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Summary. The object of study of this work is the invariant characteristics of fil-
trations in discrete, negative time, pioneered by Vershik. We prove the equivalence
between I-cosiness and standardness without using Vershik’s standardness criterion.
The equivalence between I-cosiness and productness for homogeneous filtrations is
further investigated by showing that the I-cosiness criterion is equivalent to Ver-
shik’s first level criterion separately for each random variable. We also aim to derive
the elementary properties of both these criteria, and to give a survey and some
complements on the published and unpublished literature.
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1 Introduction

A filtration F = (Fn)n60 in discrete, negative time, is said to be of local product
type if there exists a sequence (Vn)n60 of independent random variables such
that for each n 6 0, one has Fn = Fn−1∨σ(Vn) and Vn is independent of Fn−1.
Such random variables Vn are called innovations of F. A typical example is the
case of a filtration generated by a sequence of independent random variables,
termed as filtration of product type.

Originally, the theory of decreasing sequences of measurable partitions
investigated by Vershik ([36, 37, 38, 39, 41]) was mainly oriented towards
characterizing productness for homogeneous filtrations of local product type,
that is, those for which each innovation Vn has either a uniform distribution on
a finite set or a diffuse law. The standardness criterion introduced by Vershik
provides such a characterization under the assumption that the final σ- field
F0 of the filtration is essentially separable (in other words, it is countably
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generated up to negligible sets, and we also say that the filtration is essentially
separable).

Vershik’s standardness criterion makes sense not only in the context of
filtrations of local product type, and it characterizes essentially separable fil-
trations F = (Fn)n60 having an extension of product type, hereafter called
standard filtrations.

Vershik’s theory of filtrations in discrete, negative time remained unknown
to the western probabilistic culture for about 25 years, until Dubins, Feld-
man, Smorodinsky and Tsirelson used Vershik’s standardness criterion in [10].
Later, in [14], Émery and Schachermayer partially translated Vershik’s the-
ory into the language of stochastic processes, and introduced the I-cosiness
criterion, inspired by the notion of cosiness which Tsirelson devised in [35]
and by Smorodinsky’s proof in [32] that the filtration of a split-word process
is not standard. In the context of essentially separable filtrations, the results
of Vershik’s theory of filtrations are summarized in figure 1.

productness Vershik’s first level criterion

standardness I-cosiness criterion
(Vershik’s standardness criterion)
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Fig. 1. Theorems for essentially separable filtrations

Among the contents of this paper is a proof of the following theorem.

Theorem A. A homogeneous filtration F = (Fn)n60 with an essentially sep-
arable final σ- field F0 is I-cosy if and only if it is generated by a sequence of
independent random variables.

The proof of this theorem is incomplete in [14], for only the case of ho-
mogeneous filtrations with diffuse innovations is considered there. Moreover,
Vershik’s standardness criterion is used to establish this result, whereas we
give a more direct proof without using this criterion, which actually is not
even stated in the present paper.

The proofs given in the literature ([41], [14], [15]) of theorem A, or of
the equivalence between Vershik’s standardness criterion and productness for
a homogeneous filtration, use Vershik’s first level criterion as a key step,
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without naming it. Vershik’s first level criterion is known to be equivalent
to productness when the filtration is essentially separable. Roughly speaking,
this criterion says that any random variable measurable with respect to the
final σ- field can be approximated by a function of finitely many innovations.

Thus, theorem A derives from the equivalence between I-cosiness and Ver-
shik’s first level criterion for an essentially separable homogeneous filtration.
We will see that this equivalence is still valid without assuming the filtration to
be essentially separable, and thus we will deduce theorem A from theorem A’
below.

Theorem A’. A homogeneous filtration F = (Fn)n60 is I-cosy if and only if
it satisfies Vershik’s first level criterion.

Actually all our results will be stated under a weaker assumption than
essential separability of the filtration. Namely, in this paper, the standing
assumption on filtrations is local separability; we say that a filtration is locally
separable if it admits essentially separable increments, with a final σ- field
which is not necessarily essentially separable. All these results are summarized
in figure 2.

productness Vershik’s first level criterion

standardness
I-cosiness criterion
Weak standardness

(Vershik’s standardness criterion)
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Fig. 2. Theorems for locally separable filtrations

For example, theorem B below admits theorem B’ as its analogue for lo-
cally separable filtration. Theorems B and B’ are elementarily deduced from
theorems A and A’ respectively.

Theorem B. An essentially separable filtration F = (Fn)n60 is I-cosy if and
only if it is standard.

Theorem B’. A locally separable filtration F = (Fn)n60 is I-cosy if and only
if it is weakly standard.
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The definition of weak standardness is analogous to that of standardness,
with productness replaced by Vershik’s first level criterion: whereas a filtration
is standard if it admits an extension of product type, a filtration is weakly
standard if it admits an extension satisfying Vershik’s first level criterion.

Our hypothesis of locally separability, less stringent than requiring the final
σ- field to be essentially separable, has no practical interest; but it requires
no additional efforts, and it sometimes provides a better understanding of the
results.

Actually, our additional efforts are oriented towards investigating the I-
cosiness criterion for a random variable with respect to a filtration, and not
only for the whole filtration, in the following sense. The definition of the I-
cosiness criterion for a filtration F = (Fn)n60 requires a certain property, say
I(X), to hold for each ‘test’ random variable X measurable with respect to
the final σ- field F0. This property I(X) will be called I-cosiness of the random
variable X (with respect to F). Shortly:

∀X,

I-cosiness of X︷ ︸︸ ︷
I(X) .︸ ︷︷ ︸

I-cosiness of F

Vershik’s first level criterion has the same structure, and we will similarly
define Vershik’s first level criterion for a random variable. Then theorem A’
will be an immediate consequence of theorem A” below.

Theorem A”. Let F = (Fn)n60 be a homogeneous filtration. Then a random
variable is I-cosy with respect to F if and only if it satisfies Vershik’s first level
criterion with respect to F.

This theorem is more interesting than theorem A, and its proof is not
simplified when F is essentially separable. Thus, our generalization to locally
separable filtrations is only a by-product of our investigations of the I-cosiness
criterion and Vershik’s first level criterion at the level of random variables.
We will also obtain the following characterization of I-cosiness for a random
variable with respect to a general locally separable filtration.

Theorem. Let F = (Fn)n60 be a locally separable filtration. Then a random
variable is I-cosy with respect to F if and only if it satisfies Vershik’s first level
criterion with respect to a homogeneous extension of F with diffuse innova-
tions.

In the same spirit, Vershik’s standardness criterion, which is not stated
in this paper, is investigated “random variable by random variable” in [21],
where we show it to be equivalent to the I-cosiness criterion under the local
separability assumption. The proof is self-contained and no familiarity with
the subject is needed. Throughout this paper, we will sometimes announce
results from [21].
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Main notations and conventions
By a probability space, we always mean a triple (Ω,A,P) where the σ- field

A is P-complete. By a σ- field C ⊂ A we always mean an (A,P)-complete
σ- field. By a random variable on (Ω,A,P), we mean a P-equivalence class
of measurable maps from Ω to a separable metric space. By convention, the
σ- field generated by an empty family of random variables equals the trivial
σ- field {∅,Ω} up to negligible sets. A σ- field C is essentially separable if
it is countably generated up to negligible sets. Thus a random variable X
generates an essentially separable σ- field σ(X); equivalently, an essentially
separable σ- field is a σ- field generated by a real-valued random variable. We
will extensively use the following elementary lemma, which is often implicit
in the probabilistic literature.

Lemma 1.1. On (Ω,A,P), let B and C be two σ- fields. For any random vari-
able X measurable with respect to B ∨ C, there exist a B-measurable random
variable B and a C-measurable random variable C such that σ(X) ⊂ σ(B,C).

This lemma derives from the equality B∨C =
⋃
B,C σ(B,C), where B and

C range over all B-measurable r.v. and all C-measurable r.v. respectively. Of
course we can also take bounded random variables B and C in this lemma.

We use the notation L0 (C; (E, ρ)) or, shorter L0(C;E), to denote the
metrizable topological space of all C-measurable random variables taking
their values in a separable metric space (E, ρ); the space L0 (C; (E, ρ)) is
endowed with the topology of convergence in probability; when E = R we
just write L0(C). Similarly, the space L1(C;E) is the set of all C-measurable
random variables X taking their values in E such that E

[
ρ(X,x)

]
is finite

for some (⇔ for all) x ∈ E; the space L1(C;E) is endowed with the metric
(X,Y ) 7→ E [ρ(X,Y )]. It is well-known that L0 (C; (E, ρ)) = L1 (C; (E, ρ ∧ 1)).
The set of all simple, E-valued, C-measurable random variables is a dense
subset of L1(C;E). If F is a finite set, we denote by L(C;F ) the set of all C-
measurable random variables taking their values in F , considered as a metric
space with the metric (S, T ) 7→ P[S 6= T ]. Thus L(C;F ) = L1(C;F ) where F
is equipped with the 0 – 1 distance. The Borel σ- field on a separable metric
space E is denoted by BE .

A Polish metric space is a complete separable metric space. A Polish space
is a topological space that admits a separable and complete metrization. A
Polish probability space is (the completion of) a probability space on a Polish
space with its Borel σ- field. Any Polish space F has the Doob property: for
any measurable space (Ω,A), if X : Ω→ T is a measurable function taking its
values in a measurable space T and Y : Ω→ E is a σ(X)-measurable function
taking its values in a Polish space E, then there exists a measurable function
f : T → E such that Y = f(X) (see for instance [8]). We will sometimes use
the Doob property without invoking its name, or we will also call it Doob’s
functional representation theorem.
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When X is a random variable taking values in a Polish space, the existence
of the conditional law of X given any σ- field C is guaranteed (see [11]); we
denote it by L(X |C). It is itself a random variable in a Polish space. Some
details on conditional laws are provided in Annex A.

Lebesgue isomorphisms
A Lebesgue isomorphism between two probability spaces (E,B, µ) and

(F,C, ν) is a bimeasurable bijection T from a set E0 ∈ B of full µ-measure
into a set F0 ∈ C of full ν-measure, and satisfying T (µ) = ν. Any Polish
probability space is Lebesgue isomorphic to the completion of the Borel space
R equipped with some probability measure (see [6], [25], [29]).

Filtrations in discrete, negative time
On an underlying probability space (Ω,A,P), a filtration is an increasing

sequence of sub -σ- fields of A indexed by a time-axis. Most filtrations con-
sidered in this paper are indexed by the time axis −N = {. . . ,−2,−1, 0}.
If the time axis of a filtration F is not specified, it will be understood that
F = (Fn)n60 is a filtration in discrete, negative time. We say that a filtration
F is essentially separable if the final σ- field F0 is essentially separable; equiv-
alently, each σ- field Fn is essentially separable. We say that a filtration F is
Kolmogorovian if the tail σ- field F−∞ :=

⋂
n60 Fn equals the trivial σ- field

{∅,Ω} up to negligible sets. A filtration F is included in a filtration G, and
this is denoted by F ⊂ G, if Fn ⊂ Gn for each n 6 0. The supremum F ∨ G

of two filtrations F and G is the smallest filtration containing both F and G;
it is given by (F ∨ G)n = Fn ∨ Gn. The independent product of two filtra-
tions F = (Fn)n60 and G = (Gn)n60 respectively defined on two probability
spaces (Ω,A,P) and (Ω∗,A∗,P∗) is the filtration F⊗G defined on the product
probability space (Ω,A,P)⊗ (Ω∗,A∗,P∗) by (F ⊗ G)n = Fn ⊗ Gn.

Random variables, processes
It is understood, if not otherwise specified, that a random variable takes its

values in a separable metric space or in R if this is clear from the context. By
a process, we mean a sequence of random variables (each taking its values in a
separable metric space if nothing else is specified). Most processes considered
in this paper are indexed by the time-axis −N. Such a process (Xn)n60 gen-
erates a filtration F = (Fn)n60 defined by Fn = σ(Xm;m 6 n). The process
(Xn)n60 is Markovian if for each n 6 0 the σ- field σ(Xn) is conditionally
independent of Fn−1 given σ(Xn−1). Given a filtration G ⊃ F, the process
(Xn)n60 is Markovian with respect to G if for each n 6 0 the σ- field σ(Xn) is
conditionally independent of Gn−1 given σ(Xn−1). Equivalently, the process
is Markovian and its filtration F is immersed in G, as we shall see below.

Preliminary notion: immersion
The notion of immersion will be used throughout all this paper. We say

that a filtration F is immersed in a filtration G if F ⊂ G and if every F-
martingale is a G-martingale; the notation F

m
⊂ G means that F is immersed

in G. Obviously, the binary relation
m
⊂ defines a partial order on the set of
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filtrations on (Ω,A,P). A typical example is provided by lemma 1.2 and some
usual characterizations of immersion are given in lemma 1.3.

Lemma 1.2. Let F and G be two independent filtrations. Then both F and G

are immersed in F ∨ G.

Two filtrations F and G both immersed in F ∨ G are said to be jointly
immersed; it suffices that F

m
⊂ H and G

m
⊂ H for some filtration H.

Lemma 1.3. Let F = (Fn)n60 and G = (Gn)n60 be two filtrations on a prob-
ability space (Ω,A,P). The following conditions are equivalent:

(i) F is immersed in G;
(ii) F is included in G and the σ- field F0 is conditionally independent of Gn

given Fn for each n 6 0;
(iii) for every random variable X ∈ L1(F0), one has E[X |Gn] = E[X |Fn] for

each n 6 0;
(iv) for every F0-measurable random variable Y taking its values in a Polish

space, one has L(Y |Gn) = L(Y |Fn) for each n 6 0.

Note also that immersion of F in G implies Fn = F0 ∩ Gn for all n 6 0.
Proofs of the preceding two lemmas are left as an exercise to the reader, as
well as those of the next three lemmas, which will frequently be used in this
paper. The third one is a straightforward consequence of the first two ones.

Lemma 1.4. A filtration F is immersed in a filtration G if and only if F ⊂ G

and for every integer n < 0, the σ- field Fn+1 is conditionally independent of
Gn given Fn.

Lemma 1.5. If B, C and D are three σ- fields such that B and C are condition-
ally independent given D, then D∨B and C are also conditionally independent
given D.

Lemma 1.6. Let F = (Fn)n60 and G = (Gn)n60 be two filtrations such that
F ⊂ G. Let (Vn)n60 be a process such that Fn ⊂ Fn−1∨σ(Vn) for every n 6 0.
If Vn is conditionally independent of Gn−1 given Fn−1 for every n 6 0, then
F is immersed in G.

Here are two straightforward applications of lemma 1.6. First, the filtra-
tion F generated by an independent sequence (Vn)n60 of random variables is
immersed in a filtration G if and only if F ⊂ G and Vn is independent of Gn−1

for every n 6 0. Second, a Markov process (Vn)n60 is Markovian with respect
to a filtration G if and only if its generated filtration F is immersed in G.

Preliminary notion: isomorphic σ- fields and filtrations
An embedding Ψ between two probability spaces (Ω,B,P) and (Ω′,A′,P′)

is (necessarily injective) map from the quotient σ- field B/P to the quotient
σ- field A′/P′ that preserves the σ- field structures and the probabilities. We
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shortly write Ψ: B → A′. Is is called an isomorphism if moreover it is onto.
Up to isomorphism, an essentially separable σ- field is characterized by the
descending sequence (possibly empty, finite, or denumerable) of the masses of
its atoms. An embedding Ψ extends uniquely to random variables taking their
values in a Polish space, and we call Ψ(X) the copy of such a random variable
X . Details are provided in Annex A. However this Annex can be skipped since
there is no risk when naively using isomorphisms: any expected property such
as Ψ (f(X)) = f (Ψ(X)), Ψ(X,Y ) = (Ψ(X),Ψ(Y )), σ (Ψ(X)) = Ψ (σ(X)),
Ψ (E[X |C]) = E

′ [Ψ(X) |Ψ(C)], is true.
The definition of isomorphic σ- fields extends naturally to filtrations as

follows. Two filtrations F = (Fn)n60 and F′ = (F′n)n60, defined on possi-
bly different probability spaces, are isomorphic if there is an isomorphism
Ψ: F0 → F′0 such that Ψ(Fn) = F′n for every n 6 0. We say that Ψ: F → F′

is an isomorphism. We denote by Ψ(F) the filtration (F′n)n60 =
(
Ψ(Fn)

)
n60

and we call it the copy of the filtration F by the isomorphism Ψ.
A typical example of isomorphic filtrations is the case when F and F′

are respectively generated by two processes (Xn)n60 and (X ′n)n60 having the
same law. In the case when the Xn (hence the X ′n) take their values in Polish
spaces, there exists a unique isomorphism Ψ: F → F′ that sends Xn to X ′n
for each n 6 0. This stems from lemma A.7. Another typical example of
isomorphic filtrations is provided by the following lemma.

Lemma 1.7. Let F and G be two independent filtrations. Then F ∨ G is iso-
morphic to the independent product F ⊗ G of F and G.

Proof. By proposition A.11, there exists a unique isomorphism extending the
canonical embeddings ι1 : F0 → F0 ⊗ G0 and ι2 : G0 → F0 ⊗ G0 (defined in
example A.2). ⊓⊔

2 Vershik’s first level criterion

This section deals with filtrations of product type and Vershik’s first level
criterion.

Definition 2.1. A filtration is of product type if it is generated by a sequence
of independent random variables.

As we shall see, productness is equivalent to Vershik’s first level criterion
for an essentially separable filtration of local product type (theorem 2.25). This
result is far from new: Vershik’s first level criterion appears, but without a
name, in [41], [14], [15]. Corollary 2.46 shows that the assumption of essential
separability cannot be waived: there exist some filtrations of local product type
satisfying Vershik’s first level criterion but which are not essentially separable,
hence not of product type.
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As said in the introduction, the important theorem A is deduced from
theorem A’ and from the equivalence between Vershik’s first level criterion
and productness for essentially separable filtrations of local product type.
Vershik’s first level criterion will also be used in section 3 to extend the notion
of standardness to the notion of weak standardness (definition 3.21).

Theorem A’ stated in the introduction is directly deduced from theo-
rem A”; actually the latter will be proved (in section 4) with the help of
the equivalent “self-joining version” of Vershik’s first level criterion, which we
study in subsection 2.2 and call Vershik’s self-joining criterion.

In subsection 2.3 we introduce the filtrations of split-word processes. We
state the theorems on productness for these filtrations which are found in the
literature, and we initiate the proofs of these theorems assuming some inter-
mediate key results. At this stage, we will not have at our disposal the tools
for finishing these proofs; they will be pursued at the end of each following
section, illustrating the new tools we shall acquire.

2.1 Productness and Vershik’s first level criterion

In this subsection, we define Vershik’s first level criterion and prove its equiv-
alence (theorem 2.25) with productness for an essentially separable filtration
of local product type (definition 2.3). We will derive this theorem from the-
orem 2.23 which gives a characterization of Vershik’s first level criterion for
filtrations of local product type that are not necessarily essentially separable.

With the terminology of definition 2.2 below, a filtration of product type
is a filtration for which there exists a generating innovation.

Definition 2.2. Given two σ- fields B and C such that C ⊂ B, an independent
complement of C in B is a random variable V taking its values in a Polish
space, independent of C and such that B = C ∨ σ(V ). An innovation, or a
global innovation, of a filtration F = (Fn)n60 is a process (Vn)n60 such that
for each n 6 0, the random variable Vn is an independent complement of Fn−1

in Fn. An innovation (Vn)n60 is called generating if F is generated by the
process (Vn)n60. For two given integers n0 and m0 such that n0 < m0 6 0, an
innovation, or a local innovation of F from n0 to m0 is a sequence of random
variables (Vn0+1, . . . , Vm0

) such that Vn is an independent complement of Fn−1

in Fn for each n ∈ {n0 + 1, . . . ,m0}.

The random variables Vn appearing in a global or a local innovation of a
filtration F are themselves called innovations of F.

Definition 2.3. A filtration F = (Fn)n60 is of local product type if there
exists a global innovation of F.

Innovations are not unique in general. They are described by lemma 2.4
below. The notion of Lebesgue isomorphism has been recalled in section 1.
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Lemma 2.4. Let (Ω,A,P) be a probability space, C and B two sub -σ- fields
of A, and V an independent complement of C in B taking values in a Polish
space E. Let V ′ be a random variable taking values in a Polish space E′.
Then V ′ is an independent complement of C in B if and only if there exist a
C-measurable random variable C and a measurable function φ : R × E → E′

such that V ′ = φ(C, V ) and, almost surely, the random map TC : v 7→ φ
(
C, v
)

is a Lebesgue isomorphism from the probability space induced by V into the
probability space induced by V ′. In particular, the σ- fields σ(V ) and σ(V ′) are
isomorphic.

Proof. The ‘if’ part is easy to verify. To show the ‘only if’ part, assume V ′

to be an independent complement of C in B. There exist (lemma 1.1) two
C-measurable random variables C1 and C2 such that σ(V ′) ⊂ σ(C1, V ) and
σ(V ) ⊂ σ(C2, V

′). We introduce a real-valued C-measurable random variable
C such that σ(C1, C2) ⊂ σ(C) and we denote its law by PC . By Doob’s
functional representation theorem, there exist two measurable functions φ
and ψ such that V ′ = φ(C, V ) and V = ψ(C, V ′). Considering the conditional
laws given C, we see that φ(c, V ) has the same law as V ′ and ψ(c, V ′) has the
same law as V for PC-almost every c. Moreover, since

1 = P [V ′ = φ (C,ψ(C, V ′))] =
∫

P [V ′ = φ (c, ψ(c, V ′))] dPC(c),

one has V ′ = φ (c, ψ(c, V ′)) almost surely for PC -almost every c. In the same
way one has V = ψ (c, φ(c, V )) almost surely for PC-almost every c. Hence,
for PC-almost every c, the Borel subset E0 := {v ∈ E | v = ψ (c, φ(c, v))} of
E has full PV -measure, the Borel subset E′0 := {v′ ∈ E′ | v′ = φ (c, ψ(c, v′))}
of E′ has full PV ′ -measure, and the maps v 7→ φ(c, v) and v′ 7→ ψ(c, v′) define
mutual inverse bijections between E0 and E′0. Finally v 7→ φ(c, v) defines
a Lebesgue isomorphism from the probability space induced by V into the
probability space induced by V ′. Consequently, the σ- fields σ(V ) and σ(V ′)
have the same descending sequences of masses of their atoms, and hence are
isomorphic. ⊓⊔

A straightforward application of lemma 1.6 gives the following lemma:

Lemma 2.5. Let F = (Fn)n60 be a filtration of local product type and (Vn)n60

an innovation of F. Then the filtration generated by (Vn)n60 is immersed in
F. Consequently one has σ(Vm;m 6 n) = Fn ∩ σ(Vm;m 6 0) for each n 6 0.

Now we turn to Vershik’s first level criterion. We shall see at the end of this
subsection that this criterion is equivalent to productness for an essentially
separable filtration of local product type (theorem 2.25).

Definition 2.6. On (Ω,A,P), let F = (Fn)n60 be a filtration of local product
type.
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• Let (E, ρ) be a separable metric space and X ∈ L1
(
F0;E

)
. The random

variable X satisfies Vershik’s first level criterion (with respect to F) if for
every δ > 0, there exist an integer n0 < 0, an innovation (Vn0+1, . . . , V0)
of F from n0 to 0, and a random variable S ∈ L1

(
σ(Vn0+1, . . . , V0);E

)

such that E
[
ρ(X,S)

]
< δ.

• A σ- field E0 ⊂ F0 satisfies Vershik’s first level criterion (with respect to
F) if every random variable X ∈ L1 (E0; R) satisfies Vershik’s first level
criterion with respect to F.
• The filtration F = (Fn)n60 satisfies Vershik’s first level criterion if the
σ- field F0 satisfies Vershik’s first level criterion with respect to F.

When there is no ambiguity, we will omit the specification with respect to
F in this definition. We will see (proposition 2.17) that Vershik’s first level
criterion for a random variable X is equivalent to Vershik’s first level criterion
for the σ- field σ(X). It is clear that Vershik’s first level criterion is preserved
by isomorphism. The following proposition is easily established from the def-
inition; its proof is left to the reader.

Proposition 2.7. Let F = (Fn)n60 be a filtration of local product type and let

(E, ρ) be a separable metric space. The set of random variables X ∈ L1
(
F0;E

)

satisfying Vershik’s first level criterion is closed in L1
(
F0;E

)
.

To establish other properties of Vershik’s first level criterion, it will be
convenient to rephrase it with the help of the following notion:

Definition 2.8. Let (Ω,A,P) be a probability space and B ⊂ A be a σ- field.
A family C of sub -σ- fields of A is substantial in B if the L1-closure of⋃

C∈C
L1(Ω,C,P) contains L1(Ω,B,P).

Thus, we can restate definition 2.6 of Vershik’s first level criterion for a
σ- field as follows.

Definition 2.9. Let F = (Fn)n60 be a filtration of local product type. Call

C
loc the family of all σ- fields σ(Vn0+1, . . . , V0) generated by local innovations

(Vn0+1, . . . , V0) from n0 to 0, for all n0 < 0. A σ- field E0 ⊂ F0 satisfies Ver-
shik’s first level criterion if C loc is substantial in E0.

The notion of substantial family of σ- fields appears in [13] in a slightly
different form. Lemma below is a duplicate of Lemma 2 in [13], which could
be proved identically in spite of this difference between the two notions of
substantialness.

Lemma 2.10. Let (Ω,A,P) be a probability space, B ⊂ A a σ- field, and C a
family of sub -σ- fields of A. The following three conditions are equivalent:

(i) C is substantial in B;
(ii) for each finite set F , the closure of

⋃
C∈C

L(C;F ) in L(A;F ) contains
L(B;F );
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(iii) for each separable metric space E, the closure of
⋃

C∈C
L1(C;E) in

L1(A;E) contains L1(B;E).

Proposition 2.11. Let F = (Fn)n60 be a filtration of local product type. If a
σ- field E0 ⊂ F0 satisfies Vershik’s first level criterion, then for any separable
metric space E, every random variable X ∈ L1(E0;E) satisfies Vershik’s first
level criterion.

Proof. Left to the reader as an easy application of the definitions and the
previous lemma. ⊓⊔

The following lemma provides a typical example of substantialness.

Lemma 2.12. Let (Ω,A,P) be a probability space and (Bm)m∈N
an increasing

sequence of sub -σ- fields of A. Then the family of σ- fields {Bm;m ∈ N} is
substantial in

∨
mBm.

Proof. A classical result says that for any set B ∈
∨
mBm, there exist some

B1, B2, . . . ∈
⋃
mBm such that P[B △Bm] → 0 (this is easily established by

a monotone class argument). With the help of this, the lemma follows from
lemma 2.10.(ii). ⊓⊔

Proposition 2.13. Let F = (Fn)n60 be a filtration of local product type and
(Bm)m>0 an increasing sequence of sub -σ- fields of F0. If each Bm satisfies
Vershik’s first level criterion, then so does

∨
mBm.

Proof. Straightforward from the previous lemma and proposition 2.7. ⊓⊔

Corollary 2.14. Let F = (Fn)n60 be a filtration of local product type and
(Vn)n60 an innovation of F. The σ- field σ(Vn;n 6 0) satisfies Vershik’s first
level criterion. Consequently, a filtration of product type satisfies Vershik’s
first level criterion.

Proof. Obviously, the σ- field Bm := σ(Vn;−m 6 n 6 0) satisfies Vershik’s
first level criterion for every m ∈ N. Hence, the result derives from proposition
2.13. ⊓⊔

This corollary contains the easy implications of the equivalences stated in
theorems 2.23 and 2.25 towards which we orient the rest of this subsection.

Lemma 2.16 is the key lemma to prove the equivalence between Vershik’s
first level criterion for a random variable X and Vershik’s first level criterion
for the σ- field σ(X). It characterizes substantialness of a family of σ- fields
in an essentially separable σ- field B by a property on a random variable X
generating B. It will be proved with the help of the following lemma, which
we shall also use several times in the next sections.

Lemma 2.15. Let (Ω,A,P) be a probability space and X ∈ L1(A;E) where
(E, ρ) is a separable metric space. The set of all random variables of the form
f(X) where f : E → R is Lipschitz function, is a dense subset of L1

(
σ(X)

)
.
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Proof. Let us denote by ℓ(X) this set of random variables. For every open set
O ⊂ R, the sequence of random variables Xm := (mρ(X,Oc)) ∧ 1 converges
almost surely to 1lX∈O, and x 7→ (mρ(x,Oc)) ∧ 1 is a Lipschitz function. It
follows that the L1-closure of ℓ(X) contains all linear combinations of indicator
random variables 1l{X∈Oi} where Oi is an open set, and therefore is dense in
L1
(
σ(X)

)
. ⊓⊔

Lemma 2.16. Let (Ω,A,P) be a probability space, (E, ρ) a separable metric
space, X ∈ L1(A;E), and C a family of sub -σ- fields of A. Then C is sub-
stantial in σ(X) if and only if for every δ > 0, there exist C ∈ C and a random
variable C ∈ L1(C;E) such that E [ρ(X,C)] < δ.

Proof. This easily results from lemma 2.10.(iii) and lemma 2.15. ⊓⊔

Proposition 2.17. Let F = (Fn)n60 be a filtration of local product type. Let

(E, ρ) be a separable metric space and X ∈ L0(F0;E). The following condi-
tions are equivalent.

(i) the σ- field σ(X) satisfies Vershik’s first level criterion;
(ii) for every δ > 0, there exist an integer n0 < 0, an innovation (Vn0+1, . . . , V0)

of F from n0 to 0, and a random variable S ∈ L0
(
σ(Vn0+1, . . . , V0);E

)

such that P
[
ρ(X,S) > δ

]
< δ.

If X ∈ L1(F0;E), these conditions are also equivalent to

(iii) X satisfies Vershik’s first level criterion.

Proof. We know (definition 2.9) that (i) is equivalent toC loc being substantial
in σ(X). Thus, lemma 2.16 directly shows (i)⇐⇒ (iii), and (i)⇐⇒ (ii) derives
from the same lemma by replacing ρ with ρ ∧ 1. ⊓⊔

Most of the results in the sequel of this subsection will be established with
the help of the following elementary lemmas 2.18 and 2.19. Lemma 2.18 is a
duplicate of Lemma 3 in [13], which could be proved identically in spite of the
difference between our notion of substantialness and the one given in [13].

Lemma 2.18. Let (Ω,A,P) be a probability space, B and D two sub -σ- fields
of A, and C a family of sub -σ- fields of A. If C is substantial in B, then the
family of σ- fields {C ∨D | C ∈ C} is substantial in B ∨D.

Lemma 2.19. Let (Ω,A,P) be a probability space, E ⊂ A a σ- field, C a
family of sub -σ- fields of E, andD a family of sub -σ- fields of A such that each
D ∈D is independent of E. If the family of σ- fields {C ∨D | C ∈ C,D ∈ D}
is substantial in a σ- field B ⊂ E, then C is substantial in B.

Proof. Let X ∈ L1(B) and δ > 0. Assuming that {C ∨D | C ∈ C,D ∈ D} is
substantial in B, there exist C ∈ C, D ∈D, and a C∨D-measurable random
variable S such that E [|X − S|] < δ. One can write (lemma 1.1) S = f(C,D)
where C and D are random variables measurable with respect to C and D
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respectively and f is measurable, thus E[S |E] is measurable with respect to C

because E[S |E] = h(C) where h(c) = E [f(c,D)]. Using the L1-contractivity
of conditional expectations, we get E [|X − E[S |C]|] = E [|E(X − S |E)|] <
E [|X − S|] < δ, which shows that C is substantial in B. ⊓⊔

Proposition 2.21 highlights the asymptotic nature of Vershik’s first level
criterion. It is proved with the help of the following lemma.

Lemma 2.20. Let F = (Fn)n60 be a filtration of local product type and N 6 0
an integer. If a σ- field EN ⊂ FN satisfies Vershik’s first level criterion with
respect to F, then it satisfies Vershik’s first level criterion with respect to the
truncated filtration (FN+n)n60.

Proof. This results from lemma 2.19 by taking E = FN , B = EN , and by con-
sidering the family C consisting of all the σ- fields σ(Vn0+1, . . . , VN ) generated
by local innovations (Vn0+1, . . . , VN ) of F from n0 to N for all n0 < N , and
the family D consisting of all the σ- fields σ(VN+1, . . . , V0) generated by local
innovations (VN+1, . . . , V0) of F from N to 0. ⊓⊔

Proposition 2.21. Let F = (Fn)n60 be a filtration of local product type. The
following conditions are equivalent:

(i) F satisfies Vershik’s first level criterion;
(ii) for every N ∈ −N, the truncated filtration (FN+n)n60 satisfies Vershik’s

first level criterion;
(iii) there exists N ∈ −N such that the truncated filtration (FN+n)n60 satisfies

Vershik’s first level criterion.

Proof. Let C be the family of σ- fields σ(Vn0+1, . . . , VN ) generated by all
local innovations (Vn0+1, . . . , VN ) from n0 to N for all n0 < N , let D =
σ(VN+1, . . . , V0) where (VN+1, . . . , V0) is an innovation of F from N to 0, and
let B = FN . Lemma 2.18 applied with these notations shows that (iii) =⇒ (i);
lemma 2.20 shows that (i) =⇒ (ii); finally, (ii) =⇒ (iii) is trivially true. ⊓⊔

The following proposition will help in subsection 2.3.

Proposition 2.22. Let F = (Fn)n60 be a filtration of local product type,
(Vn)n60 an innovation of F, and (Cn)n60 a sequence of σ- fields such that
Cn ⊂ Fn for each n 6 0 and such that (Cn ∨ σ(Vn+1, . . . , V0))n60 is an in-
creasing sequence of σ- fields. Define C∞ =

∨
n Cn. If Cn satisfies Vershik’s

first level criterion for every n 6 0, then C∞∨σ(Vn;n 6 0) satisfies Vershik’s
first level criterion.

Proof. Thanks to proposition 2.13, it suffices to show that each σ- field
Cn∨σ(Vn+1, . . . , V0) satisfies Vershik’s first level criterion. Let C be the family
consisting of all the σ- fields σ(V ′n0+1, . . . , V

′
n) generated by some local inno-

vation (V ′n0+1, . . . , V
′
n) of F from n0 to n for some n0 < n. By lemma 2.20, C

is substantial in Cn. Let D = σ(Vn+1, . . . , V0). Then apply lemma 2.18. ⊓⊔
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Theorem 2.23. Let F = (Fn)n60 be a filtration of local product type on
(Ω,A,P). Then F satisfies Vershik’s first level criterion if and only if for ev-
ery separable metric space E and every random variable X ∈ L1(F0;E), there
exists an innovation (Vn)n60 of F such that X is measurable with respect to
σ(Vn;n 6 0).

Proof. The ‘if’ part follows from corollary 2.14 and proposition 2.11. The
‘only if’ part is proved as follows. Assume that F satisfies Vershik’s first level
criterion and let X ∈ L1(F0;E). Consider a random variable Y ∈ L1(F0; R)
such that σ(X) = σ(Y ). Let (δk)k60 be a sequence of positive numbers such
that δk → 0.

Consider the following construction at rank k: we have an integer nk < 0,
an innovation (Vn;nk < n 6 0) of F from nk to 0 and a random variable
Xk ∈ L

1
(
σ(Vn;nk < n 6 0)

)
such that E

[
|Y −Xk|

]
< δk. We firstly apply the

Vershik first level property of Y with respect to F to obtain this construction
for k = 0. When the construction is performed at rank k, we perform it at
rank k − 1 by exhibiting an innovation (Vnk−1+1, . . . , Vnk) from an integer
nk−1 < nk to nk, and a random variable Xk−1 ∈ L

1
(
σ(Vn;nk−1 < n 6 0)

)

such that E
[
|Y −Xk−1|

]
< δk−1. To do so, we apply proposition 2.21 to get

Vershik’s first level criterion of the truncated filtration (Fnk+n)n60 and then
we use the fact, due to lemma 2.18, that the family of σ- fields of the form
σ(Vm+1, . . . , Vnk , Vnk+1, . . . , V0) where (Vm+1, . . . , Vnk) is an innovation of F

from some m < nk to nk, is substantial in F0.
Continuing so, we obtain a global innovation (Vn)n60 of F and a sequence

of random variables (Xk)k60 in L1 (σ(Vn;n 6 0)) converging in L1 to Y . ⊓⊔

Remark 2.24. We do not know if theorem 2.23 is true “random variable by
random variable”. More precisely, we do not know if each random variable sat-
isfying Vershik’s first level criterion is measurable with respect to the σ- field
generated by some global innovation of the filtration.

Theorem 2.25 (Vershik’s first level criterion). Let F be an essentially
separable filtration of local product type. Then F satisfies Vershik’s first level
criterion if and only if F is of product type.

Proof. The ‘if’ part is given in corollary 2.14. To show the converse, apply the-
orem 2.23 with a random variable X generating F0. This yields a global inno-
vation (Vn)n60 such that F0 = σ(Vn;n 6 0). Therefore Fn∩σ(Vn ;n 6 0) = Fn
for every n 6 0. Consequently Fn = σ(Vm;m 6 n) for every n 6 0 because
the filtration generated by (Vn)n60 is immersed in F (lemma 2.5). ⊓⊔

Obviously, a filtration of local product type which is not essentially sep-
arable cannot be of product type. However we will see in section 3 that it is
possible that such a filtration satisfies Vershik’s first level criterion (corollary
2.46). It is then interesting to notice that a filtration satisfying Vershik’s first
level criterion is Kolmogorovian, even if it is not of product type.
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Corollary 2.26. A filtration of local product type satisfying Vershik’s first
level criterion is Kolmogorovian.

Proof. Let F be such a filtration and A ∈ F−∞. Thanks to theorem 2.23,
there exists a global innovation (Vn)n60 such that 1lA is measurable with
respect to σ(Vn;n 6 0). As the filtration generated by (Vn)n60 is immersed
in F (lemma 2.5), it follows that 1lA is measurable with respect to the trivial
σ- field ∩nσ(Vm;m 6 n). ⊓⊔

Below is another corollary of theorem 2.23 which will be used in section 3
to prove a result on weak standardness (proposition 3.23).

Corollary 2.27. Let F and G be two independent filtrations of local product
type satisfying Vershik’s first level criterion. Then F∨G is a filtration of local
product type satisfying Vershik’s first level criterion.

Proof. Let R ∈ L1 (F0 ∨ G0; [0, 1]). We can write R = f(X,Y ) where X and
Y are random variables measurable with respect to F0 and G0 respectively
and f is a Borelian function. By theorem 2.23, there exist a global innovation
(Vn)n60 of F and a global innovation (Wn)n60 of G such that X is mea-
surable with respect to σ(Vn;n 6 0) and Y is measurable with respect to
σ(Wn;n 6 0). Setting Zn = (Vn,Wn), then (Zn)n60 obviously is an innova-
tion of F ∨ G and R is measurable with respect to σ(Zn;n 6 0). Thus F ∨ G

satisfies Vershik’s first level criterion due to theorem 2.23. ⊓⊔

The converse of corollary 2.27 holds true; actually we could prove the
following stronger result, but we will not need it: Let F and G be two in-
dependent filtrations of local product type. Let E1 and E2 be Polish spaces,
X ∈ L1(F0;E1) and Y ∈ L1(G0;E2). Then X and Y satisfy Vershik’s first
level criterion with respect to F and G respectively, if and only if (X,Y ) sat-
isfies Vershik’s first level criterion with respect to F ∨ G.

Remark 2.28. If F is a filtration of local product type generated by a martin-
gale (Mn)n60, then it is possible to show that F satisfies Vershik’s first level
criterion if and only if the random variable M0 satisfies Vershik’s first level
criterion. We will not show this fact as we shall see in the next subsection that
Vershik’s first level criterion is equivalent to Vershik’s self-joining criterion,
and a result in [21] says that the same fact holds for Vershik’s self-joining
criterion. Actually this result says that the same fact holds more generally
for any self-joining criterion, a notion defined in [21] that includes Vershik’s
self-joining criterion and the I-cosiness criterion as particular cases (see also
remark 3.44 and the first paragraph of section 3.4).

2.2 Rosenblatt’s and Vershik’s self-joining criteria

Given a filtration F of local product type, proposition 2.33 gives a “self-joining
criterion” for a global innovation of F to be generating (Rosenblatt’s self-
joining criterion), and theorem 2.38 (Vershik’s self-joining criterion) gives
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a “self-joining criterion” for F to satisfy Vershik’s first level criterion. More
precisely, these criteria are stated “random variable by random variable”. The
terminologies are discussed at the end of the subsection. Both these criteria
are a particular form of the I-cosiness criterion (definition 3.29). Rosenblatt’s
self-joining criterion will be illustrated by the example given in section 3.1.
Vershik’s self-joining criterion will be used to establish theorem A” stated in
the introduction (and restated in theorem 4.4).

Joinings

As also does the I-cosiness criterion, Rosenblatt’s self-joining criterion and
Vershik’s self-joining criterion involve joinings of filtrations, defined below.

Definition 2.29. Let F be a filtration.

1. A joining of F is a pair (F′,F′′) of two filtrations F′ and F′′ defined on
the same probability space which are both isomorphic to F and jointly im-
mersed, that is, F′ and F′′ are both immersed in F′ ∨F′′ (or, equivalently,
in a same filtration).

2. A joining (F′,F′′) of F is independent in small time if the σ- fields F′n0
and

F′′n0
are independent for some integer n0 6 0. We also say that (F′,F′′) is

a joining of F independent up to n0 to specify this integer.

A typical example of joining (F′,F′′) is the case where F′ and F′′ are two
independent copies of F (lemma 1.2).

Rigorously, a joining is the pair (Ψ′(F),Ψ′′(F)) given by a probability
space (Ω,A,P) and two embeddings Ψ′ : F0 → A and Ψ′′ : F0 → A, with the
additional property of joint immersion. Considering a joining (F′,F′′) of a
filtration F = (Fn)n60, and given a F0-measurable random variable X valued
in a Polish space, we will traditionally denote by X ′ and X ′′ the respective
copies of X given by the two underlying embeddings Ψ′ and Ψ′′. Of course,
Y ′ and Y ′′ will denote the copies of a F0-measurable random variable Y , and
so on. In the same way, the two copies of a σ- field B ⊂ F0 will be respectively
denoted by B′ and B′′, and the two copies of a filtration E ⊂ F will be
respectively denoted by E′ and E′′. Note that, given a filtration E immersed
in F, a joining (F′,F′′) of F induces a joining (E′,E′′) of E.

We shall need the following lemma in the proof of theorem 2.38. Its easy
proof is left to the reader.

Lemma 2.30. Let F = (Fn)n60 be a filtration and n0 6 0 an integer. Let
(F′,F′′) be a joining of F independent up to n0. Then the σ- fields F′0 and F′′n0

are independent.

The next lemma is obvious from the definitions; it will be used to construct
joinings of a filtration of local product type with the help of innovations.
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Lemma 2.31. On (Ω,A,P), let F = (Fn)n60 be a filtration and V0 be an inde-

pendent complement of F−1 in F0. On (Ω,A,P), let (F′n)n6−1 and (F′′n)n6−1

be two jointly immersed isomorphic copies of (Fn)n6−1, given by two iso-
morphisms Ψ′−1 : F−1 → F′−1 and Ψ′′−1 : F−1 → F′′−1, and let V ′0 and V ′′0 be
two random variables each having the same law as V0 and independent of
F′−1∨F′′−1. We put F′0 = F′−1∨σ(V ′0 ) and F′′0 = F′′−1∨σ(V ′′0 ). Then (F′,F′′) is
a joining of F, given by two unique isomorphisms Ψ′ and Ψ′′ that respectively
extend Ψ′−1 and Ψ′′−1 and respectively send V0 to V ′0 and V ′′0 .

Proof. The two isomorphisms Ψ′ and Ψ′′ are given by corollary A.12. If
(F′n)n6−1 is immersed in (F′n ∨ F′′n)n6−1, then we can see by lemma 1.4 that
F′ is immersed in F′∨F′′ if and only if F′0 and F′−1 are conditionally indepen-
dent given F′−1 ∨ F′′−1. By lemma 1.5, this conditional independence holds if
(and only if) V ′0 is independent of F′−1 ∨F′′−1. Thus F′ is immersed in F′ ∨F′′

and the same fact obviously holds for F′′. ⊓⊔

Rosenblatt’s self-joining criterion (for generatingness)

Let F = (Fn)n60 be a filtration of local product type and (Vn)n60 a
global innovation of F. Proposition 2.33 below gives a necessary and sufficient
condition for a random variable to be measurable with respect to the σ- field
generated by (Vn)n60. The proposition involves joinings (F′,F′′) constructed
as follows.

Given an integer n0 < 0, we consider, on some probability space (Ω,A,P),
two copies (F′n)n6n0

and (F′′n)n6n0
of the filtration (Fn)n6n0

and a random
vector (V ′n0+1, . . . , V

′
0) having the same law as (Vn0+1, . . . , V0) and indepen-

dent of F′n0
∨ F′′n0

. We complete the filtrations (F′n)n6n0
and (F′′n)n6n0

up to
time 0 by putting

F′n = F′n0
∨ σ(V ′n0+1, . . . , V

′
n) and F′′n = F′′n0

∨ σ(V ′n0+1, . . . , V
′
n)

for each n ∈ {n0 +1, . . . , 0}. Assuming that (F′n)n6n0
and (F′′n)n6n0

are jointly
immersed, one easily checks with the help of lemma 2.31 that (F′,F′′) is a
joining of F, given by two isomorphisms Ψ′ : F → F′ and Ψ′′ : F → F′′, both
of them sending Vn to V ′n for each n ∈ {n0 + 1, . . . , 0}. For a time n > n0, the
joining can be pictured as follows:

· · · F′n F′n+1 · · ·

V
′

n+1

· · · F′′n F′′n+1 · · ·

Such a joining (F′,F′′) is characterized by the fact that V ′n = V ′′n for every
n ∈ {n0 + 1, . . . , 0}.
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Definition 2.32 (Rosenblatt’s self-joining criterion). Let F = (Fn)n60

be a filtration of local product type and (Vn)n60 an innovation of F. Let (E, ρ)
be a Polish metric space and X ∈ L1(F0;E). We say that X satisfies Rosen-
blatt’s self-joining criterion with (Vn)n60 if for each real number δ > 0, there

exists, on some probability space (Ω,A,P), a joining (F′,F′′) of F independent
up to an integer n0 6 0, such that V ′n = V ′′n for every n ∈ {n0 + 1, . . . , 0},
and for which one has E

[
ρ(X ′, X ′′)

]
< δ, where X ′ and X ′′ are the respective

copies of X in F′ and in F′′.

Proposition 2.33 (Rosenblatt’s self-joining criterion). Let F = (Fn)n60

be a filtration of local product type and (Vn)n60 an innovation of F. Let (E, ρ)
be a Polish metric space and X ∈ L1(F0;E). Then X is measurable with
respect to σ(Vn;n 6 0) if and only if X satisfies Rosenblatt’s self-joining cri-
terion with (Vn)n60.

Proof. If X is measurable with respect to σ(Vn;n 6 0) then, by lemma 2.12
and lemma 2.10, for any δ > 0 there exist an integer n0 6 0 and a random
variable S ∈ L1

(
σ(Vn0+1, . . . , V0);E

)
such that E

[
ρ(X,S)

]
< δ/2. Consider-

ing a joining (F′,F′′) of F independent up to n0 as defined in the proposition,
one has E

[
ρ(X ′, S′)

]
= E
[
ρ(X ′′, S′′)

]
= E
[
ρ(X,S)

]
due to isomorphisms,

and S′ = S′′ because S is measurable with respect to σ(Vn0+1, . . . , V0). This
gives E

[
ρ(X ′, X ′′)

]
< δ by the triangular inequality, thereby showing that X

satisfies Rosenblatt’s self-joining criterion.
Conversely, assume that Rosenblatt’s self-joining criterion holds for X .

Then, considering two independent copies F′ and F∗ of F, we see that the fam-
ily of σ- fields {F∗0 ∨ σ(V ′m;n < m 6 0) | n < 0} is substantial in σ(X ′) (defi-
nition 2.8 and lemma 2.16). As F∗0 is independent of F′0, lemma 2.19 shows
that the family of σ- fields {σ(V ′m;n < m 6 0) | n < 0} is substantial in σ(X ′).
Consequently X ′ is measurable with respect to σ(V ′n;n 6 0), and therefore,
due to isomorphism, X is measurable with respect to σ(Vn;n 6 0). ⊓⊔

Corollary 2.34. Let F = (Fn)n60 be an essentially separable filtration of local
product type and (Vn)n60 an innovation of F. Then the following conditions
are equivalent:

(i) F is the filtration of product type generated by (Vn)n60;

(ii) for every Polish space E, every random variable X ∈ L1(F0;E) satisfies
Rosenblatt’s self-joining criterion with (Vn)n60;

(iii) for some Polish space E, there exists a random variable X ∈ L1(F0;E)
generating F0 and satisfying Rosenblatt’s self-joining criterion with (Vn)n60;

(iv) every random variable X ∈ L1 (F0; R) satisfy Rosenblatt’s self-joining cri-
terion with (Vn)n60.

Proof. The previous proposition shows that (i) =⇒ (ii), (iii), (iv), and that
each of (ii), (iii) and (iv) implies that F0 = σ(Vn;n 6 0). As the filtration
generated by (Vn)n60 is immersed in F (lemma 2.5), this yields σ(Vm;m 6

n) = Fn for each n 6 0. ⊓⊔
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Vershik’s self-joining criterion

Vershik’s self-joining criterion is the “self-joining version” of Vershik’s first
level criterion (definition 2.6). Given a filtration F of local product type and
an innovation (Vn)n60 of F, its statement involves the joinings (F′,F′′) of F

defined as follows and including as particular cases the joinings involved in
Rosenblatt’s self-joining criterion.

Given an integer n0 6 0, we consider, on some probability space (Ω,A,P),
two copies (F′n)n6n0

and (F′′n)n6n0
of the filtration (Fn)n6n0

and a random
vector (V ′n0+1, . . . , V

′
0) having the same law as (Vn0+1, . . . , V0) and indepen-

dent of F′n0
∨ F′′n0

. We complete the filtrations (F′n)n6n0
and (F′′n)n6n0

up to
time 0 by defining F′n and F′′n for each n ∈ {n0 + 1, . . . , 0} by

F′n = F′n0
∨ σ(V ′n0+1, . . . , V

′
n) and F′′n = F′′n0

∨ σ(V ′′n0+1, . . . , V
′′
n ),

where the random vector (V ′′n0+1, . . . , V
′′

0 ) is constructed as follows. At each
step n ∈ {n0 + 1, . . . , 0}, calling En the Polish state space of Vn, we consider
a measurable function φn : R× En → En such that for each fixed x ∈ R, the
function v 7→ φn(x, v) is a Lebesgue automorphism of the probability space
induced by Vn, and then we put V ′′n = φn(H̄n−1, V

′
n) where H̄n−1 is some

random variable measurable with respect to F′n−1 ∨ F′′n−1. This construction
can be pictured as follows:

· · · F′n−1 F′n · · ·

V
′

n

•

V
′′

n

· · · F′′n−1 F′′n · · ·

It is clear from this construction that V ′′n has the same law as V ′n and that
each of V ′n and V ′′n is independent of F′n−1 ∨ F′′n−1. Therefore, assuming that
(F′n)n6n0

and (F′′n)n6n0
are jointly immersed, lemma 2.31 ensures that (F′,F′′)

is a joining of F, given by two isomorphisms Ψ′ : F → F′ and Ψ′′ : F → F′′

that respectively send Vn to V ′n and V ′′n for each n ∈ {n0 + 1, . . . , 0}. Such
joinings will be given a name in the following definition.

Definition 2.35. Let F = (Fn)n60 be a filtration of local product type and
(Vn)n60 an innovation of F. A joining (F′,F′′) of F is permutational after
n0 for an integer n0 6 0 if for each n ∈ {n0 + 1, . . . , 0} we have V ′′n = Tn(V ′n)
where Tn is a random Lebesgue automorphism of the probability space induced
by Vn, defined by Tn(·) = φn(H̄n−1, ·) where φn is a measurable function and
H̄n−1 is some random variable measurable with respect to F′n−1 ∨ F′′n−1.
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The joinings featuring in Rosenblatt’s self-joining criterion appear as the par-
ticular case when the Tn are almost surely equal to identity. Note that the
definition does not depend on the choice of the innovation (Vn)n60 in view of
lemma 2.4. Actually we can see by this lemma that a joining (F′,F′′) permu-
tational after n0 is characterized by the fact that F′n∨F′′n = F′n∨F′′n0

for each
n ∈ {n0 + 1, . . . , 0}, and this characterization does not involve any innovation
of F.

The following easy lemma will be used in the proof of theorem 2.38 and
lemma 4.2

Lemma 2.36. In the context of the above definition, and, in addition, given
an F0-measurable random variable X, there exist two Fn0

-measurable ran-
dom variables Cn0

and Dn0
such that σ(X) ⊂ σ(Dn0

, Vn0+1, . . . , V0) and it is
possible to write

Tn(·) = ψn(C′n0
, D′′n0

, V ′n0+1, . . . , V
′
n−1, ·)

for every n ∈ {n0 + 1, . . . , 0}, where ψn is a measurable function.

Proof. The proof is a successive application of lemma 1.1. We use the nota-
tions of definition 2.35, thus one has V ′′n = Tn(V ′n) where the random trans-
formations Tn are written in form Tn(·) = φn(H̄n−1, ·). To show the lemma,
it suffices to find Cn0

and Dn0
such that σ(X ′′) ⊂ σ(D′′n0

, V ′′n0+1, . . . , V
′′

0 ) and
σ(H̄n−1) ⊂ σ(C′n0

, D′′n0
, V ′n0+1, . . . , V

′
n−1) for each n ∈ {n0 + 1, . . . , 0}. Note

that (V ′n0+1, . . . , V
′

0) is a local innovation of F′ ∨ F′′ from n0 to 0.
For each n ∈ {n0 + 1, . . . , 0}, take (lemma 1.1) an (F′n0

∨ F′′n0
)-measurable

r.v. S̄nn0
such that σ(H̄n−1) ⊂ σ(S̄nn0

, V ′n0+1, . . . , V
′
n−1). Then, take a r.v. R̄n0

such that σ(R̄n0
) = σ

(
S̄nn0

;n ∈ {n0 + 1, . . . , 0}
)
, so that one has σ(H̄n−1) ⊂

σ(R̄n0
, V ′n0+1, . . . , V

′
n−1) for each n ∈ {n0 + 1, . . . , 0}. Then, take (lemma 1.1)

an F′n0
-measurable r.v. C′n0

and an F′′n0
-measurable r.v.B′′n0

such that σ(R̄n0
) ⊂

σ(C′n0
, B′′n0

), and, finally, take (lemma 1.1) an F′′n0
-measurable r.v. X ′′n0

such
that σ(X ′′) ⊂ σ(X ′′n0

, V ′′n0+1, . . . , V
′′

0 ) and take a r.v. D′′n0
such that σ(D′′n0

) =
σ(B′′n0

, X ′′n0
). ⊓⊔

Definition 2.37. Let F = (Fn)n60 be a filtration of local product type, (E, ρ)
a Polish metric space, and let X ∈ L1(F0;E). We say that X satisfies Ver-
shik’s self-joining criterion if for each real number δ > 0, there exist an
integer n0 6 0 and, on some probability space (Ω,A,P), a joining (F′,F′′)
of F independent up to n0 and permutational after n0 such that one has
E
[
ρ(X ′, X ′′)

]
< δ, where X ′ and X ′′ are the respective copies of X in F′

and in F′′.

Theorem 2.38. Let F = (Fn)n60 be a filtration of local product type. Let

(E, ρ) be a Polish metric space and X ∈ L1(F0;E). Then X satisfies Vershik’s
self-joining criterion if and only if X satisfies Vershik’s first level criterion.
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Proof. The proof of the ‘only if’ part is similar the proof of the ‘only if’ part of
proposition 2.33. Indeed, assuming that X satisfies Vershik’s first level crite-
rion, then for any δ > 0 there exist n0 6 0, a local innovation (Ṽn0+1, . . . , Ṽ0)
from n0 to 0, and a random variable S ∈ L1

(
σ(Ṽn0+1, . . . , Ṽ0);E

)
such that

E
[
ρ(X, S̃)

]
< δ/2. Thus Vershik’s self-joining criterion for X can be proved

in the same way as we have proved Rosenblatt’s self-joining criterion for X
in the first part of the proof of proposition 2.33, by replacing (Vn0+1, . . . , V0)
with (Ṽn0+1, . . . , Ṽ0).

Conversely, assume Vershik’s self-joining criterion holds for X . Fix δ >
0, n0 6 0 and (F′,F′′) as in definition 2.37. By lemma 2.36, there are
two Fn0

-measurable random variables Cn0
and Dn0

such that σ(X) ⊂
σ(Dn0

, Vn0+1, . . . , V0) and

Tn(·) = ψn(C′n0
, D′′n0

, V ′n0+1, . . . , V
′
n−1, ·)

for every n ∈ {n0 + 1, . . . , 0}. By taking a Borelian function f such that
X = f(Dn0

, Vn0+1, . . . , V0), one has X ′′ = hD′′
n0

(C′n0
, V ′n0+1, . . . , V

′
0) where,

for a given value y of D′′n0
,

hy(C′n0
, V ′n0+1, . . . , V

′
0) = f

(
y, Ṽn0+1, . . . , Ṽ0

)
,

with
Ṽn = ψn(C′n0

, y, V ′n0+1, . . . , V
′
n−1, V

′
n),

for each n ∈ {n0 + 1, . . . , 0}, and thus Ṽn is an independent complement of
F′n−1 in F′n by lemma 2.4. In view of lemma 2.30, the random variable D′′n0

is
independent of F′0. The assumption that E [ρ(X ′, X ′′)] < δ therefore implies

that for some y, we have E

[
ρ
(
X ′, S̃

)]
< δ where S̃ = hy(C′n0

, V ′n0+1, . . . , V
′

0).

Thus X ′ satisfies Vershik’s first level criterion with respect to F′ because the
random variable S̃ is measurable with respect to σ(Ṽn0+1, . . . , Ṽ0). Obviously,
Vershik’s first level criterion with respect to F is satisfied for X due to iso-
morphism. ⊓⊔

On the terminology

We have called the self-joining criterion of proposition 2.33 Rosenblatt’s
self-joining criterion because this result was often used in the works of Rosen-
blatt ([26, 27, 28]) and their further developments ([17], [5]). The self-joining
criterion in definition 2.37 is called Vershik’s self-joining criterion because it is
close to the “combinatorial” standardness criterion stated in Vershik’s works
in the particular case of homogeneous filtrations (defined in the introduction
and in definition 4.1) with atomic innovations.
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2.3 Example: split-word processes

We shall define the split-word processes. Their filtrations are known to be of
product type or not according to some conditions on the parameters defining
these processes. Admitting the key results found in the literature, we will start
proving the main theorem on productness for these filtrations (theorem 2.39).
At this stage we do not yet have at our disposal the tools needed to entirely
prove this theorem; its proof will be continued at the end of each section.

To define a split-word process, the first ingredient is a probability space
(A,A, µ) called the alphabet. A word on A is an element w ∈ Aℓ for some
integer ℓ > 1, called the length of w, and w(1), . . ., w(ℓ) are the letters of w.
Given any function f from A to a set B we naturally define f(w) ∈ Bℓ as the
word on B with letters f

(
w(1)
)
, . . . , f

(
w(ℓ)
)

in this order.
The second ingredient is the splitting sequence (rn)n60, consisting of inte-

gers rn > 2. Given this sequence, we define the sequence (ℓn)n60 of lengths

by ℓn =
∏0
k=n+1 rk for all n 6 0; in other words, the sequence (ℓn)n60 is

recursively defined by ℓ0 = 1 and ℓn−1 = rnℓn.

Then we define the split-word process with alphabet (A,A, µ) and split-
ting sequence (rn)n60 to be the (non time-homogeneous) Markov process
(Wn, ηn)n60 whose law is characterized by the following two conditions:

⋄ for each n 6 0, Wn is a random word on A of length ℓn, whose letters are
i.i.d. random variables with law µ, and ηn is independent of Wn and has
the uniform law on the set {1, . . . , rn};
⋄ the transition from n − 1 to n is obtained by taking ηn independent of

(Wn−1, ηn−1), and then by choosing Wn as the ηn-th subword of Wn−1

considered as a concatenation of rn subwords of equal length ℓn.

We denote by F the filtration generated by (Wn, ηn)n60. Of course the
process (ηn)n60 is an innovation of F. It can be shown that F−∞ is degenerate
whatever the alphabet (A,A, µ) and the splitting sequence (rn)n60; the proof
is the same as in [14] where the particular case that rn ≡ 2 and µ is uniform
on a finite alphabet A is treated. We will derive the following theorem using
results from the literature.

Theorem 2.39. Call (∆) the condition on the splitting sequence (rn)n60:

0∑

k=−∞

log(rk)
ℓk

<∞. (∆)

Then:

(a) If (∆) holds, then F is not of product type unless (A,A, µ) is degenerate.
(b) If (∆) does not hold and if (A,A, µ) is Polish, then F is of product type.
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Remark 2.40. As we have seen in this section, part (a) of theorem 2.39 means
that under condition (∆), Vershik’s first level criterion, or Vershik’s self-
joining criterion, fails to be true for some random variables. It would be in-
teresting to have more information on those random variables. For example,
does the final letter W0 of the split-word process (Wn, ηn)n60 never satisfy
Vershik’s first level criterion under condition (∆) on the splitting sequence,
whatever the non-trivial alphabet ?

Remark 2.41 (Vershik’s example 1). The similar theorem holds for the so-
called example 1 in [41]. Part (a) of theorem 2.39 for Vershik’s example 1 is
shown in [41] with the help of its notion of entropy of filtrations. Part (b)
is shown by Heicklen in [18] in the particular case when A is finite and µ
is the uniform probability on A (thus Heicklen shows the analogue of Ceil-
lier’s result 2.44 for Vershik’s example 1). This example deals with filtrations
defined as sequences of the invariant σ- fields of the actions of a decreasing
sequence of groups on a Lebesgue probability space. Unfortunately we have
failed to check whether or not Vershik’s example 1 is exactly the same as the
filtrations of the split-word processes, but similar mathematics appear in the
proof of the two theorems. In fact, we know that the following coincidence
holds: Vershik’s self-joining criterion of the random variable W0 with respect
to the filtration of the split-word process (Wn, ηn)n60 can be expressed in a
problem of purely combinatorial nature, and this problem is also equivalent to
Vershik’s self-joining criterion of a certain random variable W ∗0 with respect
to the corresponding filtration of Vershik’s example 1 1. Other examples of fil-
trations for which Vershik’s self-joining criterion of a certain random variable
is equivalent to Vershik’s self-joining criterion of W0, are given in [41].

Remark 2.42 (The scale of an automorphism). Theorem 2.39 is closely related
to the scale of Bernoulli automorphisms. The notion of scale of an automor-
phism has been introduced by Vershik in [40]. The scale is a set of sequences of
integers (rn)n60. Vershik asserts in [40], without giving a proof, that (rn)n60

does not belong to the scale of Bernoulli automorphisms under condition (∆),
and he proves that it belongs to the scale of Bernoulli automorphisms under a
stronger condition than ¬(∆). We have checked, by using the first definition
of the scale given by Vershik, that a sequence (rn)n60 belongs to the scale of
a Bernoulli automorphism if and only if Vershik’s self-joining criterion holds
for a certain random variable with respect to the filtration F of a split-word
process with splitting sequence (rn)n60. Thus, part (b) of theorem 2.39 shows
that (rn)n60 belongs to the scale of Bernoulli automorphisms under condi-
tion ¬(∆), thereby improving the proposition in [40]. In [21], we describe this
random variable and we show that Vershik’s self-joining criterion of this ran-
dom variable is actually equivalent to productness of F. Finally theorem 2.39

1 With the terminology of [21], the respective sequences of Vershik’s progressive

predictions (πnW0)
n60

and (πnW ∗0 )
n60

ofW0 andW ∗0 are two processes with the
same law; that shows that the Vershik property, or the I-cosiness, or Vershik’s
self-joining criterion, are the same for W0 and W ∗0 .
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then shows that the scale of a Bernoulli automorphism is the set of sequences
(rn)n60 satisfying ¬(∆).

We shall derive theorem 2.39 from the following two facts, which will be
admitted:

Result 2.43 If (∆) holds and A is finite, then F is not of product type, unless
µ is degenerate.

If rn ≡ 2, condition (∆) holds; in this case, Smorodinsky ([32]) has shown
that F is not of product type. His proof is copied in [14] with the language of
I-cosiness. Result 2.43 is shown in [20] with the help of Vershik’s self-joining
criterion (theorem 2.38) and by generalizing some lemmas given in [14] for
the particular case rn ≡ 2. Result 2.43 is also shown in [7] by means of the
I-cosiness criterion, by a more direct generalization of the proof given in [14].

Result 2.44 If A is finite and µ is the uniform probability on A, then F is
of product type if (∆) does not hold.

Result 2.44 is due to Ceillier ([7]). This is the most recent and from some
point of view the most difficult part of theorem 2.39.

We do not yet have the material needed to prove theorem 2.39 from these
two results. We will only give, in result 2.45 below, the first step towards the
derivation of part (b) of the theorem from result 2.44. Result 2.43 will be
discussed in section 3 where we shall demonstrate how to derive part (a) of
theorem 2.39 from this result. Finally we shall demonstrate in section 4 how
to derive part (b) of theorem 2.39 from result 2.45.

Result 2.45 If A = [0, 1] and µ is the Lebesgue measure, then F is of product
type if (∆) does not hold.

Proof. Consider the split-word process (Wn, ηn)n60 on the alphabet A = [0, 1]
equipped with the Lebesgue measure, and its generated filtration F. Assuming
result 2.43, we shall see that F satisfies Vershik’s first level criterion if (∆) does
not hold. This will prove that F is of product type thanks to Vershik’s first
level theorem (theorem 2.25). By proposition 2.22, for F to satisfy Vershik’s
first level criterion, it suffices that each σ- field σ(Wn) satisfies Vershik’s first
level criterion. In turn, this is proved as follows. For each k ∈ N, we define the
approximation of identity fk : [0, 1]→ [0, 1] by

fk(u) =
2k−1∑

i=0

i

2k
1l{ i

2k
<u6 i+1

2k
}.

By result 2.44, we can see that
(
fk(Wn), ηn

)
n60

is a split-word process which

generates a filtration Fk of product type. Consequently, each filtration Fk

satisfies Vershik’s first level criterion (corollary 2.14). Lemma 2.4 shows that
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any innovation of a filtration Fk is also an innovation of F. Therefore, all
random variables fk(Wn) satisfy Vershik’s first level criterion with respect
to F. Hence, due to proposition 2.7, the random variable Wn satisfies Vershik’s
first level criterion with respect to F. This amounts to saying that the σ- field
σ(Wn) satisfies Vershik’s first level criterion (proposition 2.17). ⊓⊔

Before turning to the next section, we give a corollary of part (b) of the-
orem 2.39 showing that, as announced above corollary 2.26, there exist some
filtrations of local product type satisfying Vershik’s first level criterion al-
though they are not of product type. Note that the existence of split-word
processes with a non-Polish alphabet is guaranteed by Ionescu-Tulcea’s theo-
rem.

Corollary 2.46. In the context of theorem 2.39, if (∆) does not hold, then F

satisfies Vershik’s first level criterion, whatever (A,A, µ). However, F is not
of product type if (A,A, µ) is not essentially separable.

Proof. By proposition 2.22, it suffices to show that each σ- field σ(Wn) sat-
isfies Vershik’s first level criterion. Thus, considering a measurable function
f : Aℓn → R such that the random variable f(Wn) is integrable, we have
to show that this random variable satisfies Vershik’s first level criterion. As
f is measurable with respect to A⊗ℓn , there exist (lemma 1.1) some essen-
tially separable σ- fields C1 ⊂ A, . . ., Cℓn ⊂ A such that f is measurable
with respect to C1 ⊗ · · · ⊗ Cℓn . Introduce the essentially separable σ- field
B = C1 ∨ · · · ∨ Cℓn ; then f is measurable with respect to B⊗ℓn . Thus, con-
sidering a measurable function G : A → R such that σ(G) = B, the random
variable f(Wn) is measurable with respect to the σ- field generated by the
random word Xn := G

(
Wn(1)

)
. . . G
(
Wn(ℓn)

)
. The process (Xn, ηn)n60 is

a split-word process on a Polish alphabet, and thus we know from theorem
2.39 that it generates a filtration of product type, so the σ- field σ(Xn) sat-
isfies Vershik’s first level criterion with respect to the filtration generated by
(Xn, ηn)n60. By lemma 2.4, any innovation of this filtration is also an innova-
tion of F, hence the σ- field σ(Xn) satisfies Vershik’s first level criterion with
respect to F, and so does also the random variable f(Wn). ⊓⊔

3 Standardness and I-cosiness

Subsection 3.1 deals with standard filtrations, defined as filtrations that are
immersible in a filtration (of product type) generated by independent random
variables having a diffuse law. We shall see that any filtration of product type
is standard and that being standard is equivalent to being immersible in a
filtration of product type.

As an example of a sufficient condition for standardness, we provide an
unpublished result (theorem 3.15) from Tsirelson on the existence of a gen-
erating parameterization for a filtration under a certain ergodicity condition



On standardness and I-cosiness 27

on a Markov process generating this filtration. The proof we give makes use
of Rosenblatt’s self-joining criterion (proposition 2.33). As we shall see, the
existence of a generating parameterization for a filtration obviously implies
standardness, but we disagree with a result in a literature asserting that the
converse is true. This point is discussed in subsection 3.2.

In subsection 3.3, the notion of standardness is extended to its analogue
for locally separable filtrations (definition 3.17), namely weak standardness,
defined similarly to standardness but with productness replaced by Vershik’s
first level criterion.

Next, the I-cosiness criterion is defined in subsection 3.4 and its basic prop-
erties are given. The implications productness⇒ I-cosiness and Vershik’s first
level criterion ⇒ I-cosiness will be directly deduced from Rosenblatt’s self-
joining criterion and Vershik’s self-joining criterion, defined in the previous
section. I-cosiness of standard or weakly standard filtrations will follow as an
obvious consequence of I-cosiness being inherited by immersion. As an illus-
tration of the I-cosiness criterion, we give a sufficient condition for a stationary
Markov process to generate an I-cosy filtration.

Finally, in subsection 3.5, we pursue the proof of theorem 2.39 (productness
of the filtrations of split-words processes).

3.1 Standardness, superinnovations, parameterizations

Two notions must preliminarily be defined before standardness: the notion of
a standard conditionally non-atomic filtration and the notion of an extension
of a filtration.

Definition 3.1. A conditionally non-atomic filtration is a filtration of local
product type admitting a global innovation (Un)n60 such that each Un is uni-
formly distributed on the interval [0, 1]. A standard conditionally non-atomic
filtration is a filtration generated by a sequence (Un)n60 of independent ran-
dom variables uniformly distributed on the interval [0, 1].

Observe that all standard conditionally non-atomic filtrations are isomor-
phic to each other. Remark also that “uniformly distributed on the interval
[0, 1]” in this definition can equivalently be replaced with “having a diffuse
law”. The two lemmas below respectively characterize standard conditionally
non-atomic filtrations and conditionally non-atomic filtrations.

Lemma 3.2. A filtration is standard conditionally non-atomic if and only if
it is of product type and conditionally non-atomic.

Proof. The ‘only if’ part is obvious. The ‘if’ part follows from the fact that
for a conditionally non-atomic filtration F, any independent complement of
Fn−1 in Fn necessarily has a diffuse law, by virtue of lemma 2.4. ⊓⊔
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Lemma 3.3. A filtration F = (Fn)n60 is conditionally non-atomic if and
only if for every n 6 0, there exists an Fn-measurable random variable Vn
such that Fn−1 ∨ σ(Vn) = Fn and such that the conditional law L(Vn |Fn−1)
is almost surely diffuse.

Proof. The ‘only if’ part is trivially true. For the ‘if’ part, consider Vn as in the
lemma and let F (· |Fn−1) be the conditional cumulative distribution function
of Vn given Fn−1. One easily checks that the random variable F (Vn |Fn−1) is
an innovation from Fn−1 into Fn having uniform law on [0, 1]. ⊓⊔

To define standardness, we need one more notion, an extension of a filtra-
tion. Roughly speaking, an extension of F is a filtration in which F “can be
immersed”.

Definition 3.4. Let F and G′ be two filtrations defined on possibly different
probability spaces. The filtration F is immersible in the filtration G′, and G′ is
an extension of F, if F is isomorphic to some filtration F′ immersed in G′.

Lemma 3.5. Let F = (Fn)n60 and G = (Gn)n60 be two filtrations defined on
possibly different probability spaces. Then both F and G are immersible in the
product filtration F ⊗ G.

Proof. Let ι1 : F → F ⊗ G and ι2 : G → F ⊗ G be the identifications with the
first factor and the second factor respectively (see example A.2). Then we
know from lemma 1.2 that the two independent filtrations ι1(F) and ι2(G) are
both immersed in ι1(F) ∨ ι2(G) = F ⊗ G. ⊓⊔

Now we turn on to the notion of standard filtrations.

Definition 3.6. A standard filtration is a filtration immersible in a standard
conditionally non-atomic filtration.

As obvious facts on standardness, we note:

• Standardness is preserved by isomorphism.
• A standard conditionally non-atomic filtration in the sense of definition

3.1 is standard and is conditionally non-atomic. But at this stage we are
not yet able to prove the converse; this will be done in section 4 (corollary
4.7).
• The standardness property for a filtration is inherited by immersion, i.e.,

any filtration immersible in a standard filtration is itself standard.
• A standard filtration is essentially separable.

Proposition 3.7. Any filtration of product type is standard, and a filtration
is standard if and only if it is immersible in a filtration of product type.
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Proof. The independent product of a filtration F with a standard non-atomic
filtration is an extension of F (lemma 3.5). Obviously, this product filtration
is itself standard non-atomic if F is of product type, and hence F is stan-
dard. Consequently, a filtration is standard if it is immersible in a filtration of
product type because standardness is inherited by immersion. The converse
is obvious from the definition of standardness. ⊓⊔

As we know from the pioneering works of Vershik, there exist some Kol-
mogorovian essentially separable filtrations that are not standard, i.e., which
cannot be immersed in a standard conditionally non-atomic filtration. How-
ever theorem 3.9 below shows that any essentially separable filtration can be
immersed in the supremum of two jointly immersed standard conditionally
non-atomic filtrations. This theorem firstly says that an essentially separa-
ble conditionally non-atomic filtration equals the supremum of two jointly
immersed standard conditionally non-atomic filtrations. This is the main as-
sertion and it is due to Parry ([24]). The second assertion of this theorem
follows from lemma 3.8 below. An interesting consequence of theorem 3.9 is
given in [21] and is invoked in our remark 3.34. Except for this remark and
for the remark below proposition 3.46, we will never use this theorem.

Lemma 3.8. Any essentially separable filtration admits an essentially sepa-
rable conditionally non-atomic extension.

Proof. Using lemma 3.3, it is easy to see that the independent product of
an essentially separable filtration and a standard conditionally non-atomic
filtration is an essentially separable conditionally non-atomic filtration. Then
the lemma immediately follows from lemma 3.5. ⊓⊔

Theorem 3.9. Let F = (Fn)n60 be an essentially separable conditionally
non-atomic filtration. Then F = H1 ∨H2 where H1 and H2 are two jointly
immersed standard conditionally non-atomic filtrations. Consequently, any es-
sentially separable filtration is immersible in such a filtration H1 ∨H2.

Proof. The consequence follows from lemma 3.8. To prove the first assertion,
we strictly follow [24]. Consider an essentially separable conditionally non-
atomic filtration F = (Fn)n60. Let (Un)n60 be an innovation of F such that
each Un is uniformly distributed on the interval [0, 1]. For every n 6 0, let Xn
be a random variable generating Fn. Then Xn necessarily has a diffuse law,
and we assume without loss of generality that this is the uniform law on [0, 1].
Define Vn = Xn−1 + Un (mod 1) for every n 6 0. By lemma 2.4, (Vn)n60

is an innovation of F. It suffices to define H1 as the filtration generated by
(Un)n60 and H2 as the filtration generated by (Vn)n60. Then we easily see
that F = H1 ∨H2, and the joint immersion of H1 and H2 is a consequence
of lemma 1.6. ⊓⊔

A typical example of a standard conditionally non-atomic extension of a
filtration F is the filtration generated by a generating parameterization of F,
defined below.
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Definition 3.10. A (global) superinnovation of a filtration F = (Fn)n60 is
a process (Vn)n60 such that for each n 6 0, the random variable Vn takes
its values in a Polish space, is independent of Fn−1 ∨ σ(Vm;m 6 n − 1),
and satisfies Fn ⊂ Fn−1 ∨ σ(Vn). The superinnovation (Vn)n60 is a gener-
ating superinnovation if moreover F is contained in the filtration generated
by (Vn)n60. A filtration F admits a superinnovation if there exists a superin-
novation of a filtration isomorphic to F. A superinnovation (Vn)n60 of F is
called a parameterization if Vn has the uniform law on [0, 1] for every n 6 0.

Obviously, a filtration admits a parameterization if and only if it admits a
superinnovation (Vn)n60 such that each Vn has a diffuse law. Proposition be-
low shows that a filtration admitting a generating superinnovation is actually
immersed in the filtration generated by this superinnovation.

Proposition 3.11. On (Ω,A,P), let F = (Fn)n60 be a filtration and (Vn)n60

a process such that each Vn takes its values in a Polish space. Let V = (Vn)n60

be the filtration generated by (Vn)n60. The following conditions are equivalent.

(i) (Vn)n60 is a superinnovation of F;
(ii) (Vn)n60 is a sequence of independent random variables, one has Fn ⊂

Fn−1 ∨ σ(Vn) for each n 6 0, and V is immersed in F ∨ V;
(iii) (Vn)n60 is a sequence of independent random variables, one has Fn ⊂

Fn−1 ∨ σ(Vn) for each n 6 0, and F and V are jointly immersed.

Consequently, if (Vn)n60 is a generating superinnovation for F, then F is
immersed in V, and hence F is standard.

Proof. If (Vn)n60 is a sequence of independent random variables, then lemma
1.6 shows that V is immersed in F ∨ V if and only if Vn is independent of
Fn−1∨σ(Vm;m 6 n−1) for each n 6 0. It follows that (i)⇐⇒ (ii). If (Vn)n60

is a superinnovation of F, then F is immersed in F∨V as an easy consequence
of lemma 1.6. That finally shows that (i) ⇐⇒ (ii) ⇐⇒ (iii). Consequently, if
(Vn)n60 is a generating superinnovation, then F is standard by proposition
3.7 since it is immersed in the product type filtration V = F ∨ V. ⊓⊔

Remark 3.12. It is claimed in the literature that any standard filtration admits
a generating parameterization. Actually some confusion occurred, and to our
knowledge there exists no valid proof of this assertion. This will be discussed
in subsection 3.2.

An example from Tsirelson
Theorem 3.15 below gives a sufficient condition on a Markov process for its

generated filtration to admit a generating parameterization, and hence to be
standard (proposition 3.11). This result is borrowed from [34]. Lemma 3.14
is the key point of the proof. The last part of the proof we give illustrates
Rosenblatt’s self-joining criterion (proposition 2.33).
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The following lemma will be used in the proof of lemma 3.14 (and in
the statement of lemma 3.24 and the proof of lemma 3.27). This lemma is a
verbatim copy of lemma 6.4.6 in [6].

Lemma 3.13. Let (Ω,A) be a measurable space and f : Ω×R→ R a function
satisfying the following conditions: for every fixed t ∈ R, the function ω 7→
f(ω, t) is A-measurable, and for every fixed ω ∈ Ω, the function t 7→ f(ω, t) is
right-continuous. Then the function f is measurable with respect to A⊗ BR.

The statement and the proof of lemma 3.14 and theorem 3.15 involve
infimum of measures. Given two measures ν1 and ν2 on a measurable space,
we denote by ν1 ∧ ν2 the infimum of ν1 and ν2. The existence of this measure
is guaranteed; more generally, the infimum of an infinite family of measures
always exists (see [33], Theorem 7.1, or [9], Appendices III & IV.) When
ν1 = f1·µ and ν2 = f2·µ (Radon-Nikodým derivatives), ν1 ∧ ν2 = (f1 ∧ f2) ·µ.

Lemma 3.14. Let X and Y be two random variables taking values in some
Polish spaces E and F respectively, and {νx}x∈E a regular version of the
conditional law of Y given X. Denote by µ1 and µ2 the respective laws of X
and Y and by Leb the Lebesgue probability measure on [0, 1]. There exists a
measurable function p : E × F → [0, 1] such that for µ1-almost all x ∈ E, the
function y 7→ p(x, y) is a Radon-Nikodým derivative of νx ∧µ2 with respect to
µ2, and there exists a measurable function α : E × F × [0, 1] → R such that
one has α(x, µ2 × Leb) = νx for every x and α(x, y, u) = y for every x, y, u
satisfying u 6 p(x, y).

Proof. Since any Polish probability space is Lebesgue isomorphic to a prob-
ability space on R, it suffices to do the proof for F = R. Let f be a Radon-
Nikodým derivative of the absolutely continuous part in the Lebesgue de-
composition of the joint distribution of (X,Y ) with respect to µ1 ⊗ µ2.
The set of values of x ∈ E such that

∫
f(x, y)dµ2(y) = 0, is µ1-negligible,

and for those values of x for which
∫
f(x, y)dµ2(y) 6= 0, it is not difficult

to check that the function px : y 7→ min
{
f(x, y)/

∫
f(x, z)dµ2(z), 1

}
is a

Radon-Nikodým derivative of the measure νx ∧ µ2 with respect to µ2. We
define p by p(x, y) = px(y). Now we are going to construct α. The function
t 7→ νx ( ]−∞, t])− (νx ∧ µ2) ( ]−∞, t]) is right-continuous and increasing, and
takes its values in [0, 1 −mx] where mx is the total mass of νx ∧ µ2. Call gx
the right-continuous inverse of this function. The function (x, v) 7→ gx(v) is
measurable by virtue of lemma 3.13. Then put α(x, y, u) = gx

(
1−mx

1−px(y) (1−u)
)

for u ∈ ]px(y), 1]. One checks without difficulty that α(x, µ2 × Leb) = νx. ⊓⊔

Theorem 3.15. Consider a Markov process (Xn)n60 where each Xn takes its
values in a Polish space. Denote by µn the law of Xn and by νnxn−1

the con-
ditional law L(Xn |Xn−1 = xn−1). Let mn be the µn−1 ⊗ µn−1-essential infi-
mum over x′n−1, x′′n−1 of the total masses of the measures νnx′

n−1

∧ νnx′′
n−1

∧ µn.

If
∑
mn = +∞, then the filtration generated by (Xn)n60 admits a generating

parameterization.
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As an application of this theorem, we can see that the filtration generated
by a stationary random walk on the vertices of a triangle admits a gener-
ating parameterization. Note that the number mn defined in theorem 3.15
satisfies mn > β(νn) where β(νn) is the total mass of the essential infimum
over all x of the measures νnx . Thus the condition

∑
β(νn) = +∞ guaran-

tees the existence of a generating parameterization. In the stationary case,
this condition is equivalent to the existence of a positive non-null measure
that minorizes the probability measures L(Xn |Xn−1 = x) for almost all x.
A weaker minorization condition given in [17] guarantees the existence of a
generating parameterization in the stationary case.

Proof (Proof of theorem 3.15). Let pn and αn be the functions p and α ob-
tained from lemma 3.14 applied with X = Xn−1 and Y = Xn. We write
pnx(y) = pn(x, y). Now consider the Markov process (X ′n, (Y

′
n, U

′
n))n60 defined

as follows:

• for each n 6 0, (Y ′n, U
′
n) is independent of the past up to n − 1, Y ′n has

law µn, U ′n has the uniform law on [0, 1], Y ′n and U ′n are independent;
• X ′n = αn(X ′n−1, Y

′
n, U

′
n) for each n 6 0.

Then we know from lemma 3.14 that (X ′n)n60 has the same distribution
as the Markov process (Xn)n60, and that X ′n = Y ′n if U ′n 6 pn

X′
n−1

(Y ′n). Let F′

be the filtration generated by (X ′n)n60. Obviously, the process (Y ′n, U
′
n)n60 is

a superinnovation of F′ (definition 3.10), and we shall show with the help of
Rosenblatt’s self-joining criterion (proposition 2.33) that this superinnovation
is generating if

∑
mn = +∞.

Let (X∗n)n60 be a copy of (Xn)n60 lying on the same probability space
(Ω,A,P) as (X ′n, (Y

′
n, U

′
n))n60 and independent of (X ′n, (Y

′
n, U

′
n))n60. For a

given integer n0 < 0, we define another copy (X ′′n)n60 of (Xn)n60 by setting
X ′′n = X∗n for n 6 n0 and X ′′n+1 = αn(X ′′n , Y

′
n+1, U

′
n+1) for n going from n0 to

−1. By proposition 2.33, it suffices to show that P[X ′n 6= X ′′n ]→ 0 as n0 goes
to −∞ for each n 6 0. For n > n0 one has (X ′n = X ′′n) =⇒ (X ′n+1 = X ′′n+1),
so it suffices to show that the inequality P[X ′n 6= X ′′n |X

′
n−1, X

′′
n−1] 6 1−mn

almost surely holds for every n ∈ {n0 + 1, . . . , 0}, because this yields the in-
equality P[X ′n 6= X ′′n ] 6

∏n
k=n0+1(1−mk). Now one has

P
[
αn(x′n−1, Y

′
n, U

′
n) = αn(x′′n−1, Y

′
n, U

′
n)
]

6 P
[
U ′n 6 pnx′

n−1
(Y ′n) ∧ pnx′′

n−1
(Y ′n)
]
.

But we can see that

P
[
U ′n 6 pnx′

n−1
(Y ′n) ∧ pnx′′

n−1
(Y ′n)
]

=
∫

dµn(yn)(pnx′
n−1

(yn) ∧ pnx′′
n−1

(yn) ∧ 1)

is nothing but the total mass of νn
x′
n−1

∧ νn
x′′
n−1

∧ µn. The proof is over. ⊓⊔

Remark 3.16. It is known that the total variation ‖ν1−ν2‖ ∈ [0, 2] between two
probability measures ν1 and ν2 on an arbitrary measurable space E satisfies
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‖ν1−ν2‖ = 2
(
1−(ν1∧ν2)(E)

)
(see [33]). Therefore the number mn defined in

theorem 3.15 satisfies 2mn 6 2−α(νn) where α(νn) = ess supx′,x′′ ‖ν
n
x′ − ν

n
x′′‖.

It would be interesting to know if the condition
∑
n

(
2− α(νn)

)
= +∞ guar-

antees standardness of the filtration.

3.2 Erratum on generating parameterizations

Some confusion occurred in the articles [15], [32], [30]. It was erroneously
claimed that, for a discrete negative-time filtration, every standard condition-
ally non-atomic extension is obviously induced by a generating parameter-
ization (definition 3.10). Schachermayer gave a counter-example in [31]. As
this (false) claim was considered as a proof that every standard filtration ad-
mits a generating parameterization, a new proof of the latter fact was needed.
Feldman and Smorodinsky claimed in [16] that this fact is nonetheless true,
and gave a proof using results from the literature. Unfortunately, a confusion
of the same kind occurred again in the proof proposed in [16]. Thus, to our
knowledge, there does not exist any proof of this assertion. The proof given in
[20] contains an error too.

The reiterated confusion in the proof proposed in [16] lies on page 1086
of [15], where it is claimed that if the independent product of a filtration
F with a standard non-atomic filtration is itself standard non-atomic, then
any generating innovation of the latter is a generating parameterization of F.
This is false, as we shall see, and this is unfortunately an ingredient in the
proof proposed in [16]. This confusion is of the same kind as the one which
was pointed out in [31]: a filtration is immersed in its independent product
with another filtration, but a sequence that generates the product may not
be a parameterization of F, even though it generates a standard conditionally
non-atomic extension of F.

Here is a counter-example. It is of the same spirit as the counter-example
given in [31]. On a probability space (Ω,A,P), consider a sequence (Un)n60 of
independent random variables uniformly distributed in [0, 1], and a random
variable U∗0 uniformly distributed in [0, 1] and independent of (Un)n60. Define
X0 = U−1 + U0 (mod 1). Let F be the filtration defined by Fn = {∅,Ω} for
n 6 −1 and F0 = σ(X0). Let G be the filtration defined by Gn = σ(Um,m 6 n)
for n 6 −1 and G0 = G−1 ∨ σ(U∗0 ). Then G is a standard conditionally non-
atomic filtration independent of F. Consider any random variable V0 uniformly
distributed on [0, 1] and such that σ(V0) = σ(U0, U

∗
0 ). One easily verifies

that F ∨ G is generated by the sequence of independent random variables
(. . . , U−2, U−1, V0). However, (. . . , U−2, U−1, V0) is not a parameterization for
F, because the inclusion F0 ⊂ F−1 ∨ σ(V0) does not hold.

So we consider the statement S1: “Standardness is equivalent to the exis-
tence of a generating parametrization” as an open question. Note that S1 is
equivalent to S2: “A filtration immersed in a filtration which admits a generat-
ing parameterization, admits itself a generating parameterization”. Indeed, if
every standard filtration admits a generating parameterization, then S2 is true
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owing to the fact that standardness is inherited by immersion. Conversely, if
S2 is true, then every standard filtration admits a generating parameteriza-
tion because a standard conditionally non-atomic filtration obviously admits
a generating parameterization.

3.3 Weak standardness. Locally separable filtrations

Obviously, standard filtrations must be essentially separable. For essentially
separable filtrations, it is already known ([14]) that standardness is equiva-
lent to I-cosiness (definition 3.29), and also to Vershik’s standardness criterion
(which is not stated in this paper; see [14] and [21]). However the I-cosiness
criterion and Vershik’s standardness criterion could a priori be satisfied for a
filtration which is not essentially separable. We shall soon define weak stan-
dardness, and we shall see in section 4 that weak standardness is equivalent
to I-cosiness for a locally separable filtration2, defined as follows.

Definition 3.17. A filtration F = (Fn)n60 is locally separable if for each
n 6 0, there exists a random variable Vn such that Fn = Fn−1 ∨ σ(Vn).

Thus, any essentially separable filtration is locally separable, and filtra-
tions of local product type (definition 2.3), obviously are locally separable
filtrations. We take the opportunity of definition 3.17 to state a conjecture
about local separability.

Conjecture 3.18. A filtration immersible in a locally separable filtration is it-
self locally separable.

We will later see (corollary 3.28) that locally separable filtrations are pre-
cisely filtrations that admit a superinnovation or, equivalently, a parameteri-
zation (definition 3.10).

The notion of weak standardness defined below invokes Vershik’s first level
criterion (definition 2.6, definition 2.9, proposition 2.17). The generalization
from standardness to weak standardness is based on the fact that Vershik’s
first level criterion is equivalent to productness for an essentially separable
filtration (theorem 2.25). Inspired by lemma 3.2, we first define a weakly stan-
dard conditionally non-atomic filtration as the following generalization of a
standard conditionally non-atomic filtration.

Definition 3.19. A weakly standard conditionally non-atomic filtration is a
conditionally non-atomic filtration satisfying Vershik’s first level criterion.

Lemma 3.20. A filtration is standard non-atomic if and only if it is weakly
standard conditionally non-atomic and essentially separable.

2 It is also proved in [21] that the equivalence between I-cosiness and Vershik’s
standardness criterion remains true for locally separable filtrations.
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Proof. This follows from Vershik’s first level criterion (theorem 2.25) and
lemma 3.2. ⊓⊔

Then, the notion of weak standardness is defined analogously to the notion
of standardness (definition 3.6).

Definition 3.21. A filtration is weakly standard if it is immersible in a
weakly standard conditionally non-atomic filtration.

As obvious remarks, we note:

• Weak standardness is preserved by isomorphism.
• If conjecture 3.18 is true, then every weakly standard filtration is locally

separable.
• Weak standardness is hereditary for immersion: a filtration immersible in

a weakly standard filtration is itself weakly standard.
• As a product type filtration satisfies Vershik’s first level criterion (theorem

2.25), standardness implies weak standardness. Thus a standard filtration
is weakly standard and essentially separable. However we are not yet able
to show the converse; it will be proved in section 4 (corollary 4.10).
• Obviously, a weakly standard conditionally non-atomic filtration is weakly

standard and conditionally non-atomic. We will see in section 4 that the
converse is true (corollary 4.6).

Proposition 3.23 below is analogous to proposition 3.7. Its proof invokes
the following lemma.

Lemma 3.22. The independent product of a conditionally non-atomic filtra-
tion and a locally separable filtration is conditionally non-atomic.

Proof. Left to the reader as an easy application of lemma 3.3. ⊓⊔

Proposition 3.23. Any filtration satisfying Vershik’s first level criterion is
weakly standard; and a filtration is weakly standard if and only if it is im-
mersible in a filtration satisfying Vershik’s first level criterion.

Proof. The independent product of a filtration F with a standard condition-
ally non-atomic filtration is an extension of F (lemma 3.5), and this prod-
uct filtration is conditionally non-atomic by lemma 3.22. Moreover, a stan-
dard conditionally non-atomic filtration satisfies Vershik’s first level criterion
(corollary 2.14), hence if F satisfies Vershik’s first level criterion, then so does
this product filtration in view of corollary 2.27. Thus we have proved that
every filtration satisfying Vershik’s first level criterion is weakly standard.
Consequently, a filtration is weakly standard if it is immersible in a filtration
satisfying Vershik’s first level criterion because weak standardness is heredi-
tary for immersion. The converse is obviously true from the definition of weak
standardness. ⊓⊔
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Before turning to the next subsection devoted to I-cosiness, we are going
to prove (corollary 3.28) that a filtration is locally separable if and only if
it admits a global parameterization (definition 3.10). We will make use of
the following lemma. The construction appearing in this lemma is the general
conditional quantile transformation (see [23]). In the statement of this lemma,
we implicitly use lemma 3.13 to justify the measurability of FC and F−

C
with

respect to C⊗ BR and the measurability of GC with respect to C⊗ B[0,1].

Lemma 3.24. Let X be a real random variable on a probability space (Ω,A,P)
and C ⊂ A be a σ- field. Let FC be the cumulative distribution function of the
conditional law of X given C, and let F−

C
(x) = limx′→x− FC(x′) be the left

limit of FC(x′) as x′ approaches x. Let ξ be a random variable with uniform
law on [0, 1] and independent of C ∨ σ(X). We put

U = F−
C

(X) + ξ
(
FC(X)− F−

C
(X)
)
.

Then U is a random variable independent of C, uniformly distributed on [0, 1],
and one has X = GC(U) where GC is the right-continuous inverse function of
FC, defined by GC(u) = inf {x | FC(x) > u}.

Proof. It suffices to show the lemma in the case when C is degenerate. We
write F , F− and G instead of FC, F−

C
and GC respectively. Denote by

S = {x1, x2, . . .} the denumerable set of atoms of X . Conditionally on the
event X = xi, the random variable U has the uniform law on (F−(xi), F (xi))
and one has X = G(U); and conditionally on the event X /∈ S, one has
U = F (X), so the distribution of U is uniform on [0, 1] \

⋃
i [F
−(xi), F (xi)],

and one has X = G(U). Finally the distribution of U is the uniform law on
[0, 1] and one has X = G(U). ⊓⊔

Proposition 3.25. Any locally separable filtration admits a global parameter-
ization.

Proof. Let F = (Fn)n60 be a locally separable filtration on (Ω,A,P). For
each n 6 0, let Vn be a random variable such that Fn = Fn−1 ∨ σ(Vn). On
some probability space (Ω∗,C∗,P∗), consider a sequence (ξn)n60 of indepen-
dent random variables having uniform law on [0, 1]. We work on the product
probability space (Ω̂, Â, P̂) := (Ω,F0,P)⊗ (Ω∗,C∗,P∗) and we identify F and
(ξn)n60 with their image under the canonical embedding (see example A.2)

from (Ω,F0,P) to (Ω̂, Â, P̂) and the canonical embedding from (Ω∗,C∗,P∗)
to (Ω̂, Â, P̂) respectively, so the sequence (ξn)n60 is independent of F0. We
denote by D = (Dn)n60 the filtration generated by (ξn)n60. For each n 6 0,
the random variable ξn is independent of F0 ∨Dn−1 and, since F and D are
jointly immersed (lemma 1.2), one has L(Vn |Fn−1 ∨Dn−1) = L(Vn |Fn−1).
For each n 6 0, let Un be the random variable called U in lemma 3.24 when
this lemma is applied with X = Vn, C = Fn−1 ∨Dn−1 and ξ = ξn. One easily
checks that (Un)n60 is a parameterization of F. ⊓⊔
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Remark 3.26. Let U = (Un)n60 be the filtration generated by the parameter-
ization (Un)n60 of F in the preceding proof. It follows from lemma 1.6 that
F ∨ U is immersed in F ∨ D. Therefore, if F is standard, then F ∨ U is also
standard because F∨D is standard (proposition 3.7). It is shown in [21], with
the help of Vershik’s standardness criterion, that this is actually true for an
arbitrary parameterization (Un)n60 of F.

The converse of proposition 3.25 is an easy consequence of (ii) =⇒ (i) in
the following lemma.

Lemma 3.27. On (Ω,A,P), let C and B be two σ- fields such that C ⊂ B.
The following conditions are equivalent:

(i) there exists a random variable V such that B = C ∨ σ(V );
(ii) there exists a random variable W such that B ⊂ C ∨ σ(W );

(iii) there exist a probability space (Ω′,A′,P′) and an embedding Ψ: B → A′

such that Ψ(B) ⊂ Ψ(C) ∨ σ(U ′) where U ′ is a random variable uniformly
distributed on [0, 1] and independent of Ψ(C).

Proof. Obviously, (i) =⇒ (ii) is true. To prove (ii) =⇒ (i) we make the non
restrictive assumption that W is valued in a Polish space. Then (ii) =⇒ (i) is
obtained by putting V = L(W |B). Indeed, any bounded random variable X
measurable with respect to C ∨ σ(W ) can be written X = f(C,W ) where C
is a C-measurable random variable and f is a bounded measurable function
(lemma 1.1); thus E[X |B] =

∫
f(C,w)L(W |B)(dw) is measurable with re-

spect to C∨σ(V ), and hence B ⊂ C∨σ(V ). To prove (i) =⇒ (iii) we make the
non restrictive assumption that V is real-valued. Consider the product proba-
bility space of (Ω,A,P) with a probability space on which is defined a random
variable U∗ having the uniform law on [0, 1]. Let C′ = ι1(C) and U ′ = ι2(U∗)
respectively be the copies of C and U∗ on the product probability space with
the canonical embeddings ι1 : C → C ⊗ σ(U∗) and ι2 : σ(U∗) → C ⊗ σ(U∗)
(see example A.2). We introduce the right-continuous inverse G(· |C′) of the
cumulative distribution function of the copy of the conditional law L(V |C)
with the first embedding ι1, and then we put V ′ = G(U ′ |C′). Then V ′ is a
well-defined random variable by virtue of lemma 3.13, and, with the help of
lemma A.8, it is easy to check that the conditional law L(V ′ |C′) is the copy
of L(V |C) with ι1, therefore the embedding Ψ is given by corollary A.12.
Finally, (iii) =⇒ (i) is a consequence of (ii) =⇒ (i). ⊓⊔

Corollary 3.28. Let F = (Fn)n60 be a filtration. The following conditions
are equivalent:

(i) F is locally separable;
(ii) for each n 6 0, one has Fn ⊂ Fn−1 ∨ σ(Wn) for some random variable

Wn;
(iii) F admits a global parameterization;
(iv) F admits a global superinnovation.

Proof. This stems from lemma 3.27 and proposition 3.25. ⊓⊔
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3.4 I-cosiness

The I-cosiness criterion introduced in [14] was inspired from two sources: it is
a variant of the notion of cosiness introduced by Tsirelson in [35] in the frame-
work of continuous time, and the authors of [14] noticed that I-cosiness is used
(but not named) in [32] to prove result 2.43 about the split-word filtrations. In
fact, as was pointed out in [3], “there is a whole range of possible variations”
on the definition of cosiness introduced in [35], and the main underlying idea,
due to Tsirelson, is what [Lau09] calls a self-joining criterion, which comprises
these possible variants of cosiness and in particular the I-cosiness criterion,
as well as Rosenblatt’s self-joining criterion and Vershik’s self-joining crite-
rion introduced in section 2.2. Actually many elementary results we give on
I-cosiness remain valid for any self-joining criterion, as defined in [21]. How-
ever we prefer not to introduce this notion here: there are already too many
definitions.

It is shown in [14] that standardness and I-cosiness are equivalent prop-
erties for an essentially separable filtration. In the next section, we will give
another proof of this fact and extend it to locally separable filtrations by
showing that I-cosiness is equivalent to weak standardness.

In this subsection, we define I-cosiness and give more or less elementary
results concerning it. We shall see that, for a filtration of product type and a
filtration satisfying Vershik’s first level criterion, I-cosiness is straightforward
from Rosenblatt’s self-joining criterion and Vershik’s self-joining criterion re-
spectively (subsection 2.2). That a standard or a weakly standard filtration
is I-cosy follows from the fact that I-cosiness, as standardness and weak stan-
dardness, is inherited by immersion. We end this subsection by giving an
example of stationary Markov processes whose filtrations are I-cosy.

Definition 3.29. Let F = (Fn)n60 be a filtration.

1. Let (E, ρ) be a Polish metric space and X ∈ L1(F0;E) We say that the
random variable X is I-cosy (with respect to F) if for each real number
δ > 0, there exist two filtrations F′ and F′′ defined on a probability space
(Ω,A,P) such that:

(i) (F′,F′′) is a joining of F independent in small time (definition 2.29);
(ii) E

[
ρ(X ′, X ′′)

]
< δ, where X ′ and X ′′ are the respective copies of X in

F′ and in F′′.

2. We say that a σ- field E0 ⊂ F0 is I-cosy (with respect to F) if every random
variable X ∈ L1(E0) is I-cosy with respect to F.

3. We say that the filtration F is I-cosy if the final σ- field F0 is I-cosy with
respect to F.

As with Vershik’s first level criterion, we will sometimes omit to specify
with respect to F when no ambiguity is possible. We will see in proposition
3.36 that I-cosiness of a random variable X is equivalent to the σ- field σ(X)
being I-cosy. It is clear that I-cosiness is preserved by isomorphism. Another
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obvious property of I-cosiness is hereditability by immersion, stated in the
next lemma.

Lemma 3.30. Let F = (Fn)n60 be a filtration, E a Polish space, X ∈

L1(F0;E), and E a filtration immersed in F. If X is I-cosy with respect to
F and is E0-measurable, then X is I-cosy with respect to E. Consequently, if
F is I-cosy, so is also E.

Proof. This is a straightforward consequence of the definition of I-cosiness and
the transitivity property of immersion. ⊓⊔

Proposition 3.31. A filtration of product type is I-cosy. A filtration satisfying
Vershik’s first level criterion is I-cosy. More precisely, a random variable, or
a σ- field, satisfying Vershik’s first level criterion with respect to a filtration
of local product type, is I-cosy with respect to this filtration.

Proof. This follows from Rosenblatt’s self-joining criterion (proposition 2.33)
and Vershik’s self-joining criterion (theorem 2.38). Indeed, each of these cri-
teria is a particular case of the I-cosiness criterion. ⊓⊔

Corollary 3.32. Any standard (definition 3.6) or weakly standard (definition
3.21) filtration is I-cosy.

Proof. This follows from lemma 3.30 and proposition 3.31. ⊓⊔

Below we shall list some elementary properties of I-cosiness.

Lemma 3.33. Let F = (Fn)n60 be a filtration and E a Polish metric space.

The random variables X ∈ L1(F0;E) which are I-cosy form a closed subset of
L1(F0;E).

Proof. Take R ∈ L1(F0;E) in the L1-closure of the set of I-cosy random
variables X ∈ L1(F0;E). Given δ > 0, there exists an I-cosy X ∈ L1(F0;E)
such that E

[
ρ(R,X)

]
< δ/3. By I-cosiness, there exists a joining (F′,F′′)

such that E
[
ρ(X ′, X ′′)

]
< δ/3. By isomorphisms, we have E

[
ρ(X ′, R′)

]
=

E
[
ρ(X ′′, R′′)

]
< δ/3; so the triangular inequality gives E

[
ρ(R′, R′′)

]
< δ. ⊓⊔

Remark 3.34. If X and Y are two I-cosy random variables, it is not true in
general that (X,Y ) is also I-cosy. This is shown in [21] with the help of theorem
3.9 and Vershik’s standardness criterion.

The following lemma plays the same role for I-cosiness as lemma 2.10 for
Vershik’s first level criterion. In the second condition, we consider L (E0;F )
as the space L1

(
E0; (F, ρ)

)
where the metric ρ is the 0 – 1 distance; so

E
[
ρ(X ′, X ′′)

]
= P[X ′ 6=X ′′].
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Lemma 3.35. Let F = (Fn)n60 be a filtration on (Ω,A,P) and E0 ⊂ F0 a
σ- field. The following conditions are equivalent:

(i) the σ- field E0 is I-cosy with respect to F;
(ii) for any finite set F ⊂ R, every random variable X ∈ L (E0;F ) is I-cosy

with respect to F;
(iii) for any Polish space E, every random variable X ∈ L1 (E0;E) is I-cosy

with respect to F.

Proof. (iii) =⇒ (i) is trivial.
(i) =⇒ (ii): Fix F finite, R ∈ L(E0;F ), and δ > 0. Let a be the minimum

distance |s−t| between two distinct elements s, t of F . Applying hypothesis (i),
one obtains a joining (F′,F′′) such that E

[
|R′−R′′|

]
< ǫδ where ǫ = min{a, δ};

hence we have P
(
|R′ −R′′| > ǫ

)
< δ and therefore P[R′ 6= R′′] < δ.

(ii) =⇒ (iii): Fix X ∈ L1
(
E0; (E, ρ)

)
and δ > 0. There exist some finite

subset F of E and some R ∈ L(E0;F ) such that E
[
ρ(X,R)

]
< δ/3. Call d

the diameter of F . Given a measurable injection φ : F → R and applying
hypothesis (ii) to the random variable φ(R), one obtains a joining (F′,F′′)
such that P[R′ 6= R′′] < δ/(3d); so E

[
ρ(R′, R′′)

]
< δ/3. Now the isomorphisms

give E
[
ρ(X ′, R′)

]
= E
[
ρ(X ′′, R′′)

]
< δ/3, wherefrom E

[
ρ(X ′, X ′′)

]
< δ by the

triangular inequality. ⊓⊔

Proposition 3.36. Let F = (Fn)n60 be a filtration. Let (E, ρ) be a Polish

metric space and X ∈ L0(F0;E). The following conditions are equivalent.

(i) the σ- field σ(X) is I-cosy;
(ii) for every δ > 0, there exists, on some probability space (Ω,A,P), a joining

(F′,F′′) of F independent in small time such that P [ρ(X ′, X ′′) > δ] < δ,
where X ′ and X ′′ are the respective copies of X in F′ and in F′′.

If X ∈ L1(F0;E), these conditions are also equivalent to:

(iii) X is I-cosy.

Proof. We first assume that X ∈ L1(F0;E) and show (i) ⇐⇒ (iii). If the
σ- field σ(X) is I-cosy, then X is I-cosy by lemma 3.35. Conversely, assume X
to be I-cosy. We know from lemma 2.15 that the set of random variables of
the form f(X) with f : E → R Lipschitz, is a dense subset of L1

(
σ(X)

)
. It is

easy to see that such a random variable f(X) is I-cosy. Therefore the σ- field
σ(X) is I-cosy as a consequence of lemma 3.33. The proof that (i) ⇐⇒ (iii).
It is then not hard to derive (i)⇐⇒ (ii) by replacing ρ with ρ ∧ 1. ⊓⊔

We will use the following lemma to prove the asymptotic character of I-
cosiness (proposition 3.38) and to prove proposition 3.43. This lemma involves
I-cosiness of a filtration (Fn)n6N with time-axis−N∩]−∞, N ] for some integer
N 6 0, whereas I-cosiness is defined for a filtration indexed by −N; but it is
clear how to adapt the definition to this time-axis and obviously I-cosiness of
(Fn)n6N is equivalent to I-cosiness of (FN+n)n60.
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Lemma 3.37. On (Ω,A,P), let F = (Fn)n60 be a filtration and (Vn)n60 a
superinnovation of F. Let N < 0 be an integer and EN ⊂ FN a σ- field. If
EN is I-cosy with respect to the truncated filtration (Fn)n6N , then the σ- field
E0 := (EN ∨ σ(VN+1, . . . , V0)) ∩ F0 is I-cosy with respect to F.

Proof. We introduce the filtration G = (Gn)n60 defined to be equal to F up to
time N and for which (VN+1, . . . , V0) is an innovation from N to 0; precisely,
we put

Gn =

{
Fn if n 6 N ;
FN ∨ σ(VN+1, . . . , Vn) if n ∈ {N + 1, . . . , 0}.

We can see by lemma 1.6 that F is immersed in G. Now we consider a
random variable X ∈ L1 (E0), and we shall see that X is I-cosy. Take
δ > 0 and take (with lemma 1.1) a random variable YN ∈ L1(EN ) such that
σ(X) ⊂ σ(YN , VN+1, . . . , V0). We put k = |N |+ 1 and equip R

k with the ℓ1-
metric. By lemma 2.15, there exists a Lipschitz function f : R

k → R such that
E [|X −R|] < δ where R = f(YN , VN+1, . . . , V0). Let c be a Lipschitz con-
stant for f . As YN is I-cosy with respect to the truncated filtration (Fn)n6N ,
there exist, on some probability space (Ω,A,P), two jointly immersed isomor-
phic copies (F′n)n6N and (F′′n)n6N of (Fn)n6N such that E [|Y ′N − Y

′′
N |] < δ/c

where Y ′N and Y ′′N are the respective copies of YN . We introduce the product
probability space

(Ω̂, Â, P̂) = (Ω,A,P)⊗ (Ω, σ(VN+1, . . . , V0),P) ,

and the canonical embeddings ι1 : A → Â and ι2 : σ(VN+1, . . . , V0) → Â

(see example A.2). We use a “hat” to identify random variables and σ- fields
through these embeddings: for example we put X̂1 = ι1(X1) and X̂2 = ι2(X2)
for any random variables X1 and X2 measurable with respect to A and
σ(VN+1, . . . , V0) respectively. Then, for each n 6 N we define Ĝ′n = F̂′n and
Ĝ′n = F̂′n, and for each n ∈ {N + 1, . . . , 0} we define the σ- fields

Ĝ′n = F̂′N ∨ σ(V̂N+1, . . . , V̂n) and Ĝ′′n = F̂′′N ∨ σ(V̂N+1, . . . , V̂n).

Using lemma 2.31, it is a child’s play to verify that Ĝ′ := (Ĝ′n)n60 and

Ĝ′′ := (Ĝ′′n)n60 are two jointly immersed isomorphic copies of G. The respec-

tive copies of R are R̂′ = f(Ŷ ′N , V̂N+1, . . . , V̂0) and R̂′′ = f(Ŷ ′′N , V̂N+1, . . . , V̂0).
Thus we have Ê

[
|R̂′ − R̂′′|

]
6 c Ê

[
|Ŷ ′N − Ŷ

′′
N |
]

because f is c-Lipschitz. Due
to isomorphism, we have Ê

[
|Ŷ ′N − Ŷ

′′
N |
]

= E
[
|Y ′N − Y

′′
N |
]

and Ê
[
|X̂ ′ − R̂′|

]
=

Ê
[
|X̂ ′′ − R̂′′|

]
= E
[
|X − R|

]
where X̂ ′ and X̂ ′′ are the respective copies of

X ; consequently, Ê
[
|X̂ ′ − X̂ ′′|

]
< 3δ, thereby showing that X is I-cosy with

respect to G. As F is immersed in G, we see that X is I-cosy with respect to
F (lemma 3.30). ⊓⊔
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Proposition 3.38. Let F = (Fn)n60 be a locally separable filtration. The
following conditions are equivalent:

(i) F is I-cosy;
(ii) for every N ∈ −N, the truncated filtration (Fn)n6N is I-cosy;

(iii) there exists N ∈ −N such that the truncated filtration (Fn)n6N is I-cosy.

Proof. It is easy to convince oneself that (i) =⇒ (ii). Obviously, (ii) =⇒ (iii)
is true. We now show that (iii) =⇒ (i). Let (Vn)n60 be a superinnovation of F,
whose existence is provided by corollary 3.28. We assume that the truncated
filtration (Fn)n6N is I-cosy for some N . Then we know from lemma 3.37 that
F is I-cosy because of F0 ⊂ FN ∨ σ(VN+1, . . . , V0). ⊓⊔

Remark 3.39. When F is essentially separable, a result in [12] states that
proposition 3.38 is more generally true for a truncation with an F-stopping
time N . We have not attempted to generalize this result to locally separable
filtrations.

As another application of lemma 3.37, we shall give a result on I-cosiness
for the filtration generated by processes enjoying the properties of the follow-
ing definition.

Definition 3.40. Let (Xn)n60 be a process, and let φ : − N→ −N be a
strictly increasing map with φ(0) = 0.

1. We say that φ is a sequence of memory-loss times of type I for (Xn)n60 if
Xn is conditionally independent of σ(Xm;m < n) given (Xφ(k−1), . . . , Xn−1)
for every k, n ∈ −N satisfying φ(k − 1) < n 6 φ(k).

2. Let F be the filtration generated by (Xn)n60. We say that φ is a sequence of
memory-loss times of type II for (Xn)n60 if there exist a probability space

(Ω,A,P), an embedding Ψ: F0 → A, and a parameterization (U ′n)n60 of
the filtration F′ := Ψ(F) such that

Ψ (σ(Xn)) ⊂ Ψ
(
σ(Xφ(k−1))

)
∨ σ(U ′φ(k−1)+1, . . . , U

′
n)

for every k, n ∈ −N satisfying φ(k − 1) < n 6 φ(k).

Obviously, a process is Markovian if and only if it admits the identity map
φ : − N→ −N as a sequence of memory-loss times of type I.

Lemma 3.41. Let (Xn)n60 be a process, and let φ : − N→ −N be a strictly
increasing map with φ(0) = 0. If φ is a sequence of memory-loss times of
type I for (Xn)n60, then φ is a sequence of memory-loss times of type II for
(Xn)n60.

In the particular case when (Xn)n60 is a Markov process, this lemma
shows that, up to isomorphism, there is a parameterization (Un)n60 of the
filtration F generated by (Xn)n60 for which σ(Xn) ⊂ σ(Xn−1, Un) for every
n 6 0. We shall use the following lemma in the proof of lemma 3.41, which is
copied from lemma 2.22 in [19].
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Lemma 3.42. Let Λ = {Λs}s∈S be a probability kernel from a measurable
space S to a Polish space E. Then there exists a measurable function (s, u) 7→
∆s(u) from S × [0, 1] to E such that for all s ∈ S, the probability Λs is the
image of the Lebesgue measure on [0, 1] under the mapping ∆s : [0, 1]→ E.

Proof of lemma 3.41. We can assume that each Xn takes its values in a Polish
space, by replacing, if needed, Xn with a real-valued random variable gener-
ating the same σ- field. Let k, n ∈ −N such that n ∈ {φ(k − 1) + 1, . . . , φ(k)}.
By lemma 3.42, there exists a measurable function Gk,n(xφ(k−1), . . . , xn−1, u)
such that the function u 7→ Gk,n(Xφ(k−1), . . . , Xn−1, u) almost surely car-
ries the Lebesgue measure to the conditional law L(Xn |Xφ(k−1), . . . , Xn−1).
Consider a process (X ′n, U

′
n)n60 defined by the following conditions:

• for each time n 6 0, the random variable Un is independent of the past
and has the uniform law [0, 1];
• for each k 6 0, the random variable X ′φ(k) has the same law as Xφ(k);
• we have X ′n = Gk,n(X ′φ(k−1), . . . , X

′
n−1, U

′
n) for each k, n ∈ −N satisfying

φ(k − 1) < n 6 φ(k).

Assuming that φ is a sequence of memory-loss times of type I for (Xn)n60, it is
easy to check that these two conditions uniquely define the law of (X ′n, U

′
n)n60,

that (X ′n)n60 is a copy of (Xn)n60, and then that φ is a sequence of memory-
loss times of type II for (Xn)n60. ⊓⊔

Proposition 3.43. Let (Xn)n60 be a process, F the filtration it generates,
and φ : − N→ −N a strictly increasing map with φ(0) = 0, assumed to be
a sequence of memory-loss times of type II for (Xn)n60. Then the following
conditions are equivalent:

(i) F is I-cosy;
(ii) for each n 6 0, the σ- field σ(Xφ(n)) is I-cosy with respect to F;

(iii) for each n 6 0, the σ- field σ(Xφ(n)) is I-cosy with respect to the truncated
filtration (Fm)m6φ(n).

Proof. One obviously has (i) =⇒ (ii) =⇒ (iii). Assuming that (iii) holds
for some n 6 0, then it is easy to show with the help of lemma 3.37 that
σ(Xφ(n), Xφ(n)+1, . . . , X0) is I-cosy with respect to F when φ is a sequence of
memory-loss times of type II for (Xn)n60. Hence, (iii) =⇒ (i) follows from
the L1-closure of the set of I-cosy random variables (lemma 3.33) and lemma
2.12. ⊓⊔

Remark 3.44. If F is the filtration generated by a martingale (Mn)n60, it is
possible to show that F is I-cosy if and only if the random variableM0 is I-cosy.
This is deduced from the same result stated in [21] for a general self-joining
criterion (see also remark 2.28).

Proposition 3.46 below will be used in the proof of theorem 4.9. Its proof
invokes the following lemma, copied verbatim from [14], to which we refer for
a proof.
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Lemma 3.45. On (Ω,A,P), let F, G, H, K be four filtrations such that F is
immersed in H and G is immersed in K. If H and K are independent, then
F ∨ G is immersed in H ∨K.

Proposition 3.46. Let F = (Fn)n60 and G = (Gn)n60 be two filtrations on
some possibly different probability spaces. Let (E1, ρ1) and (E2, ρ2) be two
Polish metric spaces, X ∈ L1(F0;E1) and Y ∈ L1(G0;E2). If X is I-cosy with
respect to F and Y is I-cosy with respect to G, then (X,Y ) is I-cosy with respect
to F ⊗ G. As a consequence, the supremum of two independent filtrations is
I-cosy if and only if each of these two filtrations is I-cosy.

However, the supremum of two jointly immersed I-cosy filtrations is not I-cosy
in general; this clearly results from theorem 3.9.

Proof (Proof of proposition 3.46). The proof of the consequence is left to
the reader (the ‘only if’ part obviously follows from lemma 1.2 and lemma
3.30). Now we prove the first part of the proposition. Assume I-cosiness of
both X and Y . The random pair (X,Y ) takes its values in the Polish met-
ric space E1 × E2 equipped with the metric ρ = ρ1 + ρ2. Let δ > 0. Let
(F′,F′′) be a joining of F on (Ω,A,P) independent in small time and such
that E

[
ρ1(X ′, X ′′)

]
< δ/2, and let (G̃′, G̃′′) be a joining of G on (Ω̃, Ã, P̃) inde-

pendent in small time and such that Ẽ
[
ρ2(Ỹ ′, Ỹ ′′)

]
< δ/2. Let Ê′ and Ê′′ be

the filtrations defined on (Ω̂, Â, P̂) := (Ω,A,P) ⊗ (Ω̃, Ã, P̃) by Ê′n = F′n ⊗ G̃′n

and Ê′′n = F′′n ⊗ G̃′′n. It follows from lemma 3.45 that (Ê′, Ê′′) is a joining of
F ⊗ G, and clearly it is independent in small time. The copies (X̂ ′, Ŷ ′) and
(X̂ ′′, Ŷ ′′) of (X,Y ) in (Ê′, Ê′′) satisfy Ê

[
ρ1(X̂ ′, X̂ ′′)

]
= E
[
ρ1(X ′, X ′′)

]
and

Ê
[
ρ2(Ŷ ′, Ŷ ′′)

]
= Ẽ
[
ρ2(Ỹ ′, Ỹ ′′)

]
, therefore Ê

[
ρ
(
(X̂ ′, Ŷ ′), (X̂ ′′, Ŷ ′′)

)]
< δ. ⊓⊔

Below is a corollary of proposition 3.46. We commit a slight abuse of
language in assertions (ii) and (iii). Both these assertions say that the σ- field
E0 is I-cosy with respect to an extension of the filtration F (it is understood
in assertion (ii) that the independent product of F with a filtration is an
extension of F, which is the content of lemma 3.5). This more rigorously means
that I-cosiness holds for the image of E0 under the underlying embedding from
F to this extension of F.

Corollary 3.47. Let F be a locally separable filtration and E0 ⊂ F0 a σ- field.
Then the following facts are equivalent.

(i) E0 is I-cosy with respect to F;
(ii) E0 is I-cosy with respect to the independent product of F with a standard

conditionally non-atomic filtration;
(iii) E0 is I-cosy with respect to some conditionally non-atomic extension of F.

Consequently, letting E be a Polish space and X ∈ L1(F0;E), the analogous
three statements with X instead of E0 also are equivalent.
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Proof. The consequence follows from proposition 3.36. Inheritability of I-
cosiness (lemma 3.30) gives (iii) =⇒ (i). Let G be a standard conditionally
non-atomic filtration. By lemma 3.22, the product filtration F ⊗ G is condi-
tionally non-atomic, which shows that (ii) =⇒ (iii). It remains to show that
(i) =⇒ (ii). Assume E0 is I-cosy with respect to F. As G is I-cosy (proposition
3.31), the σ- field E0 ⊗ G0 is I-cosy with respect to F⊗ G by proposition 3.46.
In particular, the image of E0 under the identification with the first factor is
I-cosy with respect to F ⊗ G. ⊓⊔

Remark 3.48. A stronger result is derived in [21] from the equivalence between
I-cosiness and Vershik’s standardness criterion: in the same context of the
above corollary, if G is a locally separable extension of F, then E0 is I-cosy
with respect to F if and only if E0 is I-cosy with respect to G. We do not know
how to prove this result without using Vershik’s standardness criterion.

Example: random dynamical systems

We will give in theorem 3.53 a sufficient condition for a stationary Markov
process (Xn)n60 to generate an I-cosy filtration. In the proof we give, we will
firstly argument that, due to proposition 3.43 and stationarity, it suffices to
show I-cosiness of X0. Theorem 3.53 firstly requires the stationary process
to be couplable (definition 3.49). Assuming this condition will allow us to
construct some copies (X ′n)n60 and (X ′′n)n60 of (Xn)n60 generating jointly
immersed filtrations and independent up to some time n0 sufficiently small
for the random variables X ′T and X ′′T to be arbitrarily close with high prob-
ability for some random time T ∈ {n0 + 1, . . . , 0}. The second condition is
the stochastic self-contractivity (definition 3.52) of the Markovian kernel. This
condition will allow us to maintain the distance between X ′n and X ′′n for n
going from T to 0.

Definition 3.49. Let (E, ρ) be a Polish metric space. Let (Xn)n∈Z
be a sta-

tionary Markov process in E. This process is couplable if for every δ > 0,
there exist, on some probability space (Ω,A,P), two jointly immersed copies
(F′n)n>0 and (F′′n)n>0 of the filtration generated by (Xn)n>0 such that F′0 is
independent of F′′0 and the stopping time inf {n > 0 | ρ(X ′n, X

′′
n) < δ} is almost

surely finite.

Example 3.50 (Stationary Markov chain on a denumerable space). Let (Xn)n∈Z

be a stationary Markov process on a denumerable state space, equipped with
the 0 – 1 distance. Considering two independent copies (X ′n)n>0 and (X ′′n)n>0

of (Xn)n>0, it is known that the so-called product chain (X ′n, X
′′
n)n>0 is re-

current under the assumption that the Markov kernel of (Xn)n>0 is positive
recurrent, irreducible, and aperiodic (see [33]). In particular the product chain
almost surely visits the diagonal, and hence (Xn)n∈Z

is couplable under this
assumption. In fact, we can see that if (Xn)n∈Z

generates a Kolmogorovian
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filtration, then the Markov kernel is positive recurrent, irreducible, and ape-
riodic. Indeed, it is known (see [19]) that an irreducible Markov kernel is
positive recurrent whenever it admits an invariant probability measure, and
it is not difficult to check that the Markov kernel is irreducible and aperiodic
if (Xn)n∈Z

generates a Kolmogorovian filtration.

Example 3.51 (Random walk on the circle). Let (Xn)n∈Z
be the stationary

Markov process on the one-dimensional torus R/Z defined as follows. For a
given α ∈ R/Z :

• Xn has the uniform distribution on the one-dimensional torus R/Z;
• given Xn = x, the random variable Xn+1 takes as possible values x ± α

with equal probability.

When the “step” α is irrational, then the set {x+mα ∈ R/Z | m ∈ N} is
a dense subset of the circle R/Z. Thus, considering two independent copies
(X ′n)n>0 and (X ′′n)n>0 of (Xn)n>0, the product chain (X ′n, X

′′
n)n>0 almost

surely visits any open set because of the property of recurrence of a random
walk on Z

2. Hence (Xn)n∈Z
is couplable when the step is irrational.

Before defining stochastic self-contractivity, we need to introduce the fol-
lowing decomposition of probability kernels, which is usual in the theory of
random dynamical systems. Let (Xn)n∈Z

be a stationary Markov process in
a Polish space E, with transition kernel {Px}. According to lemma 3.42, it is
always possible to write the kernel as

Px(f) =
∫
f ◦ ∇v(x)dγ(v) (1)

where γ is a probability measure on some Polish space and (x, v) 7→ ∇v(x)
is measurable. Given a kernel written in form (1), we can consider a station-
ary Markov processes (X ′n, V

′
n)n60 with probability transition kernel {Qx,v}

defined by Qx,v(h) =
∫
h (∇t(x), t) dγ(t) and instantaneous law ν defined

by ν(h) =
∫ ∫

h (∇t(x), t) dγ(t)dµ(x) where µ is the instantaneous law of
(Xn)n60. Thus (X ′n)n60 has the same law as (Xn)n60, the random variable
V ′n is distributed according to γ for every n, one has X ′n+1 = ∇V ′

n+1
(X ′n)

and the process (V ′n)n60 is a superinnovation of the filtration F′ generated by
(X ′n)n60 (this is actually our proof of lemma 3.41 in the particular case where
φ is the identity map).

Definition 3.52. Let (E, ρ) be a Polish metric space. Let X = (Xn)n∈Z
be

a stationary Markov process in E with instantaneous distribution µ. If the
transition kernel {Px} can be written as in (1) with the property that there
exists a probability kernel {Λx,y} such that Λx,y is a joining of γ (i.e. the
margins are both γ) for all (x, y) and

∫
ρ (∇v(x),∇v′ (y)) dΛx,y(v, v′) 6 ρ(x, y), (2)

then X is said to be stochastically self-contractive.
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Example 3.50 continued. Let (Xn)n∈Z
be a stationary Markov process on a

denumerable state space. Given any decomposition (1), and setting Λx,y to
be the joining of γ supported by the diagonal for any x and y, then we see
that (Xn)n∈Z

is stochastically self-contractive when we consider the discrete
0− 1 distance on the denumerable state space.

Example 3.51 continued. Let (Xn)n∈Z
be the random walk on the circle. The

natural decomposition (1) consists in taking ∇v(x) = x + vα and γ the law
of εn := 1l{Xn=Xn−1+α}. Setting Λx,y to be the joining of γ supported by
the diagonal of {0, 1}2 for any x and y, we see that (Xn)n∈Z

is stochastically
self-contractive.

Theorem 3.53. Let (Xn)n∈Z
be a stationary Markov process in a Polish

bounded metric space (E, ρ). If (Xn)n∈Z
is couplable and stochastically self-

contractive, then the filtration generated by (Xn)n60 is I-cosy.

Thus, in view of examples 3.50 and 3.51, we know from this theorem that
a Markov chain on a denumerable state space generates an I-cosy filtration
whenever this filtration is Kolmogorovian, and we know that the random walk
on the circle with an irrational step generates an I-cosy filtration (we still give
a remark on this example at the end of this subsection).

Lemma 3.54. Let (Xn, Vn)n60 be a Markov process such that each Xn and
each Vn takes its values in a Polish space and such that the process (Vn)n60 is
a superinnovation (definition 3.10) of the filtration F generated by (Xn)n60

satisfying in addition σ(Xn+1) ⊂ σ(Xn) ∨ σ(Vn+1) for every n < 0. We con-
sider a measurable function fn such that Xn+1 = fn(Xn, Vn+1) for every
n < 0.

On (Ω,A,P), let F′ be a copy of F and (V ′′n )n60 a sequence of independent
random variables having the same law as (Vn)n60. We suppose that the filtra-
tion generated by (V ′′n )n60 and the filtration F′ are jointly immersed in some

filtration H.
Let T be a H-stopping time in −N ∪ {+∞}. Let (X ′′n)n60 be the process

defined by {
X ′′n = X ′n if n 6 T ;
X ′′n+1 = fn(X ′′n , V

′′
n+1) for n from T to −1.

Then (X ′′n)n60 is a copy of (Xn)n60 and the filtration it generates is immersed

in H.

Proof. Let n ∈ −N
∗. We denote by {Pnx } a regular version of the conditional

law of Xn+1 given Xn. Let g be a bounded Borelian function. One easily
checks that

1lT>nE
[
g(X ′′n+1) |Hn

]
= 1lT>nPnX′′

n

(g).

On the other hand, as V ′′n+1 is independent of Hn, we have
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1lT6nE
[
g(X ′′n+1) |Hn

]
= 1lT6nE

[
g ◦ fn(X ′′n , V

′′
n+1) |Hn

]
= 1lT6nP

n
X′′
n

(g).

Hence, the process (X ′′n)n60 is Markovian with respect to H and has the same
Markov kernels {Pnx } as the Markov process (Xn)n60.

It remains to check that X ′′n has the same law as Xn for all n 6 0. For
m 6 n, one has

E
[
g(X ′′n)1lT=m |Hm

]
= 1lT=mE

[
h(X ′m, V

′′
m+1, . . . , V

′′
n ) |Hm

]

where

h(·, vm+1, . . . , vn) = g ◦ fn−1(·, vn) ◦ · · · ◦ fm+1(·, vm+2) ◦ fm(·, vm+1).

But, because (V ′′m+1, . . . , V
′′
n ) is independent of Hm, we see that

E
[
h(X ′m, V

′′
m+1, . . . , V

′′
n ) |Hm

]
= QX′

m
(g),

where {Qx} a regular version of the conditional law of Xn given Xm, and thus
we have

E
[
h(X ′m, V

′′
m+1, . . . , V

′′
n ) |Hm

]
= E
[
g(X ′n) |Hm

]
.

Hence we obtain E [g(X ′′n)1lT=m] = E [g(X ′n)1lT=m] . As we obviously have
E [g(X ′′n)1lT>n] = E [g(X ′n)1lT>n] , we finally obtain E [g(X ′′n)] = E [g(X ′n)]. ⊓⊔

Proof of theorem 3.53. Let F be the filtration generated by the stationary
Markov process (Xn)n60. To show that F is I-cosy, it suffices, thanks to propo-
sition 3.43, to prove that for each n 6 0, the σ- field σ(Xn), or equivalently
(proposition 3.36) the random variable Xn, is I-cosy with respect to the trun-
cated filtration (Fm)m6n. We prove this for n = 0 only as our construction
will obviously adapt to an arbitrary n due to stationarity.

Set δ > 0 and define ǫ = δ/ diam(E). As we assume that the stationary
Markov process is couplable (definition 3.49), it is possible to find some n0

small enough and a probability space (Ω,A,P) with a joining (F′,F′′) of F

independent up to n0 such that P
[
T < +∞

]
> 1− ǫ where T is defined by

T =

{
inf {n | n0 6 n 6 0, ρ(X ′n, X

′′
n) < δ} if this infimum exists;

+∞ otherwise.

By replacing (Ω,A,P) with its independent product with a sufficiently
rich probability space, we can assume that we have a sequence (Ûn)n60 of

independent random variables Ûn each uniformly distributed on [0, 1] and that
is independent of F′0 ∨ F′′0 . We denote by H the supremum of the filtration
F′ ∨ F′′ with the filtration generated by (Ûn)n60.

For the sake of convenience, we assume that γ in the decomposition (1)
given by the stochastic self-contractivity assumption (2), is the Lebesgue mea-
sure on [0, 1]. Moreover we write f(x, u) instead of∇u(x). Let Λx,y be given by
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the stochastic self-contractivity assumption, and ∆x,y by lemma 3.42 applied
with Λx,y. We define the processes (X̂ ′n)n60, (X̂ ′′n)n60, (Ũ ′n)n60 and (Ũ ′′n )n60

by letting, for n 6 T ,





(Ũ ′n, Ũ
′′
n ) = ∆X′

n−1
,X′′
n−1

(Ûn),

X̂ ′n = X ′n,

X̂ ′′n = X ′′n ,

and, for n from T to −1,





(Ũ ′n+1, Ũ
′′
n+1) = ∆

X̂′
n
,X̂′′
n

(Ûn+1),

X̂ ′n+1 = f(X̂ ′n, Ũ
′
n+1),

X̂ ′′n+1 = f(X̂ ′′n , Ũ
′′
n+1).

Clearly, each of Ũ ′n+1 and Ũ ′′n+1 is independent of Hn, hence each of the
filtrations generated by (Ũ ′n)n60 and (Ũ ′′n )n60 is immersed in H (lemma 1.6).

Therefore, according to lemma 3.54, the processes (X̂ ′n)n60 and (X̂ ′′n)n60 are
two copies of (Xn)n60 and generate jointly immersed isomorphic filtrations,
and we know that they are independent up to n0.

By construction, due to the stochastic self-contractivity (2), we have

E
[
ρ(X̂ ′0, X̂

′′
0 )
∣∣ F′n ∨ F′′n

]
1l
T=n 6 ρ(X ′n, X

′′
n)1l
T=n.

Hence we obtain

E
[
ρ(X̂ ′0, X̂

′′
0 )
∣∣ (F′ ∨ F′′)T

]
1l
T 6=+∞ 6 ρ(X ′T , X

′′
T )1l
T 6=+∞ 6 δ,

and consequently we have E
[
ρ(X̂ ′0, X̂

′′
0 ) 1l

T 6=+∞

]
6 δ. As we have in addition

E
[
ρ(X̂ ′0, X̂

′′
0 ) 1l

T=+∞

]
6 δ, we finally obtain E

[
ρ(X̂ ′0, X̂

′′
0 )
]

6 2δ; so X0 is I-
cosy. ⊓⊔

Remark on example 3.51. Let (Xn)n60 be the stationary random walk on
the circle with an irrational step. We have seen that theorem 3.53 applies and
thus we know that the filtration F generated by (Xn)n60 is I-cosy. Note that
this filtration is of local product type: for each n 6 0, the random variable
εn := 1l{Xn=Xn−1+α} is an independent complement of Fn−1 in Fn. As εn
takes two possible values with equal probability, F is a dyadic filtration, a
particular case of homogeneous filtrations (defined in the introduction and in
definition 4.1). Therefore, according to theorem A stated in the introduction
(or to corollary 4.5), F is actually a filtration of product type. A generating
innovation for this filtration is constructed in [22].
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3.5 Example continued: split-word processes

We discuss about result 2.43 and we show how to deduce part (a) of theorem
2.39 assuming this result. In fact, in references [20] and [7], result 2.43 is
deduced from the following result:

Result 2.43’. If A is finite, then F is not I-cosy under (∆), unless µ is de-
generate.

Then result 2.43 follows from the fact that any filtration of product type is
I-cosy (proposition 3.31). Now we shall prove part (a) of theorem 2.39 assum-
ing result 2.43’. Consider an alphabet (A,A, µ) containing at least two letters
a and b. Let f : A→ {a, b} be any measurable function such that f(µ) assigns
positive measure to each of a and b. For a given splitting sequence, consider the
split-word process (Xn, εn)n60 on A and define the process (f(Xn), εn)n60.
This latter is the split-word process on the alphabet {a, b} with the same split-
ting sequence, and we know that its generated filtration is not I-cosy under
condition (∆) on this splitting sequence. By lemma 1.6, we can see that the
filtration generated by (f(Xn), εn)n60 is immersed in the one generated by
(Xn, εn)n60, and thus (Xn, εn)n60 itself does not generate an I-cosy filtration
under (∆), due to inheritance of I-cosiness by immersion (lemma 3.30).

4 Theorems

In this section, we restate and prove the theorems stated in the introduction,
and we return to the example of split-word processes in order to finish the
proof of theorem 2.39. Let us first recall the notion of homogeneous filtrations
given in the introduction.

Definition 4.1. A filtration F = (Fn)n60 is homogeneous if there exists an
innovation (Vn)n60 of F such that for each n 6 0, Vn either has a diffuse law
or is uniformly distributed on some finite set.

Thus, any homogeneous filtration is of local product type (definition 2.3), and
a conditionally non-atomic filtration (definition 3.1) is a particular homoge-
neous filtration. But note that no homogeneity in time is required: some Vn
may be diffuse, others may take two values, others three values, etc.

Theorem 4.4 states the equivalence, separately for each random variable,
between I-cosiness and Vershik’s first level criterion for homogeneous filtra-
tions. As an intermediate step we use Vershik’s self-joining criterion, which
has been shown to be equivalent to Vershik’s first level criterion in theorem
2.38. Under the context of essentially separable filtrations, we have seen that
Vershik’s first level criterion is equivalent to productness (theorem 2.25), thus
theorem A stated in the introduction follows as a consequence of our theorem
4.4. Our generalization to locally separable filtrations has no practical interest;
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however, even in the essentially separable case, theorem 4.4 is more precise
than theorem A: it asserts that, for a homogeneous filtration, I-cosiness and
Vershik’s first level criterion are equivalent for a random variable, not only for
the whole filtration. For a locally separable filtration, corollary 4.8 states that
I-cosiness for a random variable is equivalent to Vershik’s first level criterion
in a conditionally non-atomic extension of the filtration; this result is still
interesting when restricted to the context of essentially separable filtrations.
Theorem 4.9 states the equivalence between I-cosiness and standardness or
weak standardness, according as we consider essentially separable filtrations
or locally separable filtrations.

4.1 Theorems

The key theorem is theorem 4.4. All other theorems stated in the introduction
will easily derive therefrom. The key step in the proof is to consider Vershik’s
self-joining criterion (definition 2.37 and theorem 2.38) as an intermediate
step between I-cosiness and Vershik’s first level criterion.

The next two lemmas involve joinings (F′,F′′) of F permutational after an
integer (definition 2.35), as those appearing in Vershik’s self-joining criterion.
We recall the picture to be kept in mind for such joinings:

· · · F′n F′n+1 · · ·

V ′n+1

•

V ′′n+1

· · · F′′n F′′n+1 · · ·

Lemma 4.2. Let F = (Fn)n60 be a filtration of local product type and (Vn)n60

an innovation of F. We assume that for some integer n0 6 0, each innovation
Vn is uniformly distributed on a finite set for all n ∈ {n0+1, . . . , 0}. Let (E, ρ)
be a Polish metric space and X ∈ L1(F0;E), and let (F′,F′′) be a joining of
F on a probability space (Ω,A,P).

Then there exists a filtration F′′′ on (Ω,A,P) such that (F′,F′′′) is a join-
ing of F permutational after n0, and such that we have E

[
ρ(X ′, X ′′′)

]
6

E
[
ρ(X ′, X ′′)

]
where X ′, X ′′ and X ′′′ are the respective copies of X in F′,

F′′ and F′′′.

Proof. By induction on n, it suffices to show the lemma when assuming that
(F′,F′′) is a joining of F permutational after n0 + 1 for an integer n0 < 0.
Let (V ′n)n60 and (V ′′n )n60 be the respective copies of (Vn)n60 in F′ and F′′.
Thus we are assuming that (V ′n0+2, . . . , V

′
0) and (V ′′n0+2, . . . , V

′′
0 ) are such that
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V ′′n = Tn(V ′n) for n ∈ {n0 + 2, . . . , 0} where the Tn are the (F′ ∨ F′′)n−1-
measurable random transformations given in definition 2.35.

We shall firstly write the random transformations Tn and the random
variables X ′ and X ′′ in a convenient form in order to express the conditional
expectation E

[
ρ(X ′, X ′′) |F′n0

∨F′′n0

]
as a linear function of the conditional law

L(V ′n0+1, V
′′
n0+1 |F

′
n0
∨ F′′n0

). By lemma 2.36, there are two Fn0+1-measurable
random variables Cn0+1 and Dn0+1 such that

Tn(·) = ψn0 (C′n0+1, D
′′
n0+1, V

′
n0+2, . . . , V

′
n−1, ·)

for every n ∈ {n0 + 2, . . . , 0}, where the ψn0 are measurable functions. As we
have

(F′ ∨ F′′)n0+1 = (F′ ∨ F′′)n0
∨ σ(V ′n0+1, V

′′
n0+1),

we can take (lemma 1.1) an (F′n0
∨ F′′n0

)-measurable random variable H̄n0

such that σ(C′n0+1, D
′′
n0+1) ⊂ σ(H̄n0

, V ′n0+1, V
′′
n0+1). On the other hand, we

have σ(X) ⊂ σ(Xn0
, Vn0+1, . . . , V0) for some Fn0

-measurable random variable
Xn0

(lemma 1.1). Finally we take a random variable Z̄n0
such that σ(Z̄n0

) =
σ(H̄n0

, X ′n0
, X ′′n0

). Thus, we can write

Tn(·) = ψn(Z̄n0
, V ′n0+1, V

′′
n0+1, V

′
n0+2, . . . , V

′
n−1, ·) (1)

for each n ∈ {n0 + 2, . . . , 0}, where ψn is measurable, and we can write

X ′ = f(Z̄n0
, V ′n0+1, . . . , V

′
0)

and

X ′′ = f(Z̄n0
, V ′′n0+1, . . . , V

′′
0 )

= f
(
Z̄n0

, V ′′n0+1, Tn0+2(V ′n0+2), . . . , T0(V ′0)
)
,

for some Borelian function f . We denote by h the function such that

X ′′ = h(Z̄n0
, V ′n0+1, V

′′
n0+1, V

′
n0+2, . . . , V

′
0) (2)

which is obtained by combining the later equality with (1).
Hence, we have

E
[
ρ(X ′, X ′′) |F′n0

∨ F′′n0

]
= LZ̄n0

(
L(V ′n0+1, V

′′
n0+1 |F

′
n0
∨ F′′n0

)
)

where, letting F be the state space of Vn0+1 and ν a probability on F × F ,

Lz(ν) =
∫

E
[
gz(v′, v′′, V ′n0+2, . . . , V

′
0)
]

dν(v′, v′′),

where

gz(v′, v′′, V ′n0+2, . . . , V
′

0)

= ρ
(
f(z, v′, V ′n0+2, . . . , V

′
0), h(z, v′, v′′, V ′n0+2, . . . , V

′
0)
)
.
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The set of all probability measures on F × F having both margins equal to
the uniform probability measure on the finite set F is convex; by Birkhoff-Von
Neumann’s theorem (see [1]), its extreme points are the probability measures
supported on graphs of permutations of F . The map ν 7→ Lz(ν) is linear on
this convex set, thus it reaches its minimum at such an extremal probability
measure. For each z, we measurably select a permutation φz such that Lz
attains its minimum at the measure supported by the graph of φz .

Then we define V ′′′n0+1 = φZ̄n0
(V ′n0+1), and V ′′′n = T ′n(V

′
n) for n ∈ {n0 +

2, . . . , 0} where T ′n is obtained by replacing V ′′n0+1 with V ′′′n0+1 in the expression
(1) of Tn; that is, we put

V ′′′n = ψn
Z̄n0
,V ′
n0+1

,V ′′′
n0+1

,V ′
n0+2

,...,V ′
n−1

(V ′n).

By lemma 2.4, (V ′′′n0+1, . . . , V
′′′

0 ) is an innovation of F′ ∨ F′′ from n0 to 0.
Finally we define the filtration F′′′ as the filtration equaling F′′ up to time n0

and for which (V ′′′n0+1, . . . , V
′′′

0 ) is an innovation from n0 to 0; that is, we put
F′′′n = F′′n for n 6 n0 and F′′′n = F′′′n0

∨σ(V ′′′n0+1, . . . , V
′′′
n ) for n ∈ {n0+1, . . . , 0}.

Thus (F′,F′′′) is a joining of F permutational after n0. The copy X ′′′ of
X in F′′′ is obtained by replacing V ′′n0+1 by V ′′′n0+1 in (2), and consequently
E
[
ρ(X ′, X ′′′) |F′n0

∨ F′′n0

]
is the minimum value of LZ̄n0

. So we have

E
[
ρ(X ′, X ′′′)

∣∣ F′n0
∨ F′′n0

]
6 E
[
ρ(X ′, X ′′)

∣∣ F′n0
∨ F′′n0

]
,

and then E
[
ρ(X ′, X ′′′)

]
6 E
[
ρ(X ′, X ′′)

]
. ⊓⊔

Lemma 4.3. Let F = (Fn)n60 be a homogeneous filtration. Let (E, ρ) be a

Polish metric space and X ∈ L1(F0;E). Let (F′,F′′) be a joining of F on
(Ω,A,P) and n0 6 0 an integer.

Then for any ǫ > 0, there exists a filtration F′′′ on (Ω,A,P) such that
(F′,F′′′) is a joining of F permutational after n0 such that E

[
ρ(X ′, X ′′′)

]
6

E
[
ρ(X ′, X ′′)

]
+ ǫ where X ′, X ′′ and X ′′′ are the respective copies of X in F′,

F′′ and F′′′.

Proof. Let F be the subset of {n0 + 1, . . . , 0} consisting of those integers n
for which Vn is non-atomic. Without loss of generality, we assume that Vn has
the uniform law [0, 1] for n ∈ F . Let ǫ > 0. Let k sufficiently large so that, by
putting

η′n =
2k−1∑

i=0

i

2k
1l{ i

2k
<V ′
n

6
i+1

2k
} for n ∈ F

and η′n = V ′n for n ∈ {n0 + 1, . . . , 0} \ F , then there exists a random vari-
able R′ measurable with respect to F′n0

∨ σ(η′n0+1, . . . , η
′
0) and such that

E
[
ρ(X ′, R′)

]
6 ǫ/4. Define a filtration E′ = (E′n)n60 by letting E′n = F′n for

n 6 n0 and E′n = F′n0
∨ σ(η′n0+1, . . . , η

′
n) for n ∈ {n0 + 1, . . . , 0}. By apply-

ing the preceding lemma to E′, we obtain some random permutations Tn for
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n ∈ {n0 + 1, . . . , 0} such that by putting η′′′n = Tn(η′n) for those n, we have
E
[
ρ(R′, R′′′)

]
6 E
[
ρ(R′, R′′)

]
where R′′′ is the copy of R′ in the filtration

E′′′ defined by E′′′n = F′′n for n 6 n0 and E′′′n = F′′n0
∨ σ(η′′′n0+1, . . . , η

′′′
n ) for

n ∈ {n0 + 1, . . . , 0}. The Tn are naturally extended to the interval [0, 1] so
that we can define V ′′′n = Tn(V ′n) for every n ∈ {n0 +1, . . . , 0}. Finally one has
E
[
ρ(X ′, X ′′′)

]
6 E
[
ρ(X ′, X ′′)

]
+ǫ where X ′′′ is the copy of X ′ in the filtration

F′′′ defined by F′′′n = F′′n for n 6 n0 and F′′′n = F′′n0
∨ σ(V ′′′n0+1, . . . , V

′′′
n ) for

n ∈ {n0 + 1, . . . , 0}. ⊓⊔

Theorem 4.4. Let F = (Fn)n60 be a homogeneous filtration, E a Polish space

and X ∈ L1(F0;E). Then X is I-cosy if and only if X satisfies Vershik’s
first level criterion. Consequently, a σ- field E0 ⊂ F0 is I-cosy if and only if
it satisfies Vershik’s first level criterion, and the filtration F is I-cosy if and
only if it satisfies Vershik’s first level criterion.

Proof. The last sentence is obvious from definitions. We have seen in proposi-
tion 3.31 that the ‘if’ part holds more generally true for any filtration of local
product type. The preceding lemma shows that I-cosiness of X implies that
X satisfies Vershik’s self-joining criterion (definition 2.37), hence the ‘only if’
part follows from theorem 2.38. ⊓⊔

Corollary 4.5. An essentially separable homogeneous filtration is I-cosy if
and only if it is of product type.

Proof. This results from theorem 4.4 and Vershik’s first level criterion (theo-
rem 2.25). ⊓⊔

The following two corollaries justify some terminology introduced in sec-
tion 3.

Corollary 4.6. A filtration is weakly standard conditionally non-atomic ac-
cording to definition 3.19 if and only if it is both weakly standard and condi-
tionally non-atomic.

Proof. Obviously, a weakly standard conditionally non-atomic filtration is
weakly standard and conditionally non-atomic. Conversely, let F be a weakly
standard filtration which is conditionally non-atomic. Then F is I-cosy by
corollary 3.32, and therefore F satisfies Vershik’s first level criterion by the-
orem 4.4, thus F is weakly standard conditionally non-atomic according to
definition 3.19. ⊓⊔

Corollary 4.7. A filtration is standard conditionally non-atomic according to
definition 3.1 if and only if it is both standard and conditionally non-atomic.

Proof. The proof is similar to the one of corollary 4.6 by using corollary 4.5
instead of theorem 4.4. ⊓⊔
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The following corollary of theorem 4.4 gives a characterization of I-cosiness
of a random variable with respect to a locally separable filtration. In assertions
(ii) and (iii), we commit the same slight abuse of language as in corollary 3.47.

Corollary 4.8. Let F be a locally separable filtration and E0 ⊂ F0 a σ- field.
Then the following facts are equivalent.

(i) E0 satisfies the I-cosiness criterion with respect to F;
(ii) E0 satisfies Vershik’s first level criterion with respect to the independent

product of F with a standard non-atomic filtration;
(iii) E0 satisfies Vershik’s first level criterion with respect to a conditionally

non-atomic extension of F.

Letting E be a Polish space and X ∈ L1(F0;E), these three statements with
E0 replaced by X are still equivalent.

Proof. This follows from theorem 4.4 and corollary 3.47. ⊓⊔

Theorem 4.9. Let F be a locally separable filtration. The following assertions
are equivalent:

(a) F is I-cosy (definition 3.29);
(b) The independent product of F with a standard conditionally non-atomic

filtration is weakly standard conditionally non-atomic (definition 3.19);
(c) F is weakly standard (definition 3.21).

If in addition F is essentially separable, then these assertions also are
equivalent to:

(b)’ The independent product of F with a standard conditionally non-atomic
filtration is itself standard conditionally non-atomic (definition 3.1);

(c)’ F is standard (definition 3.6)

Proof. The independent product of a filtration F with a standard conditionally
non-atomic filtration is an extension of F (lemma 3.5); that shows that (b) =⇒
(c) and (b)’ =⇒ (c)’. Corollary 3.32 shows that (c) =⇒ (a) and (c)’ =⇒ (a). It
remains to show that (a) =⇒ (b) and (a) =⇒ (b)’. A standard conditionally
non-atomic filtration is of product type, hence is I-cosy by proposition 3.31.
Therefore, if F is I-cosy, then so is its independent product with a standard
conditionally non-atomic filtration in view of proposition 3.46. By lemma 3.22,
this product filtration is conditionally non-atomic. Hence, theorem 4.4 shows
that (a) =⇒ (b) and corollary 4.5 and lemma 3.2 show that (a) =⇒ (b)’. ⊓⊔

Corollary 4.10. A filtration is standard if and only if it is weakly standard
and essentially separable.

Proof. We have already noticed that a standard filtration obviously is weakly
standard and essentially separable. The converse follows from theorem 4.9. ⊓⊔
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4.2 Example continued: split-word processes

We show how to deduce part (b) of theorem 2.39 assuming result 2.45. Con-
sider a split word process (Xn, εn)n60 on the alphabet [0, 1] equipped with the
Lebesgue measure. Let µ be a probability measure on R and f be the right-
continuous inverse of the cumulative distribution function of µ. Then the
process (f(Xn), εn)n60 is the split-word process on the alphabet (R,BR, µ)
with the same splitting sequence as (Xn, εn)n60. By lemma 1.6, the filtration
F generated by (f(Xn), εn)n60 is immersed in the filtration G generated by
(Xn, εn)n60. Consequently, if G is I-cosy then so is F (lemma 3.30), and F is
of product type by corollary 4.5. If (∆) does not hold, we know from result
2.45 that G is of product type, and consequently is I-cosy (proposition 3.31).
Finally F is of product type if (∆) does not hold. As a consequence, this is also
true if (A,A, µ) is Polish because every Polish probability space is Lebesgue
isomorphic to a probability space on R.

A Isomorphisms

This annex gives definitions and elementary lemmas about isomorphisms be-
tween probability spaces. The classical definition of an embedding between
from a probability space (Ω,B,P) into a probability space (Ω′,A′,P′) is given
in terms of a Boolean morphism from B/P into A′/P which preserves prob-
abilities; such an embedding extends uniquely to random variables (see [2])
and then the definition is equivalently rephrased as follows.

Definition A.1. Let (Ω,B,P) and (Ω′,A′,P′) be two probability spaces. We
say that an application Ψ: L0(Ω,B,P)→ L0(Ω′,A′,P′), is an embedding from
(Ω,B,P) into (Ω′,A′,P′) if the following two conditions hold:

(i) for all integer n > 1, for all random variables X1, . . . , Xn on (Ω,B,P),
and all Borelian applications f : R

n → R, one has Ψ
(
f(X1, . . . , Xn)

)
=

f
(
Ψ(X1), . . . ,Ψ(Xn)

)
;

(ii) each random variable X on (Ω,B,P) has the same law as Ψ(X).

The random variable Ψ(X) is also called the copy of the random variable
X by the embedding Ψ. We shortly say that Ψ is an embedding from (Ω,B,P)
into (Ω′,A′,P′), and we shortly write Ψ: B→ A′. We say that an embedding
Ψ: B → A′ is an isomorphism from B onto A′ if it is surjective. It is trivial
that an embedding is linear, injective, and continuous for the topology of
the convergence in probability. If X = 1lB is the indicator function of an
event B ∈ B, one can verify that Ψ(X) is the indicator function of an event
B′ ∈ A′, which we denote by Ψ(B). One easily verifies that the set Ψ(B) :=
{Ψ(B) | B ∈ B} is a σ- field and that Ψ defines an isomorphism from (Ω,B,P)
into
(
Ω′,Ψ(B),P′

)
; thus any Ψ(B)-measurable random variable X ′ has form

X ′ = Ψ(X) for some B-measurable random variable X . If B = σ(Y ) for some
random variable Y , it is also easy to see that Ψ(B) = σ

(
Ψ(Y )

)
.
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Example A.2. Let (Ω,B,P) and (Ω∗,C∗,P∗) be two probability spaces, and let
(Ω̂, Â, P̂) = (Ω,B,P) ⊗ (Ω∗,C∗,P∗). The identification with the first factor is
the canonical embedding ι : B→ Â defined by ι(X) : (ω, ω∗) 7→ X(ω).

The proof of the following lemma is left to the reader.

Lemma A.3. Let (Ω,B,P) and (Ω′,A′,P′) be two probability spaces and
Ψ: B → A′ be an embedding. Let X ∈ L1(B) and C ⊂ B be a σ- field. Then
Ψ (E [X |C]) = E

′ [Ψ(X) |Ψ(C)].

As shown below, an embedding also defines uniquely a copy of a random
variable taking its values in a Polish space (a topological space is said to be
Polish if it is separable and admits a complete metrization).

Definition A.4. Let E be a separable metric space, (Ω,B,P) and (Ω′,A′,P′)
two probability spaces, X ∈ L0(B;E), and Ψ: σ(X) → A′ an embedding. A
random variable X ′ ∈ L0(A′;E) is denoted by Ψ(X) if one has Ψ

(
f(X)

)
=

f(X ′) for every Borelian function f : E → R.

It is straightforward to verify that, given another separable metric space
and a Borelian function g : E → F , one has Ψ

(
g(X)
)

= g
(
Ψ(X)

)
provided

that Ψ
(
g(X)
)

and Ψ(X) exist.

Lemma A.5. With the same notations as the preceding definition, when E is
Polish, there exists a unique random variable X ′ = Ψ(X).

Proof. Any Polish probability space is Lebesgue isomorphic to a probability
space on R (see [6], [25], [29]). Hence, there exist a bimeasurable bijection T
from a set E0 ⊂ E of full PX -measure, where PX is the law of X , into a set
F0 ⊂ R of full µ-measure, where µ is a probability distribution on R, and T
satisfies T (PX) = µ. If X ′ is a random variable such that Ψ

(
f(X)

)
= f(X ′)

for all Borelian functions f , then its law is the same as the one of X . Thus the
random variables T (X) and T (X ′) are well-defined and we have Ψ

(
T (X)

)
=

T (X ′). It makes sense to take the image under T−1 of this random variable
and this yields X ′ = T−1

(
Ψ
(
T (X)

))
. Thus there is at most one random

variable X ′ satisfying the desiderata. Finally, putting X ′ = T−1
(
Ψ
(
T (X)

))

it is easy to verify that the equality Ψ
(
f(X)

)
= f(X ′) is indeed satisfied for

each Borelian function f : E → R. ⊓⊔

Example A.6. Let (Ω,B,P) and (Ω′,A′,P′) be two probability spaces and
Ψ: B→ A′ an embedding. Let X1, . . ., Xn be random variables on (Ω,B,P)
taking their values in possibly different Polish spaces, and consider (X1, . . . , Xn)
as a random variable in the product Polish space. Then Ψ(X1, . . . , Xn) =
(Ψ(X1), . . . ,Ψ(Xn)). Indeed each σ- field σ(Xi) is essentially separable so
it is possible to write Xi = gi(Zi) where Zi takes its values in R. Thus,
Ψ
(
f(X1, . . . , Xn)

)
= f
(
g1

(
Ψ(Z1)

)
, . . . , gn

(
Ψ(Zn)

))
= f
(
Ψ(X1), . . . ,Ψ(Xn)

)
.
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Lemma A.7. Let E be a separable metric space, (Ω,B,P) and (Ω′,A′,P′)
be two probability spaces, X ∈ L0(B;E) and X ′ ∈ L0(A′;E). If X and X ′

have the same law, then σ(X) and σ(X ′) are isomorphic and there exists a
unique isomorphism Ψ: σ(X)→ σ(X ′) such that Ψ(X) = X ′ (in the sense of
definition A.4).

Proof. By Doob’s functional representation theorem, any real-valued random
variable measurable with respect to σ(X) is of the form f(X) for a Bore-
lian function f : E → R. One easily verifies that we define an isomorphism
Ψ: σ(X)→ σ(X ′) by putting Ψ

(
f(X)

)
= f(X ′). ⊓⊔

Copies of conditional laws
Let E be a Polish space. On (Ω,A,P), if X is a random variable taking

its values in E, and if C ⊂ A is a σ- field, then the conditional law L[X |C ]
is a C-measurable random variable taking its values in the set P(E) of proba-
bility measures on E, which is Polish in the weak topology (see [4]), generated
by the maps πf : µ 7→ µ(f) for bounded continuous functions f : E → R.
The associated Borel σ- field on P(E) is itself generated by the maps πf for
bounded continuous functions f : E → R. Therefore, the σ- field σ (L[X |C ])
is generated by the conditional expectations E [ f(X) |C ] = πf (L[X |C ]) for
all bounded continuous functions f : E → R, and E [ f(X) |C ] is σ (L[X |C ])-
measurable for all suitable functions f : E → R.

Lemma A.8. Let (Ω,B,P) and (Ω′,A′,P′) be two probability spaces and
Ψ: B→ A′ an embedding. Let E be a Polish space and µ : Ω× BE → [0, 1] a
probability kernel from (Ω,B) to BE. Thus µ defines a random variable tak-
ing its values in the Polish space of probability measures on E. Then one has
µ′ = Ψ(µ) according to definition A.4 if and only if µ′(f) = Ψ

(
µ(f)
)

for all
bounded continuous functions f : E → R.

Proof. If µ′ = Ψ(µ) then from definition A.4 we know that µ′(f) = Ψ
(
µ(f)
)

for all suitable functions f . Conversely, it is well-known that any measure m
on a Polish space E is uniquely determined by the values of m(f) for bounded
continuous functions f : E → R. ⊓⊔

The proof of the following lemma is easily derived from lemma A.8; we
leave it to the reader.

Lemma A.9. On a probability space (Ω,C,P), let µ be a random probability

on a Polish space E. We define the probability P̂ := P⊗ µ on the measurable
space (Ω̂, B̂) :=

(
Ω× E,C⊗ BE

)
by

P̂[B̂] = E

[∫
1lB̂(·, t) dµ(t)

]
.

Then the identification with the first factor ι : C → B̂ is an embedding from
(Ω,C,P) into (Ω̂, B̂, P̂), and one has ι(µ) = L[ V̂ | Ĉ ] where Ĉ = ι(C) and V̂ is

the random variable defined by V̂ (ω, t) = t.



On standardness and I-cosiness 59

Lemma A.10. Let (Ω,B,P) and (Ω′,A′,P′) be two probability spaces and
Ψ: B→ A′ an embedding. Let E be a Polish space, X ∈ L0(B;E) and C ⊂ B

be a σ- field. Then Ψ
(
L[X |C]

)
= L
[
Ψ(X) |Ψ(C)

]
.

Proof. By lemma A.8, it suffices to check that the equalities Ψ (E [f(X) |C]) =
E
′ [f (Ψ(X)) |Ψ(C)] hold for all bounded continuous functions f : E → R. This

stems from lemma A.3. ⊓⊔

Proposition A.11. Let (Ω,B,P) be a probability space and let C1, C2 be two
sub -σ- fields of B. Let (Ω′,A′,P′) be a probability space, and Ψ1 : C1 → A′,
Ψ2 : C2 → A′ two embeddings. There exists an isomorphism Ψ: C1 ∨ C2 →
Ψ1(C1)∨Ψ2(C2) which simultaneously extends Ψ1 and Ψ2 if and only if one has
Ψ1

(
L[C2 |C1]

)
= L
[
Ψ2(C2) |Ψ1(C1)

]
for every C2-measurable random variable

C2.

Proof. The ‘only if’ part follows from lemma A.10. We show the ‘if’ part.
Let X be a C1 ∨ C2-measurable random variable. Then, by lemma 1.1, there
exist a C1-measurable random variable C1, a C2-measurable random vari-
able C2, and a Borelian function f such that X = f(C1, C2). If Ψ exists,
one must have Ψ(X) = f (Ψ1(C1),Ψ2(C2)). The condition Ψ1

(
L[C2 |C1]

)
=

L
[
Ψ2(C2) |Ψ1(C1)

]
shows that the pair (C1, C2) has the same distribution

as
(
Ψ1(C1),Ψ2(C2)

)
, so X has the same law as f (Ψ1(C1),Ψ2(C2)). To show

that Ψ is defined without ambiguity, consider that X = g(D1, D2) where
D1 is a C1-measurable random variable, D2 is a C2-measurable random vari-
able, and g a Borelian function. The assumption implies Ψ1

(
L[C2, D2 |C1]

)
=

L
[
Ψ2(C2, D2) |Ψ1(C1)

]
, which implies that the four-tuple (C1, D1, C2, D2) has

the same distribution as
(
Ψ1(C1),Ψ1(D1),Ψ2(C2),Ψ2(D2)

)
; so if f(C1, C2) =

g(D1, D2) almost surely then f
(
Ψ1(C1),Ψ2(C2)

)
= g
(
Ψ1(D1),Ψ2(D2)

)
al-

most surely. Checking condition (i) in definition A.1 is left to the reader. ⊓⊔

Corollary A.12. Let (Ω,B,P) be a probability space, C ⊂ B a σ- field, and
V a B-measurable random variable taking values in some Polish space E.
Let (Ω′,A′,P′) be a probability space, Ψ0 : C → A′ an embedding and V ′ an
A′-measurable random variable taking values in E. Then there exists an iso-
morphism Ψ: C ∨ σ(V ) → Ψ0(C) ∨ σ(V ′) extending Ψ0 and sending V to V ′

if and only if one has Ψ0 (L[V |C]) = L [V ′ |Ψ0(C)].

Proof. The ‘only if’ part follows from lemma A.10. The ‘if’ part follows from
lemma A.7, lemma A.8, and proposition A.11. ⊓⊔

Corollary A.13. On (Ω,A,P), let C ⊂ A be a σ- field and let V be a random
variable. We put µ = L[V |C]. Then, with the notations of lemma A.9, there

exists an unique isomorphism Ψ: C∨σ(V )→ Ĉ∨σ(V̂ ) such that the restriction

of Ψ to C equals the canonical embedding ι and Ψ(V ) = V̂ .
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