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Abstract

Inference on an extreme-value copula usually proceeds via its Pickands depen-
dence function, which is a convex function on the unit simplex satisfying certain
inequality constraints. In the setting of an iid random sample from a multivari-
ate distribution with known margins and unknown extreme-value copula, an ex-
tension of the Capéraà–Fougères–Genest estimator was introduced by D. Zhang,
M. T. Wells and L. Peng [Journal of Multivariate Analysis 99 (2008) 577–588].
The joint asymptotic distribution of the estimator as a random function on the
simplex was not provided. Moreover, implementation of the estimator requires
the choice of a number of weight functions on the simplex, the issue of their
optimal selection being left unresolved.

A new, simplified representation of the CFG-estimator combined with stan-
dard empirical process theory provides the means to uncover its asymptotic
distribution in the space of continuous, real-valued functions on the simplex.
Moreover, the ordinary least-squares estimator of the intercept in a certain lin-
ear regression model provides an adaptive version of the CFG-estimator whose
asymptotic behavior is the same as if the variance-minimizing weight functions
were used. As illustrated in a simulation study, the gain in efficiency can be
quite sizeable.
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1. Introduction

Let Xi = (Xi1, . . . , Xip), i ∈ {1, . . . , n}, be iid random vectors from a
p-variate, continuous distribution function F with multivariate extreme-value
copula C: for u ∈ (0, 1]p \{(1, . . . , 1)}, denoting the margins of F by F1, . . . , Fp,

C(u) = P
(

F1(Xi1) 6 u1, . . . , Fp(Xip) 6 up

)

= exp{−|y|A(y/|y|)}
where yj = − log uj and |y| = |y1| + · · · + |yp|. (1.1)

The function A, whose domain is ∆p = {w ∈ [0, 1]p : w1 + · · · + wp = 1}, is
called the Pickands dependence function of C, after Pickands (1981).

Multivariate extreme-value copulas arise as the limits of copulas of vectors
of component-wise maxima of independent random samples (Deheuvels, 1984;
Galambos, 1987). As a consequence, they coincide with the class of copulas of
multivariate extreme-value or max-stable distributions. Therefore, they provide
models for dependence between extreme values that allow extrapolation beyond
the support of the sample. It is then of interest to estimate the Pickands de-
pendence function A.

A necessary condition for C in (1.1) to be a copula is that A is convex and
satisfies max(w1, . . . , wp) 6 A(w) 6 1 for all w ∈ ∆p; in the bivariate case, this
is also sufficient. In general, A should admit an integral representation in terms
of a spectral measure. Some other properties of Pickands dependence functions
are studied in Obretenov (1991) and Falk and Reiss (2008). The upshot of all
this is that the class of Pickands dependence functions is infinite-dimensional.
This warrants the use of nonparametric methods.

Whereas most papers hitherto concentrated on the bivariate case, a non-
parametric estimator for general multivariate Pickands dependence functions
was introduced in Zhang et al. (2008). This estimator is in fact a multivariate
generalization of the one by Capéraà–Fougères–Genest (Capéraà et al., 1997).
The estimator was shown to be uniformly consistent and pointwise asymptot-
ically normal. However, the joint asymptotic distribution of the estimator as
a random function on ∆p was not provided. Moreover, implementation of the
estimator requires the choice of p weight functions λj on ∆p, the issue of their
optimal selection being left unresolved.

Using a simplified representation of the above-mentioned estimator, we are
able to uncover its asymptotic distribution in the space C (∆p) of continuous,
real-valued functions on ∆p. Moreover, we give explicit expressions for the
weight functions λj that minimize the pointwise asymptotic variance of the
estimator. These optimal weight functions depend on the unknown distribution.
We show that the CFG-estimator with estimated variance-minimizing weight
functions can be implemented as the intercept estimator in a certain linear
regression model via ordinary least squares. The OLS-estimator is data-adaptive
in the sense that the asymptotic distribution is the same as if the optimal weight
functions were used. In a simulation study, the gain in efficiency is shown to be
quite sizeable.

As in Zhang et al. (2008), the setting here is that of a random sample from
a distribution whose margins are known and whose copula is an extreme-value
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copula. It would be worthwhile to extend this to the case of unknown margins
(Guillotte and Perron, 2008; Genest and Segers, 2009) and the case that the
copula of F is merely in the domain of attraction of an extreme-value copula
(Capéraà and Fougères, 2000; Einmahl and Segers, 2009).

The outline of our paper is as follows. The CFG-estimator is introduced in
the next section, including its simplified representation and asymptotic distri-
bution. The variance-minimizing weight functions are computed in Section 3
together with an adaptive estimator based on ordinary least squares in a linear
regression framework. Section 4 reports on a simulation study. The proofs of
the results in Sections 2 and 3 are deferred to Appendices A and B, respectively.

2. CFG-estimator and variants

Let Xi = (Xi1, . . . , Xip), i ∈ {1, . . . , n}, be iid random vectors from a
p-variate, continuous distribution function F with multivariate extreme-value
copula C and Pickands dependence function A as in (1.1). Let F1, . . . , Fp be
the marginal distribution functions of F . Put Y i = (Yi1, . . . , Yip) where

Yij = − logFj(Xij) (2.1)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. The marginal distributions of the random
variables Yij are standard exponential. The random vectors Y 1, . . . ,Y p are iid
with common joint survivor function

P (Yi1 > y1, . . . , Yip > yp) = C(e−y1 , . . . , e−yp) = exp{−|y|A(y/|y|)},

for y ∈ [0,∞)p \ {(0, . . . , 0)}, where |y| = |y1| + · · · + |yp|. Put

ξi(w) =

p
∧

j=1

Yij

wj
, w ∈ ∆p, i ∈ {1, . . . , n}, (2.2)

with ‘∧’ denoting minimum and with the obvious convention for division by
zero; in particular, ξi(ej) = Yij for the p standard unit vectors e1, . . . , ep in R

p.
For w ∈ ∆p and x > 0, we have

P
(

ξi(w) > x
)

= P (Yi1 > w1x, . . . , Yip > wpx) = exp{−xA(w)}. (2.3)

Hence the random variables ξ1(w), . . . , ξn(w) constitute an independent random
sample from the exponential distribution with mean 1/A(w). It follows that the
distribution of − log ξi(w) is Gumbel with location parameter logA(w), whence

E[− log ξi(w)] = logA(w) + γ, (2.4)

the Euler–Mascheroni constant γ = −Γ′(1) = 0.5772 . . . being the mean of the
standard Gumbel distribution. This suggests the naive estimator

log Ân(w) = − 1

n

n
∑

i=1

log ξi(w) − γ, w ∈ ∆p. (2.5)
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The naive estimator is itself not a valid Pickands dependence function. For
instance, it does not verify the vertex constraintsA(ej) = 1 for all j ∈ {1, . . . , p}.
A simple way to at least remedy this defect is by putting

log ÂCFG
n (w) = log Ân(w) −

p
∑

j=1

λj(w) log Ân(ej), w ∈ ∆p, (2.6)

where λ1, . . . , λp : ∆p → R are continuous functions verifying λj(ek) = δjk for
all j, k ∈ {1, . . . , p}. Continuity of the functions λj is assumed merely to ensure
that the resulting estimator is a continuous function of w as well.

The superscript ‘CFG’ refers to the bivarate estimator by Capéraà–Fougères–
Genest in Capéraà et al. (1997), generalized to the multivariate case in Zhang et al.
(2008). Actually, the original definition in Zhang et al. (2008) is

log ÂZWP
n (w) =

p
∑

j=1

λj(w)

∫ 1−wj

0

n−1
∑n

i=1 1{Zij(w) 6 z} − z

z(1 − z)
dz, (2.7)

where, with Yij as in (2.1),

Zij(w) =

∧

k:k 6=j
Yik

wk

Yij

1−wj
+

∧

k:k 6=j
Yik

wk

, w ∈ ∆p.

Moreover, in (2.7), the weight functions λj are supposed to be nonnegative and
to satisfy the additional constraint

p
∑

j=1

λj(w) = 1, w ∈ ∆p. (2.8)

However, if (2.8) holds, then actually the two estimators coincide, that is,

ÂZWP
n (w) = ÂCFG

n (w), w ∈ ∆p. (2.9)

The proof of (2.9) is essentially the same as the one in Segers (2007) for the
bivariate case, the key being that the integrals in (2.7) can be solved:

∫ 1−wj

0

1{Zij(w) 6 z} − z

z(1 − z)
dz

= log[1 − {(1 − wj) ∧ Zij(w)}] + log(1 − wj) − log{(1 − wj) ∧ Zij(w)}
= logYij − log ξi(w).

In our representation (2.6), however, there is no reason whatsoever to restrict
the weight functions to satisfy (2.8).

The asymptotics of the naive estimator and the CFG-estimator follow from
standard empirical process theory as presented for instance in van der Vaart and Wellner
(1996) and van der Vaart (1998). Let C (∆p) denote the Banach space of contin-
uous functions from ∆p into R equipped with the supremum norm. Convergence
in distribution is denoted by the arrow ‘ ’.
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Proposition 2.1 (Naive estimator). Let Xi = (Xi1, . . . , Xip), i ∈ {1, . . . , n},
be iid random variables from a p-variate, continuous distribution function F
with multivariate extreme-value copula C and Pickands dependence function A.

The naive estimator Ân in (2.5) satisfies

sup
w∈∆p

|Ân(w) −A(w)| → 0, n→ ∞, almost surely, (2.10)

and in C (∆p), √
n(Ân −A) Aζ, n→ ∞, (2.11)

where ζ is a centered Gaussian process with covariance function

cov
(

ζ(v), ζ(w)
)

= cov
(

− log ξi(v), − log ξi(w)
)

, v,w ∈ ∆p, (2.12)

with ξi( · ) as in (2.2).

Theorem 2.2 (CFG-estimator). If, in addition to the assumptions in Proposi-

tion 2.1, the functions λ1, . . . , λp : ∆p → R are continuous, then

sup
w∈∆p

|ÂCFG
n (w) −A(w)| → 0, n→ ∞, almost surely, (2.13)

and in C (∆p), √
n(ÂCFG

n − A) Aη, n→ ∞, (2.14)

where η is a centered Gaussian process defined by

η(w) = ζ(w) −
p

∑

j=1

λj(w) ζ(ej), w ∈ ∆p, (2.15)

with ζ as in Proposition 2.1.

Remark 2.3 (Covariance function). The covariance function (2.12) can be ex-
pressed in terms of A as follows. An application of the identity log(x) =
∫ ∞

0
{1(s 6 x) − 1(s 6 1)} s−1 ds for x ∈ (0,∞) yields, by Fubini’s theorem,

cov
(

− log ξi(v), − log ξi(w)
)

=

∫ ∞

0

∫ ∞

0

(

P
(

ξi(v) > s, ξi(w) > t
)

− P
(

ξi(v) > s
)

P
(

ξi(w) > t
)

)ds

s

dt

t

=

∫ ∞

0

∫ ∞

0

[exp{−ℓ((w1s) ∨ (v1t), . . . , (wps) ∨ (vpt))}

− exp{−sA(v)} exp{−t A(w)}]ds
s

dt

t
.

where ℓ(y) = |y|A(y/|y|) and |y| = |y1| + · · · + |yp|. Replacing A by any
estimator of it results in an estimator of the covariance function. However, a
more practical way to estimate this function is by the sample covariance of the
pairs (− log ξi(v), − log ξi(w)); see also (the proof of) Theorem 3.2.
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Remark 2.4 (Shape constraints). A further enhancement to the CFG-estimator
is to replace it by the convex minorant of the function

min[max{ÂCFG
n (w), w1, . . . , wp}, 1], w ∈ ∆p,

as in Deheuvels (1991) and Jiménez et al. (2001) for the bivariate case. Al-
though the resulting estimator would be a convex function respecting the bounds
max(w1, . . . , wp) 6 A(w) 6 1, in case p > 3 this would still not guarantee it to
be a genuine Pickands dependence function. Still other ways to impose (some of)
the shape restrictions are spline smoothing under constraints (Hall and Tajvidi,
2000), orthogonal projection (Fils-Villetard et al., 2008), or Bayesian nonpara-
metrics (Guillotte and Perron, 2008).

Remark 2.5 (Pickands estimator). A different way to exploit the exponentiality
of the random variables ξi(w) in (2.3) would be via the Pickands estimator

1

ÂP
n(w)

=
1

n

n
∑

i=1

ξi(w)

as in Pickands (1981). To impose the vertex constraints A(ej) = 1, the tech-
niques of Deheuvels (1991) or Hall and Tajvidi (2000) can be used, see Zhang et al.
(2008, p. 578). In the bivariate case however, it is known that the result-
ing estimators are outperformed by the CFG-estimator ÂCFG

n (Segers, 2007;
Genest and Segers, 2009). This is confirmed in the simulation study in Zhang et al.
(2008, Section 3), as well as by our own simulations in Section 4. For this reason,
we restrict attention here to the family of CFG-estimators.

3. The OLS-estimator

The question remains which weight functions λj to choose in the CFG-
estimator (2.6). In Zhang et al. (2008), the choice λj(w) = wj was recom-
mended as a pragmatic one. The option of using variance-minimizing functions
λj was mentioned but not carried out. By casting the estimation problem in a
linear regression framework, we will obtain an estimator with the same asymp-
totic performance as the CFG-estimator with those optimal weights. In this
section, we define the estimator and prove its consistency and asymptotic nor-
mality, both in the functional sense. In the next section, the gain in efficiency
is assessed by means of simulations.

In view of Theorem 2.2, for each w ∈ ∆p we have

√
n
(

ÂCFG
n (w) −A(w)

)

 A(w) η(w), n→ ∞,

where η(w) is a zero-mean normal random variable. We will look for those
λj(w) that minimise the variance of η(w). Let ζ be the Gaussian process on
C (∆p) in Proposition 2.1. For ease of notation, put

λ(w) =
(

λ1(w), . . . , λp(w)
)⊤
, ζ(e) =

(

ζ(e1), . . . , ζ(ep)
)⊤
,
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the symbol “⊤” denoting matrix transposition. Then

var η(w) = var
(

ζ(w) − λ(w)⊤ ζ(e)
)

= var ζ(w) − 2 λ(w)⊤E[ζ(e) ζ(w)] + λ(w)⊤E[ζ(e) ζ(e)⊤] λ(w).

Note that
Σ = E[ζ(e) ζ(e)⊤] (3.1)

is the covariance matrix of (− log ξ(e1), . . . ,− log ξ(ep))
⊤. Provided this matrix

is non-singular, var η(w) attains a unique global minimum for λ(w) equal to

λopt(w) = Σ−1E[ζ(e) ζ(w)]. (3.2)

With this choice of the weight functions, the variance of

ηopt(w) = ζ(w) − λopt(w)⊤ ζ(e) (3.3)

is equal to

var ηopt(w) = var ζ(w) − E[ζ(w) ζ(e)⊤] Σ−1E[ζ(e) ζ(w)]. (3.4)

This variance is minimal over all possible choices of weight functions λj .
The optimal weight functions λopt

j in (3.2) depend on the unknown Pickands
dependence function A. Fortunately, replacing these weight functions by uni-
formly consistent estimators λ̂n,j is just as good asymptotically. For such esti-
mated weight functions, define the adaptive CFG-estimator by

log ÂCFG
n,ad (w) = log Ân(w) −

p
∑

j=1

λ̂n,j(w) log Ân(ej), (3.5)

Proposition 3.1 (Adaptive CFG-estimator). Assume that, in addition to the

assumptions in Proposition 2.1, the matrix Σ in (3.1) is non-singular and λ̂n,j

are random elements in C (∆p) such that, for every j ∈ {1, . . . , p},

sup
w∈∆p

|λ̂n,j(w) − λopt
j (w)| → 0, n→ ∞, almost surely,

with λopt
j as in (3.2). Then the adaptive CFG-estimator in (3.5) satisfies

sup
w∈∆p

|ÂCFG
n,ad (w) −A(w)| → 0, n→ ∞, almost surely, (3.6)

and in C (∆p), √
n(ÂCFG

n,ad −A) Aηopt, n→ ∞, (3.7)

where ηopt is the zero-mean Gaussian process defined in (3.3).
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Finally we propose a particularly convenient way to implement the adaptive
CFG-estimator in (3.5). For w ∈ ∆p, let β̂n(w) = (β̂n,0(w), . . . , β̂n,p(w))⊤ be
the minimizer in (b0, . . . , bp)

⊤ of

n
∑

i=1

(

(

− log ξi(w) − γ
)

− b0 −
p

∑

j=1

bj
(

− log ξi(ej) − γ
)

)2

. (3.8)

In words, β̂n(w) is the ordinary least-squares (OLS) estimator of the vec-
tor of regression coefficients in a linear regression of the dependent variable
− log ξi(w) − γ upon the explanatory variables − log ξi(ej) − γ, j ∈ {1, . . . , p}.
Define the OLS-estimator of A via the estimated intercept by

log ÂOLS
n (w) = β̂n,0(w), w ∈ ∆p.

Since the residuals

ǫ̂n,i(w) =
(

− log ξi(w) − γ
)

− β̂n,0(w) −
p

∑

j=1

β̂n,j(w)
(

− log ξi(ej) − γ
)

verify
∑n

i=1 ǫ̂n,i(w) = 0, we have

log ÂOLS
n (w) = β̂n,0(w) = log Ân(w) −

p
∑

j=1

β̂n,p(w) log Ân(ej), (3.9)

that is, the OLS-estimator is equal to the adaptive CFG-estimator with esti-
mated weights λ̂n,j(w) = β̂n,j(w). The variance of the (logarithm of the) OLS-
estimator can be estimated by the sample variance of the residuals, properly
corrected for the loss in number of degrees of freedom,

σ̂2
n,OLS(w) =

1

n− p− 1

n
∑

i=1

ǫ̂2n,i(w), w ∈ ∆p. (3.10)

Theorem 3.2 (OLS-estimator). Assume that, in addition to the assumptions

in Proposition 2.1, the matrix Σ in (3.1) is non-singular. Then, with probability

tending to one, the minimizer β̂n(w) of (3.8) is uniquely defined and for j ∈
{1, . . . , p},

sup
w∈∆p

|β̂n,j(w) − λopt
j (w)| → 0, n→ ∞, almost surely. (3.11)

As a consequence, the OLS-estimator in (3.9) is uniformly consistent,

sup
w∈∆p

|ÂOLS
n (w) − A(w)| → 0, n→ ∞, almost surely, (3.12)

and in C (∆p), √
n(ÂOLS

n − A) Aηopt, n→ ∞, (3.13)
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where ηopt is the zero-mean Gaussian process defined in (3.3). In addition, the

variance estimator in (3.10) satisfies

sup
w∈∆p

|σ̂2
n,OLS(w) − var ηopt(w)| → 0, n→ ∞, almost surely.

Remark 3.3 (Non-singularity assumption). In the bivariate case, the assump-
tion that the covariance matrix Σ in (3.1) is non-singular is equivalent to the
assumption that the copula C is not the comonotone copula (Segers, 2007).
We conjecture that in the general multivariate case, a necessary and sufficient
condition for Σ to be non-singular is that none of the bivariate margins of C is
equal to the comonotone copula.

4. Simulations

In order to investigate the finite-sample properties of the estimators dis-
cussed in the previous sections, we generated pseudo-random samples from
trivariate extreme-value copulas of logistic type as presented in Tawn (1990):

A(w) = (θrwr
1 + φrwr

2)
1/r + (θrwr

2 + φrwr
3)

1/r + (θrwr
3 + φrwr

1)
1/r

+ ψ(wr
1 + wr

2 + wr
3)

1/r + 1 − θ − φ− ψ, w ∈ ∆p, (4.1)

for (r, θ, φ, ψ) ∈ [1,∞) × [0, 1]3. To facilitate comparisons, we opted for the
same parameter values as chosen in Zhang et al. (2008): a symmetric case,
(r, θ, φ, ψ) = (3, 0, 0, 1), and an asymmetric one, (r, θ, φ, ψ) = (6, 0.6, 0.3, 0). For
each case 10 000 samples were generated of size n ∈ {50, 100, 200} using the
simulation algorithms in Stephenson (2003) and implemented in the R-package
evd (Stephenson, 2002).

Four estimators were compared: the CFG-estimator ÂCFG
n with weight func-

tions λj(w) = wj (as recommended in Zhang et al., 2008), the OLS-estimator

ÂOLS
n in (3.9), and the enhanced versions of the original Pickands estimator due

to Deheuvels (1991) and Hall and Tajvidi (2000) as presented in Zhang et al.
(2008). To visualize the performances of the estimators, we plotted their biases
and mean squared errors along the line {w ∈ ∆p : w1 = w2}; see Figures 1 and 2
for the symmetric and asymmetric logistic dependence functions respectively.

In accordance to the theory, the OLS-estimator is in virtually all cases consid-
ered more efficient than the CFG-estimator. Moreover, our simulations confirm
the findings in Zhang et al. (2008) that the CFG-estimator is typically more effi-
cient than the ones of Deheuvels and Hall–Tajvidi. Note that the finite-sample
bias of the OLS-estimator is somewhat larger than for the other estimators.
However, thanks to its minimum-variance property it ends up as an overall
winner in terms of mean squared error.
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ÂHT
n (w) (dash-dotted) and ÂD
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Figure 2: Biases (left) and mean squared errors (right) of ÂOLS
n (w) (solid), ÂCFG

n (w) (dashed),

ÂHT
n (w) (dash-dotted) and ÂD

n (w) (dotted) along the line w1 = w2 for 10 000 samples of
size n ∈ {50, 100, 200} from the trivariate extreme-value copula C with asymmetric logistic
dependence function A in (4.1) for (r, θ, φ, ψ) = (6, 0.6, 0.3, 0).
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Appendix A. Proofs for Section 2

Proof of Proposition 2.1. For w ∈ ∆p, define fw : (0,∞)p → R by

fw(y) = − log

( p
∧

j=1

yj

wj

)

− γ, y ∈ (0,∞)p. (A.1)

We can write

log Ân(w) =
1

n

n
∑

i=1

fw(Y i).

Consider the function class F = {fw : w ∈ ∆p}. We will show that F is P -
Donsker and therefore also P -Glivenko–Cantelli, where P denotes the common
probability distribution on (0,∞)p of the random vectors Y i. According to
Theorem 2.6.8 in van der Vaart and Wellner (1996) and the proof thereof, we
need to verify that F is a pointwise separable Vapnik–C̆ervonenkis-class (VC-
class) that admits an envelope function with a finite second moment under
P . Pointwise separability follows from the fact that the map w 7→ fw(y) is
continuous in w ∈ ∆p for each y ∈ (0,∞)p. The VC-property can be established
by repeated applications of Lemmas 2.6.15 and 2.6.18, items (i) and (viii), in
van der Vaart and Wellner (1996). Finally, the readily established bound

∣

∣

∣

∣

log

p
∧

j=1

yj

wj

∣

∣

∣

∣

6 max

{∣

∣

∣

∣

log

p
∧

j=1

yj

∣

∣

∣

∣

, log(p) +

p
∑

j=1

| log yj |
}

(A.2)

yields an envelope function of F all of whose moments are finite under P .
Observe that the distribution of

∧p
j=1 Yij is Exponential with mean equal to

{pA(1/p, . . . , 1/p)}−1 ∈ [1/p, 1].
From the fact that F is P -Glivenko–Cantelli it follows that

sup
w∈∆p

| log Ân(w) − logA(w)|

= sup
w∈∆p

∣

∣

∣

∣

1

n

n
∑

i=1

fw(Y i) − E[fw(Y )]

∣

∣

∣

∣

→ 0, n→ ∞, almost surely.

(Here, we dropped a subscript i for convenience.) Continuity of the map exp :
C (∆p) → C (∆p) : f 7→ exp(f) yields uniform consistency as in (2.10).

Moreover, the P -Donsker property entails
√
n(log ÂCFG

n − logA) ζ, n→ ∞, (A.3)

in the space ℓ∞(∆p) of bounded functions from ∆p into R equipped with the
topology of uniform convergence, where we identified F with ∆p. The process
ζ is zero-mean Gaussian with covariance function given in (2.12). The sample
paths of the limit process ζ are continuous with respect to the standard deviation
(semi-)metric ρ on ∆p defined by

ρ(v,w) = [var{fv(Y ) − fw(Y )}]1/2, v,w ∈ ∆p.
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If limn→∞ vn = v in ∆p according to the Euclidean metric, then by continuity
of fw(y) in w and by uniform integrability, also limn→∞ ρ(vn,v) = 0. (Uni-
form integrability is checked by using the bound in (A.2).) It follows that the
trajectories of ζ are also continuous with respect to the Euclidean metric on ∆p,
that is, ζ actually takes its values in C (∆p). As the trajectories of the left-hand
side in (A.3) are continuous too, the convergence in (A.3) takes place not only
ℓ∞(∆p) but also in C (∆p).

The convergence in (2.11) follows from the Hadamard-differentiability of the
map exp : C (∆p) → C (∆p) : f 7→ exp f and the functional delta-method
(van der Vaart and Wellner, 1996, Section 3.9).

Proof of Theorem 2.2. Uniform consistency of ÂCFG
n in (2.13) follows from uni-

form consistency of Ân in (2.10) and the fact that the functions λj are contin-
uous, hence bounded.

To show (2.14), define L : C (∆p) → C (∆p) by

Lf(w) = f(w) −
p

∑

j=1

λj(w) f(ej)

for f ∈ C (∆p) and w ∈ ∆p. The operator L is linear and bounded. We have

log ÂCFG
n = L(log Ân). Moreover, as A(ej) = 1 for all j ∈ {1, . . . , p}, also

L(logA) = logA. We find
√
n(log ÂCFG

n − logA) = L
(√
n(log Ân − logA)

)

 Lζ = η, n→ ∞.

The weak convergence in (2.14) follows from the functional delta-method (van der Vaart and Wellner,
1996, Section 3.9). The representation η = Lζ coincides with (2.15).

Appendix B. Proofs for Section 3

Proof of Proposition 3.1. If the optimal weight functions λopt
j were known, we

could consider the optimal CFG-estimator

log ÂCFG
n,opt(w) = log Ân(w) −

p
∑

j=1

λopt
j (w) log Ân(ej), w ∈ ∆p.

By Theorem 2.2, the optimal CFG-estimator is uniformly consistent (2.13) and
is asymptotically normal in the sense of (2.14) with η = ηopt. Now

| log ÂCFG
n,opt(w) − log ÂCFG

n,ad (w)| 6
p

∑

j=1

|λ̂n,j(w) − λopt
j (w)| | log Ân(ej)|.

By uniform consistency of λ̂n,j and asymptotic normality of
√
n log Ân(ej), we

obtain, as n→ ∞,

sup
w∈∆p

| log ÂCFG
n,opt(w) − log ÂCFG

n,ad (w)| → 0, almost surely,

sup
w∈∆p

√
n | log ÂCFG

n,opt(w) − log ÂCFG
n,ad (w)| 0.
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As a consequence, the adaptive CFG-estimator is uniformly consistent (3.6) and
asymptotically normal (3.7).

Proof of Theorem 3.2. In analogy to the linear regression framework, define the
n× (p+ 1) matrix

X =





1 − log ξ1(e1) − γ . . . log ξ1(ep) − γ
. . . . . . . . . . . .
1 − log ξn(e1) − γ . . . log ξn(ep) − γ





and the n× 1 vector

Y (w) =
(

− log ξ1(w) − γ, . . . ,− log ξn(w) − γ
)⊤
, w ∈ ∆p.

(No confusion should arise between this Y (w) and the random vectors Y i in

(2.1).) Provided the matrix X⊤X is non-singular, the OLS-estimator β̂n(w) is
given by

β̂n(w) = (X⊤X)−1 X⊤Y (w).

Recall the functions fw in (A.1). For v,w ∈ ∆p, define gv,w : (0,∞)p → R by

gv,w(y) = fv(y) fw(y), y ∈ (0,∞)p.

By (A.2) and by Example 2.10.23 in van der Vaart and Wellner (1996), the
function class {gv,w : v,w ∈ ∆p} is P -Donsker and thus P -Glivenko–Cantelli,
where P is the common distribution on (0,∞)p of the random vectors Y i. It
follows that, almost surely as n→ ∞,

1

n
X⊤X →

(

1 0
0 Σ

)

, (B.1)

sup
w∈∆p

∣

∣

∣

∣

1

n
X⊤ Y (w) −

(

logA(w)
E[ζ(e)ζ(w)]

)∣

∣

∣

∣

→ 0, (B.2)

As Σ is non-singular, we have

(

1 0
0 Σ

)−1

=

(

1 0
0 Σ−1

)

,

while 1
nX⊤X is with probability tending to one a non-singular matrix too. We

find, almost surely and uniformly in w ∈ ∆p,

β̂n(w) =

(

1

n
X⊤X

)−1
1

n
X⊤Y (w)

→
(

1 0
0 Σ−1

) (

logA(w)
E[ζ(e)ζ(w)]

)

=

(

logA(w)
λ

opt(w)

)

, n→ ∞.

Equation (3.11) follows. Proposition 3.1 and equation (3.9) then yield equations
(3.12) and (3.13).
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Finally, for the estimation of the variance, note that it does not matter
asymptotically if we divide by n or by n− p− 1. Elementary calculations yield

1

n

n
∑

i=1

ǫ̂2n,i(w) =
1

n

(

Y (w) − Xβ̂n(w)
)⊤ (

Y (w) − Xβ̂n(w)
)

=
1

n
Y (w)⊤Y (w) −

(

1

n
X⊤ Y (w)

)⊤(

1

n
X⊤X

)−1
1

n
X⊤ Y (w).

The Glivenko–Cantelli property yields, almost surely and uniformly in w ∈ ∆p,

1

n
Y (w)⊤Y (w) =

1

n

n
∑

i=1

(

− log ξi(w) − γ
)2

→ E
[(

− log ξi(w) − γ
)2]

= var ζ(w) +
(

logA(w)
)2
, n→ ∞.

In combination with (B.1) and (B.2), we obtain that n−1
∑n

i=1 ǫ̂
2
n,i(w) converges

almost surely and uniformly in w ∈ ∆p to

var ζ(w) +
(

logA(w)
)2 −

(

logA(w)
E[ζ(e)ζ(w)]

)⊤ (

1 0
0 Σ−1

) (

logA(w)
E[ζ(e)ζ(w)]

)

= var ζ(w) − E[ζ(e)⊤ζ(w)] Σ−1E[ζ(e)ζ(w)],

which by (3.4) is equal to var ηopt(w).
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