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Consider a random sample from a bivariate distribution function
F in the max-domain of attraction of an extreme value distribution
function G. This G is characterized by two extreme value indices
and a spectral measure, the latter determining the tail dependence
structure of F . A major issue in multivariate extreme value theory
is the estimation of the spectral measure Φp with respect to the Lp

norm. For every p ∈ [1,∞], a nonparametric maximum empirical
likelihood estimator is proposed for Φp. The main novelty is that
these estimators are guaranteed to satisfy the moment constraints
by which spectral measures are characterized. Asymptotic normal-
ity of the estimators is proved under conditions that allow for tail
independence. Moreover, the conditions are easily verifiable as we
demonstrate through a number of theoretical examples. A simulation
study shows substantially improved performance of the new estima-
tors. Two case studies illustrate how to implement the methods in
practice.

1. Introduction. Let F be a continuous bivariate distribution function
in the max-domain of attraction of an extreme value distribution function
G. Up to location and scale, the marginals of G are determined by the
extreme value indices of the marginals of F . The dependence structure of G
can be described in various equivalent ways; in this paper we focus on the
spectral measure Φ introduced in de Haan and Resnick (1977). The spectral
or angular measure is a finite Borel measure on a compact interval, here
taken to be [0, π/2].

Given a random sample from F , statistical inference on the upper tail of
F falls apart into two pieces: estimation of the upper tails of its marginal
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distributions, which is well understood, and estimation of Φ, which we will
consider in this paper. The actual representation of the spectral measure
depends on the norm used on R

2; here we will consider the Lp norm for
every p ∈ [1,∞], with Φp denoting the corresponding spectral measure. The
most common choices in the literature are p = 1, 2, and ∞.

It is the aim of this paper to derive a nonparametric estimator of the
spectral measure, superior to its predecessors, and to establish its asymp-
totic normality. In Einmahl et al. (2001), a nonparametric estimator Φ̂∞
was proposed for Φ∞. This estimator, which we will refer to as the empirical
spectral measure, was shown to be asymptotically normal under the assump-
tion that Φ∞ has a density, excluding thereby the case of tail independence.
Moreover the empirical spectral measure is itself not a proper spectral mea-
sure because it violates the moment constraints characterizing the class of
spectral measures. A related estimator in a more restrictive framework was
proposed in Einmahl et al. (1997).

The contributions of our paper are threefold: first, to propose a nonpara-
metric estimator for the spectral measure which itself satisfies the moment
constraints; second, to allow for arbitrary Lp norms, p ∈ [1,∞]; third, to
prove asymptotic normality under flexible and easily verifiable conditions
that allow for spectral measures with atoms at 0 or π/2, including thereby
the case of tail independence. We do this in two steps: first we define for
every p ∈ [1,∞] the empirical spectral measure Φ̂p and extend the results in
Einmahl et al. (2001) under the weaker conditions mentioned above; second,
we use a nonparametric maximum empirical likelihood approach to enforce
the moment constraints, thereby obtaining an estimator Φ̃p that is itself a
genuine spectral measure. A simulation study shows that the new estimator
Φ̃p is substantially more efficient than the empirical spectral measure Φ̂p.

As the new estimator takes values in the class of spectral measures, it
can be easily transformed into estimators for the aforementioned other ob-
jects that can be used to describe the dependence structure of G. This
holds in particular for the Pickands (1981) dependence function and the sta-
ble tail dependence function (Drees and Huang, 1998; Einmahl et al., 2006;
Huang, 1992). For a general background on spectral measures and these
dependence functions as well as results for the corresponding estimators,
see for instance the monographs Coles (2001), Beirlant et al. (2004), and
de Haan and Ferreira (2006).

An alternative to the nonparametric approach in this paper is the para-
metric one (Coles and Tawn, 1991; Joe et al., 1992). Parametric models for
the spectral measure are usually defined for p = 1 because this choice tends
to lead to simpler formulae. Many parametric models, such as the asymmet-
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ric (negative) logistic and the asymmetric mixed models, allow the spectral
measure to have atoms at 0 and π/2.

The paper is organized as follows. In Section 2 we review the general
probabilistic theory for spectral measures. The asymptotic normality re-
sults for Φ̂p and Φ̃p are presented in Sections 3 and 4, respectively. In Sec-
tion 5 some theoretical examples are discussed and used in a simulation
study; moreover, the methods are applied to a sample of insurance indem-
nity claims taken from Frees and Valdez (1998) and to body measurement
data of the National Health and Nutrition Examination Survey 2005–2006
(National Center for Health Statistics, 2007). Sections 6 and 7 contain the
proofs of the results in Sections 3 and 4, respectively.

2. Spectral measures. Let (X1,X2) be a bivariate random vector with
continuous distribution function F and marginal distribution functions F1

and F2. Put

(2.1) Zj =
1

1 − Fj(Xj)
, j = 1, 2.

Define E = [0,∞]2 \ {(0, 0)}. Assume that

(2.2) sPr[s−1(Z1, Z2) ∈ · ] v→ µ( · ), s→ ∞,

where ‘
v→’ stands for vague convergence of measures (in E): for every continu-

ous f : E → R with compact support, lims→∞ sE[f(s−1(Z1, Z2))] =
∫

E
f dµ.

The exponent measure µ enjoys two crucial properties: homogeneity,

(2.3) µ(c · ) = c−1µ( · ), 0 < c <∞,

and standardized marginals,

(2.4) µ([z,∞] × [0,∞]) = µ([0,∞] × [z,∞]) = 1/z, 0 < z 6 ∞.

Note that µ is concentrated on [0,∞)2 \{(0, 0)}, i.e., µ([0,∞]2 \[0,∞)2) = 0.
Let ‖ · ‖ be an arbitrary norm on R

2; for convenience, assume that
‖(1, 0)‖ = 1 = ‖(0, 1)‖. Consider the following polar coordinates, (r, θ),
of (z1, z2) ∈ [0,∞)2 \ {(0, 0)}:

(2.5)
r = ‖(z1, z2)‖ ∈ (0,∞),

θ = arctan(z1/z2) ∈ [0, π/2].

As we will see later, the choice of radial coordinate r through the norm
has important implications; the choice of the angular coordinate θ is unim-
portant, that is, we could just as well have used z1/(z1 + z2) ∈ [0, 1] or
z1/‖(z1, z2)‖.
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Given the exponent measure µ and using polar coordinates (r, θ) as in
(2.5), define a Borel measure Φ on [0, π/2] by

(2.6) Φ( · ) = µ
(
{(z1, z2) ∈ [0,∞)2 : r > 1, θ ∈ · }

)
.

The spectral measure Φ admits the following interpretation in terms of
(Z1, Z2) in (2.1):

(2.7) sPr[‖(Z1, Z2)‖ > s, arctan(Z1/Z2) ∈ · ] v→ Φ( · ), s→ ∞.

By homogeneity of µ, see (2.3), for every µ-integrable f : E → R,

(2.8)

∫

E

f dµ =

∫

[0,π/2]

∫ ∞

0
f(z1(r, θ), z2(r, θ))r

−2 drΦ(dθ)

where z1(r, θ) = r sin θ/‖(sin θ, cos θ)‖ and z2(r, θ) = r cos θ/‖(sin θ, cos θ)‖
form the inverse of the polar transformation (2.5). By (2.8), in the po-
lar coordinate system (r, θ), the exponent measure µ is a product measure
r−2 drΦ(dθ). In particular, the exponent measure µ is completely deter-
mined by its spectral measure Φ. The standardization constraints (2.4) on
µ translate into moment constraints on Φ:

(2.9)

∫

[0,π/2]

sin θ

‖(sin θ, cos θ)‖Φ(dθ) = 1 =

∫

[0,π/2]

cos θ

‖(sin θ, cos θ)‖Φ(dθ).

Note that X1 and X2 are tail independent, i.e., sPr[Z1 > s, Z2 > s] → 0
as s → ∞, if and only if µ is concentrated on the coordinate axes, or,
equivalently, Φ is concentrated on {0, π/2}; in that case, Φ({0}) = 1 =
Φ({π/2}). On the other hand, the variables X1 and X2 are completely tail
dependent, i.e., sPr[Z1 > s, Z2 > s] → 1 as s → ∞, if and only if µ
is concentrated on the main diagonal, or, equivalently, Φ is concentrated
on {π/4}; in that case, Φ({π/4}) = ‖(1, 1)‖. In general, the total mass
Φ([0, π/2]) of a spectral measure is finite but even for a fixed norm it can vary
for different exponent measures µ, with one exception: in case of the L1 norm,
by addition of the two constraints in (2.9), Φ([0, π/2]) = 2 for every exponent
measure µ. The spectral measure was introduced in de Haan and Resnick
(1977); for more details on the results in this section see Beirlant et al. (2004)
and de Haan and Ferreira (2006).

Dividing the spectral measure Φ by its total mass yields a probability
measure Q on [0, π/2]:

(2.10) Q( · ) = Φ( · )/Φ([0, π/2]),
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which we coin the spectral probability measure. By (2.7)

(2.11) Pr[arctan(Z1/Z2) ∈ · | ‖(Z1, Z2)‖ > s]
d→ Q( · ), s→ ∞.

In words, Q is the limit distribution of the angle arctan(Z1/Z2) when the
radius ‖(Z1, Z2)‖ is large. The moment constraints (2.9) on Φ are equivalent
to the following moment constraint on Q:
(2.12)∫

[0,π/2]

sin θ

‖(sin θ, cos θ)‖Q(dθ) =

∫

[0,π/2]

cos θ

‖(sin θ, cos θ)‖Q(dθ) =: m(Q).

Conversely, we can reconstruct Φ from Q by

(2.13) Φ( · ) = Q( · )/m(Q).

The spectral probability measure Q allows nonparametric maximum likeli-
hood estimation, see Section 4. The estimator of Φ then follows through
(2.13).

In Einmahl et al. (2001), tail dependence is described via the measure Λ
arising as the vague limit in [0,∞]2 \ {(∞,∞)} of

(2.14) sPr[(s{1 − F1(X1)}, s{1 − F2(X2)}) ∈ · ] v→ Λ( · ), s→ ∞.

Let P be the probability measure on [0, 1]2 induced by the random vector
(U1, U2) := (1 − F1(X1), 1 − F2(X2)). Then (2.14) can be written as

(2.15) t−1P (t · ) v→ Λ( · ), t ↓ 0.

Comparing (2.14) with (2.2), we find that µ and Λ are connected through a
simple change-of-variables formula: for Borel sets B ⊂ [0,∞]2 \ {(∞,∞)},

(2.16) Λ(B) = µ
(
{(z1, z2) ∈ E : (1/z1, 1/z2) ∈ B}

)
.

From (2.14) or also from (2.3) and (2.4), it follows that

(2.17)
Λ(c · ) = cΛ( · ), 0 < c <∞,

Λ([0, u] × [0,∞]) = Λ([0,∞] × [0, u]) = u, 0 6 u <∞.

The equality above with u = 0 shows that Λ does not put any mass on the
coordinate axes. Combining (2.6) and (2.16), we find
(2.18)

Φ( · ) = Λ
(
{(u1, u2) ∈ (0,∞]2 : ‖(u−1

1 , u−1
2 )‖ > 1, arctan(u2/u1) ∈ · }

)
.
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1 xp(θ)
0

1

y = yp(x) y = x tan θ

Cp, θθ

p = 1

1 xp(θ)
0

1

y = yp(x) y = x tan θ

Cp, θθ

p = 2

Fig 1. The region Cp,θ in (2.20) for p = 1 (left) or p = 2 (right) and 0 < θ < π/2.

In particular, for u ∈ [0,∞),

Λ({∞} × (0, u]) = uΦ({0}),
Λ((0, u] × {∞}) = uΦ({π/2}).

The spectral measure corresponding to the Lp norm,

‖(z1, z2)‖p =

{
(|z1|p + |z2|p)1/p, if p ∈ [1,∞),

|z1| ∨ |z2|, if p = ∞,

will be denoted by Φp. Write

(2.19) yp(x) =






∞, if x ∈ [0, 1),
(

1 +
1

xp − 1

)1/p

if x ∈ [1,∞] and p ∈ [1,∞),

1 if x ∈ [1,∞] and p = ∞.

Note that for x > 1, yp(x) is the (smallest) value of y ∈ [1,∞] that solves
the equation ‖(x−1, y−1)‖p = 1. Now by (2.18),

Φp([0, θ]) = Λ(Cp,θ), θ ∈ [0, π/2],

where
(2.20)

Cp,θ =






([0,∞] × {0}) ∪ ({∞} × [0, 1]), if θ = 0,

{(x, y) : 0 6 x 6 ∞, 0 6 y 6 (x tan θ) ∧ yp(x)}, if 0 < θ < π/2,

{(x, y) : 0 6 x 6 ∞, 0 6 y 6 yp(x)}, if θ = π/2.
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Further, note that x tan θ < yp(x) if and only if x < xp(θ), where for θ ∈
[0, π/2],

(2.21) xp(θ) = ‖(1, cot θ)‖p =

{
(1 + cotp θ)1/p if p ∈ [1,∞),

1 ∨ cot θ if p = ∞.

The relation between yp(x), xp(θ) and Cp,θ is depicted in Figure 1.

Remark 2.1. In this paper we shall make no assumptions on the margin-
al distribution functions F1 and F2 whatsoever except for continuity. How-
ever, if in addition to (2.2) the marginal distribution functions F1 and F2

are in the max-domains of attraction of extreme value distribution func-
tions G1 and G2, then F is actually in the max-domain of attraction of a
bivariate extreme value distribution function G with marginals G1 and G2

and spectral measure Φ. More precisely, if (2.2) holds and if there exist real

sequences an > 0, bn, cn > 0, and dn such that Fn
1 (anx+ bn)

d→ G1(x) and

Fn
2 (cny + dn)

d→ G2(y) for all x, y ∈ R and as n→ ∞, then

Fn(anx+ bn, cny + dn) → G(x, y) = exp[−l{− logG1(x),− logG2(y)}],

for all x, y ∈ R. The function l on the right-hand side is called the stable

tail dependence function (Drees and Huang, 1998; Huang, 1992) and can be
expressed in terms of either Λ, µ, or Φ through

l(x1, x2) = Λ
(
{(u1, u2) ∈ [0,∞]2 : u1 6 x1 or u2 6 x2}

)

= µ
(
{(z1, z2) ∈ [0,∞]2 : z1 > x−1

1 or z2 > x−1
2 }

)

=

∫

[0,π/2]

max(x1 sin θ, x2 cos θ)

‖(sin θ, cos θ)‖ Φ(dθ),

where we used (2.8) for the final step. Standardizing the marginals of G to
the unit-Fréchet distribution yields the extreme value distribution function

(2.22) G∗(x1, x2) = exp{−l(1/x1, 1/x2)}, x1, x2 > 0.

In the notation of Coles and Tawn (1991), we have l(1/x1, 1/x2) = V (x1, x2).
The Pickands dependence function A : [0, 1] → [1/2, 1] is defined by A(v) =
l(1 − v, v) for v ∈ [0, 1] (Pickands, 1981); we have

G∗(x1, x2) = exp

{
−
(

1

x1
+

1

x2

)
A

(
x1

x1 + x2

)}
.
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The spectral measure H in Coles and Tawn (1991) and Joe et al. (1992) is
connected to our Φ1 through the relation

(2.23) H([0, w]) = Φ1(arctan{w/(1 − w)}), w ∈ [0, 1].

The Pickands dependence function A can be recovered from H by the for-
mulas

A(v) =

∫

[0,1]
max{w(1 − v), (1 − w)v}H(dw)

= 1 − v +

∫ v

0
H([0, w]) dw.(2.24)

Example 2.2 (Asymmetric logistic model). The asymmetric logistic
model with parameters r > 1, 0 6 ψ1, ψ2 6 1 is defined by its stable tail
dependence function

l(x1, x2) = (1 − ψ1)x1 + (1 − ψ2)x2 + {(ψ1x1)
r + (ψ2x2)

r}1/r

for (x1, x1) ∈ [0,∞)2 (Tawn, 1988). The special case ψ1 = ψ2 = 1 yields the
logistic model, originally due to Gumbel (1960). Tail independence arises for
r = 1 or ψ1ψ2 = 0, whereas complete tail dependence arises for ψ1 = ψ2 = 1
and r → ∞. It can be shown that for 1 < r < ∞, the spectral measure Φp

has point masses Φp({0}) = 1 − ψ2 and Φp({π/2}) = 1 − ψ1, while on the
interior (0, π/2) the measure Φp is absolutely continuous with density

dΦp

dθ
(θ) = (r − 1)(ψ1ψ2)

r(sinp θ + cosp θ)1/p(sin θ + cos θ)r−2

× (sin θ cos θ)r−2{(ψ1 cos θ)r + (ψ2 sin θ)r}1/r−2.

3. Empirical spectral measures. Let (Xi1,Xi2), i = 1, . . . , n, be in-
dependent bivariate random vectors from a common distribution function
F satisfying (2.2). Our aim is to estimate the spectral measure Φp corre-
sponding to the Lp norm for arbitrary p ∈ [1,∞]. For convenience, write
Φp(θ) = Φp([0, θ]) for θ ∈ [0, π/2].

Consider the left-continuous marginal empirical distribution functions:

(3.1) F̂j(xj) =
1

n

n∑

i=1

1(Xij < xj), xj ∈ R, j = 1, 2.

Define

(3.2) Ûij = 1 − F̂j(Xij) =
n+ 1 −Rij

n
, i = 1, . . . , n; j = 1, 2;
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here Rij =
∑n

l=1 1(Xlj 6 Xij) is the rank of Xij among X1j , . . . ,Xnj . Let

P̂n be the empirical measure of (Ûi1, Ûi2), i = 1, . . . , n, i.e.,

P̂n( · ) =
1

n

n∑

i=1

1{(Ûi1, Ûi2) ∈ · }.

Observe that the transformed data (Ûi1, Ûi2), i = 1, . . . , n, are no longer
independent. This dependence will contribute to the limiting distribution of
the estimators to be considered.

Let k = kn ∈ (0, n] be an intermediate sequence, i.e. k → ∞ and k/n→ 0
as n→ ∞. We find our estimator Φ̂p by using (2.15) and (2.18) with t = k/n
and P replaced by P̂n. In terms of distribution functions, this becomes

Φ̂p(θ) =
n

k
P̂n

(
k

n
Cp,θ

)

=
1

k

n∑

i=1

1{(n + 1 −Ri1)
−p + (n+ 1 −Ri2)

−p
> k−p,

n+ 1 −Ri2 6 (n+ 1 −Ri1) tan θ},

for θ ∈ [0, π/2] and with Cp,θ as in (2.20).

In Einmahl et al. (2001), the limiting behavior of Φ̂p has been derived in
case p = ∞. We now present a generalization to all Lp norms for p ∈ [1,∞].
More precisely, we will study the asymptotic behavior of the process

√
k{Φ̂p(θ) − Φp(θ)}, θ ∈ [0, π/2].

We will assume that

(3.3) Λ = Λc + Λd,

where Λc is absolutely continuous with a density λ, which is continuous on
[0,∞)2 \{(0, 0)}, and with Λd such that Λd([0,∞)2) = 0, Λd({∞}× [0, u]) =
uΦp({0}) and Λd([0, u] × {∞}) = uΦp({π/2}) for u ∈ [0,∞). In contrast
to in Einmahl et al. (2001), Φp is allowed to have atoms at 0 and π/2;
in particular tail independence is allowed. Also, the restriction of Φp to
(0, π/2) is absolutely continuous with a continuous density. This excludes
complete tail dependence, i.e. Φp being degenerate at π/4, in which case Λ
is concentrated on the diagonal. The homogeneity of Λ in (2.17) implies that
λ(cu1, cu2) = c−1λ(u1, u2) for all c > 0 and (u1, u2) ∈ [0,∞)2 \ {(0, 0)}.

Let Pn be the empirical measure of (Ui1, Ui2) = (1−F1(Xi1), 1−F2(Xi2)),
i = 1, . . . , n, and let Γjn(u) = n−1∑n

i=1 1(Uij 6 u), u ∈ [0, 1] and j ∈
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{1, 2}, be the corresponding marginal empirical distribution functions; for
u ∈ (1,∞], we set Γjn(u) = u. Furthermore, for θ ∈ [0, π/2], define the set

Ĉp,θ =
n

k

{
(u1, u2) ∈ [0,∞]2 \ {(∞,∞)} : (Γ1n(u1),Γ2n(u2)) ∈

k

n
Cp,θ

}
.

From the identity Γjn(u) = 1− F̂j(F
−1
j (1− u)) for u ∈ (0, 1) it follows that

P̂n

(
k

n
Cp,θ

)
= Pn

(
k

n
Ĉp,θ

)
.

This representation yields the following crucial decomposition: for θ ∈ [0, π/2],

√
k{Φ̂p(θ) − Φp(θ)} =

√
k

{
n

k
Pn

(
k

n
Ĉp,θ

)
− n

k
P

(
k

n
Ĉp,θ

)}

+
√
k

{
n

k
P

(
k

n
Ĉp,θ

)
− Λ(Ĉp,θ)

}

+
√
k{Λ(Ĉp,θ) − Λ(Cp,θ)}

=: Vn,p(θ) + rn,p(θ) + Yn,p(θ).(3.4)

The first term, Vn,p, features a local empirical process evaluated in a random
set Ĉp,θ. The second term, rn,p, is a bias term, which will vanish in the
limit under our assumptions. The third term, Yn,p, is due to the fact that
the marginal distributions are unknown and captures the effect of the rank
transformation in (3.1)–(3.2).

Next we will define the processes that will arise as the weak limits of the
processes Vn,p and Yn,p in (3.4). Define WΛ to be a Wiener process indexed
by the Borel sets of [0,∞]2 \ {(∞,∞)} and with ‘time’ Λ, i.e. a centered
Gaussian process with covariance function E[WΛ(C)WΛ(C ′)] = Λ(C ∩ C ′).
We can write, in the obvious notation, WΛ = WΛc + WΛd

, where the two
processes on the right are independent. Note that

(
WΛ(Cp,θ)

)
θ∈[0,π/2]

d
=
(
W (Φp(θ))

)
θ∈[0,π/2]

,

with W a standard Wiener process on [0,∞). Define W1(x) = WΛ([0, x] ×
[0,∞]) and W2(y) = WΛ([0,∞] × [0, y]) for x, y ∈ [0,∞). Note that W1 and
W2 are standard Wiener processes as well. For p ∈ [1,∞), define the process



J.H.J. EINMAHL AND J. SEGERS/TAIL DEPENDENCE ESTIMATION 11

Zc,p on [0, π/2] by

Zc,p(θ)

= 1(θ < π/2)

∫ xp(θ)

0
λ(x, x tan θ){W1(x) tan θ −W2(x tan θ)}dx

+






∫ ∞

xp(θ)
λ(x, yp(x)){W1(x)y

′
p(x) −W2(yp(x))}dx, if p <∞,

−W1(1)

∫ 1∨tan θ

1
λ(1, y) dy −W2(1)

∫ ∞

1∨cot θ
λ(x, 1) dx, if p = ∞,

with y′p the derivative of yp. Define Zd by

Zd(θ) = −Φp({0})W2(1), θ ∈ [0, π/2],

and write Zp = Zc,p + Zd. It is our aim to show that

(Vn,p, rn,p, Yn,p)
d→ (WΛ(Cp, ·), 0, Zp), n→ ∞.

This convergence and the decomposition in (3.4) then will yield the asymp-
totic behavior of

√
k(Φ̂p − Φ).

Assume that P is absolutely continuous with density p. Then the measure
t−1P (t · ), for t > 0, is absolutely continuous as well with density tp(tu1, tu2).
For 1 6 T <∞ and t > 0, define

(3.5) DT (t) :=

∫∫

LT

|tp(tu1, tu2) − λ(u1, u2)|du1 du2,

where LT = {(u1, u2) : 0 6 u1 ∧ u2 6 1, u1 ∨ u2 6 T}.

Theorem 3.1. Assume the framework of Section 2 and suppose Λ is as

in (3.3). Then, if D1/t(t) → 0 as t ↓ 0 and if the intermediate sequence k is

such that

(3.6)
√
kDn/k(k/n) → 0, n→ ∞,

then in D[0, π/2] and as n→ ∞,

(3.7)
√
k(Φ̂p − Φp)

d→WΛ(Cp, ·) + Zp =: αp.

The condition limt↓0 D1/t(t) = 0 in Theorem 3.1 implies Φp({0, π/2}) = 0
and thus Λd = 0. Indeed, in case Λd 6= 0, the convergence in (3.7) cannot
hold: when e.g. Φp({0}) > 0, we have, since Φ̂p(0) = 0,

√
k{Φ̂p(0)−Φp(0)} →

−∞. In contrast, the following result does allow Φp to have atoms at 0 or
π/2. Recall DT (t) in (3.5) and αp in (3.7).
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Theorem 3.2. Let η ∈ (0, π/4). Assume the framework of Section 2 and

suppose Λ is as in (3.3). Then, if D1(t) → 0 as t ↓ 0 and if the intermediate

sequence k is such that

(3.8)
√
k inf

T>0
{DT (k/n) + 1/T} → 0, n→ ∞,

then in D[η, π/2 − η] and as n→ ∞,

(3.9)
√
k(Φ̂p − Φp)

d→ αp.

In case of tail independence, i.e. Φp({0}) = Φp({π/2}) = 1 and λ = 0, we
have αp = 0.

Under a stronger condition on the sequence k, the convergence of the
process

√
k(Φ̂p − Φp) holds on the whole interval [0, π/2], provided that we

flatten the process on intervals [0, ηn] and [π/2−ηn, π/2], with ηn ∈ (0, π/4)
tending to zero sufficiently slowly. Define the transformation τn : [0, π/2] →
[0, π/2] by

(3.10) τn(θ) =





ηn if 0 6 θ < ηn,

θ if ηn 6 θ 6 π/2 − ηn,

π/2 − ηn if ηn < θ < π/2,

π/2 if θ = π/2.

Theorem 3.3. Let k be an intermediate sequence and let ηn = (k/n)a

for some fixed a ∈ (0, 1). Assume the framework of Section 2 and suppose Λ
is as in (3.3). If

(3.11)
√
k inf

T>2/ηn

{DT (k/n) + 1/T} → 0, n→ ∞,

then in D[0, π/2] and as n→ ∞,

(3.12)
√
k(Φ̂p − Φp) ◦ τn d→ αp.

Theorems 3.1 and 3.3 will be instrumental when establishing our main
results in the next section.

4. Enforcing the moment constraints. Fix p ∈ [1,∞] and let Qp be
the class of probability measures Qp on [0, π/2] such that

(4.1)

∫

[0,π/2]
f(θ)Qp(dθ) = 0
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where

(4.2) f(θ) = fp(θ) =
sin θ − cos θ

‖(sin θ, cos θ)‖p
, θ ∈ [0, π/2].

If Qp is the spectral probability measure of some exponent measure µ with
respect to the Lp norm, then Qp ∈ Qp by (2.12). Conversely, if Qp ∈ Qp,
then we can define an exponent measure µ through (2.8) and (2.13) which
has Qp as its spectral probability measure with respect to the Lp norm.
As before, denote distribution functions of measures under consideration by
Qp(θ) = Qp([0, θ]), etc.

In view of (2.10), we define the empirical spectral probability measure Q̂p

by

(4.3) Q̂p( · ) =
Φ̂( · )

Φ̂(π/2)
=

1

Nn

∑

i∈In

1(Θin ∈ · ),

where Nn = |In| and

Θin = arctan(Ûi2/Ûi1), i = 1, . . . , n;

In = {i = 1, . . . , n : ‖(Û−1
i1 , Û−1

i2 )‖p > n/k}.

Typically, ∫
f dQ̂p =

1

Nn

∑

i∈In

f(Θin)

is different from zero, in which case Q̂p does not belong to Qp, that is, Q̂p

is itself not a spectral probability measure.
Therefore, we propose to modify Q̂p such that the moment constraint

(4.1) is fulfilled and the new estimator does belong to Qp: define

Q̃p( · ) :=
∑

i∈In

p̃in1(Θin ∈ · )

where the weight vector (p̃in : i ∈ In) solves the following optimization
problem:

(4.4) maximize
∏

i pin,
constraints pin > 0 for all i ∈ In,∑

i pin = 1,∑
i pinf(Θin) = 0.

The thus obtained estimator Q̃p can be viewed as a maximum empirical
likelihood estimator (MELE) based on the sample {Θin : i ∈ In}, see the
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monograph Owen (2001). Actually, the optimization problem in (4.4) can
be readily solved by the method of Lagrange multipliers [see, e.g., Owen
(2001), p.22]: let µ̃n be the solution in (−1, 1) to the nonlinear equation

(4.5)
∑

i∈In

f(Θin)

1 + µ̃nf(Θin)
= 0;

and define

(4.6) p̃in =
1

Nn

1

1 + µ̃nf(Θin)
, i ∈ In,

then the vector (p̃in : i ∈ In) is the solution to (4.4). Observe that the
original estimator Q̂p corresponds to µ̃n = 0 and is the solution to (4.4)
without the final constraint

∑
i pinf(Θin) = 0.

Since Q̃p ∈ Qp, we can exploit the transformation formulas in Section 2
to define estimators of the spectral measure Φp: as in (2.13),

Φ̃p( · ) := Q̃p( · )/mp(Q̃p)

where for a bounded, measurable function h : [0, π/2] → R,

mp(h) := −
∫ π/2

0
h(θ) d

cos θ

‖(sin θ, cos θ)‖p
,

cf. (2.12). Further, for θ ∈ [0, π/2], define I(θ) =
∫
[0,θ] f(ϑ) dQp(ϑ) and

βp(θ) =
Φp(π/2)αp(θ) − αp(π/2)Φp(θ)

Φ2
p(π/2)

,

γp(θ) = βp(θ) +

∫
[0,π/2] βp df

∫
[0,π/2] f

2 dQp
I(θ),

δp(θ) =
mp(Qp)γp(θ) −mp(γp)Qp(θ)

m2
p(Qp)

.(4.7)

Note that under the assumptions of Theorem 4.1 below, Qp({π/4}) < 1 and
thus

∫
f2 dQp > 0, so that γp(θ) is well-defined.

The next two theorems, providing asymptotic normality of Φ̃p, are the
main results of this paper.

Theorem 4.1. Let the assumptions of Theorem 3.1 be fulfilled. Then

with probability tending to one, equation (4.5) admits a unique solution µ̃n
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and hence in this case the vector (p̃in : i ∈ In) in (4.6) is the unique solution

to (4.4). Also, in D[0, π/2] and as n→ ∞,

√
k(Q̃p −Qp)

d→ γp,(4.8)
√
k(Φ̃p − Φp)

d→ δp.(4.9)

Since Theorem 4.1 is based on Theorem 3.1, the spectral measure cannot
have atoms at 0 or π/2. The following result, based on Theorem 3.3, does
allow for such atoms.

Theorem 4.2. Fix η ∈ (0, π/4) and let ηn = (k/n)a for some 0 < a < 1.
Assume the framework of Section 2 and suppose Λ is as in (3.3). If

(4.10)
√
kD2/ηn

(k/n) +
√
kηn → 0, n→ ∞,

then in D[η, π/2 − η] and as n → ∞, the convergence in (4.8) and (4.9)
holds.

Remark 4.3. From (4.7), it is straightforward to express the limit pro-
cess δp in terms of the process αp and thus of WΛ. However, because of the
presence of the process Zp, no major simplification occurs. As a consequence,
we were not able to show that Φ̃p is asymptotically more efficient than Φ̂p.
However, the simulation study in Section 5 does indicate that enforcing the
moment constraints leads to a sizeable improvement of the estimator’s per-
formance.

Remark 4.4. Replacing Φ1 by Φ̃1 in (2.23)–(2.24) yields an estimator
Ã of the Pickands dependence function A that is itself a genuine Pickands
dependence function. The weak limit of the process

√
k(Ã−A) in the func-

tion space C[0, 1] can be easily derived from the one of
√
k(Φ̃1 − Φ1). Non-

parametric estimation of a Pickands dependence function in the domain-
of-attraction context was also studied in Capéraà and Fougères (2000) and
Abdous and Ghoudi (2005).

5. Examples, simulations, and real data analyses.

5.1. Examples.

Example 5.1 (Cauchy). Consider the bivariate Cauchy distribution on
(0,∞)2 with density (2/π)(1 + x2 + y2)−3/2 for x, y > 0. It follows that

Λ([0, x] × [0, y]) = x+ y − (x2 + y2)1/2, 0 6 x, y <∞.
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and

Φp(θ) =

∫ θ

0
‖(sinϑ, cos ϑ)‖p dϑ

for θ ∈ [0, π/2]. It can be shown that D1/t(t) = O(t) as t ↓ 0. Therefore,

Theorems 3.1 and 4.1 hold when k = o(n2/3) as n → ∞. In Figure 2,
the function Φp is plotted for p ∈ {1, 2, 3,∞} together with trajectories of
the empirical spectral measure and the MELE for a single sample of size
n = 1000 and at k = 30. Observe that both estimators share the same set
of atoms but with possibly different weights.

The bivariate Cauchy distribution on the full plane R
2 has density func-

tion (2π)−1(1 + x2 + y2)−3/2 for x, y ∈ R and spectral measure

Φp(θ) =
1

2

(
1 +

∫ θ

0
‖(sinϑ, cos ϑ)‖p dϑ+ 1(θ = π/2)

)
.

In particular, Φp({0}) = Φp({π/2}) = 1/2. For every 0 < a < 1 and ηn =
(k/n)a, we find D2/ηn

(k/n) = O((k/n)2−a) as n→ ∞. Hence the conclusions

of Theorems 3.3 and 4.2 hold provided k = o(n2a/(2a+1)) as n→ ∞. In fact,
the results of Theorem 4.2 can be shown to hold when k = o(n2/3) as n→ ∞.

Example 5.2 (Mixture). For r ∈ [0, 1], consider the bivariate distribu-
tion function

F (x, y) =

(
1 − 1

x

)(
1 − 1

y

)(
1 +

r

x+ y

)
, x, y > 1;

cf. de Haan and Resnick (1977, Example 3). Its density can be written as a
mixture of two densities, (1 − r)f1(x, y) + rf2(x, y), where

f1(x, y) =
1

x2y2
, f2(x, y) =

2

(x+ y)3

(
1 +

x2 + 3xy + y2

x2y2

)
, x, y > 1.

Note that f1 is the density of two independent Pareto(1) random variables.
Obviously for r = 0 we have (tail) independence. The law P of (1−F1(X), 1−
F2(Y )) = (1/X, 1/Y ) is determined by

P ([0, u] × [0, v]) = uv

(
1 + r

(1 − u)(1 − v)

u+ v

)
, 0 < u, v 6 1,

hence
Λ([0, x] × [0, y]) = r

xy

x+ y
, 0 < x, y <∞.
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For p ∈ [1,∞], the corresponding spectral measure Φp satisfies Φp({0}) =
Φp({π/2}) = 1 − r and

Φp(θ) = 1 − r + 2r

∫ θ

0

‖(sin ϑ, cos ϑ)‖p

(cos ϑ+ sinϑ)3
dϑ+ (1 − r)1(θ = π/2)

for θ ∈ [0, π/2]. It can be seen that DT (t) = TO(t) as t ↓ 0, uniformly
in T > 0. As a consequence, conditions (3.11) and (4.10) in Theorems 3.3
and 4.2 hold for a = 1/2 provided k = o(n1/2) as n → ∞. If r = 1,
the spectral measure Φp has no atoms. Then D1/t(t) = O(t) as t ↓ 0, so

that condition (3.6) in Theorems 3.1 and 4.1 holds provided k = o(n2/3) as
n→ ∞.

5.2. Simulations. In order to compare the two spectral measure estima-
tors, a simulation study was conducted involving the following distributions:

• Figure 3: the extreme-value distribution G∗ in (2.22) with logistic de-
pendence structure r = 2 and ψ1 = ψ2 = 1 (Example 2.2);

• Figure 4: the bivariate Cauchy distribution on (0,∞)2 (Example 5.1);
• Figure 5: the mixture distribution with r = 0.5 (Example 5.2).

For each distribution, 1000 samples of size n = 1000 were drawn. For each
sample, the empirical spectral measure and the MELE were computed for
various ranges of k and at p ∈ {1, 2, 3,∞}. For each estimate, the In-
tegrated Squared Errors

∫ b
a (Φ̂p − Φp)

2 and
∫ b
a (Φ̃p − Φp)

2 were computed,
where (a, b) = (0, π/2) for the logistic model and the Cauchy distribution
on (0,∞)2 whereas (a, b) = (0.05π/2, 0.95π/2) for the mixture model. Next,
the ISEs were averaged out over the 1000 samples, yielding the estimates of
the Mean Integrated Squared Errors which are displayed in the figures.

From the plots, it can be seen that in all these cases the minimum MISE of
the MELE is smaller than the one of the empirical spectral measure. Overall
the MELE outperforms the empirical spectral measure, but in two cases,
away from the minimum MISE, the empirical spectral measure performs
slightly better than the MELE (Figure 5). Moreover, most of the time, the
MISE is decreasing in p. Finally, the presence of atoms at the endpoints has
an adverse effect on the estimators.

5.3. Case studies.

5.3.1. Loss-ALAE data. In Frees & Valdez (1998), copula fitting was
illustrated on a data-set of 1500 insurance company indemnity claims, dis-
played in Figure 6. Each claim consists of an indemnity payment (Loss) and
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an allocated loss adjustment expense (ALAE), that is, an expense specifi-
cally attributable to the settlement of the individual claim such as lawyer’s
fees and investigation expenses.

The problem is which bivariate tail dependence structure to fit to these
data. The first question is whether the data are tail independent or not. If
yes, then the spectral measure should be the sum of the Dirac measures at 0
and π/2. In Figure 6, the MELE (p = 1, k = 40) shows substantial increase
away from the endpoints, in clear contrast to the case of independence, for
which the spectral measure is flat on (0, π/2). Note that a formal test for tail
independence is not possible, since under the null hypothesis of tail inde-
pendence the limit process αp in Theorem 3.1 (and hence all limit processes
in subsequent theorems) is degenerate at zero; in contrast, tests with tail
independence in the alternative hypothesis can be constructed in the more
specialized framework of Ledford and Tawn (1996). By way of illustration,
we compared the MELE for the Loss-ALAE data with the MELE for a
random sample of the same size from the bivariate lognormal distribution
fitted to the data (right-hand panel of Figure 6). The MELE for this sample
is compared to the MELE of the Loss-ALAE data in Figure 7 (left-hand
panel). Despite the fact that the correlation (on log scale) of both samples
is equal to 0.44, the MELE of the lognormal sample is much closer to the
spectral measure of independence (which is the true one for this sample).

The next question is then which model to fit to the data. In Genest et al.
(1998), the logistic model (Example 2.2) is proposed, while in Beirlant et al.
(2004, Chapter 9), both the logistic (r = 0.73) and the asymmetric logistic
model (r = 0.66, ψ1 = 1, ψ2 = 0.89) are fitted. In the left-hand panel of
Figure 7, the spectral measures (p = 1) of both parametric models are dis-
played and compared to the MELE. The asymmetric logistic model follows
the MELE much more closely. Interestingly, the spectral measure of the fit-
ted asymmetric logistic model does not have an atom at π/2 while it has an
atom at 0 of size 1 − ψ2 = 0.11. Formal goodness-of-fit tests based on the
stable tail dependence function l are described in de Haan et al. (2008) and
Einmahl et al. (2008).

5.3.2. NHANES data. We consider the variables Standing Height (cm)
and Weight (kg) for females from the National Health and Nutrition Exami-
nation Survey (NHANES) 2005–2006 (National Center for Health Statistics,
2007). Data of females of age 18-64 years only have been retained; this leads
to a sample size of 2237. The MELE of the spectral measure (p = 1) has been
computed for k ∈ {25, 50} and compared to the spectral measure for tail
independence. Although the data have a non-negligible positive correlation
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(0.283), the MELE strongly suggests tail independence, since it hardly shows
any increase away from the endpoints 0 and π/2. The conclusion is that ex-
tremely tall women are not extremely heavy and conversely. This nicely
illustrates the difference between (in)dependence and tail (in)dependence.
Similar results were obtained for the data for males.

6. Proofs of Theorems 3.1–3.3.

Proof of Theorem 3.1. A. We first prove weak convergence of the
process

√
k(Φ̂p − Φp) in D[0, π/4]. More precisely, with ∆ ∈ {1, 1

2 ,
1
3 , . . .},

we will show that for probabilistically equivalent versions of the processes
involved and any ε > 0,

(6.1) lim
∆↓0

lim sup
n→∞

Pr

{
sup

θ∈[0,π/4]

∣∣∣
√
k{Φ̂p(θ) − Φp(θ)}

− {WΛ(Cp,θ) + Zp(θ)}
∣∣∣ > 3ε

}
= 0,

where Φ̂p = Φ̂p,∆ and WΛ = WΛ,∆. In part B below, we will prove weak
convergence in D[0, π/2].

Fix ∆ ∈ {1, 1
2 ,

1
3 , . . .} and M > 1; later on, M will be taken large. Let

A′ = {A ∩ A′ : A,A′ ∈ A}, where A = A(∆,M) is a Vapnik–C̆ervonenkis
(VC) class of sets defined as follows. For m = 0, 1, 2, . . . , 1

∆ − 1 define

I∆(m, θ) =





[m∆xp(θ), (m+ 1)∆xp(θ)] if θ ∈ (0, π/4],

[0,∞) if θ = 0 and m = 0,

∅ if θ = 0 and m > 0;

J∆(m) = [yp(1 + (21/p − 1)(m+ 1)∆), yp(1 + (21/p − 1)m∆)].

Set Ã to be the class containing all the following sets:

⋃ 1
∆
−1

m=0

{
(x, y) : x ∈ I∆(m), 0 6 y 6 x tan θ +Bm(x tan θ)

1
16

}
,

for some θ ∈ [0, π/4] and B0, B1, . . . , B 1
∆
−1 ∈ [−1, 1],

⋃ 1
∆
−1

m=0 {(x, y) : x ∈ J∆(m), x > xp(θ), 0 6 y 6 yp(x)(1 +Km)} ,
for some θ ∈ [0, π/4] and K0, K1, . . . ,K 1

∆
−1 ∈ [−1

2 ,
1
2 ],

{(x, y) : x 6 a}, {(x, y) : y 6 a}, and
{(x, y) : x 6 a or y 6 a} , for some a ∈ [0,M ].

Next define Ãs = {As : A ∈ Ã}, where, forA ∈ Ã, As = {(x, y) : (y, x) ∈ A}.
Finally define A = Ã ∪ Ãs.
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From limt↓0 D1/t(t) = 0, t−1P ([0,∞] × [0, t]) = Λ([0,∞] × [0, 1]) = 1
(0 < t 6 1), and the homogeneity of λ we obtain

(6.2) lim
t↓0

sup
A∈A′

∣∣∣t−1P (tA) − Λ(A)
∣∣∣ = 0,

for all ∆ ∈ {1, 1
2 ,

1
3 , . . .} and M > 1. Theorem 3.1 in Einmahl (1997) now

yields our basic convergence result: for a special construction (but keeping
the same notation) we have

(6.3) sup
A∈A

∣∣∣
√
k
{

n
kPn

(
k
nA
)
− n

kP
(

k
nA
)}

−WΛ(A)
∣∣∣ a.s.−−→ 0, n→ ∞.

Throughout, we will work within this special construction.
In the sequel we can and will redefine Ĉp,θ, θ ∈ [0, π/4], by

{
(x, y) : 0 6 x 6 ∞, y > 0, y 6

n
kQ2n

(
(tan θ)Γ1n

(
k
nx
))
,

y 6
n
kQ2n

(
k
nyp

(
n
k Γ1n

(
k
nx
)))}

,

where Qjn is the quantile function corresponding to Γjn, j = 1, 2, with
Qjn(y) := 0 for 0 6 y 6 (2n)−1 by convention. Define the marginal tail
empirical processes by

wjn(x) =
√
k
{

n
k Γjn

(
k
nx
)
− x

}
, x > 0, j = 1, 2,

and the marginal tail quantile processes by

vjn(x) =
√
k
{

n
kQjn

(
k
nx
)
− x

}
, x > 0, j = 1, 2.

Note that wjn and vjn converge almost surely to Wj and −Wj, respectively,
for j = 1, 2, uniformly on [0,M ]. Observe that for x > 0,

(6.4) n
kQ2n

(
(tan θ)Γ1n

(
k
nx
))

= x tan θ +
zn,θ(x)√

k

where

(6.5) zn,θ(x) = w1n(x) tan θ + v2n

(
x tan θ +

w1n(x)√
k

tan θ

)
.

Also

(6.6) n
kQ2n

(
k
nyp

(
n
k Γ1n

(
k
nx
)))

= yp

(
x+

w1n(x)√
k

)
+

1√
k
v2n

(
yp

(
x+

w1n(x)√
k

))
.
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We will treat the terms Vn,p(θ), Yn,p(θ), and rn,p(θ) from (3.4) in paragraphs
A.1–3 respectively.

A.1. First we deal with Vn,p(θ) in (3.4). Set

Ĉp,θ,1 = {(x, y) ∈ Ĉp,θ : x < xp(θ)} and Ĉp,θ,2 = Ĉp,θ \ Ĉp,θ,1 .

We focus on both sets separately when considering Vn,p(θ). For p = ∞,
Ĉp,θ,1 has been dealt with in Einmahl et al. (2001). We will omit the small

modifications that are needed for general p ∈ [1,∞]. However for Ĉp,θ,2, the
case p = ∞ is trivial compared to p ∈ [1,∞). Therefore we will consider

Vn,p,2(θ) :=
√
k
{

n
kPn

(
k
nĈp,θ,2

)
− n

kP
(

k
nĈp,θ,2

)}

in detail now.
Recall zn,θ(x) in (6.5) and define sn(x) through

yp

(
x+

w1n(x)√
k

)
+

1√
k
v2n

(
yp

(
x+

w1n(x)√
k

))
= yp(x)

(
1 +

sn(x)√
k

)
.

Further, put

W+
m,∆,θ = sup

x∈J∆(m)

x>xp(θ)

{
sn(x) ∧

(
zn,θ(x)

yp(x)
+
√
k

(
x tan θ

yp(x)
− 1

))}
,

W−
m,∆,θ = inf

x∈J∆(m)

x>xp(θ)

{
sn(x) ∧

(
zn,θ(x)

yp(x)
+
√
k

(
x tan θ

yp(x)
− 1

))}
.

Set, for either choice of sign,

R±
m,∆,θ =

{
(x, y) : x ∈ J∆(m), x > xp(θ), 0 6 y 6 yp(x)

(
1 +

W±
m,∆,θ√
k

)}
,

and

N±
∆,θ =

1
∆
−1⋃

m=0

R±
m,∆,θ.

We have

Vn,p,2(θ) 6
√
k
{

n
kPn

(
k
nN

+
∆,θ

)
− n

kP
(

k
nN

+
∆,θ

)}
(6.7)

+
√
kn

kP
(

k
n

(
N+

∆,θ \N−
∆,θ

))

=: V +
n,p,2(θ) + rn,p,2(θ);
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similarly

Vn,p,2(θ) >
√
k
{

n
kPn

(
k
nN

−
∆,θ

)
− n

kP
(

k
nN

−
∆,θ

)}
(6.8)

−
√
k n

kP
(

k
n

(
N+

∆,θ \N−
∆,θ

))

=: V −
n,p,2(θ) − rn,p,2(θ).

We first deal with rn,p,2(θ) and next with V ±
n,p,2(θ). Using (3.6) and well-

known results on tail empirical and tail quantile processes (Csörgő and Horváth,
1993; Einmahl, 1997) we can show that, as n→ ∞,

(6.9) sup
θ∈[0,π/4]

∣∣∣rn,p,2(θ) −
√
kΛ
(
N+

∆,θ \N−
∆,θ

)∣∣∣ p→ 0.

Now consider
sup

θ∈[0,π/4]

√
kΛ
(
N+

∆,θ \N−
∆,θ

)
.

Set cm = yp(1 + (21/p − 1)m∆) ∨ xp(θ) and note that

√
kΛ
(
N+

∆,θ \N−
∆,θ

)
6

√
k

1
∆
−1∑

m=0

∫ cm

cm+1

∫ yp(x)(1+W+
m,∆,θ

/
√

k)

yp(x)(1+W−
m,∆,θ

/
√

k)
λ(x, y) dy dx.

Setting y = yp(x)(1 + z/
√
k), we can rewrite the right-hand side of the

previous display as

1
∆
−1∑

m=0

∫ cm

cm+1

yp(x)

∫ W+
m,∆,θ

W−
m,∆,θ

λ
(
x, yp(x)

(
1 + z√

k

))
dz dx

=

1
∆
−1∑

m=0

∫ cm

cm+1

∫ W+
m,∆,θ

W−
m,∆,θ

1

1 + z√
k

λ

(
(xp − 1)1/p

1 + z√
k

, 1

)
dz dx

=

1
∆
−1∑

m=0

∫ W+
m,∆,θ

W−
m,∆,θ

∫ cm

cm+1

1

1 + z√
k

λ

(
(xp − 1)1/p

1 + z√
k

, 1

)
dxdz

=

1
∆
−1∑

m=0

∫ W+
m,∆,θ

W−
m,∆,θ

∫ (c
p
m−1)1/p

1+W−
m,∆,θ

/
√

k

(c
p
m+1

−1)1/p

1+W+
m,∆,θ

/
√

k

( {(1 + z√
k
)v}p

1 + {(1 + z√
k
)v}p

)1−1/p

λ(v, 1) dv dz.



J.H.J. EINMAHL AND J. SEGERS/TAIL DEPENDENCE ESTIMATION 23

The integrand is bounded by λ(v, 1), whence

√
kΛ
(
N+

∆,θ \N−
∆,θ

)
6 max

m∈{0,1,..., 1
∆
−1}

(
W+

m,∆,θ −W−
m,∆,θ

)
(6.10)

·
1
∆
−1∑

m=0

∫ (c
p
m−1)1/p

1+W−
m,∆,θ

/
√

k

(c
p
m+1

−1)
1/p

1+W+
m,∆,θ

/
√

k

λ (v, 1) dv.

We have

(6.11) sn(x) =
1

yp(x)

√
k

{
yp

(
x+

w1n(x)√
k

)
− yp(x)

}

+
1

yp(x)
v2n

(
yp

(
x+

w1n(x)√
k

))
.

Now from the behavior of tail empirical and tail quantile processes it read-
ily follows that supx∈[21/p,∞) |sn(x)| = Op(1). Hence the right-hand side of
(6.10) can be bounded, with probability tending to one, by

3 max
m∈{0,1,..., 1

∆
−1}

(
W+

m,∆,θ −W−
m,∆,θ

) ∫ ∞

0
λ(v, 1) dv.

As Λ has uniform marginals, necessarily
∫∞
0 λ(v, 1) dv 6 1. So in summary

we have for fixed ∆ and with probability tending to one,

(6.12) sup
θ∈[0,π/4]

√
kΛ
(
N+

∆,θ \N−
∆,θ

)

6 3 sup
θ∈[0,π/4]

max
m∈{0,1,..., 1

∆
−1}

(
W+

m,∆,θ −W−
m,∆,θ

)
.

From the behavior of sn it follows that for any δ > 0,

lim
∆↓0

lim sup
n→∞

Pr

{
sup

θ∈[0,π/4]
max

m∈{0,1,..., 1
∆
−1}

(
W+

m,∆,θ −W−
m,∆,θ

)
> δ

}
= 0,

and hence, by (6.9),

(6.13) lim
∆↓0

lim sup
n→∞

Pr

{
sup

θ∈[0,π/4]
rn,p,2(θ) >

ε

2

}
= 0.
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Next consider V ±
n,p,2(θ), for either choice of sign. Since

lim
n→∞Pr{N±

∆,θ ∈ Ã, for all θ ∈ [0, π/4]} = 1,

we have, using (6.3),

(6.14) sup
θ∈[0,π/4]

∣∣∣V ±
n,p,2(θ) −WΛ

(
N±

∆,θ

)∣∣∣ p→ 0, n→ ∞.

But with similar calculations as for (6.12) we obtain

Λ
(
N±

∆,θ 4 Cp,θ,2

)
6

3√
k

max
m∈{0,1,..., 1

∆
−1}

∣∣∣W±
m,∆,θ

∣∣∣

with Cp,θ,2 = {(x, y) ∈ Cp,θ : x > xp(θ)} . Since

sup
θ∈[0,π/4]

max
m∈{0,1,..., 1

∆
−1}

∣∣∣W±
m,∆,θ

∣∣∣ = Op(1), n→ ∞,

we have for any ∆ ∈ {1, 1
2 ,

1
3 , . . .},

sup
θ∈[0,π/4]

Λ
(
N±

∆,θ 4 Cp,θ,2

)
p→ 0, n→ ∞.

Hence, since WΛ is uniformly continuous on A with respect to the pseudo-
metric Λ(A4A′) for A,A′ ∈ A,

(6.15) sup
θ∈[0,π/4]

∣∣∣WΛ

(
N±

∆,θ

)
−WΛ (Cp,θ,2)

∣∣∣ p→ 0, n→ ∞.

Combining (6.7), (6.8), (6.13), (6.14) and (6.15), we now have proven

lim
∆↓0

lim sup
n→∞

Pr

{
sup

θ∈[0,π/4]
|Vn,p,2(θ) −WΛ (Cp,θ,2)| > ε

}
= 0.

This, in conjunction with the aforementioned result for Ĉp,θ,1, yields

(6.16) lim
∆↓0

lim sup
n→∞

Pr

{
sup

θ∈[0,π/4]
|Vn,p(θ) −WΛ (Cp,θ)| > 2ε

}
= 0.

A.2. Next we consider Yn,p(θ) =
√
k{Λ(Ĉp,θ) − Λ(Cp,θ)}. We will show

that

(6.17) sup
θ∈[0,π/4]

|Yn,p(θ) − Zp(θ)|
p→ 0, n→ ∞.
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Again, we will only consider Ĉp,θ,2. The other part, Ĉp,θ,1, can be handled
as in Einmahl et al. (2001); only minor modifications are needed.

So we will need to show that, as n→ ∞,

(6.18) sup
θ∈[0,π/4]

∣∣∣∣
√
k{Λ(Ĉp,θ,2) − Λ(Cp,θ,2)}

−
∫ ∞

xp(θ)
λ (x, yp(x)) {W1(x)y

′
p(x) −W2(yp(x))}dx

∣∣∣∣
p→ 0.

Observe, with zn,θ and sn as in (6.5) and (6.11), respectively, that

(6.19)
√
k{Λ(Ĉp,θ,2) − Λ(Cp,θ,2)}

=
√
k

∫ ∞

xp(θ)

∫ yp(x){1+šn(x)/
√

k}

yp(x)
λ(x, y) dy dx,

where

šn(x) = sn(x) ∧
{
zn,θ(x)

yp(x)
+

√
k

(
x tan θ

yp(x)
− 1

)}
.

Since for fixed x > xp(θ) the expression
√
k
(

x tan θ
yp(x) − 1

)
tends to infinity, it

follows that we can (and will) replace šn(x) by sn(x) in the integral on the
right-hand side of (6.19). Write

s(x) =
1

yp(x)
{W1(x)y

′
p(x) −W2(yp(x))}.

Now

sup
θ∈[0,π/4]

∣∣∣∣∣∣

√
k

∫ ∞

xp(θ)

∫ yp(x)

(
1+

sn(x)√
k

)

yp(x)
λ(x, y) dy dx

−
∫ ∞

xp(θ)
yp(x)λ (x, yp(x)) s(x) dx

∣∣∣∣∣

6 sup
θ∈[0,π/4]

∣∣∣∣∣∣

√
k

∫ ∞

xp(θ)

∫ yp(x)

(
1+

sn(x)
√

k

)

yp(x)

(
1+

s(x)√
k

) λ(x, y) dy dx

+
√
k

∫ ∞

xp(θ)

∫ yp(x)

(
1+

s(x)
√

k

)

yp(x)
λ(x, y) dy dx−

∫ ∞

xp(θ)
yp(x)λ (x, yp(x)) s(x) dx

∣∣∣∣∣∣
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6 sup
θ∈[0,π/4]

∣∣∣∣∣

∫ ∞

xp(θ)

∫ sn(x)

s(x)
yp(x)λ

(
x, yp(x)

(
1 +

z√
k

))
dz dx

∣∣∣∣∣

+ sup
θ∈[0,π/4]

∣∣∣∣∣

∫ ∞

xp(θ)

∫ s(x)

0
yp(x)

[
λ

(
x, yp(x)

(
1 +

z√
k

))
− λ (x, yp(x))

]
dz dx

∣∣∣∣∣

=: T1 + T2.

Since λ(v, 1) = v−1λ(1, 1/v) and by continuity of λ on [0,∞)2 \ {(0, 0)},
we have limv→∞ λ(v, 1) = 0 and thus supv>0 λ(v, 1) < ∞. For some (large)
M > 2

T1 6 sup
θ∈[0,π/4]

∣∣∣∣
∫ M∨xp(θ)

xp(θ)

∫ sn(x)

s(x)

1

1 + z√
k

λ

(
(xp − 1)1/p

1 + z√
k

, 1

)
dz dx

∣∣∣∣

+

∣∣∣∣
∫ ∞

M

∫ sn(x)

s(x)
λ
(
(xp − 1)1/p, 1 + z√

k

)
dz dx

∣∣∣∣ =: T1,1 + T1,2.

We first show

(6.20) sup
21/p6x6M

|sn(x) − s(x)| p→ 0, n→ ∞.

Define

s̃n(x) =
y′p(x)

yp(x)
w1n(x) +

1

yp(x)
v2n

(
yp

(
x+

w1n(x)√
k

))
.

Then it follows from the mean-value theorem and the almost sure conver-
gence of w1n to W1, uniformly on [0,M ], that

sup
21/p6x6M

|sn(x) − s̃n(x)| p→ 0, n→ ∞.

It also follows easily that

sup
21/p6x6M

|s̃n(x) − s(x)| p→ 0, n→ ∞,

whence (6.20). We have with probability tending to one,

T1,1 6 2M sup
v>0

λ(v, 1) sup
21/p6x6M

|sn(x) − s(x)|,

which, because of (6.20), tends to 0 in probability (for any M > 2). Let
κ > 0 and set δ =

√
κ/2. Using again (6.20) and the behavior of W1 near
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infinity, we see that for large enough M and with probability tending to one,

T1,2 6

∫ ∞

M

∫ −W2(1)+δ

−W2(1)−δ
λ
(
(xp − 1)1/p, 1 + z√

k

)
dz dx

=

∫ −W2(1)+δ

−W2(1)−δ

∫ ∞

M

1

1 + z√
k

λ

(
(xp − 1)1/p

1 + z√
k

, 1

)
dxdz

6

∫ −W2(1)+δ

−W2(1)−δ

∫ ∞

1
2
(Mp−1)1/p

( {(1 + z√
k
)v}p

1 + {(1 + z√
k
)v}p

)1−1/p

λ(v, 1) dv dz

6

∫ −W2(1)+δ

−W2(1)−δ
δ dz = 2δ2 = κ/2,

whence

(6.21) lim
M→∞

lim sup
n→∞

Pr{T1 > κ} = 0.

Now consider T2. Write ‖s‖ = sup21/p6x6∞ |s(x)| and

Dn = sup
x>21/p

−‖s‖6z6‖s‖

∣∣∣λ
(
(xp − 1)1/p, 1 + z√

k

)
− λ

(
(xp − 1)1/p, 1

)∣∣∣ .

For M > 21/p,

T2 = sup
θ∈[0,π/4]

∣∣∣∣
∫ ∞

xp(θ)

∫ s(x)

0

{
λ
(
(xp − 1)1/p, 1 + z√

k

)
− λ

(
(xp − 1)1/p, 1

)}
dz dx

∣∣∣∣

6

∫ M

21/p

∫ ‖s‖

−‖s‖
Dn dz dx

+

∫ ∞

M

∫ ‖s‖

−‖s‖

{
λ
(
(xp − 1)1/p, 1 + z√

k

)
+ λ

(
(xp − 1)1/p, 1

)}
dz dx.

Clearly, as n→ ∞,

∫ M

21/p

∫ ‖s‖

−‖s‖
Dn dz dx 6 2M‖s‖Dn

p→ 0,
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and also, with probability tending to one,

∫ ∞

M

∫ ‖s‖

−‖s‖

{
λ
(
(xp − 1)1/p, 1 + z√

k

)
+ λ

(
(xp − 1)1/p, 1

)}
dz dx

=

∫ ∞

M

∫ ‖s‖

−‖s‖

1

1 + z√
k

λ

(
(xp − 1)1/p

1 + z√
k

, 1

)
dz dx

+

∫ ∞

M

∫ ‖s‖

−‖s‖
λ
(
(xp − 1)1/p, 1

)
dz dx

6

∫ ‖s‖

−‖s‖

∫ ∞

1
2
(Mp−1)1/p

λ(v, 1) dv dz +

∫ ‖s‖

−‖s‖

∫ ∞

(Mp−1)1/p
λ(u, 1) dudz

6 4‖s‖
∫ ∞

1
2
(Mp−1)1/p

λ(v, 1) dv.

As a result,

(6.22) lim
M→∞

lim sup
n→∞

Pr{T2 > κ} = 0.

Combining (6.21)) and (6.22)) yields (6.18), which, in conjunction with
the aforementioned result for Λ(Ĉp,θ,1), yields (6.17).

A.3. We now consider rn,p(θ) in (3.4). From (6.4), (6.6), (3.6), and the
behavior of tail empirical and tail quantile processes, it follows that

(6.23) sup
θ∈[0,π/4]

|rn,p(θ)|
p→ 0 as n→ ∞.

Combining (6.16), (6.17) and (6.23) yields (6.1). So actually we proved the
theorem for θ ∈ [0, π/4].

B. Observe that, using a symmetry argument, it rather easily follows from
(6.1) with θ = π/4 that

lim
∆↓0

lim sup
n→∞

Pr
[∣∣∣
√
k{Φ̂p(π/2) − Φp(π/2)}

− {WΛ(Cp,π/2) + Zp(π/2)}
∣∣∣ > 6ε

]
= 0.

Observe in particular that the first term of Zc,p(π/4) cancels out with the
similar term coming from the mirror image (with respect to the line y = x)
of Cp,π/4. By a similar symmetry argument, observing that for θ ∈ (π/4, π/2)
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(the closure of) Cp, π
2
\ Cp,θ is the mirror image of Cp, π

2
−θ, it follows that

(6.24) lim
∆↓0

lim sup
n→∞

Pr

[
sup

θ∈(π/4,π/2]

∣∣∣
√
k{Φ̂p(θ) − Φp(θ)}

− {WΛ(Cp,θ) + Zp(θ)}
∣∣∣ > 9ε

]
= 0.

Combining (6.1) and (6.24) completes the proof.

Proof of Theorem 3.2. The proof of this theorem follows in the same
way as that of Theorem 3.1; only small adaptations are needed, including
the obvious adaptation of the VC class A. The main difference between
both results is the weaker condition (3.8) which allows Λ to put mass on
{∞} × [0,∞) or [0,∞) × {∞}; on the other hand θ is bounded away from
0 and π/2 in the present result. In the limit process, the term WΛ(Cp,θ)
stays the same as in Theorem 3.1 but with weaker conditions on Λ; the term
Zp(θ) = Zc,p(θ) + Zd(θ) may now be different from that in Theorem 3.1,
since there Zd = 0, which might not be the case here. Therefore, we confine
ourselves to explaining how condition (3.8) is set to use and to the adaptation
of that part of the proof that deals with Zd.

Condition (3.8) implies that for some sequence Tn

(6.25)
√
kDTn(k/n) +

√
k/Tn + 1/T 1/2

n → 0, n→ ∞.

We focus on the bias term supθ∈[η,π/4] |rn,p(θ)|, see (3.4). For θ ∈ [η, π/4],

write Ĉp,θ = C1 ∪ C2 ∪ C3, where

C1 = Ĉp,θ ∩ ([0, Tn] × [0,∞]),

C2 = Ĉp,θ ∩
(
[Tn,∞] ×

[
0, n

kQ2n

(
k
n

)])
,

C3 = Ĉp,θ ∩
(
[Tn,∞] ×

[
n
kQ2n

(
k
n

)
,∞
))
.

By the triangle inequality the bias term can be split up into three terms,
based on C1, C2, and C3, respectively. The first one of these terms converges
to zero in probability, because the first term in (6.25) tends to 0. Using

n
kP

(
[0,∞] ×

[
0, Q2n

(
k
n

)])
= n

kQ2n

(
k
n

)
= Λ

(
[0,∞] ×

[
0, n

kQ2n

(
k
n

)])
,

the second one can be handled similarly. For the third term we replace the
difference in the definition of rn,p(θ) by a sum and deal with both terms
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obtained from this sum separately. Using the behavior of tail empirical and
tail quantile processes we obtain the convergence of both these terms from
the convergence to 0 of the second and third term in (6.25).

Recall that Zd(θ) = −Φp({0})W2(1). We have to show the following ana-
logue of (6.18):

(6.26) sup
θ∈[η,π/4]

∣∣∣∣
√
k{Λ(Ĉp,θ,2) − Λ(Cp,θ,2)}

−
∫ ∞

xp(θ)
λ(x, yp(x)){W1(x)y

′
p(x) −W2(yp(x))}dx

+ Φp({0})W2(1)

∣∣∣∣
p→ 0.

In view of the proof of (6.18), the proof of (6.26) is complete if we show
that, as n→ ∞,

sup
θ∈[η,π/4]

|Φp({0})v2n(1) + Φp({0})W2(1)| = Φp({0})|v2n(1) +W2(1)|
p→ 0.

But this immediately follows from (6.3).

Proof of Theorem 3.3. The proof of Theorem 3.3 goes along the same
lines of those of Theorems 3.1–3.2. Observe that we only have to consider
the process

√
k(Φ̂p − Φp) on [ηn, π/2 − ηn] and at π/2, since on [0, ηn) and

(π/2 − ηn, π/2) the process is constant and the limit process is continuous
on [0, π/2). Then we are in a similar situation as in Theorem 3.2, but now
the interval under consideration depends on n and converges to (0, π/2).

The essential difference lies in the VC class A. If we would adapt the
VC class in the proof of Theorem 3.1 in the obvious way, i.e. restrict θ to
[ηn, π/2 − ηn], the VC class would depend on n and hence Theorem 3.1
in Einmahl (1997) would not be applicable. We will, however, consider the
VC class that is obtained from A of our Theorem 3.1 by omitting θ = 0. Of
course, (6.2) does not necessarily hold for this new class, but it can be shown
to hold when we replace n

kP ( k
n · ) by P̃(n), the measure that is obtained from

n
kP ( k

n · ) by projecting the probability mass of

(6.27)
k

n
([Tn, n/k] × ([0, 1 − k−1/4] ∪ [1 + k−1/4, 3]))

on the axis {∞} × [0,∞), and by projecting the probability mass of

(6.28)
k

n
(([0, 1 − k−1/4] ∪ [1 + k−1/4, 3]) × [Tn, n/k])
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on the axis [0,∞) × {∞}; here Tn > 2/ηn is a sequence of T s for which
(3.11) holds. The points n

k (Ui1, Ui2), i = 1, . . . , n, in the region (6.27) or
(6.28) are projected on {∞} × [0,∞) or [0,∞) × {∞} in a similar way,
i.e. are replaced by (∞, n

kUi2) or (n
kUi1,∞), respectively . It is easily seen

that, with probability tending to one, this projection does not change the
processes involved in the result.

7. Proofs of Theorems 4.1–4.2.

Proof of Theorem 4.1. Equation (4.9) is an immediate consequence
of (4.8), so we focus on (4.8).

Similarly it is immediate from Theorem 3.1 that, in D[0, π/2] and as
n→ ∞,

(7.1)
√
k(Q̂p −Qp)

d→ Φp(π/2)αp − αp(π/2)Φp

Φ2
p(π/2)

= βp.

Recall the definition of f in (4.2) and observe that sup06θ6π/2 |f(θ)| = 1.
Put Ain = f(Θin) for i ∈ In. By (7.1) and since Qp({π/4}) < 1, necessarily
Pr[∃i ∈ In : Ain 6= 0] → 1 as n→ ∞.

Consider the random function

Ψn(µ) =
1

Nn

∑

i∈In

Ain

1 + µAin
, −1 < µ < 1.

The derivative of Ψn is

Ψ′
n(µ) = − 1

Nn

∑

i∈Nn

A2
in

(1 + µAin)2
.

Hence, on the event {∃i ∈ In : Ain 6= 0}, the function Ψn is strictly decreas-
ing and there can be at most one µ̃n ∈ (−1, 1) with Ψn(µ̃n) = 0.

If g : [0, π/2] → R is absolutely continuous with Radon-Nikodym deriva-
tive g′, then by Fubini’s theorem,

1

Nn

∑

i∈In

g(Θin) =

∫

[0,π/2]
g(θ)Q̂p(dθ)

= g(π/2) −
∫

[0,π/2]

∫ π/2

θ
g′(ϑ) dϑ Q̂p(dθ)

= g(π/2) −
∫ π/2

0
Q̂p(ϑ)g′(ϑ) dϑ.
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Since similarly
∫
g dQp = g(π/2) −

∫ π/2
0 Qp(ϑ)g′(ϑ) dϑ, by (7.1),

(7.2)
√
k

(
1

Nn

∑

i∈In

g(Θin) −
∫

[0,π/2]
g dQp

)

= −
∫ π/2

0

√
k{Q̂p(θ) −Qp(θ)}g′(θ)dθ

d→ −
∫ 1

0
βp(θ)g

′(θ)dθ, n→ ∞.

Here we used the fact that the linear functional sending x ∈ D[0, π/2] to
∫ π/2
0 x(θ)g′(θ)dθ is bounded.
Since 1/(1 + x) = 1 − x+ x2/(1 + x) for x 6= −1, we have

Ψn(µ) =
1

Nn

∑

i∈In

Ain

(
1 − µAin +

µ2A2
in

1 + µAin

)

=
1

Nn

∑

i∈In

Ain − µ
1

Nn

∑

i∈In

A2
in + µ2 1

Nn

∑

i∈In

A3
in

1 + µAin
.

Define

µ̄n =
1

Nn

∑

i∈In

Ain

/
1

Nn

∑

i∈In

A2
in =

∫
f dQ̂p

/∫
f2 dQ̂p.

Since
∫
f dQp = 0 and

∫
f2 dQp > 0, by (7.2), µ̄n = Op(k

−1/2) as n → ∞.
We have

Ψn(0) =
1

Nn

∑

i∈In

Ain

as well as

Ψn(2µ̄n) = − 1

Nn

∑

i∈In

Ain + 4µ̄2
n

1

Nn

∑

i∈In

A3
in

1 + 2µ̄nAin

= − 1

Nn

∑

i∈In

Ain ·
(

1 − 4µ̄n

∑
i∈In

A3
in/(1 + 2µ̄nAin)
∑

i∈In
A2

in

)
.

Because µ̄n = op(1), |Ain| 6 1 and N−1
n

∑
i∈In

A2
in

p→
∫
f2 dQp > 0, we

obtain
lim

n→∞Pr[|2µ̄n| < 1,Ψn(0)Ψn(2µ̄n) 6 0] = 1.
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Since moreover, with probability tending to one, Ψn is continuous and de-
creasing,

lim
n→∞

Pr[there exists a unique µ̃n ∈ (−1, 1) such that Ψn(µ̃n) = 0] = 1.

Also, Pr(|µ̃n| 6 2|µ̄n|) → 1 and thus µ̃n = Op(k
−1/2) as n→ ∞. We have

0 = Ψn(µ̃n) =
1

Nn

∑

i∈In

Ain − µ̃n
1

Nn

∑

i∈In

A2
in + µ̃2

n

1

Nn

∑

i∈In

A3
in

1 + µ̃nAin
,

whence

µ̃n = µ̄n + µ̃2
n

∑
i∈In

A3
in/(1 + µ̃nAin)
∑

i∈In
A2

in

= µ̄n +Op(k
−1), n→ ∞.

Define

µ̌n :=
1

Nn

∑

i∈In

Ain

/∫

[0,π/2]
f2(θ)Q(dθ).

Since N−1
n

∑
iAin = Op(k

−1/2) and N−1
n

∑
iA

2
in =

∫
f2 dQp +Op(k

−1/2), we
have µ̄n = µ̌n +Op(k

−1) and thus

µ̃n = µ̌n +Op(k
−1), n→ ∞.

Put

p̌in :=
1

Nn
(1 − µ̌nAin), i ∈ In;

Q̌p(θ) :=
∑

i∈In

p̌in1(Θin 6 θ), θ ∈ [0, π/2].

Then

Q̃p(θ) − Q̌p(θ) =
1

Nn

∑

i∈In

(
1

1 + µ̃nAin
− (1 − µ̌nAin)

)
1(Θin 6 θ)

=
1

Nn

∑

i∈In

(µ̌n − µ̃n)Ain + µ̃nµ̌nA
2
in

1 + µ̃nAin
1(Θin 6 θ).

Since both µ̌n − µ̃n and µ̃nµ̌n are Op(k
−1),

(7.3) sup
θ∈[0,π/2]

|Q̃p(θ) − Q̌p(θ)| = Op(k
−1), n→ ∞.

Therefore, as n→ ∞ and uniformly in θ ∈ [0, π/2],
√
k{Q̃p(θ) −Qp(θ)} =

√
k{Q̌p(θ) −Qp(θ)} +Op(k

−1/2)

=
√
k{Q̂p(θ) −Qp(θ)} −

√
kµ̌nÎ(θ) +Op(k

−1/2),(7.4)
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where

Î(θ) =
1

Nn

∑

i∈In

Ain1(Θin 6 θ), θ ∈ [0, π/2].

The function f is absolutely continuous; denote its Radon-Nikodym deriva-
tive by f ′. By Fubini’s theorem, for θ ∈ [0, π/2],

Î(θ) =
∫
[0,θ] f dQ̂p = f(θ)Q̂p(θ) −

∫ θ
0 Q̂p(ϑ)f ′(ϑ) dϑ,

I(θ) =
∫
[0,θ] f dQp = f(θ)Qp(θ) −

∫ θ
0 Qp(ϑ)f ′(ϑ) dϑ.

As a result,

(7.5) sup
θ∈[0,π/2]

|Î(θ) − I(θ)| = Op(k
−1/2), n→ ∞.

Moreover, by (7.2) with f = g,

(7.6)
√
kµ̌n = − 1∫

f2 dQp

∫ π/2

0

√
k{Q̂p(θ) −Qp(θ)}f ′(θ) dθ

Write βn,p =
√
k(Q̂p −Qp). Combine (7.4), (7.5), and (7.6) to see that

(7.7)
√
k(Q̃p −Qp) = βn,p +

∫
βn,p df∫
f2 dQp

I +Op(k
−1/2)

as n→ ∞. Since the linear operator

D[0, π/2] → D[0, π/2] : x 7→ x+

∫
x df∫
f2 dQp

I

is bounded, (7.1) and (7.7) imply (4.8).

Proof of Theorem 4.2. It is immediate from Theorem 3.3 that, in
D[0, π/2] and as n→ ∞,

√
k(Q̂p −Qp) ◦ τn d→ βp.

Now the proof of Theorem 4.1 applies here as well, except for one change:
we have to check that (7.2) still holds. But this follows from the fact that

∣∣∣∣∣

∫ π/2

0

√
k(Q̂p −Qp)(θ)g

′(θ)dθ −
∫ π/2

0

√
k(Q̂p −Qp)(τn(θ))g′(θ)dθ

∣∣∣∣∣

is bounded by
2
√
kηn sup

θ∈[0,ηn]∪[π/2−ηn,π/2]
|g′(θ)|,

which by assumption tends to zero as n → ∞ provided that g′ is bounded
in the neighborhood of 0 and π/2. This is the case for g = f and g = f2,
the only functions to which (7.2) is to be applied.
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Fig 2. Trajectories of the empirical spectral measure (dashed) and the MELE (solid) for
a single sample of size n = 1000 and at k = 30 from the bivariate Cauchy distribution on
(0,∞)2 and for p ∈ {1, 2, 3,∞}.
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Fig 3. MISE of the empirical spectral measure (dashed) and the MELE (solid) for 1000
samples of size n = 1000 from the logistic model with r = 2 and p ∈ {1, 2, 3,∞}.
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Fig 4. MISE of the empirical spectral measure (dashed) and the MELE (solid) for 1000
samples of size n = 1000 from the bivariate Cauchy distribution on the positive quadrant
and p ∈ {1, 2, 3,∞}.
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Fig 5. MISE of the empirical spectral measure (dashed) and the MELE (solid) for 1000
samples of size n = 1000 from the mixture distribution with r = 0.5 and p ∈ {1, 2, 3,∞}.
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Fig 6. Left: Scatterplot of the Loss-ALAE data (axes on log-scale). Right: Scatterplot of
a bivariate lognormal sample of the same size and which on a log-scale has the same mean
vector and covariance matrix as the Loss-ALAE data.
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Fig 7. Left: MELE (p = 1, k = 40) of the spectral measure of the Loss-ALAE data and
MELE of the bivariate lognormal data of Figure 6. Right: MELE of the spectral measure
(p = 1, k = 40) of the Loss-ALAE data compared to the spectral measures of the fitted
logistic and the fitted asymmetric logistic models.
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Fig 8. Scatterplot (left) and spectral measure estimates for p = 1 (right) of the variables
‘standing height’ and ‘weight’ in the NHANES 2005-2006 body measurement data for
females.


	Introduction
	Spectral measures
	Empirical spectral measures
	Enforcing the moment constraints
	Examples, simulations, and real data analyses
	Examples
	Simulations
	Case studies
	Loss-ALAE data
	NHANES data


	Proofs of Theorems 3.1--3.3
	Proofs of Theorems 4.1--4.2
	Acknowledgment
	References
	Author's addresses

