
I N S T I T U T D E

S T A T I S T I Q U E
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1 Introduction

It is well known that a distribution is in the max-domain of attraction of an
extreme value distribution if and only if the distribution of excesses over high
thresholds is asymptotically generalized Pareto (GP) (Balkema and de Haan,
1974; Pickands, 1975). This result gave rise to the peaks-over-threshold meth-
odology introduced in Davison and Smith (1990); see also Coles (2001). The
method consists of two components: modelling of clusters of high-threshold
exceedances with a Poisson process and modelling of excesses associated to
the cluster peaks with a GPD. In practice, a way to verify the validity of the
model is to check whether the estimates of the GP shape parameter are stable
when the model is fitted to excesses over a range of thresholds. The question
then arises how to proceed if this threshold stability is not visible for a given
data set. From a theoretical point of view, absence of the stability property
can be explained by a slow rate of convergence in the Pickands–Balkema–de
Haan theorem. In case of heavy-tailed distributions, the same issue arises when
fitting a Pareto distribution (PD) to the relative excesses over high, positive
thresholds.

A possible solution is to build a more flexible model capable of capturing the
deviation between the true excess distribution and the asymptotic model. For
heavy-tailed distributions, this deviation can be parametrized using a power
series expansion of the tail function (Hall, 1982), or more generally via second-
order regular variation (Geluk and de Haan, 1987; Bingham et al., 1987).

The aim of this paper is to propose such an extension, called the extended
Pareto or extended generalized Pareto distribution (EPD/EGPD). A key dis-
tinction with other approaches is that although in previous papers the second-
order approximation is used for adjusting the inference of the tail index, infer-
ence on the tail itself is still based on the GPD; in contrast, in our approach
the EP(G)D is fitted directly to the high-threshold excesses. Indeed, as we will
show later, even if the (G)PD parameters are estimated in an unbiased way,
tail probability estimators may still exhibit asymptotic bias if based upon the
(G)PD approximation.

The main advantages of the new model are a reduction of the bias of estimators
of tail parameters and a good fit to excesses over a larger range of thresholds.
In an actuarial context, the relevance of using more elaborate models has
already been discussed for instance in Frigessi et al. (2002) and Cooray and
Ananda (2005).

In case of heavy-tailed distributions, it is more convenient to work with rel-
ative excesses X/u rather than absolute excesses X − u. Under the domain
of attraction condition the limit distribution of X/u given X > u for u → ∞
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is the PD. The EPD and EGPD presented here are related through the same
affine transformation that links these relative and absolute excesses. Build-
ing on the theory of generalized regular variation of second order in de Haan
and Stadtmüller (1996), it is also possible to construct an extension of the
GPD with comparable merits applicable to distributions in all max-domains
of attraction. However, parameter estimation in this more general setting is
numerically quite involved (Beirlant et al., 2002b): the model contains one
additional parameter and the upper endpoint of the distribution depends in
a complicated way on the parameters, which complicates both theory and
computations.

Bias-reduction methods have already been proposed in, amongst others, Feuer-
verger and Hall (1999), Gomes et al. (2000), Beirlant et al. (1999), Beirlant
et al. (2002a), Gomes and Martins (2002), and Gomes and Martins (2004).
These methods focus on the distribution of log-spacings of high order statistics.
Moreover, ad hoc construction methods for asymptotically unbiased estimators
of the extreme value index were introduced in Peng (1998), Drees (1996) and
Segers (2005). In contrast, next to providing bias-reduced tail index estimators,
our model can be fitted directly to the excesses over a high threshold. The
fitted model can then be used to estimate any tail-related risk measure, such
as tail probabilities, tail quantiles (or value-at-risk), etc.

In the same spirit as in this paper, a mixture model with two Pareto compo-
nents was proposed in Peng and Qi (2004). The advantage of our model is that
it also incorporates the popular GPD. From our experience, this connection
can assist in judging the quality of the GPD fit; see for instance the case study
in Example 5.3.

The paper is structured as follows. The next section provides the definition
of the E(G)PD, which is shown to yield a more accurate approximation to
the distribution of absolute and relative excesses for a wide class of heavy-
tailed distributions. Estimators of the EPD parameters are derived in Section 3
using the linearized score equations, and their asymptotic normality is formally
stated. In Section 4, we compare the asymptotic distribution and the finite-
sample behavior of the estimators of the extreme value index following from
PD, GPD and EPD modelling. To illustrate how to apply the methodology to
the estimation of general tail-related risk measures, we elaborate in Section 5
on tail probability estimation with theoretical results and a practical case. The
appendices, finally, contain the statement and proof of an auxiliary result on
a certain tail empirical process followed by the proofs of the main theorems.
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2 The Extended (Generalized) Pareto Distribution

Definition 2.1 The Extended Pareto Distribution (EPD) with parameter

vector (γ, δ, τ) in the range τ < 0 < γ and δ > max(−1, 1/τ) is defined

by its distribution function

Gγ,δ,τ (y) =







1 − {y(1 + δ − δyτ)}−1/γ , if y > 1,

0, if y 6 1.

The Extended Generalized Pareto Distribution (EGPD) is defined by its dis-

tribution function

Hγ,δ,τ(x) = Gγ,δ,τ (1 + x), x ∈ R.

The ordinary Pareto Distribution (PD) with shape parameter α > 0 is a
member of the EPD family: take γ = 1/α and δ = 0 (arbitrary τ). The
Generalized Pareto Distribution (GPD) with positive shape parameter γ > 0
and scale parameter σ > 0 is a member of the EGPD family: take τ = −1 and
δ = γ/σ−1. Finally, the distribution of the random variable Y is EPD(γ, δ, τ)
if and only if the distribution of Y − 1 is EGPD(γ, δ, τ).

We will use the E(G)PD to model tails of heavy-tailed distributions that sat-
isfy a certain second-order condition, to be described next. For a distribution
function F , write F = 1 − F . Recall that a positive, measurable function f
defined in some right neighborhood of infinity is regularly varying with index
β ∈ R if limu→∞ f(ux)/f(u) = xβ for all x ∈ (0,∞); notation f ∈ Rβ. The
following definition describes a subset of the class of distribution functions F
for which F ∈ R−1/γ, γ > 0. Note that the latter is precisely the class of
distributions in the max-domain of attraction of the Fréchet distribution with
shape parameter 1/γ.

Definition 2.2 Let γ > 0 and τ < 0 be constants. A distribution function F
is said to belong to the class F (γ, τ) if x1/γF (x) → C ∈ (0,∞) as x → ∞
and if the function δ defined via

F (x) = Cx−1/γ{1 + γ−1δ(x)} (2.1)

is eventually nonzero and of constant sign and such that |δ| ∈ Rτ .

Note that |δ| ∈ Rτ with τ < 0 implies δ(x) → 0 as x → ∞. In many examples,
the function δ in Definition 2.2 is actually of the form δ(x) ∼ Dxτ as x → ∞
for some nonzero constant D, a class of distributions which was first considered
in Hall (1982). See Table 1 for examples; for later use, we also list ρ = γτ (see
Lemma 2.4 below).
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distribution distribution function γ τ ρ = γτ

[parameters]

Burr(γ, ρ, β) 1 − (1 + x−ρ/γ/β)1/ρ γ ρ/γ ρ

[γ > 0, ρ < 0, β > 0]

Fréchet(α) exp(−x−α) 1/α −α −1

[α > 0]

GPD(γ, σ) 1 − (1 + γx/σ)−1/γ γ −1 −γ

[γ > 0, σ > 0]

Student-tν C(ν)
∫ x
−∞

(1 + y2

ν )−(ν+1)/2 dy 1/ν −2 −2/ν

[ν > 0]

Table 1
Extreme value index γ and second-order constants τ and ρ = γτ for selected heavy-
tailed distributions.

Let X be a random variable with distribution function F and let u > 0 be
such that F (u) < 1. The conditional distributions of relative and absolute
excesses of X over u are given by

Pr(X/u > y | X > u) =
F (uy)

F (u)
and Pr(X − u > x | X > u) =

F (u + x)

F (u)

for x > 0 and y > 1. The next proposition shows that for F ∈ F (γ, τ), the
EPD and the EGPD improve the PD and GPD approximations to these excess
distributions with an order of magnitude.

Proposition 2.3 If F ∈ F (γ, τ), then as u → ∞,

sup
y>1

∣

∣

∣

∣

∣

F (uy)

F (u)
− Gγ,δ(u),τ (y)

∣

∣

∣

∣

∣

= o{|δ(u)|}, (2.2)

sup
x>0

∣

∣

∣

∣

∣

F (u + x)

F (u)
− Hγ,δ(u),τ (x/u)

∣

∣

∣

∣

∣

= o{|δ(u)|}. (2.3)

Proof Equation (2.3) follows directly from (2.2) by writing u + x = uy or
y = 1 + x/u and exploiting the link between the EPD and the EGPD. So let
us show (2.2). On the one hand, we have

F (uy)

F (u)
= y−1/γ 1 + γ−1δ(uy)

1 + γ−1δ(u)
= y−1/γ



1 − γ−1δ(u)
1 − δ(uy)

δ(u)

1 + γ−1δ(u)



 .
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On the other hand, since 0 6 1 − yτ 6 1 for y > 1 and since δ(u) → 0,

[y{1 + δ(u) − δ(u)yτ}]−1/γ

= y−1/γ{1 − γ−1δ(u)(1 − yτ )} + o{|δ(u)|}, u → ∞,

uniformly in y > 1. As a consequence,

F (uy)

F (u)
− [y{1 + δ(u) − δ(u)yτ}]−1/γ

= −γ−1y−1/γδ(u)





1 − δ(uy)
δ(u)

1 + γ−1δ(u)
− (1 − yτ )



+ o{|δ(u)|}, u → ∞,

uniformly in y > 1. The asymptotic relation (2.2) now follows from the uni-
form convergence theorem for regularly varying functions with negative index
(Bingham et al., 1987, Theorem 1.5.2). 2

If in (2.2) we would replace the EPD tail function Gγ,δ(u),τ (y) by the PD tail
function y−1/γ, the rate of convergence would be O{|δ(u)|} only. Similarly, if in
(2.3) we would replace the EGPD tail function Hγ,δ(u),τ (x/u) by the GPD tail
function (1 + γx/σ)−1/γ for some σ = σ(u), then, provided τ 6= −1, the rate
of convergence would again be O{|δ(u)|} only. If τ = −1, the EGPD is just a
reparametrization of the GPD, so that in that case, the GPD approximation
is already of the order o{|δ(u)|}.

It will be useful to rephrase our second-order assumption on F in terms of the
tail quantile function U defined by

U(y) = Q(1 − 1/y) with Q(p) = inf{x ∈ R : F (x) > p}, (2.4)

where y ∈ (1,∞) and p ∈ (0, 1). Note that U is a (generalized) inverse of 1/F .

Lemma 2.4 If F ∈ F (γ, τ) with limx→∞ x1/γF (x) = C ∈ (0,∞), then

limy→∞ y−γU(y) = Cγ, and the function a defined implicitly by

U(y) = Cγyγ{1 + a(y)} (2.5)

satisfies a(y) = δ(U(y)){1 + o(1)} = δ(Cγyγ){1 + o(1)} as y → ∞, with δ as

in (2.1).

In particular, a is eventually nonzero and of constant sign and |a| ∈ Rρ with
ρ = γτ < 0. In addition, even if F is not continuous, then still yF (U(y)) =
1 + o{|a(y)|} as y → ∞.
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3 Parameter Estimation

Our aim is to make inference on the distribution function F on the region to the
right of some high, positive threshold u. To this end, we assume F ∈ F (γ, τ)
and rewrite (2.2) as follows: as u → ∞ and uniformly in y > 1,

F (uy) = F (u)Gγ,δ(u),τ (y) + o{F (u)|δ(u)|}. (3.1)

Omitting the remainder term leads to an approximation of F (x) for x > u in
terms of F (u) and the EPD parameters (γ, δ(u), τ). Replacing these unknown
quantities by estimates then yields our estimate for F (x).

The purpose of this section is to construct estimators of the E(G)PD parame-
ters (γ, δ(u), τ). As usual in extreme value statistics, the threshold exceedance
probability F (u) will be estimated nonparametrically. Although the arguments
leading to the estimators will be of a heuristic nature only, the asymptotic be-
haviour of the estimators will be stated and proved rigorously.

Let X1, . . . , Xn be a random sample from F . In view of (2.2), the estimates
of the EPD parameters will be based on the relative excesses Xi/u over u, for
those i ∈ {1, . . . , n} such that Xi > u. In an extreme value asymptotic setting,
the threshold u needs to tend to infinity to make the approximation valid; at
the same time, in a statistical context, the number of excesses over u must
be sufficiently large to make inference feasible. Denoting the order statistics
by X1:n 6 · · · 6 Xn:n, we can ensure both criteria to be met by choosing a
data-adaptive threshold u = un = Xn−k:n where k = kn ∈ {1, . . . , n− 1} is an
intermediate sequence of integers, that is, k → ∞ and k/n → 0 as n → ∞.
For convenience, assume F (0) = 0, so that all Xi are positive with probability
one.

Recall the tail quantile function U in (2.4) and the auxiliary function a in
Lemma 2.4. In addition to k being an intermediate sequence, we will assume
that √

ka(n/k) → λ ∈ R, n → ∞. (3.2)

Writing δn = δ(un) = δ(Xn−k:n), we will show later that (3.2) implies

√
kδn = λ + op(1), n → ∞. (3.3)

Since in the definition of the EPD the term xτ is multiplied by δ, the previous
display implies that the asymptotic distribution of tail estimators based on
(3.1) will not depend on the asymptotic distribution of the estimator of τ ,
not even on its rate of convergence. Therefore, we will assume for the moment
that τ (or ρ) is known. In the end, the unknown second-order parameters
will be replaced by consistent estimators, a substitution which will be shown
not to affect the asymptotic distributions of the other estimators. Note that
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under the regime
√

k|a(n/k)| → ∞ as n → ∞, which will not be considered
in this paper, the asymptotic distribution of the estimator of the second-order
parameter does play a role.

The estimators of γ and δn will be found by maximizing an approximation to
the EPD likelihood given the sample of k relative excesses Xn−k+i:n/Xn−k:n,
i ∈ {1, . . . , k}, over the random threshold Xn−k:n. The density function of the
EPD is given by

gγ,δ,τ(x) =
1

γ
x−1/γ−1{1 + δ(1 − xτ )}−1/γ−1[1 + δ{1 − (1 + τ)xτ}].

The score functions admit the following expansions in δ → 0:

∂

∂γ
log gγ,δ,τ(x) = −1

γ
+

1

γ2
log x +

δ

γ2
(1 − xτ ) + O(δ2),

∂

∂δ
log gγ,δ,τ(x) =

1

γ
{(1 − γτ)xτ − 1}

+ {1 − 2(1 − γτ)xτ + (1 − 2γτ − γτ 2)x2τ} δ

γ
+ O(δ2).

Define

Hk,n =
1

k

k
∑

i=1

log(Xn−k+i:n/Xn−k:n), (3.4)

Ek,n(s) =
1

k

k
∑

i=1

(Xn−k+i:n/Xn−k:n)
s, s 6 0. (3.5)

Note that Hk,n is the Hill estimator (Hill, 1975). Assume for the moment
that τ is known. Given the sample of excesses Xn−k+i:n/Xn−k:n, i = 1, . . . , k,
solving the linearized score equations yields the following equations for the
pseudo-maximum likelihood estimators for γ and δ:

γ̂k,n = Hk,n + δ̂k,n{1 − Ek,n(τ)}, (3.6)

(γ̂k,nτ − 1)Ek,n(τ) + 1 = {1 − 2(1 − γ̂n,kτ)Ek,n(τ)

+ (1 − 2γ̂k,nτ − γ̂k,nτ
2)Ek,n(2τ)}δ̂k,n. (3.7)

Substitute the expression for γ̂k,n in (3.6) into the left-hand side of (3.7) and

solve for δ̂k,n to get

δ̂k,n =
(Hk,nτ − 1)Ek,n(τ) + 1

Dk,n
=

Hk,nτ − 1

Dk,n

(

Ek,n(τ) − 1

1 − Hk,nτ

)

,

the denominator being

Dk,n = 1 − 2(1 − γ̂n,kτ)Ek,n(τ) + (1 − 2γ̂k,nτ − γ̂k,nτ
2)Ek,n(2τ)

− τ{1 − Ek,n(τ)}Ek,n(τ).
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By (3.3), δ̂k,n can be expected to be of the order Op(k
−1/2) as n → ∞. This

justifies the following simplifications. Since the distribution of relative excesses
over a large threshold is approximately Pareto with shape parameter 1/γ, for
s 6 0,

Ek,n(s) =
1

1 − γs
+ op(1), n → ∞;

see Theorem A.1. Hence, writing ρ = γτ , we have Ek,n(τ) = (1− ρ)−1 + op(1)
and Ek,n(2τ) = (1 − 2ρ)−1 + op(1) as n → ∞, so that

Dk,n = − ρ4

γ(1 − 2ρ)(1 − ρ)2
+ op(1), n → ∞.

This leads to the following simplified estimators:

δ̂k,n = Hk,n(1 − 2ρ)(1 − ρ)3ρ−4

(

Ek,n(τ) − 1

1 − Hk,nτ

)

,

γ̂k,n = Hk,n − δ̂k,n
ρ

1 − ρ
.

Up to now we have assumed that ρ is known. Let ρ̂n be a weakly consistent
estimator sequence of ρ = γτ ; see for instance Fraga Alves et al. (2003a),
Fraga Alves et al. (2003b), and Peng and Qi (2004). Replace τ , which is
unknown, by τ̂k,n = ρ̂n/Hk,n, to finally get

δ̂k,n = Hk,n(1 − 2ρ̂n)(1 − ρ̂n)3ρ̂−4
n

(

Ek,n(ρ̂n/Hk,n) −
1

1 − ρ̂n

)

, (3.8)

γ̂k,n = Hk,n − δ̂k,n
ρ̂n

1 − ρ̂n

. (3.9)

Further, put

Zk,n =
√

k{nF (Xn−k:n)/k − 1}. (3.10)

The joint asymptotics of Zk,n with (γ̂k,n, δ̂k,n) will become relevant in Section 5
when estimating tail probabilities on the basis of (3.1) with u = Xn−k:n. Let
the arrow  denote convergence in distribution.

Theorem 3.1 Let F ∈ F (γ, τ) and let X1, . . . , Xn be independent random

variables with common distribution function F . Let k = kn be an intermediate

sequence satisfying (3.2). Recall δn = δ(Xn−k:n) and Zk,n in (3.10). If ρ̂n =
ρ + op(1) as n → ∞, with ρ = γτ , then

√
kδn = λ + op(1) as n → ∞ and

(√
k(γ̂k,n − γ),

√
k(δ̂k,n − δn), Zk,n

)

 N3(0, Σ), n → ∞, (3.11)
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a trivariate normal distribution with mean vector zero and covariance matrix

Σ =

















γ2 (1−ρ)2

ρ2 −γ2 (1−2ρ)(1−ρ)
ρ3 0

−γ2 (1−2ρ)(1−ρ)
ρ3 γ2 (1−2ρ)(1−ρ)2

ρ4 0

0 0 1

















. (3.12)

An asymptotic confidence interval for γ of nominal level 1 − α is given by

[

γ̂k,n

(

1 +
1 − ρ̂n

ρ̂n

zα/2√
k

)

, γ̂k,n

(

1 − 1 − ρ̂n

ρ̂n

zα/2√
k

)]

, (3.13)

with zα/2 the 1 − α/2 quantile of the standard normal distribution.

The proof of Theorem 3.1 is given in Appendix B. It is based on a functional
central limit theorem for a certain tail empirical process, stated and proved
in Appendix A. Note that the asymptotic distribution of ρ̂k,n is unimportant;
the only requirement is that the estimator is consistent for ρ.

The fact that the limit distribution in (3.11) is centered for any λ, is important
for two reasons:

1 It makes possible the use of larger k and thus of lower thresholds compared
to when the mean would be proportional to λ. In this way, the model can
be fitted to a larger fraction of the data, leading to a reduction of the
asymptotic variances and thus of the asymptotic mean squared errors of
the parameter estimates.

2 Sample paths of the estimates as a function of k will exhibit larger regions of
stability around the true value. As a consequence, the choice of k becomes
easier.

These issues will be illustrated in the simulations in Section 4 and in the case
study in Example 5.3.

4 Comparison of Extreme Value Index Estimators

Under the conditions of Theorem 3.1, we have

√
k(γ̂k,n − γ) N

(

0, γ2 (1 − ρ)2

ρ2

)

, n → ∞. (4.1)

According to Drees (1998), the asymptotic variance is minimal for scale-
invariant, asymptotically unbiased estimators of γ of a certain form. The limit
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distribution in (4.1) corresponds with the one of the estimators in Beirlant
et al. (1999), Feuerverger and Hall (1999) and Gomes and Martins (2002).

The maximum likelihood estimator for γ arises from fitting the GPD to the
excesses Xn−k+i:n − Xn−k:n, i = 1, . . . , k. Its asymptotics have been studied
in Smith (1987), Drees et al. (2004) and de Haan and Ferreira (2006, Theo-
rem 3.4.2). From the latter theorem, it follows that under the conditions of
our Theorem 3.1, we have

√
k
(

γ̂GPD
k,n − γ

)

 N
(

λb(γ, ρ), (1 + γ)2
)

, n → ∞, (4.2)

where

b(γ, ρ) =
ρ(1 + γ)(γ + ρ)

γ(1 − ρ)(1 + γ − ρ)
.

Comparing (4.1) and (4.2), we see that if τ = −1 and thus ρ = −γ, the
asymptotic distributions of γ̂k,n and γ̂GPD

k,n coincide. This is in correspondance
with the fact that the EGPD with τ = −1 is a reparametrization of the GPD
and the fact that the EPD estimators were obtained by solving the linearized
score equations.

Finally, under the conditions of Theorem 3.1, the asymptotic distribution of
the Hill estimator is

√
k(Hk,n − γ) N

(

λ
ρ

1 − ρ
, γ2

)

, n → ∞; (4.3)

see for instance Theorem A.1 below. Of the three estimators considered, the
Hill estimator has the smallest asymptotic variance. Unless λ = 0, however, its
asymptotic bias is never zero. The asymptotic distribution of the Hill estimator
and its optimal variance property are of course well known; see for instance
Reiss (1989, Section 9.4), Drees (1998) and Beirlant et al. (2006).

To illustrate the behavior of the three estimators, we generated samples from
four different distributions. For each distribution, we generated 10, 000 samples
of size n = 1, 000 and computed the three extreme value index estimators for
k up to 500. For the EPD estimator, we estimated the second-order parameter
ρ using the estimator in Fraga Alves et al. (2003b). For each distribution and
each estimator, we computed Monte Carlo estimates of the bias, variance and
mean squared error by averaging out over the 10, 000 samples.

Comparing the asymptotic results to the graphs in Figures 1–2 we learn the
following:

Fréchet distribution with α = 1. We have γ = 1/α = 1, τ = −α = −1, and
ρ = γτ = −1. From (4.1) and (4.2), it follows that the asymptotic distribu-
tions of the EPD and the GPD estimators coincide, with zero asymptotic
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bias and an asymptotic variance of 4/k. The Hill estimator has an asymp-
totic variance of 1/k only, but its asymptotic bias is nonzero.

Student t distribution with ν = 4. We have γ = 1/ν = 1/4, τ = −2, and
ρ = γτ = −1/2. The asymptotic variances of the three estimators are σ2/k
with σ2 = γ2 = 1/16 for the Hill estimator, σ2 = γ2(1−ρ)2/ρ2 = 9/16 for the
EPD estimator, and σ2 = (1 + γ)2 = 25/16 for the GPD estimator. Of the
three estimators, the EPD estimator is the only one which is asymptotically
unbiased.

Pareto mixture distribution defined by F (x) = (1+ c)−1x−α(1+ cx−α), x > 1,
with shape parameter α = 2 and mixing parameter c = 2. We have γ =
1/α = 1/2, τ = −α = −2, and ρ = γτ = −1. The weight of the second-order
component is equal to c = 2 times the weight of the first-order component,
inducing a severe bias to the Hill and GPD estimators; the EPD estimator is
much less affected by this. The asymptotic variances of the three estimators
are σ2/k with σ2 = γ2 = 1/4 for the Hill estimator, σ2 = γ2(1− ρ)2/ρ2 = 1
for the EPD estimator, and σ2 = (1 + γ)2 = 9/4 for the GPD estimator.

Loggamma distribution with shape parameter α = 4 and scale parameter β =
2. Although this distribution has positive extreme-value index γ = 1/β, it is
not in any of the classes F (γ, τ), since F (x) ∼ constant × x−1/β(log x)α−1.
Nevertheless, the EPD estimator performs reasonably well when compared
to the Hill and GPD estimators.

5 Tail Probability Estimation

Let us return to the tail estimation problem raised in the beginning of Sec-
tion 3. Given the order statistics X1:n 6 · · · 6 Xn:n of an independent sample
from an unknown distribution function F ∈ F (γ, τ), we want to estimate the
tail probability pn = F (xn), where xn → ∞ and thus pn → 0 as n → ∞. As
before, let k = kn ∈ {1, . . . , n − 1} be an intermediate integer sequence, that
is, k → ∞ and k/n → 0. Assume that pn = F (xn) satisfies

npn/k → q ∈ [0, 1), n → ∞. (5.1)

Let γ̂n, δ̂n, and τ̂n denote general estimator sequences and put δn = δ(Xn−k:n)
as well as

Γk,n =
√

k(γ̂n − γ) and ∆k,n =
√

k(δ̂n − δn). (5.2)

Recall Zk,n in (3.10) and assume that

τ̂n = τ + op(1) and (Γk,n, ∆k,n, Zk,n) (Γ, ∆, Z), n → ∞, (5.3)

a trivariate random vector. A possible choice for the estimators of γ and δn

are the ones studied in Theorem 3.1. However, we will formulate our results so

12
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Fig. 1. Variance (top), bias (middle), and mean squared error (bottom) of the Hill
(dashed), GPD (dotdashed), and EPD (solid) estimator in case of the unit Fréchet
distribution (left) and the Student t distribution with ν = 4 degrees of freedom
(right). The sample size was n = 1, 000 and the plots were obtained by averaging
out over 10, 000 samples.
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Fig. 2. Variance (top), bias (middle), and mean squared error (bottom) of the Hill
(dashed), GPD (dotdashed), and EPD (solid) estimator in case of a Pareto mixture
distribution (α = 2, c = 2; left) and a Loggamma distribution (α = 4, β = 2; right).
The sample size was n = 1, 000 and the plots were obtained by averaging out over
10, 000 samples.
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as to allow for general estimator sequences satisfying (5.3). For the estimator
of τ , one can for instance take τ̂n = ρ̂n/γ̂n, where ρ̂n is an estimator of ρ = γτ ,
see for instance Fraga Alves et al. (2003b). As in Theorem 3.1, the asymptotic
distribution of τ̂n plays no role.

Omitting the remainder term in (3.1) and replacing the unknown quanti-
ties F (u) and (γ, δ(u), τ) at the random threshold u = Xn−k:n by k/n and
(γ̂n, δ̂n, τ̂n), respectively, yields the estimator

p̂k,n = F̂n(xn) =
k

n
Gγ̂n,δ̂n,τ̂n

(xn/Xn−k:n).

In the same way, one can construct estimators for other tail quantities: return
levels, expected shortfall, etc. For brevity, we focus here on tail probabilities.

In order to describe the asymptotics of p̂k,n, we need to make a distinction
between the case 0 < q < 1 in (5.1) and q = 0. The proofs of the following two
theorems are to be found in Appendix C. Results for tail probability estimators
based on the PD and GPD approximations can be found in de Haan and
Ferreira (2006, Section 4.4).

Theorem 5.1 Let F ∈ F (γ, τ), let kn be an intermediate sequence satisfying

(3.2) and let pn be such that (5.1) holds for some 0 < q < 1. If (5.3), then

√
k

(

p̂k,n

pn

− 1

)

 −γ−1Γ log q − γ−1∆(1 − q−ρ) − Z, n → ∞. (5.4)

Theorem 5.2 In Theorem 5.1, if (5.1) is replaced by

npn/k → 0 and log(npn)/
√

k → 0, n → ∞,

then √
k

log{k/(npn)}

(

p̂k,n

pn
− 1

)

 γ−1Γ, n → ∞.

For the EPD estimators γ̂n = γ̂k,n and δ̂n = δ̂k,n, Theorems 3.1 and 5.1 lead
to

√
k

(

p̂n

pn

− 1

)

 N
(

0, σ2(q, ρ)
)

, n → ∞, (5.5)

with asymptotic variance given by

σ2(q, ρ) = (log q)2 (1 − ρ)2

ρ2
+

(

1 − q−ρ

ρ

)2
(1 − 2ρ)(1 − ρ)2

ρ2

− 2 log(q)
1 − q−ρ

ρ

(1 − 2ρ)(1 − ρ)

ρ2
+ 1.
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The importance of the fact that the limit distribution in (5.5) has mean zero
was already discussed after Theorem 3.1. An asymptotic confidence interval
of nominal level 1 − α is given by

[

p̂n

(

1 − σ(q̂n, ρ̂n)
zα/2√

k

)

, p̂n

(

1 + σ(q̂n, ρ̂n)
zα/2√

k

)]

(5.6)

where q̂n = np̂n/kn and with zα/2 the 1−α/2 quantile of the standard normal
distribution.

If we simply define δ̂n = 0, then ∆k,n = −
√

kδn in (5.2) and thus ∆ =
−λ in (5.3). The tail probability estimator p̂n then reduces to the Weissman
estimator (Weissman, 1978)

p̂W
n =

k

n

(

xn

Xn−k:n

)

−1/γ̂n

. (5.7)

Theorem 5.1 then implies

√
k

(

p̂W
n

pn
− 1

)

 −γ−1Γ log q + γ−1λ(1 − q−γτ ) − Z, n → ∞. (5.8)

For instance, if we estimate γ by the Hill estimator, then in view of Theo-
rem A.1,

√
k





k

npn

(

xn

Xn−k:n

)

−1/Hk,n

− 1





 N

(

−λ
ρ

γ

(

q−ρ − 1

ρ
+

log q

1 − ρ

)

, 1 + (log q)2

)

, n → ∞.

Even if the extreme value index estimator γ̂n is such that the asymptotic
distribution of Γn has mean zero, then still the asymptotic distribution (5.8)
of the Weissman estimator will have a mean which is proportional to λ. In
other words, unbiased tail estimation requires more than unbiased estimation
of the extreme value index alone.

From Theorem 5.2 and its proof, we learn that for estimation of tail probabil-
ities pn of smaller order than k/n, the difference between the Pareto approxi-
mation and the EPD approximation does not matter asymptotically. Still, for
p̂n to be an asymptotically unbiased estimator of pn, the estimator γ̂n needs to
be asymptotically unbiased for γ. For instance, if we use the EPD estimator
γ̂k,n, then

√
k

log{k/(npn)}

(

p̂n

pn

− 1

)

 N

(

0,
(1 − ρ)2

ρ2

)

, n → ∞.
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Fig. 3. Trajectories of estimates of γ (left) and of the exceedance probability over
e7 million (right) for the Secura Belgian Re data in Example 5.3.

Example 5.3 The Secura Belgian Re data in Beirlant et al. (2004, Sec-
tion 1.3.3) comprise 371 automobile claims not smaller than e1.2 million.
The data span the period 1988–2001 and have been gathered from several
European insurance companies. Figure 3 shows the estimates of γ (left) and
of the probability of a claim to exceed e7 million (right). Nominal 90 % con-
fidence intervals for the EPD estimates are added too, see (3.13) and (5.6).
In the data-set, there were actually 3 exceedances over e1.2 million, yielding
a nonparametric estimate of 3/371 = 0.81%. In comparison to the Weissman
(Hill) and POT (GPD) estimates, the trajectories of the EPD estimates are
relatively stable, with γ̂ around 0.3 and p around 0.75%. By way of com-
parison, in Beirlant et al. (2004, Section 6.2.4) it is suggested to model the
complete distribution by a mixture of two components, an exponential and a
Pareto distribution, with the knot at about e2.6 million, which corresponds
to the order statistic Xn−k:n with k = 95. Although this knot is detected by
the EPD estimator, it does not cause the tail parameter estimates to change
dramatically.

A Tail Empirical Processes

Recall Hk,n, Ek,n(s) and Zk,n from equations (3.4), (3.5) and (3.10), respec-
tively, and define

Γk,n =
√

k(Hk,n − γ), (A.1)

Ek,n(s) =
√

k

(

Ek,n(s) − 1

1 − sγ

)

, s 6 0. (A.2)
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Our proof of Theorem 3.1 will be based on the fact that (Γk,n, Ek,n, Zk,n)
converges weakly in the space R × C [s0, 0] × R; here s0 < 0 and C [a, b] is
the Banach space of continuous functions f : [a, b] → R equipped with the
topology of uniform convergence. Of course, the asymptotic distribution of the
normalized Hill estimator Γk,n has been established in numerous other papers;
in the following theorem, it is the joint convergence which is our main concern.

Theorem A.1 Let F ∈ F (γ, τ). If k = kn is an intermediate integer se-

quence satisfying (3.2), then for every s0 < 0, in R × C [−s0, 0] × R,

(Γk,n, Ek,n, Zk,n) (Γ, E, Z), n → ∞,

a Gaussian process with the following distribution: Z is standard normal and

is independent of (Γ, E), and for s, s1, s2 ∈ [s0, 0],

E[E(s)] = λ
sρ

(1 − sγ − ρ)(1 − sγ)
, E[Γ] = λ

ρ

1 − ρ
,

cov{E(s1), E(s2)} =
s1s2γ

2

(1 − s1γ − s2γ)(1 − s1γ)(1 − s2γ)
, var(Γ) = γ2,

cov{Γ, E(s)} =
sγ2

(1 − sγ)2
.

Proof Let Y1, Y̌1, Y2, Y̌2, . . . be independent Pareto(1) random variables. For
positive integer k, denote the order statistics of Y1, . . . , Yk by Y1:k < · · · < Yk:k;
also, let Y0:k = 1. Similarly, denote the order statistics of Y̌1, . . . , Y̌n by Y̌1:n <
· · · < Y̌n:n. Then the following three vectors are equal in distribution:

(Xn−k+i:n : i = 0, . . . , k)
d
= (U(Y̌n−k+i:n) : i = 0, . . . , k)
d
= (U(Yi:kY̌n−k:n) : i = 0, . . . , k).

Since we are only interested in the asymptotic distribution of (Γk,n, Ek,n, Zk,n),
we may without loss of generality assume that actually

(Xn−k+i:n : i = 0, . . . , k) = (U(Yi:kY̌n−k:n) : i = 0, . . . , k).

The following property is well-known: if k is an intermediate sequence, then

√
k{(n/k)Y̌ −1

n−k:n − 1} N(0, 1), n → ∞. (A.3)

[A quick proof is to employ the distributional representation Y̌n−k:n
d
= (E1 +

· · ·+En+1)/(E1+. . .+Ek), with E1, . . . , En independent standard exponential
random variables.] As a consequence, we have Y̌n−k:n = (n/k){1 + op(1)} as
n → ∞, and therefore, by (3.2) and the Uniform Convergence Theorem for
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Rρ (Bingham et al., 1987, Theorem 1.5.2),

√
ka(Y̌n−k:n) =

√
ka(n/k)

a(Y̌n−k:n)

a(n/k)
= λ + op(1), n → ∞. (A.4)

Since a(y) ∼ δ(U(y)) as n → ∞, this also shows that
√

kδ(Xn−k:n) = λ+op(1)
as n → ∞.

In the next three paragraphs, we will analyse the components Γk,n, Ek,n and
Zk,n separately. In the fourth and final paragraph, these analyses will be com-
bined.

1. The component Γk,n. Let the function a be as in (2.5) and define η(y) =
log{1+a(y)}. Since limy→∞ a(y) = 0, we have η(y) = a(y){1+o(1)} as y → ∞,
and hence √

kη(Y̌n−k:n) = λ + op(1), n → ∞. (A.5)

In particular, η is eventually nonzero and of constant sign, and |η| ∈ Rρ. We
have

Hk,n =
1

k

k
∑

i=1

log Xn−k+i:n − log Xn−k:n

=
1

k

k
∑

i=1

log U(YiY̌n−k:n) − log U(Y̌n−k:n)

=
1

k

k
∑

i=1

{γ log Yi + η(YiY̌n−k:n) − η(Y̌n−k:n)}.

As a consequence,

Γk,n =
√

k(Hk,n − γ)

=
γ√
k

k
∑

i=1

(log Yi − 1) +
√

kη(Y̌n−k:n)
1

k

k
∑

i=1

(

η(YiY̌n−k:n)

η(Y̌n−k:n)
− 1

)

.

By the Uniform Convergence Theorem for Rρ, for every x0 > 0,

lim
y→∞

sup
x>x0

∣

∣

∣

∣

∣

η(xy)

η(y)
− xρ

∣

∣

∣

∣

∣

= 0.

By the last two displays and in view of (A.5),

max
i=1,...,k

∣

∣

∣

∣

∣

η(YiY̌n−k:n)

η(Y̌n−k:n)
− Y ρ

i

∣

∣

∣

∣

∣

= op(1), n → ∞. (A.6)

By (A.5) and since k−1∑k
i=1 Y ρ

i = (1 − ρ)−1 + op(1) as k → ∞, we find

Γk,n =
γ√
k

k
∑

i=1

(log Yi − 1) + λ

(

1

1 − ρ
− 1

)

+ op(1), n → ∞. (A.7)
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2. The component Ek,n. Recall the notation η(y) = log{1 + a(y)}, so that
U(y) = Cγyγ exp{η(y)}. We have

Ek,n(s) =
1

k

k
∑

i=1

(

Xn−k+i:n

Xn−k:n

)s

=
1

k

k
∑

i=1

(

U(YiY̌n−k:n)

U(Y̌n−k:n)

)s

=
1

k

k
∑

i=1

Y γs
i exp[s{η(YiY̌n−k:n) − η(Y̌n−k:n)}].

Writing εi,n = η(YiY̌n−k:n)/η(Y̌n−k:n) − Y ρ
i , we find

Ek,n(s) =
1

k

k
∑

i=1

Y γs
i exp{sη(Y̌n−k:n)(Y

ρ
i − 1 + εi,n)}.

Recall the elementary inequality |ez − 1− z| 6 (z2/2) max(ez, 1), z ∈ R. Since
0 < Y γs

i 6 1, 0 < Y ρ
i 6 1 and maxi=1,...,n |εi,n| = op(1) [see (A.6)], we get by

(A.5),

sup
s∈[s0,0]

∣

∣

∣

∣

∣

Ek,n(s) −
1

k

k
∑

i=1

Y γs
i {1 + sη(Y̌n−k:n)(Y

ρ
i − 1)}

∣

∣

∣

∣

∣

= op{|η(Y̌n−k:n)|} = op(k
−1/2), n → ∞.

For θ0 < 0, the class of functions {fθ : θ ∈ [θ0, 0]} from [1,∞) to (0, 1] defined
by fθ(y) = yθ, y > 1, satisfies the Glivenko-Cantelli property

sup
θ∈[θ0,0]

∣

∣

∣

∣

∣

1

k

k
∑

i=1

Y θ
i − 1

1 − θ

∣

∣

∣

∣

∣

= op(1), k → ∞;

see for instance Example 19.8 in van der Vaart (1998) or just use the mono-
tonicity and continuity of yθ in θ. In view of (A.5), we obtain

sup
s∈[s0,0]

∣

∣

∣

∣

∣

Ek,n(s) −
1

k

k
∑

i=1

Y γs
i − sη(Y̌n−k:n)

(

1

1 − γs − ρ
− 1

1 − γs

)∣

∣

∣

∣

∣

= op{|η(Y̌n−k:n)|} = op(k
−1/2), n → ∞.

Using (A.5) again, we find

Ek,n(s) =
√

k

(

Ek,n(s) − 1

1 − γs

)

=
1√
k

k
∑

i=1

(

Y γs
i − 1

1 − γs

)

+ sλ

(

1

1 − γs − ρ
− 1

1 − γs

)

+ εn(s),

with

sup
s∈[s0,0]

|εn(s)| = op(1), n → ∞. (A.8)
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3. The component Zk,n. By (2.1) and (2.5), we find

yF (U(y)) = 1 + o{|a(y)|}, y → ∞.

As a consequence,

F (Xn−k:n) = F (U(Y̌n−k:n))

= Y̌ −1
n−k:n[1 + op{|a(Y̌n−k:n)|}]

= Y̌ −1
n−k:n{1 + op(k

−1/2)}, n → ∞,

where we used (A.4) in the last step. We obtain

Zk,n =
√

k{(n/k)F (Xn−k:n) − 1}
=

√
k{(n/k)Y̌ −1

n−k:n − 1} + op(1), n → ∞. (A.9)

4. Joint convergence. Define

Γ̃k =
γ√
k

k
∑

i=1

(log Yi − 1),

Ẽk(s) =
1√
k

k
∑

i=1

(

Y γs
i − 1

1 − γs

)

, s ∈ [s0, 0].

For θ0 < 0, the class of functions {fθ : θ ∈ [θ0, 0]} defined by fθ(y) = yθ,
y > 1, is Donsker with respect to the Pareto(1) distribution; this follows
from Example 19.7 in van der Vaart (1998) upon noting that |yθ1 − yθ2| 6
|θ1 − θ2| log y for θ1 6 0, θ2 6 0 and y > 1. As a consequence, in R × C [s0, 0],

(Γ̃k, Ẽk) (Γ̃, Ẽ), k → ∞, (A.10)

a centered Gaussian process with covariance function

var Γ̃ = var(γ log Y1) = γ2,

cov{Ẽ(s1), Ẽ(s2)} = cov(Y γs1

1 , Y γs2

1 ) =
1

1 − s1γ − s2γ
− 1

(1 − s1γ)(1 − s2γ)
,

cov{Γ̃, Ẽ(s)} = cov(γ log Y1, Y
γs
1 ) =

sγ2

(1 − sγ)2
.

By (A.7) and (A.8), it follows that in R × C [s0, 0],

(Γk,n, Ek,n) (Γ, E), n → ∞.

Finally, from (A.3) and (A.9) it follows that (Γk,n, Ek,n, Zk,n)  (Γ, E, Z) as
n → ∞, where Z is standard normally distributed and is independent of
(Γ, E). 2
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B Proof of Theorem 3.1

The fact that
√

kδ(Xn−k:n) = λ + op(1) as n → ∞ has already been shown in
the proof of Theorem A.1; in particular, see (A.4). Recall Γk,n and Ek,n(s) in
equations (A.1) and (A.2), respectively, and write τ̂k,n = ρ̂n/Hk,n. We have

√
k

(

Ek,n(τ̂k,n) −
1

1 − ρ̂n

)

=
√

k

(

Ek,n(τ̂k,n) −
1

1 − γτ̂n

)

+
√

k

(

1

1 − γρ̂n/Hk,n
− 1

1 − ρ̂n

)

= Ek,n(τ̂k,n) −
1

Hk,n

ρ̂n

(1 − γρ̂k,n/Hk,n)(1 − ρ̂n)
Γk,n.

By Theorem A.1, Hk,n = γ + k−1/2Γk,n = γ + op(1) and thus τ̂k,n = τ + op(1)
as n → ∞. It follows that

√
k

(

Ek,n(τ̂k,n) −
1

1 − ρ̂n

)

= Ek,n(τ̂k,n) − ρ

γ(1 − ρ)2
Γk,n + op(1), n → ∞.

Substituting this into the definition of δ̂k,n yields

√
kδ̂k,n = γ(1 − 2ρ)(1 − ρ)3ρ−4

(

Ek,n(τ̂k,n) −
ρ

γ(1 − ρ)2
Γk,n

)

+ op(1),

n → ∞, (B.1)

as well as

√
k(γ̂k,n − γ) =

√
k

(

Hk,n − δ̂k,n
ρ̂n

1 − ρ̂n

− γ

)

= Γk,n −
√

kδ̂k,n
ρ

1 − ρ
+ op(1)

=
(1 − ρ)2

ρ2

(

Γk,n − γ
1 − 2ρ

ρ
Ek,n(τ̂k,n)

)

+ op(1), n → ∞.

(B.2)

From τ̂k,n = τ +op(1) and Theorem A.1, it follows that in R×C [s0, 0]×R×R,

(Γk,n, Ek,n, Zk,n, τ̂n,k) (Γ, E, Z, τ), n → ∞.

For s0 < τ , we have Pr(s0 6 τ̂n,k 6 0) → 1 as n → ∞, and thus, by the
previous display and the continuous mapping theorem,

(Γk,n, Ek,n(τ̂k,n), Zk,n) (Γ, E(τ), Z), n → ∞.
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In view of (B.1) and (B.2), as n → ∞,

(√
k(γ̂k,n − γ),

√
kδ̂k,n, Zk,n

)

 





(1 − ρ)2

ρ2

(

Γ − γ
1 − 2ρ

ρ
E(τ)

)

,

(1 − 2ρ)(1 − ρ)

ρ3

(

−Γ + γ
(1 − ρ)2

ρ
E(τ)

)

, Z



. (B.3)

The vector (Γ, E(τ), Z) is trivariate normal, with Z standard normal and in-
dependent of (Γ, E(τ)), with Γ as in Theorem A.1, and with

E[E(τ)] = λ
ρ2

γ(1 − 2ρ)(1 − ρ)
, var{E(τ)} =

ρ2

(1 − 2ρ)(1 − ρ)2
,

cov{Γ, E(τ)} = γ
ρ

(1 − ρ)2
.

As a consequence, the distribution of the limit vector in (B.3) is trivariate
normal with mean vector (0, λ, 0)′ and covariance matrix Σ as in (3.12).

C Proofs for Section 5

Proof of Theorem 5.1 Put yn = xn/Xn−k:n, recall δn = δ(Xn−k:n), and
define

p̃n = F (Xn−k:n)Gγ,δn,τ(yn).

Since k → ∞ and pn → 0 as n → ∞, it is sufficient to prove (5.4) with
p̂n/pn − 1 replaced by log p̂n − log pn. Let us write

√
k(log p̂n − log pn) =

√
k(log p̂n − log p̃n) +

√
k(log p̃n − log pn)

and treat the two terms on the right-hand side separately.

1. The term
√

k(log p̃n − log pn). We have

log p̃n − log pn = log Gγ,δn,τ (yn) − log
F (ynXn−k:n)

F (Xn−k:n)
.

Since (n/kn)F (ynXn−k:n) → q and (n/kn)F (Xn−k:n) = 1 + op(1) as n → ∞,

F (ynXn−k:n)

F (Xn−k:n)
=

F (xn)

F (Xn−k:n)
= q + op(1), n → ∞.

Since moreover F is monotone and regularly varying of index −1/γ, this forces
yn → y as n → ∞ with y−1/γ = q, or y = q−γ ∈ (1,∞). By Proposition 2.3,
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we find
log p̃n − log pn

δn
= op(1), n → ∞.

Finally, from
√

kδn = λ + op(1) as n → ∞, we can conclude that

√
k(log p̃n − log pn) =

√
kδn

log p̃n − log pn

δn
= op(1), n → ∞. (C.1)

2. The term
√

k(log p̂n − log p̃n). We have

log p̂n − log p̃n = {log(k/n) − log F (Xn−k:n)}
+ {log Gγ̂n,δ̂n,τ̂n

(yn) − log Gγ,δn,τ (yn)}. (C.2)

The first term on the right-hand side is

log(k/n) − log F (Xn−k:n) = − log{nF (Xn−k:n)/k}
= − log(1 + k−1/2Zn)

= −k−1/2Zn + op(k
−1/2), n → ∞.

For the second term on the right-hand side in (C.2), we proceed as follows.
Since yn = y + op(1) as n → ∞ and y > 1, it is sufficient to work on the event
yn > 1. Then

log Gγ̂n,δ̂n,τ̂n
(yn) − log Gγ,δn,τ(yn)

= log[{yn(1 + δ̂n − δ̂nyτ̂n

n )}−1/γ̂n ] − log[{yn(1 + δn − δnyτ
n)}−1/γ ]

=

(

(− 1

γ̂n
) − (−1

γ
)

)

log yn

+ (− 1

γ̂n
){log(1 + δ̂n − δ̂ny

τ̂n

n ) − log(1 + δn − δny
τ
n)}

+

(

(− 1

γ̂n
) − (−1

γ
)

)

log(1 + δn − δny
τ
n). (C.3)

We treat the three terms on the right-hand side of (C.3) in turn. First,

(− 1

γ̂n
) − (−1

γ
) =

γ̂n − γ

γ̂nγ

= k−1/2γ−2Γn + Op(k
−1), n → ∞.

Second, δn = Op(k
−1/2) and therefore also δ̂n = Op(k

−1/2) as n → ∞. Hence
the second term on the right-hand side of (C.3) is

−γ̂−1
n {log(1 + δ̂n − δ̂ny

τ̂n

n ) − log(1 + δn − δnyτ
n)}

= {−γ−1 + Op(k
−1/2)}{δ̂n − δ̂nyτ̂n

n − δn + δnyτ
n + Op(k

−1)}
= −k−1/2γ−1∆n(1 − yτ

n) + op(k
−1/2), n → ∞.
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The third term on the right-hand side of (C.3) is Op(k
−1/2)Op(k

−1/2) =
Op(k

−1). All in all, we find

√
k(log p̂n − log p̃n) = −Zn + γ−2Γn log y − γ−1∆n(1 − yτ) + op(1) (C.4)

as n → ∞. Combine (C.3) and (C.4) and recall y = q−γ and ρ = γτ to find
the result. 2

Proof of Theorem 5.2 Recall the Weissman estimator p̂W
n in (5.7) and put

dn = k/(npn). From Theorem 4.4.7 in de Haan and Ferreira (2006), it follows
that √

k

log dn

(

p̂W
n

pn

− 1

)

 γ−1Γ, n → ∞.

Moreover, writing yn = xn/Xn−k:n,

p̂n

p̂W
n

= {1 + δ̂n − δ̂nyτ̂n

n }−1/γ̂n = 1 + Op(k
−1/2), n → ∞.

As log dn → ∞, we find that p̂n and p̂Wn
n have the same asymptotic distribu-

tion. 2
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