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SUMMARY 

 

One of the major difficulties within the context of the fully automated development of chroma-
tographic methods consists in the automated detection of the peaks coming from complex 
matrices such as multicomponent pharmaceutical formulations or stability studies of these 
formulations.  The same problem can also occur with plant materials or biological matrices. This 
step is thus critical and time-consuming, especially when Designs of Experiments (DOE) are used 
to generate chromatograms. The use of DOE leads to maximize the changes of the analytical 
conditions in order to cleverly explore an experimental domain. Unfortunately, this generally 
provides very different and “uncontrolled” chromatograms which can be hardly interpretable, 
complicating picking and peak tracking. In this context, numerical signal processing methods 
such as Independent Components Analysis (ICA) was investigated to solve this problem. The 
ICA principle assumes that the observed signal is the resultant of several phenomena (known as 
sources) and that all these sources are statistically independent. ICA is able to estimate sources 
which most often seem judicious to represent the constitutive components of a chromatogram. In 
the present study, ICA was applied to HPLC-UV-DAD chromatograms and we showed that ICA 
allows differentiating noises and artifacts components from those of interest, by applying 
clustering methods based on high-order statistics computed on these components. Furthermore, 
on the basis of the described numerical strategy, it was also possible to rebuild a cleaned chroma-
togram easily legible. This represents a very significant advance towards our final objective, the 
fully automated development of liquid chromatography (LC) method. 
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1. INTRODUCTION 

In many frameworks such as the automated development and optimization of analytical methods, 
the use of Design of Experiments (DOE) is of great interest to achieve the initial goals of a 
process. This requires several or many experiments that will allow the modeling of the studied 
responses. However, it also means that analytical conditions of a liquid chromatographic (LC) 
method must be highly modified in order to cover an experimental space, as large as possible. 
This leads to very different chromatograms and the peaks picking and tracking is often problem-
atic, even if it is manually done by a confirmed analyst. The automation of this process is 
therefore one of the first problems to solve to achieve the fully automated development of LC 
methods.  

In the literature, different approaches are already proposed. A mathematical treatment like 
deconvolution (one-dimensional or less frequently multidimensional) is a widely used technique 
to accurately estimate the overlapping of peaks. It only needs the number of peaks and some 
information about the peak shapes as basic input parameters in the computer assisted peak 
deconvolution procedure.1-3 However, the knowledge of overlapped peak shapes is sometimes 
difficult to determine, and poor results can sometimes be obtained.4-6 

Methods such as alternating least-square multivariate curve resolution (ALS MCR), mutual 
automated peak matching (MAP) or factor analysis (FA) have been recently developed and seem 
to be very efficient in the multidimensional numerical separation domain applied on HPLC-DAD 
data. However, examples with real data demonstrate that some work is still mandatory to achieve 
a perfect automated detection and matching of peaks7-9.  

Independent Component Analysis (ICA) is an interesting alternative that may be used to achieve 
these identifications10-12. ICA is used in more and more domains due to its ability to separate 
successfully many types of signals. In this context, ICA is a Blind Source Separation method 
(BSS). The term blind indicates that both the source signals, and the way the signals are mixed, 
are unknown. This processing method has been successfully applied to the analysis of mixed 
sounds, satellites signals, to biomedical signal processing problems such as electroencephalo-
graphic (EEG) data13-15 or functional magnetic resonance imaging (fMRI) data16, etc. Recent 
papers have shown that ICA can be applied in the field of chromatography for metabolites peaks 
detection17 and to resolve the overlapping gas chromatographic-mass spectrometric (GC-MS) 
signals18,19 or 3D-fluorescence spectroscopy20. The statistical method finds the independent 
components (sources) by maximizing the statistical independence of the estimated components. 
Non-Gaussianity, motivated by the central limit theorem, is one method for measuring the 
independence of the components, and can be measured, for instance, by approximations of 
negentropy. Mutual information is another popular criterion for measuring statistical 
independence of signals. Typical algorithms for ICA use centering, whitening and dimensionality 
reduction as preprocessing steps in order to simplify and reduce the complexity of the problem 
for the algorithm. Algorithms for ICA include JADE21 (Joint approximate diagonalization of 
eigenmatrices), FastICA22, OGWE23 (optimized generalized weighted estimator). It is important 
to know that being based on different independence criteria, each algorithm may lead to slightly 
different results. 

In fact, every multidimensional recorded signal which can be considered like a combination of 
primordial independent signals (sources) can be treated by ICA, which tries to extract these 
independent sources and thus estimates the linear combination, i.e. a mixing matrix, who led to 
the observed multidimensional signal. Consequently, recorded signals in LC can be regarded as 
the sum of independent signals that constitute a DAD-chromatogram (i.e. peaks, noises, baseline 
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drift …). The use of UV-DAD detection and thus the hyphenated recorded signal make it possible 
to consider BSS of such chromatograms. It is thus very interesting to be able to separate peaks 
from noises or drift, and co-eluted peaks can be numerically separated for further processes. To 
carry out the numerical treatment in an automatic way, it is advisable to find a methodology 
which allows the use of ICA in a generic manner, i.e. to find the number of components/sources 
that ICA will try to make independent. In this paper, our objective is thus to investigate the 
possibility to perform automatically the treatment of data, ICA process, classification of compo-
nents, peak picking, extraction of UV spectra for each component of a test mixture of different 
pharmaceutical compounds and reconstruction of cleaned DAD-chromatograms. This feasibility 
study on real data is the preliminary but very important step towards our final objective, the fully 
automated development of LC methods. 

2. THEORY 

2.1 Independent component analysis  

Different definitions can be given for the Independent Component Analysis (ICA). One of the 
most classical is given below. This definition is referred as noise-free ICA. More details can be 
found in Hyvärinen and Oja’s work22,24 and related work of Hyvärinen.25 

ICA of a vector x of signals values (x1,…,xm)T consists of estimating the following generative 
model for the data: 

 x = As, (1) 

where A is a constant (m × n) mixing matrix, with m the number of observed signals, and the n 
components si in the signals vector s=(s1,…,sn)

T are assumed independent. Both A and s must be 
estimated and n, the number of sources to be computed, must be chosen. 

To solve this problem, the ICA algorithm estimates an unmixing matrix W such that the elements 
of the vector s are as statistically independent as possible. If A is a square matrix (n=m, i.e. ICA 
estimates as many independent components as the number of original recorded signals), the 
matrix W should be the inverse of the original mixing system A : W=A-1. Notice that the ICA 
algorithms often allows to estimate less sources (n<<m) in order to simplify the computations. In 
this case, A is not square any longer. Generally speaking, the knowledge of an estimation of W is 
similar to the knowledge of the (estimated) mixing process described by A.  

Then, after the ICA computation, it is possible to get the estimated sources: 

 ss)AA()sA(WxW 1 ˆˆˆˆˆˆˆˆ === − . (2) 

An important step is to normalize sources to avoid infinity of solutions, when estimating W. The 
scaled factors for the sources is then contained in the A matrix. The jth component is then defined 
as the product between the jth line of the estimated A and the jth element of the estimated s, and is 
formatted as x. 

It should be noted that the statistical independence is a much stronger condition than non-
correlation. Indeed, some uncorrelated functions are not necessarily independent. The independ-
ence between two sources s1 and s2 is estimated by: 

 E{h1(s1)h2(s2)} - E{h1(s1)}E{h2(s2)}. (3) 

This expression will be equal to zero in case of independence, whatever the function h1 and h2. 
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The general hypotheses that must be assumed are listed below: 

1. Signals and sources have zero mean.  
2. Sources are assumed to be statistically independent 
3. Sources must have unknown but non-Gaussian distributions (except one source). 
 

However, ICA has two limitations. First, it only allows reconstructing non-Gaussian independent 
components (except one). Second, neither the signs, nor the order of independent components 
(i.e. the order of the lines of the A matrix and of the elements of the s vector) can be estimated. 
Fortunately, as can be seen below, these limitations are not a real problem for our purpose. 

In practice, signals (x and s) are discretized and expressed as matrices, as explained in the next 
subsection. 

2.2 ICA applied to HPLC-UV-DAD data  

An UV-Diode-Array Detector (DAD) chromatogram can be considered as a matrix X containing, 
for each recorded time (the number of recorded time is T), the absorbance values at certain 
wavelengths j, in the range of the UV detector. X is then a matrix (m x T). 

Thus, we dispose of m vector xj(t), representing the absorbance values at wavelength j as a 
function of the time (indexed by t). However, this definition is not in perfect accordance with the 
definition of ICA presented in the previous section. The matrix X is not precisely the presented 
vector. Fortunately, without loss of generality, one can suppose that the time axis of each xj(t)  
corresponds to different observations of a signal xj. Thus, the X matrix can simply be expressed 
by the column vector x=(x1,…,xj,…,xm)T, allowing the application of the ICA theory. 

The hypotheses presented in the previous section are directly applicable. The first hypothesis can 
be easily fulfilled by subtracting the signal mean from each signal (chromatogram). The second 
hypothesis is the strongest one. However it is not unrealistic to assume that the peaks in a 
chromatogram are independent events, even if, from a chemical point of view, the related 
compounds may have similar structural features. This gives the ICA its power in the separation 
problem. Moreover, it does not need to be perfectly respected in practice. The third hypothesis is 
given for practical computational purpose. 

One major concern in ICA is to find the sources that are relevant from those that are not. ICA has 
already been used in order to eliminate artifacts from data in electroencephalograms (EEG).14,26 A 
similar methodology that the one presented by Delorme et al.14 will be applied, with some 
extensions to automate the process. 

Finally, related to this problem, a second concern is to determine the optimal number of sources n 
that must be used to break up the original DAD signal. The following sections present a new 
methodology to find this number of sources, applied in the context of design of experiments. In 
this framework, The DAD-chromatograms are referenced with the index p, (p=1,…,P). 

2.3 High-order moments and statistics.  

Since noise usually follows a Normal distribution, the computed independent sources given by 
ICA are investigated, no matter which value is chosen for n.  It has been described in the litera-
ture that kurtosis value of a distribution is a good evidence to reject artifacts and noises16.  This 
approach using kurtosis and other statistics or moments of the sources was used in the present 
study. 

Thus, the following statistics or moments can be used to check the Normality of the distribution 
of each source. If normality is not observed, it should imply that the source is unlikely to be noise 
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and therefore likely corresponds to an exogenous phenomenon like a compound being detected. 
In summary, sources of interest such as peaks are assumed to have a non-normal distribution, and 
will be identified as such. 

Kurtosis. The kurtosis is the fourth standardized moment of a random variable and is a measure 
of the peakedness of the probability distribution of this variable, and can be estimate as:  
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mk represents the moment (about the mean) of order k and is is the mean of the ith source is . 

Shapiro-Wilk statistics. The non parametric Shapiro-Wilk (S-W) test tests the null hypothesis 
that a sample is (1), ..., is (T) comes from a Normally distributed population. This hypothesis is 
rejected if the test statistics is too small. This test statistic or the associated p-value can be used to 
characterize the distribution. More details about this test can be found in the literature27. 

Kurtosis and S-W statistics can be used to describe the degree of Normality of a distribution and, 
hence, to identify noise sources. However, this is far to be the only statistics allowing this, and 
other simple or complex statistics (skewness of the distribution of the component, range, Kolmo-
gorov-Smirnov Normality test, etc.) can also be elegantly used in this context. 

2.4 k-means clustering 

k-means is a non supervised method to cluster objects into k partitions on the basis of their 
attributes. The objects are the sources computed by ICA and the attributes are the estimated 
moments and statistics computed on these sources. The aim is to use these computed characteris-
tics to discriminate the relevant sources (peaks) from the noise or irrelevant artifacts, chroma-
togram by chromatogram. The concept is to compare the Euclidian distance between the objects. 
A short distance (slight difference on the computed attributes) is a sign of closeness between 
objects. The closest objects are putted together in the same cluster. 

Different implementations exist for k-means clustering. The Hartigan and Wong one was used 
here, because it generally does a better job than other implementations28. However our applica-
tion of clustering is rather simple, with a low number of variables and observations, so that the 
way of implementation is not very relevant. 

Before clustering is applied, attributes are standardized by dividing by their standard deviation 
(computed on the total number of sources available on the DAD-chromatogram). This is done to 
give each attributes the same weight in the decision process. This is illustrated by the following 
equation, applied to kurtosis. The same computation was done for each considered statistics. 
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where K is the mean of the kurtosis computed on all the sources of one chromatogram. 

In practice, k-means with k=2 is used. Figure 1 shows the expected positions of both clusters, 
when k-means is applied on the attributes kurtosis and S-W statistics. The partitioning should 
result in a cluster with sources having a high Kurtosis and a low S-W values for the sources of 
interest (cluster 1) and conversely a low Kurtosis and a high S-W values for noises and artifacts 
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sources (cluster 2). For simplicity, clustering algorithm is assumed to be determinist (always 
giving the same results on the same set of data), although it is not the case. For the following 
sections, the number of sources in the relevant cluster for the pth DAD-chromatogram is defined 
as nr(n,p), as it also depends of n. 

 

Figure 1. Expected clustering of sources using normalized high-order statistics (kurtosis and 
S-W statistics are used) for one DAD-chromatogram. 

2.5 Selection of the number of sources for computation 

As previously explained, the main parameter of the ICA is the number n of sources or compo-
nents chosen to separate the signal. It is by default arbitrarily chosen by the operator but, for our 
purpose, an automated process was developed, that will find the optimal number of sources to be 
estimated ignoring the expected number of peaks to be detected. As our approach is created to be 
flexible and should have the ability to find unexpected peaks, it has to be done by a step-by-step 
automated process.  

Yuzhu et al. showed that the calculation of singular value ratios (SVR) is useful to estimate the 
number of “pure” components in HPLC-DAD data29, i.e. an estimation of the number of peaks. 
This number can be used to determine the number of sources needed to separate these pure 
components. Other techniques, such as the squared difference between an original and recon-
structed signal, are available but are not usable in our context26. The square difference would lead 
to reject components corresponding to a very small, but relevant, peak, because it does not 
significantly contribute to decrease the sum of squares of errors (SSE). 

Our approach is different because we want to determine this number using ICA and clustering 
methods in a DOE framework. In DOE, the same mixture is injected several times using different 
analytical conditions. Thus, each DAD-chromatogram should contain the same information, i.e. 
the same number of peaks/artifacts (unless some impurities appear). Finding the number n of 
sources for the application of ICA is similar as finding the most likely value of nr(n,p) across all 
DAD-chromatograms. This most likely value is defined as nr

*(n). For one value of n, the Figure 2 
illustrates how to locate nr

*(n), the expected number of peaks to extract out of n sources across 
the P DAD-chromatograms. 
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Figure 2. Example of optimal value of nr(n,p), computed across the P DAD-chromatograms, 
for a specific value of n. 

This innovative strategy is presented in Figure 3. An initial value for n must first be given. One 
can use an estimated number of pure components, with SVR computation, for instance. Another 
easier technique is to begin the ICA computation with a very low number of sources, say n=3. 
Then, ICA is performed with this initial value of n. For each estimated sources, the moments and 
statistics presented in the previous sections are computed, and the k-means clustering analysis 
(with k=2) is applied on these (standardized) values. The relevant cluster contains nr(n,p) sources 
identified as peaks or important artifacts. This process is repeated, incrementing value of n for the 
P DAD-chromatograms, and then each value of nr(n,p) is recorded. It is possible to realize a plot 
of nr

*(n) against the values of n (Figure 8). One can observe that nr
*(n) stabilizes when n in-

creases. This stabilized value, nc
*, will be assumed to be the optimal number of peaks and 

relevant artifacts in the mixture. 

The final step is to ensure that nc
* relevant peaks will be found for all DAD-chromatograms. This 

may be done by investigating in the recorded results, for each DAD-chromatogram, how many 
sources (n) were necessary to get nc

* components in the good cluster. 

The main disadvantage of this technique is the computational time, when working on DAD-
chromatograms issued from a design with many experiments (e.g. 50) and when the number of 
sources n has to be increased because many compounds are concerned. The estimation of the 
moments and statistics, clustering application and other processes, realized on the whole set of 
components for each chromatogram can become quite long. However, the gain is that no manual 
work has to be done to find peaks in noisy DAD-chromatograms. 

3. MATERIALS AND METHODS 

3.1 Chemicals.  

Methanol and acetonitrile were HPLC grade from Sigma (St-Louis, MO, USA). Ultra pure water 
was obtained with a Millipore (Billerica, MA, USA) Milli-Q Academic A10. Atenolol, pheny-
toine, sulfinpyrazone and warfarin were used as reference compounds throughout the study. 
These pharmaceutical compounds were selected for the difference existing between their 
chemical compositions, the large disparity between some of their physico-chemical descriptors 
(e.g. LogP - pKa) leads to different selectivity among the obtained chromatograms. These four 
compounds were obtained as reference from the Eli Lilly Company (Indianapolis, IN, USA). 
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Figure 3. Methodology for the selection of number of sources for the ICA computation. 

3.2 Experiments.  

A full factorial design30 has been applied on four factors: stationary phase, pH of the aqueous part 
of the mobile phase, gradient slope and the nature of organic modifier. Five analytical columns 
were used: C18, C8, RP18, Phenyl XBridge columns (100x2.1 mm i.d.; particle size 3.5 µm), all 
from Waters (Milford, MA, USA) and a C18 Cogent Bidentate column (100x2.1 mm i.d.; particle 
size 4.0 µm) from Microsolv (Eatontown, NJ, USA). The experiments were carried out at a flow 
rate of 0.25 mL/min and at 30 °C. The buffers consisted in 10 mM of concentrated formic acid 
for pH 2.6, ammonium formate for pH 5.0 and pH 7.0 and ammonium hydrogencarbonate for pH 
10.0. The pH was adjusted to the desired value with concentrated formic acid or ammonia 35% 
aqueous solution. The shapes of the linear gradients are described in Table 1. 

Chromatographic separation were performed on a Waters 2695 separation module coupled to a 
Waters selector valve 7678 and a Waters 996 Photodiode array detector. All DAD-
chromatograms were recorded between 210 nm and 394 nm with an estimated step of 1.2 nm 
(158 points) and with a time resolution of 500 ms. They were finally exported by Empower 1.0 
(Waters) in an ASCII file containing the UV-DAD matrix. 
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The experimental design leads to 5·2·4·3 = 120 experiments. The previously described methodol-
ogy has been then applied on the resulting 120 UV-DAD chromatograms. 
 

Time (min.) O.M.% Time (min.) O.M.% Time (min.) O.M.% 
0 5 0 5 0 5 
10 95 20 95 30 95 
10.5 95 20.5 95 30.5 95 
10.6 5 20.6 5 30.6 5 
16 5 26 5 36 5 

Table 1. Linear gradient shapes with organic modifier percentage (O.M.%) in mobile phase. 

3.3 Software.  

An in-house computer program was developed to perform the analysis presented in the previous 
sections. The coding was carried out with R 2.4.1 statistical language for Windows, freely 
distributed at http://www.r-project.org. These codes can be run on compatible PC or other 
environments where R is available. For ICA computations, FastICA algorithm for R, developed 
at the Helsinki University of Technology, was used. 

4. RESULTS AND DISCUSSION 

4.1 UV-DAD Data.  

The ICA approach is applied on each DAD-chromatogram. Each X chromatogram matrix can be 
described as a (158 x T) matrix where T is either 1920, 3120 or 4320, depending in the analytical 
conditions of gradient (10, 20 and 30 min, respectively).  

The methodology to find n and nr(n,p) is illustrated with n=12 on the DAD-chromatogram 
recorded on the XBridge C18 column with methanol and pH 5 buffer, with a gradient of 20 
minutes (Figure 4). In fact n=12 is a good value for n because it succeeds in finding the 4 
compounds and the dead volume perturbation (i.e. the small baseline perturbation observed at t0) 
of the considered DAD-chromatogram. The way to find systematically the value of n for each 
DAD-chromatogram of the design is presented. 

 

Figure 4. (left) Initial DAD-chromatogram recorded on an XBridge C18 with methanol and 
pH 5 buffer with a gradient of 20 minutes.  (right) DAD-chromatogram observed at 240 nm. 
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A first data cleaning has consisted in the cut of each DAD-chromatogram at 14, 24, 34 min for 
gradient times of 10, 20, 30 min respectively. This was performed in order to remove the 
perturbation of the end of the gradient, containing only noise or irrelevant artifacts. 
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Figure 5. Components computed by ICA with n=12 observed at 240 nm. The components 
numbered in grey are the ones that we can observe they correspond to peaks or relevant 

artifact. Components marked in black are noise. The X-axis represents the time (min.) and the 
Y-axis is the absorbance of the components. 
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ICA was then applied on the DAD-chromatogram, resulting in 12 components, as shown in 
Figure 5. Each independent component at one wavelength or a UV spectrum at a given time was 
then displayed. Figure 5 presents an example of this display at the wavelength of 240 nm. 

The components corresponding to peaks and relevant artifacts are voluntary shown (sources 
3,4,7,8 and 12). At the opposite, the seven other components labeled in black seemingly corre-
spond to noise. The aim was to automatically detect the relevant components. 

4.2 Clustering and optimal number of sources.  

The kurtosis and the Shapiro-Wilk statistics were computed on each source. After standardiza-
tion, k-means clustering was applied. The results are shown in Figure 6 (a). The cross located at 
the right and bottom indicates the center of the relevant cluster (cluster 1). The sources-
components contained in this cluster are effectively the ones that correspond to peaks and 
relevant artifacts. The maximum of each relevant component (apex) has been found and its 
retention time has been automatically placed on the chromatogram (Figure 6, b). 

 

Figure 6. (a) Clustering k-means realized on standardized kurtosis and Shapiro-Wilk statis-
tics. The right-bottom cluster (cluster 1, in grey) contains the relevant sources. Crosses are the 

clusters centers.  (b) Original DAD-chromatogram at 240 nm with automatically picked 
apexes by a vertical line. 

With n=12, 40.0% of results counted five components in the relevant cluster, across all the 120 
DAD-chromatograms. The distribution of the number of components counted in the relevant 
cluster, for n=12, is displayed in Figure 7. 
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Figure 7. Distribution of nr
*(n) for the 120 DAD-chromatograms with n=12. 

The same process has been applied for each value of n. The ICA process was restarted while 
changing n and observing how this percentage was affected. n was incremented from 3 to 30 and 
the result is illustrated on the Figure 8. It shows a stabilization of number of relevant components 
nr

*(n) at 5 components, for n=12 and upper. So, nc
* can be assumed equal to 5. 

 

Figure 8. Plot of the variation of nr
*(n) versus n. nr

*(n) stabilizes at the value of nc
*=5. 

Five relevant sources were thus preferably counted in the relevant cluster. This result indicates 
that each sample seems to contain five independent components of interest. This conclusion is 
correct because the four injected compounds and the dead volume perturbation of the baseline can 
be found. 

4.3 Dealing with results.  

However, for n=12, nr(n,p) differs from nc
*=5 in 60.0% of the clustering results. Then, for these 

inconvenient results, it is proposed to adapt the value of n till nr(n,p) reaches nc
*, investigating the 

recorded results. However in some cases no value of n makes it possible to reach this objective. 
So, the first nc

* best sources were defined as being the relevant ones. It is carried out by calculat-
ing a ranking index, the  

Wilk-Shapiro
Kurtosis ratio for each source and to keep those with the largest ratio. 

In order to remain consistent, this approach was also tested on the whole set of DAD-
chromatograms. Results of both automated peak picking approaches are exposed in Table 2. 
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4.4 Extracting sources UV-spectra. 

 Figure 9 shows that an estimated version of the UV spectrum (b) for each relevant peak (a) can 
be recovered and compared to the reference UV spectra of the investigated compounds (c), if 
known. This can be of great help for the identification of the compounds and would even be used 
to automatically carry out peaks’ matching. However some problems can occur. First, it is 
mandatory to get estimations of the UV spectra that are precise enough. Nevertheless, co-elution 
often distorts estimated concerned UV spectra. Second, The UV spectrum of certain compounds 
is logically modified by the buffer pH. For these reasons, automatic peaks’ matching remains a 
matter of particular interest. 

4.5 Reconstruction of DAD-chromatogram.  

Once the relevant sources were automatically found, the reconstruction process could be started 
by simply summing all the selected components, allowing retrieving a clean DAD-chromatogram. 
Figure 10 (a) and (c) presents the original DAD-chromatogram compared to the reconstructed 
one, both observed at 240 nm. The peaks (identified by the triangles in the top of the chroma-
tograms) have been automatically picked. However, at this wavelength, the purification of the 
chromatogram is not really observable. The chromatograms of Figure 10 (b) and (d) illustrate 
that, for every wavelengths, the reconstructed chromatogram (d) has been cleaned from artifact or 
gradient effects. 

4.6 Results of automated peak picking.  

Finally, the automated “peak picking study” was compared to the hand-made one. Results are 
reported in Table 2. 95.8 % of the four automatically picked peaks correspond to the four 
manually picked peaks. However, even done by a confirmed analyst, the manual peaks’ picking 
can not always be error free (but we assumed it is error free for these values). The dead volume 
perturbation is of particular interest (defining the dead time of a HPLC system), but the picking of 
this artifact is far not as good. This is due to some impurities or very significant artifacts, whose 
sources look as relevant one. 
 

Clustering 
Method 

picked 
peaks 

non picked 
peaks 

 picked 
relevant 
artifacts 

Picked irrelevant 
artifacts or 
impurities 

Count  
(total:120*4) 

457 23 
Count 
 (total = 120) 

59 49 

% 95.2 % 4.8 %    
Kurtosis/ 
Shapiro-Wilk 
ratio method 

picked 
peaks 

non picked 
peaks 

 
picked 
relevant 
artifacts 

picked irrelevant 
artifacts or 
impurities 

Count  
(total:120*4) 

460 20 
Count 
 (total = 120) 

59 71 

% 95.8 % 3.5 %    
Table 2. Comparison of automated peak picking results on the complete set of chromatograms by 
the two methods. 
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Figure 9. Obtained relevant components and comparison between their UV-spectra and 
reference ones. (a) Components contained in the relevant cluster, observed at 240nm; (b) 

Estimated UV spectra of each independent component at apex (210-400 nm); (c) Reference 
UV spectra (200-400 nm) from Clarke 200431. The reference spectra recorded in basic media 

are shown in dotted line. 
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Figure 10. (a-c) Comparison between original DAD-chromatogram (a) and reconstructed one 
with n=12 (c). The original is recorded at 240 nm, on an XBridge C18 with methanol and pH 

5 buffer with a gradient of 20 minutes. Apexes have been automatically picked. (b-d) 
Comparison at different wavelengths (214, 220, 240, 268 and 327 nm) of the same original 

(b) and reconstructed (d) chromatograms. 

5. CONCLUSIONS 

The automated finding of peaks is a very crucial step in the automated development of analytical 
methods. This new and original approach combining design of experiments, ICA, high-order 
statistics and clustering is very powerful and promising as illustrated by its successfully applica-
tion for the determination of a test mixture of pharmaceutical compounds. On the other hand, 
great advantages of the present approach would be found when dealing with high throughput 
screening experiments, as those resulting of the follow-up of the synthesis process (purity 
assessment) or in the framework of the development of stability indicating method where 
impurities are not necessary known. Moreover, it does not require expensive equipments, such as 
mass spectrometer, to detect all compounds of a sample. Clustering methods allow separating 
very efficiently the noise components from the relevant ones, using adequate summary statistics. 
The technique to find an optimal number of sources is very convenient but is computationally 
expensive.  Fortunately, the time needed for the numerical data treatments presented in this study 
is smaller than the sample analysis time, and the chromatograms are numerically treated one by 
one. This gives the opportunity to easily implement the numerical data treatments in concurrent 
mode, while the sample analysis are processing.  

Finally, this process could also be performed only on sub-parts of a DAD-chromatogram, 
according to the analyst interest; for instance, searching of co-eluted impurities in peaks of 
interest. 
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