0.991 0.989 0.979 0.991 0.986 0.972 0.991 0.985 0.966
0.65 0.998 0.995 0.992 0.998 0.993 0.984 0.998 0.993 0.984
0.60 0.999 0.997 0.994 0.998 0.998 0.993 0.998 0.997 0.992
0.50 0.999 1.000 0.998 0.999 1.000 0.998 0.999 1.000 0.995
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Table 5: Coverages of Estimated Confidence Intervals using DEA Efficiency Estimator

k = 1 k = 2 k = 3
(1 − α) (1 − α) (1 − α)

p q n balanced? with repl.? .90 .95 .99 .90 .95 .99 .90 .95 .99

1 1 100 N N 0.773 0.846 0.936 0.762 0.828 0.926 0.753 0.827 0.922
1 1 1000 N N 0.749 0.823 0.917 0.735 0.818 0.920 0.741 0.818 0.910
1 1 100 Y N 0.769 0.835 0.927 0.757 0.827 0.922 0.750 0.812 0.920
1 1 1000 Y N 0.751 0.822 0.915 0.737 0.824 0.906 0.746 0.815 0.910

1 1 100 N Y 0.844 0.902 0.977 0.847 0.896 0.970 0.838 0.898 0.962
1 1 1000 N Y 0.817 0.883 0.955 0.811 0.878 0.951 0.812 0.875 0.954
1 1 100 Y Y 0.840 0.900 0.969 0.835 0.896 0.964 0.834 0.885 0.962
1 1 1000 Y Y 0.819 0.881 0.948 0.813 0.874 0.947 0.810 0.875 0.948

3 1 100 N N 0.832 0.901 0.979 0.827 0.894 0.969 0.811 0.886 0.967
3 1 1000 N N 0.832 0.906 0.979 0.816 0.891 0.971 0.803 0.884 0.962
3 1 100 Y N 0.821 0.905 0.973 0.814 0.891 0.969 0.803 0.877 0.961
3 1 1000 Y N 0.836 0.906 0.975 0.814 0.887 0.969 0.807 0.880 0.960

3 1 100 N Y 0.932 0.969 0.997 0.926 0.964 0.997 0.920 0.961 0.995
3 1 1000 N Y 0.919 0.965 0.990 0.912 0.959 0.987 0.906 0.950 0.985
3 1 100 Y Y 0.930 0.966 0.995 0.919 0.959 0.995 0.912 0.958 0.995
3 1 1000 Y Y 0.917 0.955 0.991 0.914 0.957 0.988 0.910 0.947 0.983
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Table 6: Coverages of Estimated Confidence Intervals using FDH Efficiency Estimator

k = 1 k = 2 k = 3
(1 − α) (1 − α) (1 − α)

p q n balanced? with repl.? .90 .95 .99 .90 .95 .99 .90 .95 .99

1 1 100 N N 0.706 0.786 0.892 0.708 0.777 0.883 0.714 0.787 0.874
1 1 1000 N N 0.699 0.785 0.884 0.688 0.773 0.890 0.701 0.776 0.891
1 1 100 Y N 0.685 0.772 0.864 0.695 0.773 0.867 0.694 0.783 0.867
1 1 1000 Y N 0.700 0.780 0.889 0.691 0.771 0.888 0.705 0.787 0.881

1 1 100 N Y 0.791 0.844 0.935 0.783 0.835 0.934 0.783 0.834 0.928
1 1 1000 N Y 0.779 0.844 0.938 0.765 0.838 0.931 0.774 0.838 0.933
1 1 100 Y Y 0.771 0.831 0.917 0.759 0.821 0.914 0.766 0.824 0.918
1 1 1000 Y Y 0.773 0.849 0.936 0.773 0.835 0.929 0.769 0.843 0.930

3 1 100 N N 0.616 0.694 0.782 0.618 0.684 0.776 0.623 0.682 0.768
3 1 1000 N N 0.731 0.807 0.896 0.731 0.809 0.897 0.732 0.802 0.891
3 1 100 Y N 0.601 0.673 0.769 0.621 0.680 0.764 0.626 0.688 0.770
3 1 1000 Y N 0.736 0.808 0.899 0.729 0.803 0.896 0.740 0.801 0.891

3 1 100 N Y 0.681 0.746 0.812 0.682 0.738 0.817 0.681 0.734 0.813
3 1 1000 N Y 0.800 0.858 0.936 0.798 0.855 0.926 0.798 0.855 0.929
3 1 100 Y Y 0.679 0.741 0.813 0.673 0.738 0.809 0.677 0.727 0.808
3 1 1000 Y Y 0.797 0.857 0.929 0.802 0.848 0.930 0.797 0.855 0.928
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Figure 1: Rejection Rates for Convexity Tests using τ̂2(Sn) and Resampling without Re-
placement

p = q = 1, n = 100 p = q = 1, n = 1000
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Figure 2: Estimated Critical Values versus Sub-Sample Size m for Convexity Tests using
τ̂2(Sn) using Resampling without Replacement (p = q = 1, n = 1000)
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