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SUMMARY

One of the major difficulties within the contexttbe fully automated development of chroma-
tographic methods consists in the automated detedf the peaks coming from complex
matrices such as multicomponent pharmaceutical dations or stability studies of these
formulations. The same problem can also occur plaht materials or biological matrices. This
step is thus critical and time-consuming, espsoietien Designs of Experiments (DOE) are used
to generate chromatograms. The use of DOE leadsiomize the changes of the analytical
conditions in order to cleverly explore an expermta¢ domain. Unfortunately, this generally
provides very different and “uncontrolled” chromgitams which can be hardly interpretable,
complicating picking and peak tracking. In this ¢, numerical signal processing methods
such as Independent Components Analysis (ICA) wasstigated to solve this problem. The
ICA principle assumes that the observed signéldésésultant of several phenomena (known as
sources) and that all these sources are statigtiodependent. ICA is able to estimate sources
which most often seem judicious to represent tmsiitutive components of a chromatogram. In
the present study, ICA was applied to HPLC-UV-DADamatograms and we showed that ICA
allows differentiating noises and artifacts compueefrom those of interest, by applying
clustering methods based on high-order statistogputed on these components. Furthermore,
on the basis of the described numerical stratégygs also possible to rebuild a cleaned chroma-
togram easily legible. This represents a very $icamt advance towards our final objective, the
fully automated development of liquid chromatognafhC) method.
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1. INTRODUCTION

In many frameworks such as the automated developamelroptimization of analytical methods,
the use of Design of Experiments (DOE) is of giatdrest to achieve the initial goals of a
process. This requires several or many experintbatswill allow the modeling of the studied
responses. However, it also means that analytaalitons of a liquid chromatographic (LC)
method must be highly modified in order to covereaperimental space, as large as possible.
This leads to very different chromatograms angtaks picking and tracking is often problem-
atic, even if it is manually done by a confirmedalgst. The automation of this process is
therefore one of the first problems to solve toi@eh the fully automated development of LC
methods.

In the literature, different approaches are alreprbposed. A mathematical treatment like
deconvolution (one-dimensional or less frequentljtidimensional) is a widely used technique
to accurately estimate the overlapping of peaksnly needs the number of peaks and some
information about the peak shapes as basic inpatnpeters in the computer assisted peak
deconvolution procedure® However, the knowledge of overlapped peak shapssretimes
difficult to determine, and poor results can somes be obtainet®

Methods such as alternating least-square multiteagarve resolution (ALS MCR), mutual
automated peak matching (MAP) or factor analysfy {fave been recently developed and seem
to be very efficient in the multidimensional nuneatiseparation domain applied on HPLC-DAD
data. However, examples with real data demongtiatesome work is still mandatory to achieve
a perfect automated detection and matching of géaks

Independent Component Analysis (ICA) is an inténgstlternative that may be used to achieve
these identificatior’§*? ICA is used in more and more domains due tolitbtyto separate
successfully many types of signals. In this contéXA is a Blind Source Separation method
(BSS). The ternblind indicates that both the source signals, and theth@gignals are mixed,
are unknown. This processing method has been sfattgsapplied to the analysis of mixed
sounds, satellites signals, to biomedical signat@ssing problems such as electroencephalo-
graphic (EEG) dafd ™ or functional magnetic resonance imaging (fMRRatfa etc. Recent
papers have shown that ICA can be applied in #ie &if chromatography for metabolites peaks
detectiort’ and to resolve the overlapping gas chromatograpiaiss spectrometric (GC-MS)
signal$®®® or 3D-fluorescence spectroscépyThe statistical method finds the independent
components (sources) by maximizing the statisticl#pendence of the estimated components.
Non-Gaussianity, motivated by the central limitdrem, is one method for measuring the
independence of the components, and can be meadaradstance, by approximations of
negentropy. Mutual information is another populaitecon for measuring statistical
independence of signals. Typical algorithms for & centering, whitening and dimensionality
reduction as preprocessing steps in order to siyrgatid reduce the complexity of the problem
for the algorithm. Algorithms for ICA include JABE(Joint approximate diagonalization of
eigenmatrices), FastICA OGWE" (optimized generalized weighted estimator). iitiportant

to know that being based on different independeniteria, each algorithm may lead to slightly
different results.

In fact, every multidimensional recorded signal ethcan be considered like a combination of
primordial independent signals (sources) can betadeby ICA, which tries to extract these
independent sources and thus estimates the linearination, i.e. a mixing matrix, who led to
the observed multidimensional signal. Consequergbgrded signals in LC can be regarded as
the sum of independent signals that constitute Bi8Aromatogram (i.e. peaks, noises, baseline



drift ...). The use of UV-DAD detection and thus thyphenated recorded signal make it possible
to consider BSS of such chromatograms. It is tlarg interesting to be able to separate peaks
from noises or drift, and co-eluted peaks can bearically separated for further processes. To
carry out the numerical treatment in an automaty,wt is advisable to find a methodology
which allows the use of ICA in a generic mannex,to find the number of components/sources
that ICA will try to make independent. In this papeur objective is thus to investigate the
possibility to perform automatically the treatmehtiata, ICA process, classification of compo-
nents, peak picking, extraction of UV spectra factecomponent of a test mixture of different
pharmaceutical compounds and reconstruction ohe@®AD-chromatograms. This feasibility
study on real data is the preliminary but very imi@ot step towards our final objective, the fully
automated development of LC methods.

2. THEORY
2.1 Independent component analysis

Different definitions can be given for the IndependComponent Analysis (ICA). One of the
most classical is given below. This definitionasarred as noise-free ICA. More details can be
found in Hyvarinen and Oja’s wotk®* and related work of Hyvarinen.

ICA of a vectorx of signals value§xi,...,xm)" consists of estimating the following generative
model for the data:

X = As, (1)

whereA is a constantng x n) mixing matrix, withm the number of observed signals, andrthe
components;sn the signals vect@=(s,,...,s,)" are assumed independent. Batands must be
estimated and, the number of sources to be computed, must b&echo

To solve this problem, the ICA algorithm estimaasinmixing matrixV such that the elements
of the vectos are as statistically independent as possibk.i¢fa square matribxugm, i.e. ICA
estimates as many independent components as thieenwhoriginal recorded signals), the
matrix W should be the inverse of the original mixing sys#e : W=A™. Notice that the ICA
algorithms often allows to estimate less sourngsrf) in order to simplify the computations. In
this caseA is not square any longer. Generally speakinggiiogvledge of an estimation df is
similar to the knowledge of the (estimated) mixprgcess described Y.

Then, after the ICA computation, it is possibley&t the estimated sources:
Wx = W(AS) = (AA)5=8. )

An important step is to normalize sources to autfidity of solutions, when estimating. The
scaled factors for the sources is then containétkit matrix. Thef' component is then defined
as the product between tfiHine of the estimated A and tHeglement of the estimated s, and is
formatted as x.

It should be noted that the statistical independesca much stronger condition than non-
correlation. Indeed, some uncorrelated functioesiat necessarily independent. The independ-
ence between two sourcesasd s is estimated by:

E{ha(sp)ha()} - E{hu(s1)}E{h2(s2)}. 3
This expression will be equal to zero in case dépendence, whatever the functiarandhs.



The general hypotheses that must be assumed tak bislow:

1. Signals and sources haxero mean
2. Sources are assumed todbatistically independent
3. Sources must have unknown Imain-Gaussiardistributions (except one source).

However, ICA has two limitations. First, it only@lvs reconstructing non-Gaussian independent
components (except one). Second, neither the sigmghe order of independent components
(i.e. the order of the lines of tiematrix and of the elements of tagector) can be estimated.
Fortunately, as can be seen below, these limitat@wa not a real problem for our purpose.

In practice, signalsx(ands) are discretized and expressed as matrices, daimeghin the next
subsection.

2.2 |CA applied to HPL C-UV-DAD data

An UV-Diode-Array Detector (DAD) chromatogram candbnsidered as a matixcontaining,
for each recorded time (the number of recorded 8B, the absorbance values at certain
wavelengthg, in the range of the UV detectot.is then a matrixri x T).

Thus, we dispose ah vector X(t), representing the absorbance values at wavelgragha
function of the time (indexed iy, However, this definition is not in perfect acdance with the
definition of ICA presented in the previous sectibhe matrixX is not precisely the presented
vector. Fortunately, without loss of generalityearan suppose that the time axis of egh x
corresponds to different observations of a signalhus, theX matrix can simply be expressed
by the column vect0r=(x1,...,x,-,...,xm)T, allowing the application of the ICA theory.

The hypotheses presented in the previous seciadir@ctly applicable. The first hypothesis can
be easily fulfilled by subtracting the signal méam each signal (chromatogram). The second
hypothesis is the strongest one. However it isumpealistic to assume that the peaks in a
chromatogram are independent events, even if, foamemical point of view, the related
compounds may have similar structural featuress ghvies the ICA its power in the separation
problem. Moreover, it does not need to be perfeetpected in practice. The third hypothesis is
given for practical computational purpose.

One major concern in ICA is to find the sources #na relevant from those that are not. ICA has
already been used in order to eliminate artifactsmfdata in electroencephalograms (EEGSA
similar methodology that the one presented by Dedoet al** will be applied, with some
extensions to automate the process.

Finally, related to this problem, a second conceta determine the optimal number of sourtes
that must be used to break up the original DAD &ighhe following sections present a new
methodology to find this number of sources, appinetthe context of design of experiments. In
this framework, The DAD-chromatograms are referdnegh the indexp, (p=1,... P).

2.3 High-order moments and statistics.

Since noise usually follows a Normal distributitime computed independent sources given by
ICA are investigated, no matter which value is @mo®rn. It has been described in the litera-
ture that kurtosis value of a distribution is a g@vidence to reject artifacts and notéedhis
approach using kurtosis and other statistics or erdasof the sources was used in the present
study.

Thus, the following statistics or moments can bedus check the Normality of the distribution
of each source. If normality is not observed, dudd imply that the source is unlikely to be noise
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and therefore likely corresponds to an exogenoaes@menon like a compound being detected.
In summary, sources of interest such as peaksauerged to have a non-normal distribution, and
will be identified as such.

Kurtosis. The kurtosis is the fourth standardized momentrahaom variable and is a measure
of the peakedness of the probability distributiéthis variable, and can be estimate as:

0 605"
6057

my represents the moment (about the mean) of ordedig is the mean of thdisources .

K =

—3= -3 4

33

Shapiro-Wilk statistics. The non parametric Shapiro-Wilk (S-W) test tesesrtbll hypothesis
that a sample (1), ..., s (T) comes from a Normally distributed population. Shypothesis is

rejected if the test statistics is too small. Th& statistic or the associagestalue can be used to
characterize the distribution. More details ababig test can be found in the literattire

Kurtosis and S-W statistics can be used to destitdodegree of Normality of a distribution and,
hence, to identify noise sources. However, thfango be the only statistics allowing this, and
other simple or complex statistics (skewness oflthiibution of the component, range, Kolmo-
gorov-Smirnov Normality test, etc.) can also beyatdly used in this context.

2.4 k-meansclustering

k-means is a non supervised method to cluster abjpetit k partitions on the basis of their
attributes. The objects are the sources computedAyand the attributes are the estimated
moments and statistics computed on these sourkesiin is to use these computed characteris-
tics to discriminate the relevant sources (peaksj fthe noise or irrelevant artifacts, chroma-
togram by chromatogram. The concept is to compar&ticlidian distance between the objects.
A short distance (slight difference on the compuwtidbutes) is a sign of closeness between
objects. The closest objects are putted togethireiisame cluster.

Different implementations exist f&rmeans clustering. The Hartigan and Wong one wed us
here, because it generally does a better job ttrer omplementatiorf& However our applica-
tion of clustering is rather simple, with a low nioen of variables and observations, so that the
way of implementation is not very relevant.

Before clustering is applied, attributes are stagidad by dividing by their standard deviation
(computed on the total number of sources availablée DAD-chromatogram). This is done to
give each attributes the same weight in the datisiocess. This is illustrated by the following
equation, applied to kurtosis. The same computatias done for each considered statistics.

StandarizeKurtosis = K, :

\/Zn:(Ki - K)2 (5)

i=1

where K is the mean of the kurtosis computed on all thecasuof one chromatogram.

In practice k-means withk=2 is used. Figure 1 shows the expected positibbsth clusters,
whenk-means is applied on the attributes kurtosis amd Statistics. The partitioning should
result in a cluster with sources having a high Ksig and a low S-W values for the sources of
interest (cluster 1) and conversely a low Kurtasid a high S-W values for noises and artifacts
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sources (cluster 2). For simplicity, clusteringaalthm is assumed to be determinist (always
giving the same results on the same set of ddtapugh it is not the case. For the following
sections, the number of sources in the relevastettor the™ DAD-chromatogram is defined
asny(n,p), as it also depends of

25

Cluster 2
Noise

20

Other events

15

Shapiro-Wilk

10

Cluster 1
Peaks

05

Kurtosis

Figure 1. Expected clustering of sources using normalizgtidoirder statistics (kurtosis and
S-W statistics are used) for one DAD-chromatogram.

2.5 Sdlection of the number of sourcesfor computation

As previously explainedhe main parameter of the ICA is the numberf sources or compo-
nents chosen to separate the signal. It is by tefehitrarily chosen by the operator but, for our
purpose, an automated process was developed,ith@athe optimal number of sources to be
estimated ignoring the expected number of peaks ttetected. As our approach is created to be
flexible and should have the ability to find unegsa peaks, it has to be done by a step-by-step
automated process.

Yuzhuet al. showed that the calculation of singular valueosa{lSVR) is useful to estimate the
number of “pure” components in HPLC-DAD d&td.e. an estimation of the number of peaks.
This number can be used to determine the humbsowfces needed to separate these pure
components. Other techniques, such as the squdfeitce between an original and recon-
structed signal, are available but are not usalei context. The square difference would lead
to reject components corresponding to a very srball,relevant, peak, because it does not
significantly contribute to decrease the sum ofasgs of errors (SSE).

Our approach is different because we want to deterthis number using ICA and clustering
methods in a DOE framework. In DOE, the same méxisiinjected several times using different
analytical conditions. Thus, each DAD-chromatogsiould contain the same information, i.e.
the same number of peaks/artifacts (unless somaeritigs appear). Finding the numbeof
sources for the application of ICA is similar agding the most likely value of(n,p)across all
DAD-chromatograms. This most likely value is deéirgsn,”(n). For one value af, the Figure 2
illustrates how to locate, (n), the expected number of peaks to extract outsafurces across
theP DAD-chromatograms.



n(n)

frequency

—

m{(n,p)

Figure 2. Example of optimal value af(n,p), computed across tiReDAD-chromatograms,
for a specific value of.

This innovative strategy is presented in FigurArBinitial value forn must first be given. One
can use an estimated number of pure componentsSVIR computation, for instance. Another
easier technique is to begin the ICA computatiotin\&ivery low number of sources, s&B.
Then, ICA is performed with this initial value mfFor each estimated sources, the moments and
statistics presented in the previous sections @mgated, and the-means clustering analysis
(with k=2) is applied on these (standardized) values. &legant cluster contaimg(n,p)sources
identified as peaks or important artifacts. Thisqass is repeated, incrementing valuefof the

P DAD-chromatograms, and then each value; @f,p)is recorded. It is possible to realize a plot
of n,’ (n) against the values of (Figure 8). One can observe timi(n) stabilizes whem in-
creases. This stabilized valug,, will be assumed to be the optimal number of pesic
relevant artifacts in the mixture.

The final step is to ensure thgt relevant peaks will be found for all DAD-chromataips. This
may be done by investigating in Ehe recorded resfdt each DAD-chromatogram, how many
sourcesIf) were necessary to gai components in the good cluster.

The main disadvantage of this technique is the ctatipnal time, when working on DAD-
chromatograms issued from a design with many exyaaris (e.g. 50) and when the number of
sourcesn has to be increased because many compounds arerced. The estimation of the
moments and statistics, clustering application@thér processes, realized on the whole set of
components for each chromatogram can become guige However, the gain is that no manual
work has to be done to find peaks in noisy DAD-chatograms.

3. MATERIALS AND METHODS
3.1 Chemicals.

Methanol and acetonitrile were HPLC grade from SidgBt-Louis, MO, USA). Ultra pure water
was obtained with a Millipore (Billerica, MA, USAJIilli-Q Academic A10. Atenolol, pheny-
toine, sulfinpyrazone and warfarin were used asregice compounds throughout the study.
These pharmaceutical compounds were selected &difference existing between their
chemical compositions, the large disparity betwsame of their physico-chemical descriptors
(e.g. LogP - pKa) leads to different selectivityanrg the obtained chromatograms. These four
compounds were obtained as reference from theilsliCompany (Indianapolis, IN, USA).



Estimate an initial value for n, or deliberately choose
a low initial value.

1
Perform ICA on the whole set of chromatograms. [+
¥
Compute statistics/moments of the sources,
petform clustering analysis for each chromatogram.
1
Record the number of sources in the relevant cluster,
for each chromatogram, n,(n.p).
!
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for all the chromatograms, n,7(17).
1
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11 () versus n, is stabilized 7
Yes No
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1
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-#| ratio and selectthe r7”
first sources with the
greater ratio.

Figure 3. Methodology for the selection of number of sourteghe ICA computation.
3.2 Experiments.

A full factorial desigi° has been applied on four factors: stationary ph$ef the aqueous part
of the mobile phase, gradient slope and the natupeganic modifier. Five analytical columns
were used: C18, C8, RP18, Phenyl XBridge colum@8x2.1 mm i.d.; particle size 3.6n), all
from Waters (Milford, MA, USA) and a C18 Cogent Bidate column (100x2.1 mm i.d.; particle
size 4.Qum) from Microsolv (Eatontown, NJ, USA). The expeeints were carried out at a flow
rate of 0.25 mL/min and at 30 °C. The buffers cstesl in 10 mM of concentrated formic acid
for pH 2.6, ammonium formate for pH 5.0 and pHah@ ammonium hydrogencarbonate for pH
10.0. The pH was adjusted to the desired value atitentrated formic acid or ammonia 35%
aqueous solution. The shapes of the linear graxlemetdescribed in Table 1.

Chromatographic separation were performed on a M/a&95 separation module coupled to a
Waters selector valve 7678 and a Waters 996 Plumtediarray detector. All DAD-
chromatograms were recorded between 210 nm andr@94ith an estimated step of 1.2 nm
(158 points) and with a time resolution of 500 isey were finally exported by Empower 1.0
(Waters) in an ASCII file containing the UV-DAD nnixt



The experimental design leads i8-8 3 = 120 experiments. The previously described nuetho
ogy has been then applied on the resulting 120 ADBhromatograms.

Time (min.) O.M.%| Time (min.) O.M.%| Time (min.) O.M.%
0 5 0 5 0 5

10 95 20 95 30 95
10.5 95 20.5 95 30.5 95
10.6 5 20.6 5 30.6 5

16 5 26 5 36 5

Table 1. Linear gradient shapes with organic modifier petage (O.M.%) in mobile phase.
3.3 Software.

An in-house computer program was developed to partbe analysis presented in the previous
sections. The coding was carried out with R 2.4atigtical language for Windows, freely
distributed at http://www.r-project.org. These codmn be run on compatible PC or other
environments where R is available. For ICA compaie, FastICA algorithm for R, developed
at the Helsinki University of Technology, was used.

4. RESULTS AND DISCUSSION
4.1 UV-DAD Data.

The ICA approach is applied on each DAD-chromategiaachX chromatogram matrix can be
described as a (158 matrix whereT is either 1920, 3120 or 4320, depending in théyéinal
conditions of gradient (10, 20 and 30 min, respety).

The methodology to fineh andni(n,p) is illustrated withn=12 on the DAD-chromatogram
recorded on the XBridge C18 column with methana phl 5 buffer, with a gradient of 20
minutes (Figure 4). In faat=12 is a good value fam because it succeeds in finding the 4
compounds and the dead volume perturbation (eesitirall baseline perturbation observeg)at t
of the considered DAD-chromatogram. The way to gdtematically the value affor each
DAD-chromatogram of the design is presented.

XBridgeC18 - MeOH - pH 5 - 20 min.

003 004
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Figure 4. (left) Initial DAD-chromatogram recorded on an X&ge C18 with methanol and
pH 5 buffer with a gradient of 20 minutes. (rigp\D-chromatogram observed at 240 nm.



A first data cleaning has consisted in the cutamheDAD-chromatogram at 14, 24, 34 min for
gradient times of 10, 20, 30 min respectively. TiWiss performed in order to remove the
perturbation of the end of the gradient, contaironty noise or irrelevant artifacts.
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Figure 5. Components computed by ICA witkr12 observed at 240 nm. The components
numbered in grey are the ones that we can obseeyecbrrespond to peaks or relevant
artifact. Components marked in black are noise. X4a&is represents the time (min.) and the
Y-axis is the absorbance of the components.
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ICA was then applied on the DAD-chromatogram, r@sglin 12 components, as shown in
Figure 5. Each independent component at one waytlen a UV spectrum at a given time was
then displayed. Figure 5 presents an example sidisplay at the wavelength of 240 nm.

The components corresponding to peaks and releréfacts are voluntary shown (sources
3,4,7,8 and 12). At the opposite, the seven otbeponents labeled in black seemingly corre-
spond to noise. The aim was to automatically detextelevant components.

4.2 Clustering and optimal number of sour ces.

The kurtosis and the Shapiro-Wilk statistics wesmputed on each source. After standardiza-
tion, k-means clustering was applied. The results are shoWwigure 6 (a). The cross located at
the right and bottom indicates the center of tHevant cluster (cluster 1). The sources-
components contained in this cluster are effegtitee ones that correspond to peaks and
relevant artifacts. The maximum of each relevamhponent (apex) has been found and its
retention time has been automatically placed orckliematogram (Figure 6, b).

o | 8
L]
o 4’71 5 (a)
X o 9
z 10
o e
=
o
£ o |
v
[
T T T T T T
0o 05 10 1.5 20 25
kurtosis
XBridge C18 ADAM_MeOH_pH5_20min
=l (b)
& =
=
 ; |
Q -
L
1. \r\ L
5 - 12 47
o T T T T T
0 5 10 15 20

time

Figure6. (a) Clusterink-means realized on standardized kurtosis and Shslilk statis-
tics. The right-bottom cluster (cluster 1, in gregntains the relevant sources. Crosses are the
clusters centers. (b) Original DAD-chromatogran24® nm with automatically picked
apexes by a vertical line.

With n=12, 40.0% of results counted five components énrdtevant cluster, across all the 120
DAD-chromatograms. The distribution of the numbecamponents counted in the relevant
cluster, fom=12, is displayed in Figure 7.
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Frequencies
Level Count Prob
2 1 000233
3 1 000233
4 34 028333
o 43 040000
G 23 0IMET
7 & 00BEET
o] 4 003333
10 1 000833
Tatal 120 1.00000
2 03 4 5 6 7 8 10 MMissing D
g Levels

Figure 7. Distribution ofn,”(n) for the 120 DAD-chromatograms wittx12.

The same process has been applied for each valueroe ICA process was restarted while
changingn and observing how this percentage was affeategs incremented from 3 to 30 and
the resultis illustrated on the Figure 8. It shavesabilization of number of relevant components
n. (n) at 5 components, for=12 and upper. S, can be assumed equal to 5.

1

o 2 4 & & 10 12 14 16 18 20 22 24 26 25 30 32

number of total components, &

Figure 8. Plot of the variation o, (n) versus. n; (n) stabilizes at the value of =5.

Five relevant sources were thus preferably couimtéige relevant cluster. This result indicates
that each sample seems to contain five indepermemponents of interest. This conclusion is
correct because the four injected compounds ardktd volume perturbation of the baseline can
be found.

4.3 Dealing with results.

However, fom=12,n:(n,p) differs fromn, =5 in 60.0% of the clustering results. Then, fasi
inconvenient results, it is proposed to adapt #teevofn till n,(n,p)reaches. , investigating the
recorded results. However in some cases no valnenaikes it possible to reach this objective.
So, the firsn. bestsources were defined as being the relevant oriesdrried out by calculat-

ing a ranking index, the Kurtosis _ ratio for each source and to keep those with ttyek ratio.
Shapiro- Wilk

In order to remain consistent, this approach wae aksted on the whole set of DAD-
chromatograms. Results of both automated peakngapproaches are exposed in Table 2.
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4.4 Extracting sources UV-spectra.

Figure 9 shows that an estimated version of thesp&ttrum (b) for each relevant peak (a) can
be recovered and compared to the reference UVrspetthe investigated compounds (c), if
known. This can be of great help for the identiima of the compounds and would even be used
to automatically carry out peaks’ matching. Howeseme problems can occur. First, it is
mandatory to get estimations of the UV spectradhaprecise enough. Nevertheless, co-elution
often distorts estimated concerned UV spectra. i@kcthe UV spectrum of certain compounds
is logically modified by the buffer pH. For thesasons, automatic peaks’ matching remains a
matter of particular interest.

4.5 Reconstruction of DAD-chromatogram.

Once the relevant sources were automatically fotlvedreconstruction process could be started
by simply summing all the selected componentsyatig retrieving a clean DAD-chromatogram.
Figure 10 (a) and (c) presents the original DADechatogram compared to the reconstructed
one, both observed at 240 nm. The peaks (identifjethe triangles in the top of the chroma-
tograms) have been automatically picked. Howeudhia wavelength, the purification of the
chromatogram is not really observable. The chrogratos of Figure 10 (b) and (d) illustrate
that, for every wavelengths, the reconstructedrolatogram (d) has been cleaned from artifact or
gradient effects.

4.6 Results of automated peak picking.

Finally, the automated “peak picking study” was pamed to the hand-made one. Results are
reported in Table 2. 95.8 % of the four automalycpicked peaks correspond to the four
manually picked peaks. However, even done by armroed analyst, the manual peaks’ picking
can not always be error free (but we assumeceir@ free for these values). The dead volume
perturbation is of particular interest (defining thead time of a HPLC system), but the picking of
this artifact is far not as good. This is due tmeompurities or very significant artifacts, whose
sources look as relevant one.

Clustering picked non picked p'fked P'C.]t(ed Irrelevant

Method peaks peaks relevant - artifacts or
artifacts impurities

Count Count

(total:120%4) 4s7 23| (total = 120)| 9 49

% 95.2 % 4.8 %

Kurtosis/ . . picked picked irrelevant

Shapiro-Wilk p'eC:Eg nce)gk[?slcked relevant | artifacts or

ratio method | P P artifacts impurities

Count Count

(total:120*4) 460 20| (total = 120)| 9 1

% 95.8 % 35%

Table2. Comparison of automated peak picking results ecdimplete set of chromatograms by
the two methods.
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Figure 10. (a-c) Comparison between original DAD-chromatogfajnand reconstructed one
with n=12 (c). The original is recorded at 240 nm, orX&nidge C18 with methanol and pH
5 buffer with a gradient of 20 minutes. Apexes hiagen automatically picked. (b-d)
Comparison at different wavelengths (214, 220, 248, and 327 nm) of the same original
(b) and reconstructed (d) chromatograms.

5. CONCLUSIONS

The automated finding of peaks is a very crucieg s the automated development of analytical
methods. This new and original approach combiniegjgh of experiments, ICA, high-order
statistics and clustering is very powerful and pong as illustrated by its successfully applica-
tion for the determination of a test mixture of phaceutical compounds. On the other hand,
great advantages of the present approach wouldw® fwhen dealing with high throughput
screening experiments, as those resulting of tHeweup of the synthesis process (purity
assessment) or in the framework of the developroémstability indicating method where
impurities are not necessary known. Moreover, @wot require expensive equipments, such as
mass spectrometer, to detect all compounds of alsa@lustering methods allow separating
very efficiently the noise components from thevalg ones, using adequate summary statistics.
The technique to find an optimal number of souisegry convenient but is computationally
expensive. Fortunately, the time needed for tmeearical data treatments presented in this study
is smaller than the sample analysis time, andlthensatograms are numerically treated one by
one. This gives the opportunity to easily implenmtbetnumerical data treatments in concurrent
mode, while the sample analysis are processing.

Finally, this process could also be performed amtysub-parts of a DAD-chromatogram,
according to the analyst interest; for instanceydeng of co-eluted impurities in peaks of
interest.
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