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Abstract

The aim of this paper is to bring together different specifications for copula

models with time-varying dependence structure. Copula models are widely used

now in financial econometrics and risk management. They are considered to be a

competitive alternative to the Gaussian dependence structure. The dynamic struc-

ture of the dependence between the data can be modeled by allowing either the

copula function or the dependence parameter to be time-varying. First, we give a

brief description of eight different models, among which there are fully parametric,

semiparametric and adaptive methods. The purpose of this study is to compare the

applicability of each particular model in different cases. We conduct a simulation

study to show the performance of model selection and goodness-of-fit measures in

terms of size and power for different setups and the ability of the models to estimate

the (latent) time-varying dependence parameter. Finally, we provide an illustration

by applying the competing models on the same financial dataset and compare their

performance by means of Value-at-Risk.
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1 Introduction

It is well accepted that the hypothesis of (multivariate) normality is one that is usually

not supported by the data for many types of variables. This has created the need to con-

struct flexible, non-standard multivariate distributions and this task can easily be solved

using a class of functions known as copulas (Sklar 1959). Any multivariate distribution

function can be decomposed into the marginal distributions that describe the individual

behavior of each series and the copula that fully captures the dependence between the

variables. Furthermore, given a set of marginal distributions and a copula a multivariate

distribution can be constructed by coupling the marginals with the copula. The flexibility

of the way dependencies can be modeled independently of the marginal distributions has

made copulas particularly popular for financial applications. The most important fields

of applications are pricing CDO’s (Li 2000), calculating the Value-at-Risk of a portfolio

(Embrechts et al. 2003, Giacomini et al. 2009), the pricing of options with multiple un-

derlying assets (van den Goorbergh et al. 2005) or portfolio construction (Patton 2004).

Textbook treatments of the theory of copulas are given in Joe (1997) and Nelsen (2006).

The book Cherubini et al. (2004) deals entirely with various applications of copulas in

finance.

Most of the time copulas are applied to financial time series data, but often they are

treated to be constant over time. However, it has become a stylized fact that correlations

between asset returns are not constant through time, a finding that has been documented

by, among many others, Erb et al. (1994), Longin and Solnik (1995) or Engle (2002).

Some notable parametric models to model these time-varying correlations in multivariate

volatility models are the DCC GARCH model, simultaneously proposed by Engle (2002)

and Tse and Tsui (2002), a stochastic volatility model with stochastic correlations by Yu

and Meyer (2006) and the regime switching model for dynamic correlations by Pelletier

(2006). Hafner et al. (2006) propose a semiparametric model for correlation dynamics.

Even though copulas allow for more general dependence structures than simple linear cor-

relation it seems unrealistic to treat dependence as constant, given that correlations have

been found to be time-varying. To our knowledge the first papers allowing copulas to be

time-varying were Patton (2006), who extended Sklar’s theorem for conditional distribu-

tions and proposed a parametric model to describe the evolution of the copula parameter,

and Dias and Embrechts (2004) who proposed a test for structural breaks in the cop-

ula parameter. Subsequently, a large number of studies has dealt with the application of

time-varying copulas and the development of new models and tests to appropriately model
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time-varying dependencies. Some contributions to this fast growing field of research are

van den Goorbergh et al. (2005), Jondeau and Rockinger (2006), Giacomini et al. (2009),

Guégan and Zhang (2009), Chollete et al. (2008), Creal et al. (2008), Hafner and Manner

(2008) and Hafner and Reznikova (2008).

In this paper we want to offer a survey over the existing models for time-varying cop-

ulas by focusing on the specification, estimation and properties of a number of models.

Furthermore, we discuss how the best fitting time-varying copula can be chosen among a

number of competing ones and how the goodness-of-fit of a candidate model can be tested.

A Monte Carlo study compares the performance of the model selection and goodness-of-

fit criteria for competing specifications of dynamics of the copula parameter, and shows

how well the competing time-varying copula models are able to estimate the (latent) de-

pendence process. In an empirical application alternative models are estimated for two

financial data sets and in addition to statistical model selection the ability of the models

to correctly estimate the Value-at-Risk is tested.

The rest of the paper is organized as follows. In Section 2 copulas and their estimation are

reviewed. Section 3 provides a survey over existing time-varying copula models followed

by a simulation study in Section 4. An empirical application is provided in Section 5 and,

finally, Section 6 provides conclusions and an outlook to future developments.

2 Copulas

In this section we shortly discuss the basic theory of copulas and some ways to estimate

their parameters. For a complete introduction to copulas see Joe (1997).

Lets consider the bivariate stochastic process {Xt}Tt=1 withXt = (X1t, X2t)
′. Let F (X1t, X2t)

be the joint distribution, whereas Fi and fi will denote the marginal cdf and pdf respec-

tively for i = 1, 2. Then by Sklar’s theorem there exists a copula function C(·, ·) : [0, 1]2 →
[0, 1] mapping the marginal distributions of X1t and X2t to their joint distribution through

F (X1t, X2t) = C (F1(X1t), F2(X2t)) . (1)

We assume that the marginals can be modeled parametrically, thus the probability trans-

form is given by Uit = Fi(Xit;φi), where φi is the vector of parameters completely de-

scribing the individual behavior of the series. Fi(Xit;φi) can be a conditional distribution

and in financial econometrics Xit is usually modeled by an ARMA-GARCH type model,

whose residuals are treated as iid random variables. We also assume that the copula
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belongs to a parametric family Cθ, θ ∈ Θ ⊂ RK . Some examples of parametric copulas

are given in the appendix.

Given that the copula function and the marginals are absolutely continuous, the following

expression for the joint pdf holds

f(X1t, X2t) = c(U1t, U2t; θ)
2∏
i=1

fi(Xit;φi), (2)

where c(·, ·) denotes the copula density. Assume a sample Xt, t = 1, . . . , T . The log-

likelihood function is given by

L(θ, φ) =
T∑
t=1

{log c(U1t, U2t; θ) + log f1(X1t;φ1) + log f2(X2t;φ2)} (3)

= LC(θ, φ) + LX1(φ1) + LX2(φ2), (4)

where φ = (φ′1, φ
′
2)
′. Thus, the full log-likelihood function L(θ, φ) can be split into two

parts, copula likelihood LC(θ, φ) and likelihood of the marginals LX1(φ1) and LX2(φ2).

There are several ways to estimate θ and φ. One possible method is to estimate the

parameters simultaneously by full maximum likelihood

(θ̂, φ̂) = arg max
θ,φ

L(θ, φ). (5)

This estimation method is conceptually straightforward. However, in some situations it

may be computationally rather burdensome.

Another approach is to use a two stage estimator. At the first stage only the parameters

from the marginal distributions are estimated

φ̂i = arg max
φ

LXi(φi), i = 1, 2. (6)

At the second stage the dependence parameter is estimated from the copula likelihood

θ̂ = arg max
θ

LC(θ, φ̂). (7)

However, the estimation of the parameters in two steps leads to a loss in efficiency and

standard errors cannot be obtained as the inverse of the Fisher Information Matrix any-

more. By applying one step of the Newton-Rhapson algorithm to the full likelihood

function using the two step estimators, statistical efficiency can be achieved (see van der

Vaart (1998), Ch.5).
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Alternatively when the marginal model is unknown Genest et al. (1995) suggest modeling

the marginal distribution with the empirical cdf and estimating the copula on the ranks

of the data. Again, the problem of loss of efficiency occurs and calculation of the standard

errors of the estimated copula parameter is quite tedious. On the other hand, this method

is robust to the misspecification of the marginals, which can cause biased estimates of the

copula parameter.

3 Survey

In this section we will give an overview of the time-varying copula models that have been

proposed in the literature. We focus our attention on the specification of the dynamics

of the copula parameter and the estimation of the models. For the sake of brevity a

complete description of the properties and many details of the procedures involved must

be omitted. The interested reader is referred to the original papers.

Note that the following paragraphs describe only the specification and estimation of the

copula, whereas the marginals are assumed to be appropriately modeled and the data is

assumed to be transformed into the U(0, 1) variables U1t and U2t. In general the time-

varying dependence parameter of the copula will be called θt, and for the correlation

coefficient of the Gaussian copula ρt is reserved.

3.1 Observation driven models

Patton (2006) and Creal et al. (2008) propose similar observation driven copula models

for which the time-varying dependence parameter of a copula is a parametric function of

transformations of the lagged data and an autoregressive term.

The model of Patton for the dynamics of the correlation for Gaussian or Student copula

has the following form,

ρt = Λ1

(
ω + βΛ−1

1 (ρt−1) + α
1

m

m∑
i=1

Φ−1(U1,t−i)Φ
−1(U2,t−i)

)
, (8)

Λ1(x) =
1− exp(−x)

1 + exp(−x)
, (9)

where Λ1(·) is a transformation function which holds the correlation parameter ρt in the

interval (−1, 1), Φ(·) is the standard normal cdf and m is an arbitrary window length.

If the data is positively dependent, the inverse of marginal transforms of both variables
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will have the same sign. Thus, in case of positive dependence the parameter α should be

positive.

For the non-Gaussian case Patton suggests modeling the tail dependence parameters (λU

and λL) of the Symmetrized Joe-Clayton (SJC) copula, where λU and λL are stand-alone

monotonic transformations to copula parameters1. In general, the model for the evolution

of a dependence parameter (or tail dependence) of a copula is

θt = Λ2

(
ω + βΛ−1

2 (θt−1) + α
1

m

m−1∑
j=0

|U1,t−j − U2,t−j|

)
, (10)

where Λ2(x) is an appropriate transformation function to ensure the parameter always

remains in its domain: (1 + exp(−x))−1 for tail dependence, exp(x) for Clayton copula

and (exp(x) + 1) for Gumbel copula. In case of perfect positive dependence the forcing

variable |U1,t−U2,t| is close to zero, therefore the parameter α is expected to be negative.

Creal et al. (2008) developed a unifying framework named Generalized Autoregressive

Score (GAS) for time series processes with time varying parameters. A scaled score

vector is used as an updating mechanism for the observation driven part of a model. In

general, the model GAS(p,q) for a time-varying parameter ft looks as follows

ft = ω +

q∑
j=1

βjft−j +

p−1∑
i=0

αist−i, (11)

where st = St−1·∇t is the scaled score of the log-likelihood function of the model of interest.

∇t is the first derivative of the log-likelihood with respect to the parameter, whereas St−1

is the scaling matrix, which is approximated by the inverse of Fisher information matrix.

The GAS(1,1) model for the correlation coefficient of the Gaussian copula is

ft = ω + βft−1 + α
2(yt − ρt−1 − ρt−1(1 + ρ2

t−1)
−1(zt − 2))

(1− ρ2
t−1)

, (12)

ρt = Λ1(ft), (13)

where yt = Φ−1(U1t) · Φ−1(U2t) and zt = Φ−1(U1t)
2 + Φ−1(U2t)

2.

Such a specification is more sensitive to the off-diagonal observations than the Patton

model and the correlation parameter more rapidly adjusts to the decrease in dependence

as illustrated nicely by Creal et al. (2008). The GAS model is also shown to be more

1The Joe-Clayton copula is such a transformation of the Clayton copula that possesses upper and
lower dependence and it is characterized by two parameters; the SJC allows for the special case of the
symmetry in the dependence.
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sensitive to observations in the lower and upper tail.

This approach is also applicable to Archimedean copulas and, unlike Patton’s model, it

can be used for multivariate data. However, the problems with computing st = ∇tI−1
t−1

term might occur. A numerical approximation is suggested for obtaining the Fisher

information matrix It−1 = Et−1[(∇t)
2]. The conducted simulation study shows that GAS

model provides an estimator, which is closer to the true parameter but has a higher

variation.

A further paper dealing with dynamic copulas is Jondeau and Rockinger (2006), who

model time-varying correlations for Gaussian and Student copulas in three different ways.

Two of them, DCC correlations and regime-switching correlations, will be described in

Sections 3.2 and 3.7. The third way can be seen as a discrete variation of the forcing

equation by Patton (2006). For this the unit square is split into a number of subsets Aj,
j = 1, ..., 16. The choice of the subintervals can be chosen by the modeler and the authors

suggest using 16 equally sized sub-squares over the grid 0, 0.25, 0.5, 0.75, 1. Correlation

then is given by

ρt =
16∑
j=1

djI[(U1t−1, U2t−1) ∈ Aj], (14)

with dj ∈ [−1, 1] and I the indicator function. Thus correlation at time t is driven by the

concordance of the observations at t− 1.

Estimation of the observation driven models is based on the maximization of the copula

log-likelihood as in (7), having the vector of parameters as an argument and treating the

evolution function of θt as a constraint.

3.2 DCC copulas

Engle (2002) proposed a multivariate GARCH model with dynamic conditional correla-

tions (DCC), where the correlations are driven by the cross product of the lagged stan-

dardized residuals and an autoregressive term. Estimation is done, similarly as for copula

models, by first estimating the GARCH parameters for the individual series and then

estimating the parameters driving the correlation dynamics. This specification can easily

be adapted to model the dynamics of copula parameters. Let Yit = Φ−1(Uit), where Φ

denotes the cdf of the standard normal distribution and Yt = (Y1t, Y2t)
′. Then the DCC

model specifies the correlation matrix Rt as

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2, (15)
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where Qt follows

Qt = Ω(1− α− β) + αYt−1Y
′
t−1 + βQt−1 (16)

and Ω is the unconditional covariance matrix of Yt−1. This specification ensures positive

definiteness of the correlation matrix and that the correlation coefficient ρt, which is

the off-diagonal element of Rt, lies in [−1, 1] at all times. Heinen and Valdesogo (2008)

suggest how this approach can be extended to some non-elliptical copulas. They propose

transforming the correlations into Kendall’s tau through

τKt =
2

π
arcsin(ρt).

Some copulas have a one-to-one relation between Kendall’s tau and the dependence pa-

rameter θ and using this relationship the τKt is mapped into θt. As some copulas only

allow for positive dependence, Heinen and Valdesogo (2008) overcome this potential prob-

lem by replacing the off-diagonal elements of Qt by max(0, qt) to ensure that the copula

parameter always remains in its domain. Thus, the negative dependence is treated by set-

ting the corresponding copula to the independence copula. This can be seen as a potential

drawback, but as the authors mention when the conditional correlation is below zero a

large fraction of the time, models only allowing for positive dependence are likely to have

bad fit and will not be considered to be appropriate very often. Another disadvantage of

the DCC copula specification is that it is not obvious how to generalize it to copulas that

have more than one parameter.

Estimation can be done by treating the copula parameter θt as an observable function of

α, β and Ft−1, the information at time t−1. The copula likelihood (7) is then maximized

over the parameters α and β that drive the dependence parameter.

3.3 Stochastic autoregressive copulas (SCAR)

Hafner and Manner (2008) suggest a time-varying copula model where dynamics of the

copula parameter are not driven by the observations as in the DCC or the Patton model,

but where the copula parameter is driven by an independent stochastic process. Formally,

θt = Λ(λt), where Λ : R→ Θ is an appropriate transformation to ensure that the copula

parameter remains in its domain and whose functional form depends on the choice of

copula. The underlying process {λt}Tt=1, which is latent, is assumed to follow a Gaussian

autoregressive process of order one,

λt = ω + βλt−1 + σηηt, (17)

8



where ηt is an i.i.d. N(0, 1) innovation and |β| < 1 to ensure stationarity of λt. For

the Frank and the Plackett copulas the transformation Λ is simply Λ(x) = x, implying

normality of the copula parameter, for the Clayton copula it is Λ(x) = exp(x), and

for the Gumbel copula Λ(x) = exp(x) + 1, implying log-normality of θt for these two

families. For the Gaussian and the Student copulas the inverse Fisher transform Λ(x) =

(exp(2x)− 1)/(exp(2x) + 1) is the most natural choice, since the Fisher transform is the

variance stabilizing transformation for the correlation coefficient (van der Vaart 1998).

Estimation of the parameter vector (ω, β, ση) is not straightforward since the process

{λt}Tt=1 is unobservable. Hafner and Manner (2008) propose to integrate it out of the

likelihood function of the copula. Denote U1 = {U1t}Tt=1, U2 = {U2t}Tt=1, λ = {λt}Tt=1 and

let f(U1, U2, λ;ω, β, ση) be the joint density of the observable variables (U1, U2) and the

latent process {λt}Tt=1. Then the likelihood function is given by

L(ω, β, ση;U1, U2) =

∫
f(U1, U2, λ;ω, β, ση)dλ. (18)

Hafner and Manner (2008) discuss how the efficient importance sampler (EIS) by Liesen-

feld and Richard (2003) and Richard and Zhang (2007) can be adapted to evaluate this

T -dimensional integral by simulation. The simulated likelihood function can then be

maximized over the parameter vector (ω, β, ση). As a byproduct one obtains a smoothed

estimate λ̂t of the underlying latent process and thus also a smoothed estimate θ̂t of the

time-varying copula parameter.

3.4 Semiparametric dynamic copula (SDC)

Hafner and Reznikova (2008) propose a semiparamteric approach to model the time-

varying behavior of the dependence parameter of a copula treating θ as a smooth function

of time. On the second stage of the estimation the log-likelihood function from (7) is

locally weighted around location τ

L (θ;h, τ) =
T∑
t=1

log c(U1t, U2t; θ) ·Kh(t/T − τ), (19)

where K(·) is a kernel function, Kh(·) = (1/h)K(·), h > 0 is a bandwidth and τ ∈ [0, 1]

is an appropriate grid. Then the locally estimated dependence parameter takes the form:

θ̂(τ) = arg max
θ

L(θ;h, τ). (20)
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In the case when K(·) is a symmetric function, the estimator can possess a considerable

bias at the boundaries, which is a well known problem of kernel estimation techniques

(see Simonoff (1996), Ch.3). A possible solution is to approximate θ by a higher order

polynomial, e.g. by simply taking the local linear function

θ(t/T ) ≈ θ(τ) + θ′(τ)

(
t

T
− τ
)
. (21)

The important step prior to estimation of θ is the bandwidth selection. The MSE-optimal

bandwidth is

ĥ = arg min
h

{∫
M̂SE(x;h)w(x)dx

}
, (22)

where M̂SE(τ ;h) = b̂ias
2
(τ ;h) + v̂ar(τ ;h) and w(x) is any weight function. To obtain

the estimators of the bias and variance one needs first to select the pilot bandwidth h∗,

which is the minimum of the integrated Extended Residual Square Criterion (ERSC) of

Fan et al. (1998)

ERSC(τ ;h) = J−2
T (τ)sT (τ)

{
1 +
||K||2

nh

}
, (23)

where JT (τ) = `′′[τT ](θ̂(τ)), sT (τ) =
∑T
t=1(`′τT (θ∗(t/T )))2Kh(t/T−τ)∑T

t=1Kh(t/T−τ) with `t(θ) = log c(U1t, U2t; θ)

and θ∗(t/T ) is estimated for the local quadratic function.

If T is not equal to the number of grid subintervals, then the estimated θ(τ) is extrapolated

on [1, T ]. Hafner and Reznikova (2008) also provide the asymptotic theory for the θ

estimator.

3.5 Structural breaks

Another possibility to allow for changing dependence over time is to test for a structural

break in the copula parameter at a given point in time t∗ as suggested by Dias and

Embrechts (2004). Let the distribution of Ut = (U1t, U2t)
′ be C(U1t, U2t, θt), where t =

1, . . . , T .

Formally, the null hypothesis of no structural break in the copula parameter becomes

H0 : θt = θ, (24)

whereas the alternative hypothesis of the presence of a single structural break is formulated

as:

H1 : θt =

{
θ1 1 ≤ t ≤ t∗

θ2 t∗ < t ≤ T.
(25)
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In the case of a known break-point t∗, the test statistics can be derived as a generalized

likelihood ratio test. Let L1(θ), L2(θ) and L(θ) be the log-likelihood functions of the

copula using the first t∗ observations, the observations from t∗+1 to T and all observations,

respectively. Then the likelihood ratio statistic can be written as

LRt∗ = 2[L1(θ̂1) + L2(θ̂2)− L(θ̂)], (26)

where a hat denotes the maximizer of the corresponding likelihood function. Note that θ̂1

and θ̂2 denote the estimates of θ before and after the break, whereas θ̂ is the estimate of θ

using the full sample. For t∗ fixed this statistic follows a χ2 distribution with the number

of degrees of freedom equal to the dimension of θ. In the case of an unknown break

date t∗, a procedure similar to the one proposed in Andrews (1993) can be applied. The

test statistic proposed by Dias and Embrechts (2004) is the supremum of the sequence of

statistics for known t∗

ZT = max
1≤t∗<T

LRt∗ (27)

and the asymptotic critical values of Andrews (1993) can be used.

Candelon and Manner (2007) have extended the procedure to additionally allow for a

breakpoint in the parameters of the marginal distribution at a (possibly) different point

in time and they propose a bootstrap procedure to obtain critical values of the test

statistic.

3.6 Adaptive estimation method (LCP)

Giacomini et al. (2009) propose to estimate the time-varying parameters of the copula

adaptively by means of local parametric fitting. The main idea is that the varying copula

parameter θt can be well approximated by a constant θ on an interval of homogeneity It.

The crucial point is how to estimate the length of each interval ∀t. This distinguishes the

model from the simple case of moving window estimator, as for this method the length of

the window is determined by a data driven procedure.

The Local Change Point (LCP) method developed by Mercurio and Spokoiny (2004)

determines the largest interval where the dependency parameter is invariant. The method

tests the hypothesis of homogeneity for the interval It = [t−mt, t) with the right end-point

t. As soon as the length of the interval mt is estimated, the parameter θt is approximated

by a constant estimator θ̂Ît . The method is carried out in the counter direction for

t = T, . . . , 1.
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The length of the interval of homogeneity It is estimated as follows. First, a family of

nested intervals is defined as I = {Ik = [t −mk, t), k = 1, 2, . . .}, such that mk+1 > mk.

Then, within an interval Ik a set of internal points Tk ⊂ Ik is selected. This set of points

Tk is suspected to contain a break-point t∗. The procedure works as follows:

1. Test the hypothesis of homogeneity on Tk ⊂ Ik. The null and the alternative

hypothesis are similar to (24) and (25). As for the likelihood ratio test in (26), here

the point t∗ ∈ Tk divides the testing interval Ik in two disjoint intervals I1 and I2.

Thus, the likelihoods are calculated for Ik, I1 and I2 with the ML estimators θ̃k, θ̃1

and θ̃2. The corresponding ZIk statistics from (27) is then compared to the critical

value. The hypothesis of homogeneity of θ is rejected when ZIk exceeds the critical

value.

2. If H0 for k is not rejected, then the next interval Ik+1 is tested for homogeneity.

3. If H0 is rejected on Ik, then the interval of homogeneity is the last accepted interval

Ît = Ik−1.

If a large window is selected the estimate of dependence is not sensitive and reacts to

changes in dependence with high delay. On the contrary, if a window is small, the estimate

is quite unstable with high perturbation. This is also the case for the first observations,

for which the window is forced to be small. The size of the window depends on the

choice of the critical values and other parameters, described in Giacomini et al. (2009)

and Mercurio and Spokoiny (2004).

3.7 Regime switching copulas (RSC)

A further way to specify a copula model in which both the degree and the type of depen-

dence change over time is to allow for a number of states, each being characterized by a

different copula. These copulas can be from the same family but allowing for different

parameters. They may, however, also change their functional forms implying different

states having entirely different dependence structures, a possibility we do not consider

here, but that allows for interesting modeling of financial data. One may think of a model

distinguishing tranquil and crisis time, the former being characterized by a Gaussian cop-

ula, whereas during the latter data is being generated by a copula allowing for lower tail

dependence. To our knowledge the first to allow for regime switching in correlations is

Pelletier (2006). Garcia and Tsafack (2008) and Chollete et al. (2008) have explicitly
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modeled copulas in a regime switching framework. Let kt be a latent random variable

that takes on the value k = 1, ..., K when regime k is the current state. Then

(U1t, U2t|kt = k) ∼ C(U1t, U2t; θk) (28)

and kt is assumed to follow a Markov chain of order one with πij the probability of moving

to regime j in period t conditional on being in state i at time t− 1. Usually the number

of states K is taken to be equal to two or three. K = 2 is the more common choice which

we focus on in this study. Estimation can be done using the Expectation Maximization

(EM) algorithm as outlined in Hamilton (1994) Ch. 22. Define the matrix of transition

probabilities

P =

(
π11 1− π11

1− π22 π22

)
,

and let ξ̂t|t be a (2 × 1) vector containing the estimated probabilities of being in each

state at time t given the information at time t. Further ξ̂t|t−1 are the same estimated

probabilities only using information until time t− 1. Then the system is described by

ξ̂t|t =
ξ̂t|t−1 � ηt

1′(ξ̂t|t−1 � ηt)
, (29)

ξ̂t+1|t = P ′ξ̂t|t, (30)

ηt =

(
c1(U1t, U2t; θ1)

c2(U1t, U2t; θ2)

)
, (31)

with 1 a vector of ones and � the Hadamard product2. For a given starting value ξ̂1|0

and copula parameters θ1, θ2 and transition probabilities π11 and π22 one can iterate over

(29) and (30) to obtain the log-likelihood function of the copula

LLC(θ1, θ2, π11, π22;U1t, U2t) =
T∑
t=1

log(1′(ξ̂t|t−1 � ηt)). (32)

Formulas to estimate the smoothed probabilities of being in each state at time t, ξ̂t|T , can

be found in Hamilton (1994).

3.8 Other approaches

In this section we shortly review additional approaches for testing for and modeling time-

varying copulas that have been proposed in the literature. However, we will skip most of

2The Hadamard product denotes element by element multiplication of two equally sized matrices.
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the details for the sake of brevity.

van den Goorbergh et al. (2005):

In this paper time-varying copulas are used to price options with multiple underlying

assets and it is found that the option prices implied by time-varying copulas are quite

different from those using static copulas. The relation between the parameter of some

one-parameter copulas and Kendall’s tau is exploited to estimate the copula parameter

by a moment type estimator. A time-varying measure of Kendall’s tau then implies a

time-varying copula parameter. It is assumed that dependence is driven by the volatility

of the assets, which is reasonable as it is implied by factor models for asset pricing and this

relation has been confirmed in a number of studies. Let hit be the conditional variance of

asset i (e.g. the GARCH variance). Then τt is assumed to follow

τt = γ0 + γ1 log{max(h1t, h2t)}. (33)

The parameters γ0 and γ1 are estimated by regressing a rolling window estimate of τt on

a constant and the maximum of the logarithm of the maximum of the GARCH variances.

The window size is chosen to be equal to about 40 days, although it is found that the

results are robust to the choice of the window size.

The main difference of this approach to the ones presented so far is that the copula

parameter is assumed to depend on the marginal distribution through the conditional

variance, whereas all the other approaches assume that the copula parameter behaves

independently of the parameters of the marginal distributions.

Guégan and Zhang (2009):

The difference between this approach to the majority of the competing approaches is that

the authors do not only test for a change in the relationship between the variables of

interest, but also whether the copula remains the same and only the degree of depen-

dence changes, or whether additionally also the type of copula changes at a given point

in time3. The main idea is to compare a parametric copula to a nonparametric esti-

mate of the copula density at m distinct points in time using the goodness-of-fit tests by

Fermanian (2005). By applying the test to a conditional copula one can check whether

the copula family changes. When the copula family changes the authors suggest using

a binary segmentation procedure to detect the change points and the type of copula on

3One exception is the regime switching copula presented in Section 3.7.
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each sub-interval, otherwise they suggest using the structural break test by Dias and

Embrechts (2004) to detect the change points of the copula parameters. For the details

of the procedure and the test statistics we refer the interested reader to the original paper.

Harvey (2008):

A further technique worth mentioning is that of Harvey (2008), who treats the prob-

lem of changing copulas by noting that it is related to estimating time-varying quantiles.

The method is non-parametric and very different to the other techniques described here.

Busetti and Harvey (2008) build on the same methods to construct a formal test for

changing dependence. A description of the approaches is beyond the scope of this pa-

per.

4 Model selection and simulations

In this section we study how to measure the goodness-of-fit for time-varying copulas, how

to select the best fitting model and how well the competing specifications for time-varying

dependence presented in the previous section are able to estimate the underlying depen-

dence process.

4.1 Specification testing

Assume for a given time series of observations (U1t, U2t), t = 1, . . . , T copula model Ci has

been estimated, where i denotes a candidate parametric copula, and an estimate for the

sequence of dependence parameters θ̂it, t = 1, . . . , T has been obtained. The first thing

we are interested in is which of the competing models Ci fits the data at hand best. Even

though the models are usually non-nested and standard likelihood ratio test cannot be

performed a very simple and (as we shall see) reliable way to select the best fitting model

is to compare the value of the log-likelihood function LLi. The model with the highest

likelihood is considered to be the best fitting one4.

The model maximizing the LL statistics, however, must not necessarily provide a satisfac-

4It is theoretically more sound to use the Akaike Information Criterion (AIC) to compare the fit of
non-nested models, but since we only compare the fit within each specification for the time-variation,
the number of parameters is always the same and hence it is equivalent to looking at the value of the
log-likelihood function.
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tory fit for the data being analyzed. Thus, for an estimate θ̂it, t = 1, . . . , T the hypothesis

of interest is whether the data has actually been generated by Ci. Let C0(U1t, U2t, θ
0
t ) be

the true copula where θ0
t denotes the true parameter at time t. Then formally the null

hypothesis is

H0 : Ci(U1t, U2t, θ̂it) = C0(U1t, U2t, θ
0
t ). (34)

Note that this means that we are testing both the copula specification Ci and the estimate

of the latent dependence parameter of model i, θ̂it, and rejecting H0 does not necessarily

mean that the data was not generated by Ci. We test the hypothesis in (34) by testing

whether the copula of U1 given U2 is uniformly distributed, which is an application of the

Rosenblatt probability integral transformation. In our case this means

ẑt = Ci(U1t|U2t, θ̂it) =
∂Ci(U1t, U2t, θ̂it)

∂U2t

∼ U(0, 1). (35)

We test this hypothesis by applying the Anderson-Darling (Anderson and Darling (1952))

test, which is given by

TAD = sup
x

√
T |F̂(x)− F (x)|√
F (x)(1− F (x))

, (36)

where F̂(·) denotes the empirical cdf of ẑt and F (x) is the U(0, 1) cdf. For this statistics

tabulated critical values must be used. Contrary to applying the test in the static copula

setting for the time-varying case we are actually not only testing the functional form, but,

as mentioned above, also the quality of the estimate θ̂it, t = 1, . . . , T , which may cause

size distortions and influence the power of the tests.

4.2 Monte Carlo study

The simulation setup is as follows. We randomly draw a sample (U1t, U2t)
T
t=1 from a

Gaussian copula with time-varying correlation coefficient. The correlations follow three

alternative processes, two of which are deterministic and one is stochastic:

1. Step: ρt = 0.2 + 0.6It>500

2. Sine: ρt = 0.5 + 0.4 cos(2πt/400)

3. AR(1): ρt = (exp(2λt)− 1)/(exp(2λt) + 1) with λt = 0.02 + 0.97λt−1 + 0.1εt,
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Table 1: MSE for estimating the underlying correlation

MSE Const DCC PATT SDC LCP SCAR RSC

Step 0.092
(0.002)

0.016
(0.004)

0.053
(0.005)

0.007
(0.003)

0.017
(0.005)

0.008
(0.003)

0.004
(0.003)

Sine 0.082
(0.002)

0.021
(0.004)

0.048
(0.005)

0.006
(0.003)

0.047
(0.007)

0.010
(0.003)

0.020
(0.005)

AR(1) 0.076
(0.022)

0.040
(0.009)

0.052
(0.011)

0.035
(0.008)

0.063
(0.014)

0.025
(0.006)

0.036
(0.010)

Note: Table 1 reports the MSE for estimating the underlying correlation process
for data that has been generated by Gaussian copulas with correlation following
a Step, Sine and AR(1) processes. Monte Carlo standard errors are given in
parenthesis. The sample size is 1000 and the number of Monte Carlo replications
is equal to 1000 for Const, DCC, PATT and RSC, 250 for SDC and SCAR, and
100 for LCP.

where εt ∼ N(0, 1). Note that the average correlation is 0.5 for each of the data generating

processes. We decided to leave out the case of data generated by a model with constant

correlation, but we note that the models seem to be able to deal well with the case of

constant dependence. Some simulation results for this situation can be found in Hafner

and Manner (2008) and Hafner and Reznikova (2008). For each artificial data set we

estimate the Gaussian, Frank, Gumbel and Clayton copulas with the following method to

allow for time variation: Constant, DCC (§3.2), PATT (§3.1), SDC (§3.4), LCP (§3.6),

SCAR (§3.3), and RSC (§3.7). For each estimation technique and each model θ̂it, t =

1, . . . , T and LLi is obtained5. The sample size is equal to T = 1000, corresponding to

4 years of daily data, and the number of Monte Carlo replications is 1000 in general,

although due to the extremely high computational complexity it was only 250 for the

SCAR and SDC models, and 100 for the LCP specification.

In order to get an idea of how well the competing time-varying copula models introduced

above are able to estimate the underlying dependence parameter θt at each point in time

we compute the mean square distance between the true dependence parameter and its

estimate

MSE =
1

K

K∑
k=1

1

T

T∑
t=1

(θ̂kt − θ0k
t )2, (37)

5For the regime switching copula θ̂it is computed as the smoothed probabilities of being in each of the
two states times the parameter in that state.
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Table 2: Model selection by the log-likelihood statistic

Step

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.212 0.997 0.011 0.996 0.720 0.968 0.990

Clayton 0.008 0.001 0.001 0.000 0.000 0.020 0.001

Frank 0.697 0.000 0.824 0.000 0.160 0.008 0.000

Gumbel 0.083 0.002 0.164 0.004 0.120 0.004 0.009

Sine

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.212 0.981 0.007 1.000 0.350 1.000 0.999

Clayton 0.008 0.002 0.002 0.000 0.010 0.000 0.000

Frank 0.697 0.006 0.488 0.000 0.260 0.000 0.000

Gumbel 0.083 0.011 0.503 0.000 0.380 0.000 0.001

AR(1)

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.318 0.925 0.327 0.956 0.190 0.962 0.991

Clayton 0.004 0.001 0.002 0.000 0.060 0.034 0.000

Frank 0.608 0.043 0.312 0.024 0.360 0.004 0.005

Gumbel 0.070 0.031 0.359 0.02 0.390 0.000 0.004

Note: Table 2 reports the fraction of times each estimated copula has the highest
log-likelihood statistics for data that has been generated by Gaussian copulas with
correlation following a Step, Sine and AR(1) processes. Monte Carlo standard errors
are given in parenthesis. The sample size is 1000 and the number of Monte Carlo
replications is equal to 1000 for Const, DCC, PATT and RSC, 250 for SDC and SCAR,
and 100 for LCP.
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Table 3: Size and power of the Anderson-Darling test based on the probability integral

transform

Step

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.352
(0.015)

0.058
(0.007)

0.254
(0.014)

0.056
(0.007)

0.040
(0.006)

0.056
(0.007)

0.048
(0.007)

Clayton 0.643
(0.015)

0.864
(0.011)

0.619
(0.015)

0.600
(0.015)

0.480
(0.016)

0.737
(0.014)

0.838
(0.012)

Frank 0.051
(0.007)

0.207
(0.013)

0.254
(0.014)

0.268
(0.014)

0.190
(0.012)

0.267
(0.014)

0.062
(0.008)

Gumbel 0.539
(0.016)

0.621
(0.015)

0.584
(0.016)

0.564
(0.016)

0.420
(0.016)

0.649
(0.015)

0.571
(0.016)

Sine

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.352
(0.015)

0.129
(0.011)

0.324
(0.015)

0.068
(0.008)

0.260
(0.014)

0.060
(0.007)

0.041
(0.006)

Clayton 0.643
(0.015)

0.898
(0.010)

0.635
(0.015)

0.640
(0.015)

0.770
(0.013)

0.790
(0.013)

0.762
(0.013)

Frank 0.051
(0.007)

0.142
(0.011)

0.134
(0.011)

0.212
(0.013)

0.110
(0.010)

0.329
(0.015)

0.130
(0.011)

Gumbel 0.539
(0.016)

0.625
(0.015)

0.561
(0.016)

0.552
(0.016)

0.520
(0.016)

0.671
(0.015)

0.595
(0.016)

AR(1)

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.291
(0.014)

0.160
(0.012)

0.249
(0.014)

0.100
(0.019)

0.370
(0.048)

0.076
(0.017)

0.054
(0.007)

Clayton 0.656
(0.015)

0.897
(0.010)

0.661
(0.015)

0.708
(0.014)

0.730
(0.014)

0.810
(0.012)

0.858
(0.011)

Frank 0.078
(0.008)

0.118
(0.010)

0.126
(0.010)

0.216
(0.013)

0.080
(0.009)

0.397
(0.015)

0.134
(0.011)

Gumbel 0.555
(0.016)

0.652
(0.015)

0.605
(0.015)

0.636
(0.015)

0.590
(0.016)

0.741
(0.014)

0.668
(0.015)

Note: Table 3 reports the rejection frequency of the null hypothesis of correct copula
specification using the Anderson-Darling test based on the probability integral trans-
form at a 5% nominal level. Data has been generated by Gaussian copulas with correla-
tion following a Step, Sine and AR(1) processes. Monte Carlo standard errors are given
in parenthesis. The sample size is 1000 and the number of Monte Carlo replications is
equal to 1000 for Const, DCC, PATT and RSC, 250 for SDC and SCAR, and 100 for
LCP.
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where K is the number of Monte Carlo replications, and θ0k
t and θ̂kt denote the true and

estimated dependence paths at replication k, respectively. Table 1 reports the average

MSE between the true and the estimated correlation processes for the Gaussian copula

for the static and each of the time-varying copula specifications and for the different cor-

relation dynamics. As expected, all models lead to substantial improvements over the

constant copula model. However, the RSC, SCAR and SDC models are superior to the

competing ones in all cases, the RSC being better for the Step correlation, SCAR for the

AR(1) correlation and the SDC for the Sine correlation, as to be expected. The DCC

performs worse than all three, but better than both PATT and LCP. The latter specifica-

tion naturally does not do too well for the Sine and AR(1) correlations as the assumption

of intervals of homogeneity is violated. Surprisingly, although the performance for the

Step correlation is acceptable the MSEs are still higher than those of the DCC, SDC and

SCAR models. This is puzzling insofar as this DGP should strongly favor the nature of

the LCP procedure.

The fraction of times each copula is the selected as the best fitting one in terms of the

highest LL statistics can be found in Table 2. One has to keep in mind that the compari-

son of different copulas using the LL statistic is only possible within the same specification

for the time-variation, but cannot generally be used to compare different models for the

dynamics in dependence. When ignoring the time-variation of dependence the Frank cop-

ula is chosen quite often. This suggests that the unconditional copula corresponding to a

time-varying Gaussian copula is closer to the static Frank than to the Gaussian copula.

When using the RSC, DCC, SDC and the SCAR models the LL statistics turns out to

be a very reliable model selection criterion. It does, however, become quite unreliable for

both PATT and LCP, although for the latter the results for the step correlation are still

acceptable.

The size and the power for the AD test at a 5% nominal level are reported in Table 3.

Monte Carlo standard errors are included, since for different models a different number of

Monte Carlo replication was chosen. In terms of size the RSC model performs best closely

followed by the SCAR model, which is slightly oversized for all cases. The SDC has higher

size distortions, but still does quite well and the other models are all severely oversized

with the exception of the DCC and the LCP models for the Step correlation. The power

of the tests, which is not corrected for the size distortions, is best for the RSC, DCC and

the SCAR models, although the SDC also has good power properties. All models have

problems rejecting the Frank copula and in some cases the power against the Frank copula
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is even below the size. This is probably due to the fact that the Frank copula is quite

similar to the Gaussian copula having no tail dependence and a symmetric dependence

structure. The power against the asymmetric copulas looks better for all models.

Overall, we can conclude the RSC, SDC and SCAR specifications for time-varying copu-

las are superior to the competing specifications. These models do not only perform very

well for the DGPs that clearly favor the models, namely Step for RSC, AR(1) for the

SCAR and Sine for SDC, but also for the other DGP’s. This shows the flexibility of these

approaches. For the SDC it is due to the non-parametric nature of the parameter changes

and the local estimation of the model. The SCAR model most likely performs well due to

the high flexibility allowed for by including a random error term in the dependence pro-

cess and the fact that the importance sampler exploited for its estimation makes efficient

use of the information contained in the data. The usefulness and flexibility of the regime

switching approach has already been shown for many other models and it seems to work

equally well for copulas. Still, the DCC model also shows a rather good performance

having the big advantage that it is easy to implement and that it does not require heavy

computations, which in fact is also the case for the RSC.

Which model to use depends on the assumptions one is willing to make on the time-

evolution of the dependence parameter, SDC being more suitable for smoothly changing

processes, whereas the DCC and SCAR models are more appropriate for autoregressive

correlations and regimes switching naturally applying when one believes in different states

of the world. The simulation result showed that even for misspecified correlation dynam-

ics these models perform well. Still, formal techniques to decide which method provides

the best fit on a given data set need to be developed. From a practical point of view the

choice of the model is also a matter of taste and software availability.

Note that although we only considered the Gaussian copula as the data generating pro-

cess unreported simulations suggest that our findings continue to hold when the data is

generated by different copulas.

5 Empirical illustration

For the empirical example we consider two data sets. The first data set are daily returns

of the exchange rates of Yen-USD and Euro-USD. It contains 1564 observations from 31

December 1999 till 30 December 2005. The second data set are weekly returns of Morgan

Stanley Capital International (MSCI) indexes of Korea and Singapore (in US Dollars)
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with 1039 observations from 10 May 1989 till 29 April 2009. With these examples we

want to check the ability of the copula models to describe both data in tranquil and crisis

times, and also to find out how much information is hidden in volatility vs. dependence.

The log-returns of Yen and Euro do not show any unusual behavior due to the selected

observation period, with the skewness (−0.06 and −0.08) and kurtosis (3.61 and 4.27),

respectively. The log-returns of Korea and Singapore MSCI indexes, on the other hand,

show vivid evidence of the clusters of volatility (Dec’97 and Nov’08). The descriptive

statistics also suggest that the observations should be filtered: both series posses negative

skewness (−0.48 and −0.40) and large kurtosis (9.64 and 5.87) respectively. The Jarque-

Bera test for normality clearly rejects the null hypothesis for all series.

At the first stage of estimation of the models we model the marginal distributions of

the data. We use AR(p)-GARCH(1,1) models with Student-t error terms to correct the

log-returns for the presence of autocorrelation and conditional heteroscedasticity. The

number of lags p of the AR(p) model is selected by Bayesian information criterion (BIC).

Thus, the model for the log-returns Xit looks as follows:

Xit = αi0 +

p∑
j=1

αipXi,t−j + εit (38)

εit =
√
hitzit (39)

hit = ωi + αiε
2
i,t−1 + βihi,t−1, (40)

where i is the index of the analyzed data series and zit are standard-t distributed with νi

degrease of freedom. The first stage estimators are given in Table 4. The adequacy of the

estimated models is tested by applying the Ljung-Box test on the estimated residuals.

Thus, we estimate ẑit = εit/

√
ĥit, where ẑit

√
νi
νi−2

follows a Student-t distribution with νi

degrees of freedom.

5.1 Copula model for exchange rates of Euro-USD and Yen-

USD

Next we estimate the dependence structure between Euro-USD and Yen-USD with six

types of copulas: two symmetric with no tail dependency (Gaussian, Frank), two with

upper tail dependency (Gumbel, rotated Clayton), and two with lower tail dependency

(Clayton, rotated Gumbel). These copulas and their properties are reviewed in the ap-

pendix. The models for the time evolution of the parameter are Constant, DCC, PATT,
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Table 4: First stage estimators: AR(p)-GARCH(1,1) model

AR(p) GARCH(1,1) d.o.f.

α0, α1, . . . αp ω α β ν

Euro −9.7E−05
(1.7E−04)

, −0.06
(0.03)

3.5E−07
(1.3E−07)

0.02
(0.01)

0.97
(0.01)

28.83
(12.03)

Yen 9.8E−05
(1.5E−04)

, −0.04
(0.03)

5.3E−07
(1.5E−07)

0.02
(0.01)

0.96
(0.01)

7.11
(1.15)

Singapore 5.3E−04
(9.9E−04)

, 0.06
(0.03)

1.6E−05
(7.9E−06)

0.11
(0.03)

0.88
(0.03)

7.48
(1.58)

Korea −4.8E−02
(3.1E−02)

, 0.03
(0.03)

, 0.13
(0.03)

5.9E−05
(2.3E−05)

0.12
(0.03)

0.86
(0.03)

10.60
(3.26)

Note: Table 4 reports the estimated parameters and standard errors of the AR(p)-
GARCH(1,1)-t model for the log-returns of exchange rates Euro-USD and Yen-USD
(daily observations, Dec’99 - Dec’05) and MSCI indexes of Singapore and Korea
(weekly observations, May’89 - Apr’09).

SCDM, LCP, SCAR and RSC discussed in previous sections. Table 5(a) reports the log-

likelihoods of the estimated models. For each model the best fitting type of copula in

terms of the likelihood is marked out in bold. As it is seen from the table the likelihoods

of Constant, PATT and LCP models favor Frank copula, whereas DCC, SDC, SCAR and

RSC models point to Gaussian copula. However, the log-likelihoods for the Frank copula

are virtually identical in latter cases. Taking into account the finding of the Monte Carlo

study that the DCC, SDC, SCAR and RSC models are more reliable when selecting the

best fitting copula using the log-likelihood either the Frank or the Gaussian copula could

be selected. Recall that in general it is not possible to compare the fit across different

specification by looking at the log-likelihood, as not all models have the same number

of parameters. However, the fit of the DCC, PATT and SCAR models may in fact be

compared, because they do have the same number of parameters.

The goodness-of-fit of the estimated models is then checked with Anderson-Darling (AD)

test of correct copula specification, described in Section 4. The p-values of the test are

presented in Table 5(b). The Frank copula passed the test for all estimated specifications,

whereas all the other copulas are rejected. Taken as a whole, these findings strongly favor

the Frank copula as the best fitting copula.

Figure 1 presents the dependence paths, estimated from Frank copula and transformed to

Kendall’s tau for the sake of comparison. The estimated paths of SDC and SCAR models

are very close. Dependence estimated with Patton, DCC and RSC models show similar
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Figure 1: Estimated dependence for the pair of exchange rates Euro-USD and Yen-USD. Frank copula.
Dependence paths are transformed to Kendall’s tau. Daily observations, Dec’99 - Dec’05.

behavior as SDC and SCAR, but shifted to the right. This can be explained by the fact

that the SDC and SCAR take into account the information of the full sample to estimate

dependence at time t, whereas the other specifications only rely on past information. Fi-

nally, the erratic behavior of the dependence path estimated for LCP in 2001 suggests

the presence of a sudden change. Indeed, the data seem to be independent until January

2001 and then the dependence grows considerably. This corresponds to the expectations

of the introduction of the Euro in January 2002.

Finally, the last measure that we use to test the adequacy of the estimated models is the

Value-at-Risk (VaR) of an equally weighted portfolio. V aRt(α) is the α-quantile of the

conditional distribution of portfolio returns at time t, which can be obtained by simu-

lation. Table 5(c) reports the results of the Dynamic Quantile (DQ) test of Engle and

Manganelli (2004). The null hypothesis of the DQ test states that the model is correctly

specified and that VaR is not under or over-estimated. The test is based on F statistics

and tests H0 : δ0 = δ1 = . . . = δ6 = 0 for the regression:

hitαt − α = δ0 + δ1hit
α
t−1 + . . .+ δ5hit

α
t−5 + δ6V aRt(α) + νt, (41)
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where hitαt = I(Xt ≤ V aRt(α)) and Xt is the return of the portfolio. The results of the

DQ test are shown in Table 5(c). For Gaussian and Frank copulas the estimated VaR has

no autocorrelation in the hits for five and four out of seven models, respectively. For other

types of copulas the P-values are in general close to zero. Thus, we can conclude that for

this data example not only the properly estimated volatilities of the marginals matters,

but also the dynamics of the joint dependence structure of the assets. However, as it

will be shown in the next section, DQ test for VaR as a models’ goodness-of-fit criterion

should be used with care.

5.2 Copula model for MSCI indexes of Korea and Singapore

In the second application we consider weekly observations of the MSCI indexes of Korea

and Singapore. As in the example above we estimate time-varying copula specifications

for the same types of copulas. The results of the evaluated log-likelihoods can be found

in Table 6(a). The log-likelihoods unambiguously point to the Gaussian copula as the

best fitting copula type. As for the second best choice, for all seven models it is a rotated

Gumbel copula. This provides some evidence of lower tail dependence, which is not a

surprise given a financial crisis occurred in 1997 and stock market returns tend to have

more dependence for losses than for gains.

The AD test results are reported in Table 6(b). The test rejects only Gumbel and rotated

Clayton copulas, but approves all the other types. Given that it produces the highest log-

likelihood statistic and that it is not rejected by the AD test the Gaussian copula seems

to be the best fitting model, although one may argue in favor of the rotated Gumbel

copula. The transforms to Kendall’s tau of the dependence paths based on Gaussian

copula are shown in figure 2. The estimated paths of dependence for the SDC and

SCAR models are very close and look quite smooth. The correlation estimated from

DCC model is also very close to SDC and SCAR with some deviations. The dependence

estimated from Patton’s model is this time noisier than of DCC model and compared to the

SDC/SCAR models lies closer to the unconditional dependence parameter throughout the

sample. The RSC estimator vividly shows the periods of constancy of the dependence.

However, the main shift in the dependence for this model falls on the year 2000. The

dependence path estimated from the LCP model deviates a lot from the other models

when the dependence increases due to the Asian crisis in 1997. Note that this increase in

dependence provides evidence for financial contagion as studied using copulas in Rodriguez

(2007) and Candelon and Manner (2007).

25



Table 5: Model selection for Euro-USD and Yen-USD data

(a) Log-likelihood

Const DCC PATT SDC LCP SCAR RSC

Gaussian 132.6 194.3 170.3 228.9 151.9 202.2 207.63

Gumbel 123.7 176.5 161.0 200.6 169.9 173.7 178.53

Clayton 113.4 145.2 142.9 161.9 135.3 149.5 151.86

Frank 146.5 194.2 194.9 226.8 183.1 201.8 205.32

rot Gumbel 134.4 182.9 169.5 198.3 169.3 177.6 169.04

rot Clayton 95.3 131.1 128.4 161.2 140.7 110.6 144.10

(b) AD test

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.00 0.00 0.00 0.00 0.00 0.03 0.03

Gumbel 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Clayton 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Frank 0.14 0.16 0.51 0.48 0.17 0.32 0.25

rot Gumbel 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rot Clayton 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(c) EM test

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.04 0.07 0.17 0.07 0.04 0.64 0.07

Gumbel 0.03 0.03 0.00 0.29 0.02 0.10 0.03

Clayton 0.19 0.44 0.00 0.23 0.00 0.02 0.26

Frank 0.27 0.04 0.05 0.17 0.03 0.16 0.03

rot Gumbel 0.08 0.00 0.02 0.00 0.03 0.00 0.02

rot Clayton 0.02 0.01 0.05 0.04 0.03 0.11 0.07

Note: Table 5 reports the log-likelihood (a), the p-values of the Anderson-Darling
test for correct copula specification (b) and the p-values of the Engle-Manganelli
test for the correct specification of the Value-at-Risk (c). The data are log-
returns of the exchange rates Euro-USD and Yen-USD (daily observations, Dec’99
- Dec’05).

26



Table 6: Model selection for Singapore-Korea MSCI indexes

(a) Log-likelihood

Const DCC PATT SDC LCP SCAR RSC

Gaussian 98.5 134.6 120.4 149.1 117.7 133.9 127.39

Gumbel 88.9 121.9 109.7 133.5 106.6 118.6 117.65

Clayton 81.7 109.4 105.6 128.2 95.9 114.1 109.43

Frank 87.9 117.0 106.1 130.6 101.8 116.2 106.31

rot Gumbel 93.4 125.6 115.8 139.7 112.2 122.2 122.88

rot Clayton 71.1 94.4 89.9 110.4 83.6 92.7 90.94

(b) AD test

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.17 0.30 0.30 0.41 0.27 0.38 0.19

Gumbel 0.02 0.00 0.01 0.01 0.01 0.00 0.00

Clayton 0.75 0.04 0.49 0.15 0.60 0.14 0.15

Frank 0.21 0.05 0.10 0.05 0.08 0.06 0.11

rot Gumbel 0.34 0.13 0.59 0.14 0.53 0.17 0.51

rot Clayton 0.03 0.00 0.01 0.00 0.02 0.00 0.00

(c) EM test

Const DCC PATT SDC LCP SCAR RSC

Gaussian 0.76 0.45 0.14 0.14 0.14 0.79 0.86

Gumbel 0.45 0.24 0.66 0.66 0.66 0.83 0.24

Clayton 0.32 0.55 0.39 0.39 0.39 0.34 0.44

Frank 0.01 0.11 0.17 0.17 0.17 0.49 0.91

rot Gumbel 0.26 0.66 0.71 0.71 0.71 0.65 0.47

rot Clayton 0.03 0.90 0.09 0.09 0.09 0.84 0.47

Note: Table 5 reports the log-likelihood (a), the p-values of the Anderson-Darling
test for correct copula specification (b) and the p-values of the Engle-Manganelli
test for the correct specification of the Value-at-Risk (c). The data are log-returns
of the MSCI indexes of Singapore and Korea (weekly observations, May’89 -
Apr’09).
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Figure 2: Estimated dependence for the pair of MSCI indexes of Singapore and Korea. Gaussian copula.
Dependence paths are transformed to Kendall’s tau. Weekly observations, May’89 - Apr’09.

Finally, Table 6(c) provides the DQ test results. For this data example the DQ test

approved the estimated VaR for almost all types of models and copulas. Such a result

shows us that most of the risk information is hidden in the volatilities of the individual

data series and less in the joint dependence structure. Thus, though it is demonstrated

that the associated countries tend to be more dependent during the crisis period and even

after, the risk hidden in the dependence structure is not always relevant. Hence, DQ test

is not a bona fide goodness-of-fit measure, but just an auxiliary method.

6 Conclusions

In this paper we have provided a survey over existing copula models allowing for time-

varying dependencies that have been proposed in recent years. Correctly modeling the

dependence between financial assets plays a crucial role for measuring risks and pricing

derivatives and since there is strong evidence that dependencies change over time, appro-

priately modeling and measuring these changes is not only interesting for its own sake,
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Table 7: Comparison of the presented models

DCC PATT SDCM LCP SCAR RSC

estimating θt +/0 - + - + +

GoF testing +/0 - +/0 - + +

computations + + - - - +

flexibility 0 0 + - + +

but also has important economic implications.

The different time-varying copula models we reviewed rely on different assumptions about

the way dependence may change over time ranging from structural breaks in dependence,

the existence of different dependence regimes, smooth changes or copula parameters be-

having like an independent stochastic process. Since one cannot directly observe the

dependence parameter and hence no a priori type of dynamics can be favored a natural

question is how robust the competing models are to a misspecification of these dynamics.

Our simulation results suggest that the RSC relying on a regime switching framework, the

SDCM assuming smoothly changing dependence parameter and SCAR model assuming

autoregressive stochastic dependence seem to work better than those competing tech-

niques that have been studied in more detail, also in situations when they are clearly

misspecified. However, the DCC-copula model also performs quite well and given that

its estimation is easy its use can be recommended in many situations. Table 7 gives an

overview of the properties of the techniques under different criteria. Overall, if we had to

recommend a single model it would be the RSC since in addition to good performance in

the simulations it is easy to program and does not require heavy computations.

For assessing the goodness-of-fit we recommend comparing the log-likelihood statistics in

addition to performing the Anderson-Darling test on the data transformed by the Rosen-

blatt probability integral transform, which has acceptable size and power properties for a

number of models. However, ignoring the time-variation of the dependence when deciding

which copula best fits the data is not recommendable as it will most likely lead to false

conclusions.

In our empirical application we found that when allowing for time-varying dependence

parameters symmetric copulas that do not allow for tail dependence offer the best fit,

which is in contrast to what has been found in the literature for the static case, where
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usually copulas that feature tail dependence and asymmetry seem appropriate. Thus it

appears that part of the asymmetry may be generated by time-varying parameters. The

lack of tail dependence may partially be offset by the possibility of large overall depen-

dence, which would explain why the Gaussian and Frank copulas fit the data so well.

Finally, the models we studied seem to be reliable when estimating the Value-at-Risk.

The most important challenge for future research is to develop time-varying copula models

in dimensions larger than two. This is crucial in order to make these models applicable

for practical purposes. For Gaussian and Student copulas techniques from multivariate

volatility modeling such as the DCC model and the model by Asai and McAleer (2009)

look promising. Nevertheless, for non-elliptical dependence structures extensions are far

from obvious and more research needs to be done. Further, methods to obtain multi-step

forecasts of the dependence parameter have not been studied thoroughly in the literature,

with the exception of the DCC-GARCH and the SCAR models, for which known results

on autoregressive models can be used. Finally, goodness-of-fit techniques that help de-

ciding which specification for the time-variation to chose need to be developed to avoid

making to strong assumptions on the way dependence changes over time.
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Appendix A: Examples of Copulas

In this appendix we introduce the most important families of copulas used and describe

some of their properties. For more details we refer to Nelsen (2006).

Kendall’s tau is a widely used rank correlation coefficient which can be directly repre-

sented by copulas. In general, for the jointly distributed but independent from each other

variables (U1i, U2i), i = 1 . . . n, the empirical Kendall’s tau is given by

τK =
Cn −Dn

0.5n(n− 1)
,
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where Cn and Dn are the numbers of concordant and discordant pairs respectively. For a

copula Kendall’s tau can be shown to be:

τK = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1.

Upper and lower tail dependence coefficients can be interpreted as follows: for a

pair of random variables U1 and U2 upper tail dependence means that for high values of

U1 we expect also high values of U2. More precisely, for (U1, U2) ∈ [0, 1]2 upper and lower

tail dependence coefficients are defined as

λU = lim
u1→1−

P (U1 > u1|U2 > u2) = lim
u1→1−

1− 2u1 + C(u1, u1)

1− u1

λL = lim
u1→0+

P (U1 ≤ u1|U1 ≤ u2) = lim
u1→0+

C(u1, u1)

u1

,

provided that the limit exists and λU , λL ∈ [0, 1]. If λU = 0 (λL = 0), then U1 and U2 are

asymptotically independent in the upper (lower) tail.

Elliptical copulas are simply the copulas of elliptical distributions. They share a

number of properties of the multivariate normal distribution. The most common example

is the Gaussian copula, which can easily be derived from the bivariate normal distribution

and has the following distribution function

CGaussian(u1, u2) =

∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

{
−s

2 − 2ρst+ t2

2(1− ρ2)

}
ds dt,

where ρ is the linear correlation coefficient of the corresponding bivariate normal distribu-

tion. Note that it can be shown that the Gaussian copula does not have tail dependence.

The expression for Kendall’s tau is given by τK = 2
π

arcsin(ρ).

Archimedean copulas form a large family of copulas with a number of convenient

properties and they allow for a large number of dependence structures. Most have closed

form expressions, which turns out to be very useful for estimation. Some of these copulas

allow for both lower and upper tail dependence, others for only one of them or none. For

transformations of Archimedean copulas, for which upper and lower tail dependence can

have special forms we refer to Joe (1997). Archimedean copulas are, unlike many other

copulas, not constructed from multivariate distributions using Sklar’s theorem. Here we

report the three most commonly used ones.
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Clayton copula for θ > 0 allows for lower tail dependence. The coefficient of lower tail

dependence is given by λL = 2−1/θ, whereas λU = 0 . The expression of Kendall’s tau can

be shown to be τK = θ
θ+2

. Its distribution function is

CClayton
θ (u1, u2) = max

[
(u−θ1 + u−θ2 − 1)

−1
θ , 0

]
.

Gumbel copula requires θ > 1 and generates upper tail dependence with the coefficient

λU = 2 − 21/θ and no lower tail dependence λL = 0. The Kendall’s tau for the Gumbel

copula is τK = 1− 1
θ
. The distribution function is

CGumbel
θ (u1, u2) = exp

(
−[(− log(u1))

θ + (− log(u2))
θ]1/θ

)
.

Frank copula displays the property of radial symmetry and does not have any tail

dependence. The Kendall’s tau coefficient is τK = 1 − 4(1−D1)(θ)
θ

, where D is the Debye

function Dk(x) = k
xk

∫ x
0

tk

et−1
dt. Its distribution function is

CFrank
θ (u1, u2) = −1

θ
log

(
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
.

The survival (rotated) copula. For a given copula C(u1, u2) its survival copula

Ĉ(u1, u2) is defined as

Ĉ(u1, u2) = C(1− u1, 1− u2) + u1 + u2 − 1.

Its density is given by c(1− u1, 1− u2) = c(1− u1, 1 − u2), so basically it is the original

copula rotated by 180o. A copula is called rotationally symmetric if it is equal to its

survival copula.
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