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Abstract

We comment on some points about the coding of stochastic processes by sequences of independent random
variables. The most interesting question has to do with the standardness property of the filtration generated
by the process, in the framework of Vershik’s theory of filtrations. Non-standardness indicates the presence
of long memory in a purely probabilistic sense. We aim to provide a short, non-technical presentation of
Vershik’s theory of filtrations.
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Introduction

Rosenblatt (2009) made a comment on a representation problem for stationary processes raised by Lévy
(1954), Kallianpur and Wiener (1956) 1, and Wiener (1958), called the “Lévy-Bernstein-Rosenblatt problem”
by Vershik (1994), and remarkably investigated by Rosenblatt (1959, 1960, 1963), who was the first to spot an
interesting mistake in the paper by Kallianpur and Wiener (1956). This problem can be further commented
in light of the theory of filtrations in discrete, negative time, which was initiated by Vershik in the early
seventies, but entered into the western probabilistic culture only some fifteen years ago.

Three representation problems of stochastic processes in terms of a certain coding of independent random
variables are presented in this paper. The first one is the one commented by Rosenblatt (2009). The second
one is obtained by dropping time-homogeneity in the first one. The third one is obtained from the second
one by further requiring the coding to respect the predictions on the future of the process; this representation
is equivalent to standardness of the filtration generated by the process, a notion invented by Vershik (1970,
1973, 1994). As an application of Vershik’s theory of filtrations, we shall solve the second problem with the
help of Vershik’s theorem on lacunary isomorphism.

Our main goal is to provide a short and accessible introduction to Vershik’s theory of filtrations. After
discussing the three representation problems, we will present the known characterizations of standardness
of a filtration: the I-cosiness criterion, expressed in terms of “successful couplings” of the filtration, and
Vershik’s standardness criterion, expressed in terms of asymptotic degeneracy of Vershik’s progressive pre-

dictions of the filtration, obtained by backward iterating the conditioning of conditional laws given the past.

First representation problem: the “time-homogeneous” coding

Given a stationary process (Xn)n∈Z
, the question is, whether or not there exist a sequence (V ′n)n∈Z

of i.i.d.
random variables and a measurable function f such that the process (X ′n)n∈Z

defined by

X ′n = f(. . . , V ′n−1, V
′

n) (1)
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is a copy of (Xn)n∈Z
) (i.e., has the same law as (Xn)n∈Z

). We can interpret the representation (1), as well
as the next representations (2) and (3), as a “coding”, by considering (X ′n)n∈Z

as the “observed” process
and (V ′n)n∈Z

as the “source” process.
Terming the increasing sequence F = (Fn)n∈Z

of σ- fields defined by Fn = σ(Xm;m 6 n) as the filtration

generated by (Xn)n∈Z
, a necessary condition for the representation (1) is the tail-triviality of this filtration:

(

A ∈ F−∞ :=
⋂

n

Fn
)

=⇒
(

P(A) = 0 or P(A) = 1
)

.

Indeed, the representation (1) implies that, up to isomorphism, F is included in the filtration generated by
(V ′n)n∈Z

, and the latter is tail-trivial by Kolmogorov’s 0–1 law. We term as Kolmogorovian such a filtration.
In the language of ergodic theory, this is expressed by saying that the shift operator acting on the probability
space induced by (Xn)n∈Z

is a K-automorphism. Hence, as noticed by Rosenblatt (2009), an example of a
stationary process generating a Kolmogorovian filtration but for which no representation (1) is possible, is
provided by Ornstein’s theory developed in the early seventies. The sketch of the argument runs as follows
in the language of ergodic theory. The representation (1) implies that the shift induced by (Xn)n∈Z

is a
factor of the shift induced by (V ′n)n∈Z

. The latter is a Bernoulli shift since the V ′n are independent, and
hence each of its factors is also (isomorphic to) a Bernoulli shift thanks to Ornstein’s theorem (1970). Thus
the existence of a stationary process generating a Kolmogorovian filtration but for which no representation
(1) is possible, comes down to the existence of non-Bernoulli K-automorphisms, first established by Ornstein
(1973), and the first example of a “natural” non-Bernoulli K-automorphism was given by Kalikow (1982).

Two other representation problems: the “general” and the “real-time” codings

More interestingly, Feldman and Rudolph (1998) provide an example of a stationary process (Xn)n∈Z
for

which there is no way of having a representation (1), but however it is possible to find a copy (X ′n)n∈Z
of

(Xn)n∈Z
written in the form

X ′n = fn(. . . , V ′n−1, V
′

n) (2)

where (V ′n)n∈Z
is a sequence of i.i.d. random variables and the fn are measurable functions. Actually,

Feldman and Rudolph’s example is a stationary process generating a standard filtration, or, in other words,
it satisfies the stronger representation problem (3), to be introduced below. In fact we shall see in the next
paragraph that a representation (2) is always possible for any process (Xn)n∈Z

generating a Kolmogorovian
filtration. This is the only original result of the present paper; our proof will make use of Vershik’s theorem

on lacunary isomorphism for filtrations. However, this answer to the representation problem (2) is not

our motivation for introducing Vershik’s theory of filtrations. This theory solves the question of a much
more interesting representation problem than (2). Roughly speaking, the representation problem (2) only
requires that it is possible to construct a copy (X ′n)n∈Z

of (Xn)n∈Z
from (V ′n)n∈Z

in a general way, whereas the
following question of “real-time” coding is a more interesting one: When is it possible to construct (X ′n)n∈Z

from (V ′n)n∈Z
in such a way that at each time n, the information carried by the past process (V ′k)k<n does

not disturb the predictions on the future of (X ′n)n∈Z
? More rigorously, this representation problem is:

{

X ′n = fn(. . . , V ′n−1, V
′

n)

P(X ′n ∈ · |V
′

k; k < n) = P(X ′n ∈ · |X
′

k; k < n)
(3)

With the terminology of the next paragraph, the question of the representation (3) for the process (Xn)n∈Z

is exactly the question whether the filtration generated by (Xn)n∈Z
is standard, a notion to be explained

below, lying at the heart of Vershik’s theory of filtrations. The second condition in (3), expressed in the
next paragraph in terms of the immersion property for filtrations, is quite natural and is often “hidden” in
the probabilist literature. For example, if (X ′n)n∈Z

is a Markov process, then this condition is another way
to say that (X ′n)n∈Z

is still Markovian with respect to the (possibly larger) filtration generated by (V ′n)n∈Z
.

We notice that this condition is fulfilled in all Rosenblatt’s examples of representations (1) for stationary

processes. Thus, the works of Rosenblatt provide some examples of standard filtrations.
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Standard and non-standard filtrations

Filtrations are the relevant mathematical objects to formulate the representations (2) and (3). Indeed,
denoting by F = (Fn)n∈Z

the filtration generated by (Xn)n∈Z
, the representation (2) exactly says that,

up to isomorphism, F is included in the filtration G′ generated by the sequence (V ′n)n∈Z
of independent

random variables, whereas the stronger representation (3) says that, up to isomorphism, F is immersed in
G′, according to the following definition.

Definition. A filtration F is immersed in a filtration G if F is included in G and, for each time n, the

σ- field Fn+1 is conditionally independent of Gn given Fn.

Definitions. A filtration F is standard if, up to isomorphism, it is immersed in a standard non-atomic
filtration, that is, a filtration generated by a sequence of i.i.d. random variables uniformly distributed on the

interval [0, 1].

Proposition. A filtration F is standard if and only if, up to isomorphism, it is immersed in a filtration

generated by a sequence of independent random variables.

We refer to Émery and Schachermayer (2001) or Laurent (2009a) for a proof of the previous proposition,
which stems from elementary considerations. It shows that the laws of the independent random variables
V ′n play no role in the representation (3).

Thus, the representation problem (3) for the process (Xn)n∈Z
is exactly the question of standardness

of the filtration it generates. Vershik (1970, 1973, 1994) has stated (among other things) a necessary and
sufficient criterion for standardness and has exhibited non trivial examples of standard and non-standard
filtrations. His works are written in Rokhlin’s language (Rokhlin, 1952) and their rephrasement in the
language of stochastic processes such as the one used in the present paper, more familiar to probabilists, has
been initiated by Émery and Schachermayer (2001). Laurent (2004, 2009a, 2009b) gives simpler approaches
for proving some of the known results and further investigates Vershik’s theory in the language of stochastic
processes. We will present the known characterizations of standardness in the next paragraph.

Note that, obviously, each σ- field Fn of a standard filtration F is essentially separable, that is, countably
generated modulo null events, because this property is inherited by inclusion. The essential separability of
the Fn is the usual standing assumption in the study of filtrations, since it is always fulfilled for filtrations
generated by a sequence of random variables taking their values in separable metric spaces. Under this
standing assumption, standardness is an asymptotic property when n → −∞: standardness of a filtration
F = (Fn)n∈Z

with time-axis Z is equivalent to standardness of its restriction F = (Fn)n60 to the time-axis
−N. Hereafter, we shall always make this standing assumption.

Non-standardness of a Kolmogorovian filtration indicates the presence of a long memory in spite of the
tail-triviality. Bressaud & al (2006) show that any stationary finite-order Markov chain (Xn)n∈Z

taking only
two possible values always generates a standard filtration under the assumption that the conditional law
of Xn+1 given (. . . , Xn−1, Xn) almost surely assigns positive probabilities to both possible values. Long-
memory phenomena are of interest in the theory of stationary time series which are most often Gaussian
processes. In the case when F is the filtration generated by a Gaussian process (Xn)n∈Z

with stationary
covariance, i.e. Cov(Xi, Xj) = Cov(X0, Xi−j) =: ρi−j , Blum & Hanson (1962) have provided a theorem
from which we can deduce that standardness of F holds whenever F is Kolmogorovian, and they have given
a necessary and sufficient condition on the asymptotic behavior of the sequence (ρn) for F to be Kolmogoro-
vian. Actually, as shown by Leuridan (2009) by a straightforward adaptation of the mathematics used by
Blum & Hanson (1962), it is also true that any Kolmogorovian filtration generated by a Gaussian process
is standard, without supposing stationarity.

Of particular interest is the following theorem established by Vershik (1968), with the help of which we
shall prove, as announced in the previous paragraph, that the representation problem (2) has a positive
answer for any process (Xn)n∈Z

generating a Kolmogorovian filtration.
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Vershik’s theorem on lacunary isomorphism. For any Kolmogorovian filtration F, there exists a

standard filtration extracted from F. (The precise meaning will soon be made clear.)

Corollary. Up to isomorphism, any Kolmogorovian filtration F is included in a standard non-atomic

filtration.

Proof. According to Vershik’s theorem on lacunary isomorphism, there exists a strictly increasing sequence
φ : Z→ Z such that the “extracted” filtration (Fφ(n))n∈Z

is standard. In particular this filtration is included,
up to isomorphism, in the filtration generated by a sequence (Un)n∈Z

of i.i.d. random variables, each Un
being uniformly distributed on [0, 1]. By enriching the probability space if needed, we may assume that
there is another such sequence (U ′n)n∈Z

of random variables that is independent of (Un)n∈Z
. We define

U∗k = Un+1 if k = φ(n) + 1 for some n and U∗k = U ′k for all other values of k. Obviously, F is included in the
standard non-atomic filtration generated by (U∗n)n∈Z

.

Characterizations of standardness

Below we list the known criteria for standardness, without rigorously defining them. We refer to Émery
(2002) for a noteworthy survey on Vershik’s theory of filtrations, as well as original examples. Recall that we
make the standing assumption that each σ- field Fn is essentially separable. As standardness is an asymptotic
property when n → −∞, it is not restrictive, and more convenient, to deal with filtrations F = (Fn)n60

indexed by the time-axis −N.

1. Vershik’s standardness criterion. Given a random variable X measurable with respect to the final
σ- field F0, all our knowledge aboutX at time −1 is contained in the conditional law L(X |F−1). But it
is a serious mistake to think that the conditional law L(X |F−2) contains all our knowledge aboutX at
time −2, which is actually contained in the conditional law of the conditional law L (L(X |F−1) |F−2).
We recursively define the sequence of Vershik’s progressive predictions (πnX)n60 of X by iterating
this procedure: we put π0X = X and πn−1X = L(πnX |Fn−1). Vershik’s standardness criterion
says that F is standard if and only if for any F0-measurable random variable X , the n-th progressive
prediction πnX of X becomes arbitrarily close to a constant with arbitrarily high probability as n
goes small. This is a useful criterion for proving theoretical results. Laurent (2009b) gives a short
proof of Vershik’s theorem on lacunary isomorphism based on Vershik’s standardness criterion. In
order to rigorously formulate Vershik’s standardness criterion, the state spaces of Vershik’s progressive
predictions πnX are endowed with Kantorovich metrics, well-known in the study on the sometimes
called “Monge-Kantorovich transportation problem”. Due to the link between the Kantorovich metric
and joinings (or couplings) of random variables, Vershik’s standardness criterion is characterized by
the I-cosiness criterion in terms of joinings of filtrations.

2. I-cosiness criterion. This criterion, introduced by Émery and Schachermayer (2001), is mainly inspired
from the notion of cosiness devised by Tsirelson (1997) in the framework of continuous time. To a
statistician, it could remind the “coupling from the past” method. It says that a filtration is standard
if and only if for every random variable X measurable with respect to the final σ- field F0, there exists
a joining (F′,F′′) of the filtration F (that is, a pair of two filtrations F′ and F′′ each isomorphic to
F and both immersed in a same bigger filtration), independent in small time (that is, F′n0

and F′′n0

are independent for some time n0 6 0), and for which the respective copies X ′ and X ′′ of X are
arbitrarily close with high probability. For example, Laurent (2009a) shows how to deduce from well-
known results on couplings of Markov chains that a stationary Markov chain on a denumerable state
space generates an I-cosy filtration whenever this filtration is Kolmogorovian (which is equivalent for
the Markov chain to be irreducible, recurrent and aperiodic). The standardness of such filtrations was
originally established by Rosenblatt (1960) by others considerations.

3. Combinatorial Vershik’s standardness criterion. In his pioneering works, Vershik focused on rn-adic

filtrations, that is, filtrations F for which, for each n 6 0, there exists a random variable Vn uniformly
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distributed on a finite set with rn elements, independent of Fn−1 and such that Fn = Fn−1∨σ(Vn). For
such filtrations, Vershik has stated a combinatorial form of his standardness criterion, involving tree

automorphisms. In the language of stochastic processes, this criterion is close to Vershik’s self-joining

criterion introduced by Laurent (2009a), which is a particular case of the I-cosiness criterion when the
joinings (F′,F′′) are given by some underlying tree automorphisms; and Laurent (2009a) elementarily
shows that the I-cosiness criterion reduces to Vershik’s self-joining criterion for rn-adic filtrations with
the help of Birkhoff-Von Neumann’s theorem (permutation matrices are extreme doubly stochastic
matrices).

In fact, originally, Vershik’s theory was mainly oriented towards the characterization of rn-adic filtrations
generated by a sequence of independent random variables. Actually standardness provides such a charac-
terization, as testified by the following important theorem due to Vershik.

Theorem. Let F = (Fn)n60 be a filtration such that Fn = Fn−1 ∨ σ(Vn) for each n 6 0 where Vn is a

random variable independent of Fn−1, having either an uniform distribution on a finite set or a diffuse law.

Then F is standard if and only if F is generated by a sequence of independent random variables.

From Vershik’s theory to Brownian filtrations

Vershik’s theory on filtrations in discrete, negative time, remained unknown to the western probabilistic
culture for about twenty-five years, until Dubins, Feldman, Smorodinsky and Tsirelson (1996) used Vershik’s
standardness criterion to show that the (continuous-time) filtration generated by a Brownian motion does
not necessarily remain generated by a Brownian motion after an equivalent change of probability has been
performed. We refer to Émery (2000) for a noteworthy survey on Vershik’s theory and its relations with
some questions on Brownian motion.

Émery (2005) has shown that the continuous-time analogue of the I-cosiness criterion characterizes
Brownian filtrations among filtrations which are “Brownian after zero”; with the help of this criterion, Émery
(2009) gives the first example of a filtration which is Brownian, but for which no generating Brownian motion
has constructively been exhibited.
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