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Abstract

This paper develops a method for estimating the spectrum of a stationary process
using time series traces recorded from experimental designs. Our procedure estimates
the “common” log-spectrum and the variability over the traces (or subjects) using a
mixed effects model. We combine the use of spatially adaptive smoothing methods
with recursive dyadic partitioning to construct a predictive model. The method is
easy to implement and can handle large data sets because is uses the discrete wavelet
transform which is computationally efficient. Numerical studies confirm that the pro-
posed method performs very well despite its simplicity. The method is also applied to
a multi-subject electroencephalogram data set.
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1 Introduction

We develop a novel wavelet-based procedure for estimating the spectrum (or log-

spectrum) of a stationary process from several time series traces. Our goal is to provide

a methodological approach which uses the information included in these time series

traces to both estimate the spectrum common to this collection and the deviation from

this common spectrum, in an experimental situation of possibly only a small number

of time series traces. In order to statistically describe this set-up, we embed it into a

mixed effects model: its fixed effect corresponds to the log-spectrum whereas the vari-

ance of its zero-mean random effects models the aforementioned deviation. We recall

that in this set-up, common to mixed effects modelling in general, the statistical tasks

are not only to estimate trace specific and common log-spectra, including the variabil-

ity of the random effects, but also to predict these effects giving reliable prediction

intervals based on the former estimates.

The motivation of the general methodology we propose can be found in a neuro-

science experiment where a subject is instructed to move a joystick to the right (or

the left accordingly) when a cursor flashes on the right side (or left side) of a visual

field. For each trial (i.e., each cursor flash), electroencephalograms (EEGs) traces are

collected. The ultimate goal in the study is to investigate brain processes that are asso-

ciated with motor tasks and motor intention. In particular, the scientists are interested

in identifying differences in brain network for the left vs right cursor flash stimuli. We

shall tackle one of the first steps toward the ultimate goal - which is to estimate the

log-spectrum associated with the right stimuli using time series traces recorded from

S = 8 subjects in the experiment. Our proposed procedure views each time series

trace recorded in response to a stimulus to be a realization of a stochastic process

having a log-spectrum that is unique to that stimulus. While methods for estimating

the log-spectrum from a single time series are well-developed, there is clearly a lack of

methods that are suited for an experimental setting where a few time series traces are

available for each stimulus.
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Our proposed procedure will utilize modern non-parametric curve estimation meth-

ods - which need to be tailored according to our specific situation where the ultimate

goals are estimation of the common spectrum and subject-specific prediction based on

possibly very few time series traces (or subjects). We do so by developing a methodol-

ogy that will combine the well-established advantages of wavelet threshold estimation

of curves that show important localized structure with recent approaches on Recursive

Dyadic Partitioning (RDP hereafter). For the former, we exploit the improved denois-

ing properties of ”tree-structured” wavelet methods (Baraniuk (1999), Autin (2008)),

whereas the use of Haar wavelets within tree-structuring will allow us to interpret our

estimator as a piecewise constant fit subordinate to an RDP (Donoho et al. (2000)).

Moreover, since wavelet coefficients are known to be closer to normality than the orig-

inal non-Gaussian data, working in the coefficient domain of a wavelet-based approach

allows to use classical prediction approaches based on Gaussianity.

We highlight the advantage of our approach. The “wedding” of tree-structured

wavelets with RDP gives a user-friendly interpretation of the resulting estimator as

“semi-linear”. That is, on each of the elements of the DP it can be seen as a linear and

hence kernel-like smoother. However, since the adaptively chosen DP is generally not

composed of homogeneous segments, the overall estimator is non-linear and akin to a

kernel method with a local smoothing parameter. We hasten to add that even though

we start from piecewise constant fits along an adaptively chosen dyadic partition, our

final semi-linear estimators are not restricted to remain blocky over frequency. Our

procedure will apply the “average interpolation (AI)” approach suggested by Donoho

(1993) or Donoho et al. (2000) to construct a smooth reconstruction along the initially

found DP.

The classical approach to estimating the log-spectrum using several time series

traces in an experimental design is based on multivariate analysis of variance (MANOVA).

While the log-periodogram curve is defined over the entire interval (0, Nf ) (where Nf

is the Nyquist frequency), MANOVA essentially reduces the log-periodogram curve

to some vector of averages of the log-periodograms across disjoint bins of (0, Nf ). In
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EEG studies, the log-spectral power is examined for the delta (0 − 4 Hertz), theta

(4 − 8), alpha (8 − 12), beta (12 − 30) and gamma (> 30) bands. Our mixed-effects

curve estimation approach based on wavelets, however, will offer high frequency reso-

lution and hence will allow us to extract more refined and highly localized information

within each of these broad frequency bands. Though aggregating individual estimates

to construct an ”over-all” curve smoother is not entirely new (see Bunea et al. (2006)),

we believe that using a mixed-effects set-up will allow simultaneous estimation of the

common log-spectrum, modelling of variation across subjects and constructing valid

confidence/prediction intervals.

Our method can be seen to fall into the general area of functional mixed effects

modelling - though we deal with the specific problem of log-spectral estimation us-

ing replicated time series. We briefly explain similarities and differences with existing

work. Most of the ground-breaking work on functional mixed effects models is based

on splines, with e.g. recent work by Guo (2002) where the subject-specific random

functions are modelled non-parametrically using the same functions used to represent

the fixed effect. As mentioned, the proposed procedure will utilize wavelet threshold-

ing which has been shown to be well suited for functional data that are character-

ized by localized peaks and troughs (Morris et al. (2003), Morris and Carroll (2006),

Antoniadis and Sapatinas (2007)). Moreover, as already exploited by these citations,

the hierarchical structure in the coefficient domain of wavelets allows to treat mul-

tiple curves where on the one hand the locations of peaks and troughs may differ

across curves but where at the same time a certain reduction of multivariate complex-

ity is at order. Both the Bayesian approaches of Morris et al. (Morris et al. (2003),

Morris and Carroll (2006)) and the inference-oriented approach of Antoniadis and Sapatinas

(2007), using multiple likelihood-ratio tests, carry out estimation by applying the lin-

ear mixed effects model in the wavelet coefficient domain. Our approach models the

log-periodogram curves directly rather than the wavelet coefficients and uses hard

thresholding which has been demonstrated to keep its known optimality properties in

the multiple-curve settings (Bunea et al. (2007)). Second, the use of wavelets within
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a tree-structured RDP approach is an elegant way and actually the key feature for

constructing a variance estimator of the underlying mixed-effects model. In fact, our

approach can be seen as a suitably restricted non-parametric curve estimator. As in

Antoniadis and Sapatinas (2007), the complexity of the non-parametric variance com-

ponents is constrained to not exceed those of the log-spectrum. Using a hierarchic

tree-structured estimation approach enables the procedure to be fully adaptive (in a

non-parametric sense) to this constraint, motivated from having at our disposal only

few time series traces - a situation which would not fit into the much more general

set-up of the aforementioned functional approaches.

Another advantage of our approach is that it benefits from perhaps a less known

property of tree-structured wavelet thresholding to control both the false positives

and the false negatives in the coefficient domain much better than classical wavelet

thresholding. While classical wavelet thresholding occasionally kills significant local

information in the coefficient domain and accepts too much noise at locations which

are supposed to correspond to smooth curve structure, we observe that our estimators

suffer much less from these well-known shortcomings. Our proposed method combines

information from multiple curves within a tree-structured approach - resulting in a

significant improvement of our estimator of the population log-spectrum.

The rest of the paper is organized as follows. In Section 2, we describe our model

set-up and deliver the necessary background on log-spectral estimation in a mixed-

effects set-up, on RDP’s and on wavelet tree-structured estimation. Section 3 then

presents our methodology in detail. We derive point estimates of both the trace-

specific and the common (or population) log-spectrum, a point estimate of the variation

across traces, pointwise confidence intervals for the common log-spectrum and for the

pointwise estimated predictor of each of the subject-specific log-spectra. We shall

report the performance of our methodology via simulation studies in Section 4 and

we apply our method to an EEG data set in Section 5. We end by a conclusion

which also discusses further directions of this promising research of tree-structured

spectrum estimation. An appendix section contains some additional details on our
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tree algorithms and on the derivation of some theoretical justification of our proposed

approach.

2 Model set-up and background

2.1 Log-periodograms

Let {Xs
t , t = 1, . . . , T} be a stationary time series trace for trial s, s = 1, . . . , S. We

shall assume that the time series traces are independent replicates from a process

whose log-spectrum is denoted as h(ν), ν ∈ [0, 1]. Following the widely-used Wahba

approximation of log-periodograms by log χ2−variates (see Wahba (1980)), the bias-

corrected log-periodogram for trial s and frequency νℓ = ℓ
T , ℓ = 0, . . . , T − 1 is defined

by

Y s
ℓ = log

1

T

∣∣∣∣∣

T∑

t=1

Xs
t exp(−i2πνℓt)

∣∣∣∣∣

2

+ γ , s = 1, . . . S, (2.1)

where γ = 0.57721 is the Euler-Mascheroni constant. We restrict ourselves to dyadic

sample sizes T = 2J to avoid any complications in the subsequent wavelet estimation.

We write the mixed effects model for the (bias-corrected) log-periodogram as follows:

Y s
ℓ = hs(νℓ) + ǫsℓ , νℓ =

ℓ

T
, ℓ = 0, . . . , T − 1 = 2J − 1 , s = 1, . . . , S , (2.2)

= h(νℓ) + zs(νℓ) + ǫsℓ , (2.3)

where the elements of the model are as follows:

(i.) h(νℓ) is the unknown stimulus-specific (or population) log-spectrum (fixed effect),

(ii.) hs(νℓ) is the trial-specific (or subject-specific) log-spectrum;

(iii.) zs(νℓ) is the deviation (random effect) of trial s log-spectrum from the over-all

log-spectrum h(νℓ) which models variation between trials with E [zs(νℓ)] = 0 for

all s and ν, and with V (νℓ) := Var [zs(νℓ)] the variance at frequency νℓ common

to the S random subjects; and

(iv.) εsℓ ∼ logχ2
2 approximately iid over ℓ = 1, . . . , T/2 − 1 and s with E [εsℓ ] = 0 and

with Var [εsℓ ] = σ2
ε = π2

6 according to the aforementioned Wahba approximation,

see also, e.g., Gao (1997), section 2.2.
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The estimation of the log-spectrum is achieved by smoothing the log-periodogram

on [0, 1] (note that, due to the symmetry of the spectrum about ν = 0.5, x-axes of the

plots in the sequel are restricted to [0.5, 1] ). This crucial and difficult issue requires

spatially adaptive smoothing methods since the study of real data processes often

reveals the presence of very localized frequency bands, i.e. the presence of peaks in

the spectrum. Wavelet methods are known to be competitive in this context (see Gao

(1997) or Moulin (1994)).

2.2 Basic ideas on wavelet tree-structured estimation and

RDP’s

Let ϕ and ψ respectively denote a set of compactly supported scaling and wavelet func-

tions defined on [0, 1] such that the collection
{
ϕj0,k, k = 0, . . . , 2j0 − 1;ψj,k, j ≥ j0,

k = 0, . . . , 2j − 1
}

of their translated and dilated versions, ϕj,k(ν) = 2j/2ϕ
(
2jν − k

)

and ψj,k(ν) = 2j/2ψ
(
2jν − k

)
, generates an orthonormal basis of (L2 [0, 1] , 〈., .〉),

the space of square integrable functions on [0, 1] endowed with the inner product

〈h, g〉 =
∫ 1
0 h (ν) g (ν) dν. We consider periodized wavelet bases on [0, 1], for details, we

refer the interested reader to Mallat (1998).

The log-periodogram of the subject s has the following multiscale representation in

the wavelet basis :

Y s (ν) =
2j0−1∑

k=0

ĉsj0,kϕj0,k (ν) +
J−1∑

j=j0

2j−1∑

k=0

d̂s
j,kψj,k (ν) , ν ∈ [0, 1] , (2.4)

=
2J−1∑

k=0

ĉsJ,kϕJ,k (ν) , (2.5)

where ĉsj,k = 〈Y s, ϕj,k〉 and d̂s
j,k = 〈Y s, ψj,k〉 are the empirical scaling and wavelet

coefficients, respectively. We denote the “true” coefficients of the target function hs

by csj,k = 〈hs, ϕj,k〉 and ds
j,k = 〈hs, ψj,k〉, respectively. Analogously, all the quantities

without superindex s are used to denote the empirical and true coefficients of the

population log-spectrum h.

The set of translated scaling functions on scale j, {ϕj,k}k, constitute a linear ap-

proximation space Vj ⊂ L2 [0, 1]. As usual for (periodic) spectrum estimation problems,
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we consider the wavelet expansion (2.4) where j0 = 0, in order to fix the primary ap-

proximation scale to be the coarsest possible, with only one scaling coefficient which

represents the ”mean” of the signal over the whole interval [0, 1]. An estimate of hs

which has been shown (e.g. by Donoho (1994)) to have very good denoising properties,

is obtained by shrinking to zero the wavelet coefficients d̂s
j,k in the equation (2.4) with

magnitudes below a threshold value λ. We denote the unstructured set of wavelet

coefficients of this nonlinear estimator by INL =
{

(j, k)
∣∣∣
∣∣∣d̂j,k

∣∣∣ > λ
}

. The ’classical’

wavelet-based estimation of log-spectra, due to Gao (1997), considers scale-dependent

threshold values λj , based on large deviation properties of the distribution of the

wavelet coefficients. These threshold values are generally too high. They ensure a nice

removal of the noise but the estimation of the localized structure in the underlying

curve is suboptimal (see, e.g., Jansen (2001), page 39). It would be more convenient to

rather minimize the mean squared error but, in this case, nonlinear estimation is not

robust enough in particular when the distribution of the noise is skewed. The estimate

often shows unappealing visual artifacts (spurious bumps) due to large wavelet coeffi-

cients at fine resolution scales generated from the random noise (”false positives”). Lee

(2002) showed the ability of tree-structured wavelets to improve the quality of estima-

tion although, to the best of our knowledge, no application to the specific problem of

spectrum estimation has been yet developed in the literature.

Tree-structured wavelets are based on the hierarchical interpretation of the wavelet

expansion (2.4). The wavelets functions {ψj,k}j,k are arranged over a nested multi-

scale structure such that the support of each ψj,k contains the supports of ψj+1,2k and

ψj+1,2k+1. This induces a hierarchy among the wavelet coefficients which can be rep-

resented over a dyadic tree structure rooted to d̂0,0 (see Figure 7.1 in the appendix),

with the practical implication that at the location of a singularity in the log-spectrum

we observe the persistence of large wavelet coefficients over all scales. This can be used

as additional information to the coefficient magnitudes in order to outperform classical

nonlinear thresholding methods (see Baraniuk (1999)). The idea is to require that the

set of non zero wavelet coefficients after thresholding form a connected rooted subtree,
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this structured set of wavelet coefficients is denoted by IT (see the Figures 7.2 and

7.3 to compare with INL). In other words, if we say that d̂j,k is the parent of its two

children d̂j+1,2k and d̂j+1,2k+1, the hereditary constraint means that we cannot include

in our estimator a large coefficient unless all its parents are large. More specifically, in

this paper we use a variant of a tree-structured algorithm developed by Engel (1994)

(for the description of the algorithm we defer to the appendix 7.2). The choice of the

appropriate, and ideally data-driven, thresholds λT which lead to ”optimal” sets IT is

still a matter of ongoing research.

Any kind of orthogonal wavelets can be used for tree-structured estimation but

the Haar wavelets (the boxcar function ϕ (ν) = 11[0,1) (ν) and wavelet ψ (ν) = 11[0,1/2) −

11[1/2,1) (ν)) are particularly well-suited. They are naturally associated to dyadic trees

since the support of the Haar functions correspond to the dyadic intervals
[
k2−j , (k + 1)2−j

]
.

I.e., any representation with respect to Haar Tree-Structured Wavelets (HTSW) gives

rise to a Dyadic Partition (DP) of [0, 1]. Moreover, due to the abovementioned hier-

archy of TSW, the collection of all possible HTSW representations is equivalent to a

Complete Recursive Dyadic Partitioning (C-RDP) scheme on the unit interval. Thanks

to this property, a HTSW estimator can be written as a unique weighted sum of boxcar

functions. By slight abuse of notation, we will equivalently denote by IT either the

set of wavelets or the set of scaling coefficients in the equivalent representations (cf.

equations (2.4, 2.5):

ĥs = ĉs0,0ϕ0,0 +
∑

I∈IT

d̂s
IψI =

∑

I∈IT

ĉsIϕI ,

where I := (j, k) and where the collection of the supports of the scaling functions

{ϕI | I ∈ IT } form a DP of [0, 1].

We call this representation semilinear since on each of the elements of a DP it can

be viewed as a projection of the log-periodogram on a linear approximation space. As

the adaptively chosen DP will generally not be composed of homogeneous segments (of

equal length), the overall representation is nonlinear and akin the result of a specific

kernel estimator using a local smoothing parameter (Haerdle et al. (1998)). It provides
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spatially adaptive estimators which share a one-to-one relation between the data and

the coefficient domain; a useful property to construct models over the trial specific

log-spectra. Unfortunately, this property does not hold with any other orthogonal

wavelet, due to their overlapping supports (Mallat (1998)). However, we shall add a

powerful post-processing step to our HSTW estimation to remedy the effect of using

blocky boxcar functions without losing the attractive property of semilinearity (see

Section 3.4).

3 Proposed method

In our multiple curves setting, defined by the equation (2.3), our goal is foremost

to estimate the specific curves hs, conditionally on the zs, i.e E [hs |zs ], the average-

curve h and the deviation from h. A naive ’model-free’ approach consists in estimating

independently each spectrum hs, s = 1, . . . S, (using the HTSW) and then in computing

at each frequency the mean and the empirical variance over all S curves to estimate h

and V . It can be seen by the top plot of Figure 3.1 that it yields quite unsatisfactory

estimation of V . We claim that a ’model-based’ approach, as described further down,

will improve the estimation (as in the bottom plot of the same figure), and moreover will

allow us to achieve our ultimate goal of prediction, that is the derivation of prediction

intervals for each of the hs.

Figure 3.1: Estimation of the variance function V
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3.1 Basic ingredients of our method

The HTSW estimator of each subject-specific spectrum can be represented as 0-1 dyadic

tree (of zero/nonzero wavelet coefficients) associated to a partition. These trees (par-

titions) give an insight about the smoothness properties of the log-spectra since lo-

calized structures imply the existence of nonzero wavelet coefficients at fine scales.

We use these 0-1 trees to improve the estimation of each subject-specific log-spectra

hs, s = 1, . . . , S considering information from the S replicates, to construct a predictive

model and particularly to apply the below-mentioned complexity constraint.

In Functional Data Analysis (FDA) the basic unit is a curve, thus, for the coherency

of the interpretation it seems natural to require that the population and the subject

specific curves share the same smoothness properties. Therefore, it was suggested to

model both the random and the fixed effect by a unified approach (see Guo (2002)). It

is often of interest to model FD to be curves belonging to a certain functional space in

order to reduce their complexity by a development in an adapted and possibly sparse

orthonormal basis (see again Guo (2002), or Antoniadis and Sapatinas (2007) who

model both random and fixed effect curves to belong to the same functional space).

Driven by the same idea, we restrict our complexity by using a simpler approach

based on sets of basis functions for modelling both effects. Since neither the fixed

nor the random effects are directly observable, we proceed first to the estimation of

the subject-specific spectra. Then we use this estimation to model the smoothness

properties of hs. We even consider the S subject-specific log-spectra estimators ĥs to

be represented by the same partition which we call Î1, to be specified by equation (3.3).

In other words, we search for an optimal set of boxcar functions {ϕI}I∈Î1
to model all

the hs simultaneously. Subsequently, h is modelled using the same set Î1 to ensure that

h has the same smoothness properties as the hs which is our complexity constraint.

Notice that at this step, we do not estimate separately the partitions for representing h

and zs. We just know that those are subsets of Î1 and that, thanks to using semilinear

representations in our approach, Î1 is somehow given by the union of the unmodelled
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tree representations of h and zs.

Estimation of the variance components of the random effect is a difficult task (see

also the top plot of Figure 3.1), as is nonparametric variance estimation in general.

However we will benefit from a more accurate procedure which will be developed below.

Similarly to the first step, this second estimation step will determine a common set of

boxcar functions {ϕI}I∈ÎV
for representing the zs, s = 1, . . . , S. In addition, due to

our complexity constraint, ÎV ⊆ Î1, therefore, using the equivalent tree representation,

ÎV is a connected rooted subtree of Î1. As a result, we suggest to estimate the random

effect via

ẑs (ν) =
∑

I∈ÎV

ĉsIϕI (ν) , s = 1, . . . , S. (3.1)

This model is characterized by a one-to-one relation between scaling coefficients ĉsI , I ∈

ÎV and values of ẑs (ν) in the frequency domain: only one coefficient in the representa-

tion (3.1) is non zero for each ν ∈ [0, 1] due to the semilinearity. Similarly, the variance

function V (ν) is modelled to be piecewise constant with values VI estimated by the

empirical variance of {ĉsI , s = 1, . . . , S} over each block I of ÎV

The following section describes a simple approach to select these optimal sets of

boxcar functions Î1, ÎV .

3.2 Algorithm description

3.2.1 First step: estimation of h and E(hs|zs)

From Y s we compute the HTSW estimators ĥs of E [hs |zs ] for each subject s =

1, . . . , S, since conditionally on the random effect, an estimator for hs is given by

ĥs (ν) = ĉs0,0ϕ0,0 (ν) +
∑

I∈Îs

d̂s
IψI (ν) , s = 1, . . . , S. (3.2)

Here Îs is the connected set of non zero wavelet coefficients to estimate the subject-

specific log-spectra hs, following the HTSW approach described in the previous section

(i.e. with a specific set IT for each specific s). The features common to hs, s = 1, . . . , S,

are approximately represented by the same sets of nonzero coefficients. Our investi-

gations to provide a common partition Î1 to represent them simultaneously suggest to
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compute a trimmed union of the 0-1 trees defined by Îs:

Î1 = Trimmed
(
∪Îs

)
, (3.3)

where Trimmed (.) means that we discard the indices (j, k) from the set Î1 if

1

S

S∑

s=1

11{d̂s
j,k

6=0} < β,

that is if their empirical frequency is below a small value β. Once we get this, we

project again each log-periodogram Y s onto Î1 which give coefficients ĉsI , I ∈ Î1. Note

that if we take either the union or the intersection of rooted connected trees, the result

is always a rooted connected tree, therefore, using the HTSW, the resulting estimator

has a semilinear representation in terms of boxcar functions ϕI (ν) with coefficients ĉsI :

ˆ̂
hs (ν) = ĉs0,0ϕ0,0 (ν) +

∑

I∈Î1

d̂s
IψI (ν) =

∑

I∈Î1

ĉsIϕI (ν) , s = 1, . . . , S.

Finally we compute the common log-spectrum estimator by averaging the trial specific

log-spectra at the frequency ν:

ĥ (ν) =
1

S

S∑

s=1

ˆ̂
hs (ν) .

The Figures 7.4, 7.5, 7.6 motivate the construction of a trimmed union. In fact, if

we form the common partition Î1 just by the union of the sets Îs, i.e., if β = 0, we

improve the estimation of the localized structure but the impact of false positives, i.e., of

erroneously active coefficients due to noise, is somehow amplified. These false positives

are rare events, i.e., the concerned wavelet coefficients do not appear very frequently in

the S trees. Thus, we classically choose β = 5% to compute the trimmed union. This

yields the nicely estimated population spectrum as it can be seen in Figure 7.6.

3.2.2 Estimation of the between subject variance function V

We recall that V (ν) = Var [zs (ν)]. We first choose to smooth the random effect zs by

smoothing the residuals R̂s = Y s−ĥ = zs+ε′s, where ε′s =
(
h− ĥ

)
+εs. Conditionally

on zs, i.e., treating the random effect as a conditionally fixed effect, this is a problem
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similar to the one encountered for the estimation of hs. Consequently, we use the same

methodology as described in the section 3.2.1, i.e., the zs are estimated over a common

partition denoted as Î2 (using hence the information from the S subjects). To ensure

that the complexity constraint ÎV ⊆ Î1 is satisfied, we compute ÎV as the intersection

ÎV = Î2 ∩ Î1.

Then, we project each log-periodogram Y s on ÎV , defining ĉsI , I ∈ ÎV . Using

HTSW, all the estimators of zs have a semilinear representation (see equation (3.1)).

Finally, we compute the empirical variance of the scaling coefficients at a block I over

the S trials:

̂Var
(
ĉsI
)

=
1

S − 1

S∑

s=1

(ĉsI − c̄I
s)2 , (3.4)

where c̄sI = 1
S

∑S
s=1 ĉ

s
I . We remark that even if we were to know the true partition

IV of zs, (3.4) is only an asymptotically unbiased estimator of VI (which we show in

appendix 7.4). Therefore, we prefer to correct for the finite-sample bias and ensure

positivity of the resulting estimator as follows:

V̂ (ν) =
∑

I∈ÎV

max

(
0, ̂Var

(
ĉsI
)
− σ̂2

ε

|I|

)
ϕI (ν) . (3.5)

Estimation of σ
2
ε Accurate estimation of σ2

ε is important in view of the bias cor-

rection of equation (3.5) and in order to construct confidence intervals of our predictors

(cf equations (3.14, 3.17)). Following a standard approach (see, e.g., Vidakovic (1999))

we estimate σε by computing the Median Absolute Deviation (MAD) over the thresh-

olded wavelets coefficients at the finest wavelet scale J − 1 since they are supposed to

carry virtually only noise:

σ̂ε = 1.4826 Median
(∣∣∣d̂J−1 − Median

(
d̂J−1

)∣∣∣
)
, (3.6)

where d̂J−1 =
{
d̂J−1,k

∣∣∣(J − 1, k) /∈ Î1; k = 0, . . . , 2J−1 − 1
}

.

3.3 Prediction

Here, we build a predictive model in the Haar coefficient domain to construct pointwise

confidence intervals of level α in the frequency domain. We denote as Q1 and QV
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the cardinality of the sets Î1 and ÎV . The estimators ĥs can be represented in the

coefficient domain by a vector of non zero scaling coefficients ĉs of length Q1. Due to

the sparsity of the wavelet representation, Q1 is generally very small compared to T .

Using the semi-linear representation, we can write the mixed models equation (2.3) in

the coefficient domain as follows:

ĉs = cs + es, (3.7)

= c+ Φ1u
s + es, (3.8)

where cs and c are the vectors of length Q1 of true scaling coefficients obtained by

the projection of hs and h on the set of orthonormal basis functions
{
ϕI

∣∣∣I ∈ Î1

}
.

us is a vector a random coefficients of length QV obtained by the projection of zs on
{
ϕI

∣∣∣I ∈ ÎV

}
. The variance-covariance matrix of us is Var [us] = Vu = diag

(
VI , I ∈ ÎV

)
,

with VI introduced at the end of the section 3.1. Looking at the equation (7.1) it

is reasonable to assume that, conditionally on zs, ĉsj,k ∼ N
(
csj,k,

σ2
ε

2(J−j)

)
for j suffi-

ciently small. Therefore, we write that es follows the multivariate normal distribution

NQ1 (0, Ve), where Var [es] = Ve = diag
({

σ2
ε

|I| , I ∈ Î1

})
. Finally, Φ1 is a matrix of di-

mension (Q1 ×QV ), which expands us from ÎV to Î1, i.e., it makes the correspondence

between one element of the vector ûs and at least one element of the vector cs (since

ÎV ⊆ Î1).

We first denote by rs the vector of non zero scaling coefficients of the subject-specific

(theoretical or unobserved) residuals Rs = Y s − h in the basis Î1 and by r̃s and ũs,

the Best Linear Unbiased Predictors (BLUPs) of rs and Φ1u
s (Caroll et al. (2003)).

These BLUPs are used to model the variance of the trial-specific spectra and of the

population spectrum in the sequel. We first compute the BLUPs from the joint normal

distribution of (rs,Φ1u
s):

(
Φ1u

s

rs

)
∼ N

[ (
0
0

)
,

(
Φ1VuΦ′

1 Φ1VuΦ′
1

Φ1VuΦ′
1 Φ1VuΦ′

1 + Ve

) ]
. (3.9)

We can compute the vector predictors ũs and r̃s as follows:

E [Φ1u
s |rs ] = ũs = Φ1VuΦ′

1

[
Φ1VuΦ′

1 + Ve

]−1
rs = Brs. (3.10)
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E [rs |Φ1u
s ] = r̃s = Φ1VuΦ′

1

[
Φ1VuΦ′

1

]−1
Φ1u

s = Φ1u
s. (3.11)

From the observation that the residuals in the coefficient domain rs = ĉs − c could

be predicted by: r̃s = ĉs − c̃, we can write c̃s in terms of observable and predicted

quantities:

c̃s = ĉs − r̃s + ũs. (3.12)

Pointwise confidence intervals for subject specific spectra We compute

the variance of c̃s from the conditional joint distribution of the best linear unbiased

predictors, (ũs, r̃s) |us , see the appendix section 7.5:

Vcs = Var [c̃s |us ] = Ve +BVeB
′ + 2BVe, (3.13)

where B = Φ1VuΦ′
1 [Φ1VuΦ′

1 + Ve]
−1. Once we get the expression of its variance, func-

tion of Ve and Vu, we plug-in empirical estimates V̂e and V̂u. Let V̂cs = V̂e + B̂V̂eB̂
′ +

2B̂V̂e, B̂ = Φ1V̂uΦ′
1

[
Φ1V̂uΦ′

1 + V̂e

]−1
, and V̂e = diag

({
σ̂2

ε

|I| , I ∈ Î1

})
. Pointwise confi-

dence intervals of level α for hs are given by plug-in empirical estimates for the variance.

Since each block of frequency is modelled independently, we just take the diagonal of

the matrix V̂cs .

CIhs,α (νl) = ĥ (νl) ± Φ2

(
z1−α/2

√
diag

(
V̂cs

))
(νl) , νl =

l

T
, l = 0, . . . , T − 1, (3.14)

where Φ2 is a matrix of dimension (T ×Q1) the columns of which are scaling vectors

corresponding to Î1, i.e., it makes the correspondence between the coefficient and the

frequency domain.

Pointwise confidence interval for the population spectrum We compute

the variance of c̃ from the unconditional joint distribution of the predictors (ũs, r̃s),

see the appendix section 7.6:

Vc = Var [c̃] =
1

S
Var [c̃s] , (3.15)

=
1

S

[
Ve +BVeB

′ + 2BVe +BΦ1VuΦ′
1B

′
]
. (3.16)

16



Plugging in the empirical estimates of Ve and Vu yields V̂c and the following confidence

intervals:

CIh,α (νl) = ĥ (νl) ± Φ2

(
z1−α/2

√
diag

(
V̂c

))
(νl) , νl =

l

T
, l = 0, . . . , T − 1. (3.17)

3.4 Postprocessing of the estimators

This methodology based on the HTSW yields blocky estimates and is neither visually

appealing nor of small mean-squared error when estimating smooth functions. Donoho

(1993) proposed an adapted methodology for smoothing out a piecewise constant fit

subordinate to an RDP. It consists in finding a polynomial that matches the local aver-

ages given by our blocky estimator. Donoho (1993) proved that average-interpolation

converges to a continuum limit and has some appealing estimation properties over

classical Haar estimation. The average interpolation algorithm consists in two steps at

each resolution scale j:

1. (average interpolation): at the location k, find a polynomial πj,k of even degree

D = 2L of each interval Ij,k which generates the same averages in the neighbor-

hood (ĉj,k′ , k′ = k − L, . . . , k + L):

Avej,k′πj,k = ĉj,k′ , −L ≤ h ≤ L,

2. (average imputation): define the mock averages at the next finer scale as averages

of the AI polynomial. On the two halfes of the interval we get:

c̈ (j + 1, 2k + h) = Avej+1,2k+hπj,k, h = 0, 1.

In order to deal with spatially inhomogeneous partition, for example Î1, the average

interpolation algorithm is used as follows:

From coarse scale to fine scale:

• for j = j1, . . . , J do,

– predict the local average at the scale j + 1 by c̈j+1,2k,

– if ĉj+1,2k /∈ Î1 then replace by c̈j+1,2k endif.

• enddo

where the coarsest scale j1 is such that 2L+ 1 < 2j1 .
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4 Simulations

In this section we assess the finite sample performances of our methodology. We first

present the way we generate our data because it is important that we actually generate

the time series directly rather than the log-spectra. One approach consists in using

the discretized Cramer’s representation (Brockwell and Davis (1991)):

Xs
t =

1√
2M

M∑

l=−(M−1)

U s(νl) exp(i2πνlt)ξ
s
l , t = 1, . . . , T,

where ξs
l is a complex valued random variable whose real and imaginary parts are

independent and such that ξℓ = ξ∗−ℓ, where ∗ denote the complex conjugate. U s is the

trial-specific transfer function:

U s(ν) = U(ν)
√

exp[zs(ν)],

where U(ν) is the transfer function of an ARMA(p, q) process with AR parameters

(φ1, . . . , φp) and MA parameters (θ1, . . . , θq) and such that U(ν) = U∗(−ν). A handy

result is to express U (ν) as follows:

U(ν) =
1 + θ1 exp(−i2πν) + . . .+ θq exp(−i2πqν)
1 − φ1 exp(−i2πν) − . . .− φp exp(−i2πpν) .

zs(ν) is a ”subject-specific random effect” which we shall express as a finite linear

combination of boxcar functions:

zs(ν) =
∑

I∈IV

us
IϕI(ν), (4.1)

where the coefficients {us
I}I∈IV

∼ N (0, D) and D is a diagonal covariance matrix:

D = diag ({VI |I ∈ IV }). The subject-specific log-spectrum is defined to be:

hs(ν) = log |U s(ν)|2, (4.2)

= h(ν) + zs(ν). (4.3)

For the simulation study, we will consider the two following spectra:

• an AR(1) with parameter: φ1 = 0.5,

18



• an ARMA(2,2) with parameters: φ1 = −0.2, φ2 = −0.9, θ1 = 0, θ2 = 1. The log-

spectrum of this ARMA(2,2) is known to have local features particularly difficult

to estimate (Fryzlewicz et al. (2008)).

We define two random effect functions (see equation (4.1):

• rand1 : few large blocks which have all the same dyadic lengths {ϕI |I ∈ IV } =

{[(j − 1)/8, j/8) |j = 1, . . . , 8}

and D = diag (0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8),

• rand2 : blocks which have not all dyadic lengths

{ϕI |I ∈ IV } = {[1, 1/16) , [1/16, 3/16) , [3/16, 7/16) , [7/16, 9/16 − ι) , [9/16 − ι, 1)}

and D = diag (0.2, 0.3, 0.5, 0.6, 0.8), where ι is chosen such that the split occurs

at a non dyadic point.

In the Figure 4.1 we can see examples of computed log-periodograms from the

generated time series following this methodology. Despite its apparent simplicity such

data generating process yields sufficiently complex time series (or log-spectra) to mimic

some real data sets.

Figure 4.1: True spectra and associated log-periodograms (left: AR(1) spectrum; right:
ARMA(2,2) spectrum )
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For the simulation study we generate time series of length T = 512 observed on

S = 20 different subjects. The level β of the trimmed union is set to 5% for both

the estimation of Î1 and of Î2 (see section 3.2.1, 3.2.2). We compute the ISE of an

estimator, for e.g., ĥ, on the interval [0, 1], for the Monte Carlo replicationm as follows :

ISE(m)

(
ĥ
)

=
1

T

T−1∑

l=0

(
ĥ(m) (νl) − h (νl)

)2
, (4.4)

where the number of Monte Carlo replications is m = 1, . . . ,M = 100 and the MISE

of ĥ is just: MISE
(
ĥ
)

= 1
M

∑M
m=1 ISE(m)

(
ĥ
)
.

4.1 Estimation of h and E(hs|zs)

We use the random effect function rand1 to generate the time series. A paired Stu-

dent’s t-test is used to compare the MISE of our methodology to a model free approach

(as described in the first paragraph of section 3). The estimation is done using HTSW

without average interpolation refinement. For the ARMA(2,2), we observe on an empir-

ical significance level below p = 0.0001 that MISE
(
ĥ
)

and MISE
(
ĥs
)

are respectively

about 43% and 55% lower with our method compared to the model free. For the AR(1),

having a smooth spectrum, our method still significantly performs better for the esti-

mation of the hs (32% lower MISE, p < 0.0001), but there is no significant difference

in the estimation of h. This experiment shows that our methodology provides good

estimations of h and hs, and, in particular, it succeeds in using the information from

all the subjects to improve the estimation of the hs, s = 1, . . . , S.

4.2 Variance function estimation

In order to explore the capabilities of our method for estimating the variance function,

we use the random effect rand1. It allows us to easily set an estimation of the variance

function over the true partition IV , i.e., we discard the model-bias from our estimations.

This yields an objective to attain in terms of ISE for our estimations performed over

the partitions Î1, Î2 and ÎV .

We compute the ISE for the variance function estimation similarly as we did for

the population spectrum (see equation (4.4)). Boxplot representation of the results
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can be seen in the Figure 4.2. The left plot of the Figure 4.2 presents the results

for the ARMA(2,2) spectrum. In this case, the partition to represent h is quite more

complex than the one to represent zs, in other words, it is mainly h which requires the

finest elements of the partition Î1. Therefore, our two steps methodology will adapt

to the lower complexity of the random effect and provides more accurate estimation of

the variance components of the random effect on a coarse partition ÎV ⊂ Î1. On the

opposite, for the AR spectrum (in the right plot of the same figure), we do not observe

any improvements in the estimation over the partitions ÎV compared to Î1 because the

complexity of the random effect dominates that of the fixed effect. Compared to the

estimation performed over the true partition IV , our method performs nearly as well.

This shows its ability to select the best set of boxcar functions to represent the random

effect.

Figure 4.2: ISE when estimating the variance function over different partitions (left: ARMA
spectrum; right: AR spectrum)

4.3 Confidence intervals

Here, we present some results about the coverage of our confidence intervals of nominal

level 95% given by the equations (3.14, 3.17). Those confidence intervals yield blocky
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upper and lower bounds in the frequency domain. Therefore, we apply the average

interpolation schemes of section 3.4 with D = 2 to smooth them (Figure 4.3). Then

we compute the coverage. We consider here the more realistic random effect given by

the function rand2, the other parameters being exactly the same as previously set. For

the AR(1) model, the coverages we obtain are very satisfying since they are about 92%

and 95.2% for population and subject specific spectra, respectively. For the ARMA

model, despite the localized structure, the results are still satisfying with coverages for

the population and the subject specific spectra about 86% and 92%.

Figure 4.3: True spectrum (solide line) and 95% pointwise confidence intervals (shaded area)
(left: ARMA(2,2); right: AR(1))

5 Analysis of EEG time series

This section proposes an application of our methodology to a real data analysis prob-

lem. We will show that, even if our modelling approach was made as simple as possible,

it is able to deal with panels of complex time series such as encountered in the field of

biomedical signals.

The data set consists of electroencephalograms recorded from S = 8 participants in

a discrete hand movement experiment conducted at the laboratory of Professor Jerome

Sanes at Brown University. This group of participants was made to be as homogeneous

a possible - right handed male students in the with ages in the 18 − 30 range. The

participants were instructed to move a joystick from the center-to-right (or center-to-

left) when they saw a cursor flash on the right (or left) side of the screen. The ultimate
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goal of the experiment was to use single trials time series to classify hand movements.

The EEG was recorded over 64 channels and for our purposes we will study only the

recording at the C3 channel which roughly corresponds to the motor cortex. Each

time series has length T = 256 and was collected over a period of 1 second (500

milliseconds prior to cursor flash until 500 milliseconds post stimulus presentation).

The EEG signals were sampled at 200 Hertz. The 10-point low pass Butterworth filter

was applied with a stop-frequency set to 40 Hertz.

Here, we shall (i.) estimate the common group log-spectrum corresponding to the

left stimulus and (ii.) estimate the between-participant variation in the log-spectrum.

The EEG and the corresponding bias-corrected raw log periodograms for Subjects 1,2,3

are shown in Figure 5.1. The estimate of the population log-spectrum in the top-left

plot of the Figure 5.2 suggests some broad-band activity in the low beta range of 12-15

Hertz which is known to be involved in most cognitive tasks. The estimate of the

between-participant variation is plotted in the top-right plot of the Figure 5.2 which

suggests that variation remains approximately constant and stable across frequency.

The Figure 5.2 establishes the nice results of our Haar-based methodology using the

average interpolation refinement compared to a model free approach using smooth

Daubechies (with four vanishing moments, see (Mallat (1998))) within tree-structured

wavelet estimation. In addition, the second step of our methodology to reduce the

complexity of Î1 for estimating the variance function was helpful to provide an accurate

estimation of V . In fact, the number of blocks in ÎV is nearly five times smaller than

the number of blocks in Î1.
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Figure 5.1: EEG Time Series and Log Periodograms for Subjects 1,2,3.

Figure 5.2: Estimation of Population log-spectrum and variance function (top: model-based;
bottom: model free).
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6 Conclusion and future directions

6.1 Conclusion

In this paper we have delivered a methodology to estimate non-parametrically, in the

context of replicated stationary time series, their spectrum and the subject specific

deviation from this (”population”) spectrum. As we have embedded our approach into

the appropriate framework of mixed effects modelling, we have been facing the problem

of rigorously treating the random effect: using a specific curve estimation model based

on the methodology of Tree Structured Wavelets, we come up with reliable estimators

of the random effects variance. This is the key ingredient which allows us to also

construct non-parametric (pointwise) predictors and reliable confidence intervals for

the subject specific spectra as well as for the overall spectrum.

More specifically, instead of using a suboptimal (i.e. too variable) model-free ap-

proach of pointwise empirical variance estimation, we take advantage of a data-driven

approach to restrict the complexity of the mixed effects to be common to both curves

(fixed and, conditionally, random): using, in the first place comparatively simple box-

car functions in the tree-structured wavelet representation of our denoised curves, we

can reliably estimate the variance of the random effect on the segments of an ”optimal”

complete dyadic partition of the frequency domain. In fact, this optimal representa-

tion is determined solely from the data by a residual-based (conditional) smoothing

of the random effect curves subject to the aforementioned complexity constraint. The

subsequent simplicity of empirical variance estimation on this segmentation avoids

needing to directly smooth squared data (known to be a harder non-parametric es-

timation problem). To finally overcome the blockiness of our estimates, we use the

technique of average-interpolation which allows us to preserve our complexity reduced

representations and all the mentioned advantages that come along with this. Hence

we observe connections between our methodology of identifying blocks of frequencies

chosen adaptively to the observed log-periodograms and MANOVA.

We considered the specific HAAR TSW methodology (plus post-smoothing by
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average-interpolation) to benefit from the advantages and the simplicity of semilin-

ear representations, particularly for the construction of confidence intervals. However,

should one be only interested in estimating the trial-specific and common spectra, us-

ing more general TSW estimators based on orthogonal wavelets smoother than Haar

(e.g. from the general Daubechies families of compactly supported wavelets), will prove

useful as an improved peak-preserving denoising technique in its own right.

6.2 Future research

6.2.1 Time-varying spectra

When analyzing real time series data, the second order stationarity assumption is gen-

erally too strong. It is preferable to weaken this assumption and to only require that

the process be locally stationary (Dahlhaus (1997)), i.e. that the variance-covariance

structure of the process changes slowly over time. Consequently, the frequency anal-

ysis of those processes relies on the study of time-varying spectra. A quite appealing

estimator for those curves depending now both on frequency and on time is the pre-

periodogram, see Neumann and von Sachs (1997). The pre-periodgram is akin a very

localized periodogram - it is defined as the Fourier transform of an empirical autoco-

variance estimator which depends only on one localized pair of lagged observations in

time. Hence, this estimator has an extremely high variance, and adaptively smoothing

it simultaneously over time and frequency is a very challenging task (fully non-linear

wavelet thresholding, though theoretically appealing, proved to fail in finite sample

situations). We expect that the methodology presented here will become very efficient

in this context because it is supposed to improve on denoising in the context of highly

irregular noise structure superposed onto localized signal structured (”simultaneous

control of false positives and false negatives”).

6.2.2 Increasing the order of approximation accuracy within estima-

tion schemes preserving the RDP property

This work is highly motivated by the advantages of estimation subordinate to an RDP.

The key to realize this objective, in this paper, has been to start from HTSW and to
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overcome the blockiness of the reconstruction by an average-interpolation step which

preserves the RDP property. However, this approach does not benefit from higher

order approximation properties for functions which have higher regularity. To overcome

this limitation, in future research we intend to borrow strength from the construction

in Donoho et al. (2000). This approach follows the same paradigm as ours, now by

application of a refinement scheme which generalizes average interpolation away from

originally blocky reconstructions. This allows to get smooth estimators with faster rates

of ”approximation” for smoother functions (and hence an even sparser representation

of an inhomogeneous function in regions without any localized signal structure).
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7 Appendix

7.1 Tree representation of wavelet estimators

The Figure 7.1 represents the wavelets coefficients in equation (2.4) with j0 = 0 and

J = 3. The two other figures represent the unstructured and structured set of nonzero

wavelet coefficients after nonlinear and tree-structured thresholding, respectively.

ĉ0,0

d̂0,0

d̂1,0 d̂1,1

d̂2,0 d̂2,1 d̂2,2 d̂2,3

Figure 7.1: Wavelet coefficient tree (T )

ĉ0,0

d̂0,0

d̂1,0 d̂1,1

d̂2,1

Figure 7.2: Tree-structured estimation (IT )

ĉ0,0

d̂0,0

d̂1,1

d̂2,1

Figure 7.3: Nonlinear estimation (INL)

7.2 Tree-structured algorithm

In the literature there exists plenty of thresholding methods. It is well-known that the

most powerful ones reduce the number of false negatives and false positives using the
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information among several wavelet coefficients rather than considering each coefficient

independently. The algorithm considered in this paper (see Engel (1994)) takes into

account the magnitude of a hierarchically structured subset of wavelet coefficients when

comparing with a given threshold λ. This procedure always ensures that at each step

of the algorithm the non-zero wavelet coefficients satisfies the hereditary constraint.

Although the theoretical performances of this algorithm has been not yet studied,

there exists results about the optimality of several methods which forebode its perfor-

mances. Cohen et al. (2001) proved that tree-structured wavelet schemes have nearly

the same approximation power as nonlinear schemes. From a maxiset point of view,

Autin (2008) showed that the estimation using tree-structured wavelets outperformed

nonlinear methods (by the reduction of false negatives). Concerning the optimality of

thresholding methods which use information among neighbored coefficients, we refer

the interested reader to Cai (1999) or Autin (2008).

We denote T the complete wavelet coefficient tree with J − 1 scales, by C (j, k) the set

of all children of the coefficient located at (j, k) and itself, i.e.,

C (j, k) = T ∩ {(j, k) , (j + 1, 2k) , (j + 1, 2k + 1) , . . . ,

(
J − 1, 2J−1−jk

)
,
(
j + J − 1, 2J−j−1k + 1

)
, . . . ,

(
J − 1, 2J−jk − 1

)}
,

and by |C (j, k)| the cardinality of the C (j, k). The tree-structured thresholding algo-

rithm can be written as follows:

• for j = (J − 1), . . . , 0 do,

– for k = 0, . . . , 2j − 1 do,

∗ if
∑

(µ,κ)∈C(j,k) d̂
2
µ,κ ≤ |C (j, k)|λ,

∗ then prune the tree T , i.e, set T = T \C (j, k) endif,

– enddo,

• enddo.

7.3 Estimation over a trimmed union

The following figures show the estimation of the hs, s = 1, . . . , S over different sets of

wavelet coefficients and of the population log-spectrum, computed as an average over

each frequency of the previously estimated hs.
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Figure 7.4: Estimation
over Î

s.
Figure 7.5: Estimation
over ∪Î

s.

Figure 7.6: Estimation

over Trimmed
(
∪Î

s
)
.

7.4 Finite sample bias correction of the variance estima-

tor

For the following calculations, we consider that the random effect is a finite linear

combination of boxcar functions ({ϕI , I ∈ IV }). We limit our investigations to study

the behavior of the variance estimator over one block I of IV , where we ignore the

potential model-bias as the partition IV is not observable in practice. First recall that

an estimate of the scaling coefficients is given by:

ĉsI = 〈Y s, ϕI〉 ,

=
1

|I|
∑

l∈I

Y s
l ϕI (νl) . (7.1)

Since, in our model, the subject specific deviation is modelled as piecewise constant

over blocks, see equation (4.1), Cov
(
zs
l , z

s
l′
)

= Var [zs
I ] = VI , for all l, l′ ∈ I. The

variance of ĉsI is:

Var (ĉsI) = Var

(
1

|I|
∑

l∈I

Y s
l ϕI (νl)

)
,

=
1

|I|σ
2
ε +

1

|I|2




∑

l∈I

Var (zs
l ) + 2

∑

l,l′;l<l′

Cov (zs
l , z

s
l′)



 , (7.2)

=
1

|I|σ
2
ε + VI .
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The empirical variance estimator ̂Var
(
ĉsI
)

is an unbiased estimator of Var (ĉsI), there-

fore:

E

[
̂Var
(
ĉsI
)]

=
1

|I|σ
2
ε + VI .

Finally, to unbiasedly estimate VI , we propose to use Var [ĉsI ]−
σ2

ε

|I| , where σ2
ε has to be

estimated according to the section 3.2.2.

7.5 Details for the confidence intervals for E(hs|zs)

From the joint distribution (Φ1u
s, rs) and the expression of the predictors, see equa-

tions (3.10, 3.11) we compute the joint distribution of ũs and r̃s conditionally on us:

(
ũs

r̃s |us

)
∼ N

[ (
BΦ1u

s

Φ1u
s

)
,

(
BVeB

′ 0
0 0

) ]
. (7.3)

Using the equation (3.12) we can compute Vcs := Var [c̃s |us ] as follows:

Vcs = Var [ĉs − r̃s + ũs |us ] ,

= Var [ĉs |us ]︸ ︷︷ ︸
=Ve

+ Var [r̃s |us ]︸ ︷︷ ︸
=0

+ Var [ũs |us ]︸ ︷︷ ︸
BVeB′

−2 Cov (ĉs, r̃s |us )︸ ︷︷ ︸
=0

+2 Cov (ĉs, ũs |us )︸ ︷︷ ︸
=BVe

−2 Cov (r̃s, ũs |us )︸ ︷︷ ︸
=0

,

= Ve +BVeB
′ + 2BVe. (7.4)

7.6 Details for the confidence intervals for h

We consider the unconditional joint normal distribution in the coefficient domain:

(
ũs

r̃s

)
∼ N

[ (
0
0

)
,

(
BΦ1VuΦ′

1B
′ +BVeB

′ BΦ1VuΦ′
1

BΦ1VuΦ′
1 Φ1VuΦ′

1

) ]
. (7.5)

Var [c̃] = Var [ĉs]︸ ︷︷ ︸
Φ1VuΦ′

1+Ve

+ Var [r̃s]︸ ︷︷ ︸
Φ1VuΦ′

1

+ Var [ũs]︸ ︷︷ ︸
BΦ1VuΦ′

1B′+BVeB′

−2 Cov [ĉs, r̃s]︸ ︷︷ ︸
Φ1VuΦ′

1

+2 Cov [ĉs, ũs]︸ ︷︷ ︸
BΦ1VuΦ′

1+BVe

−2 Cov [r̃s, ũs]︸ ︷︷ ︸
BΦ1VuΦ′

1

,

= Ve +BΦ1VuΦ′
1B

′ +BVeB
′ + 2BVe. (7.6)
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