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Abstract

When analyzing a contingency table, it is often worth relating the probabilities that
a given individual falls into the different cells to a set of predictors. These conditional
probabilities are usually estimated using appropriate regression techniques. In particu-
lar, in this paper, a semiparametric model is developped. Essentially, it is only assumed
that the effect of the vector of covariates on the probabilities can entirely be captured
by a single index, which is a linear combination of the initial covariates. The estimation
is then twofold : the coefficients of the linear combination and the functions linking
this index to the related conditional probabilities have to be estimated. Inspired by
the estimation procedures already proposed in the literature for Single-Index regression
models, four estimators of the index coefficients are proposed and compared, from a
theoretical point-of-view, but also practically, with the aid of simulations. Estimation
of the link functions is also adressed.
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1 Introduction

Consider the contingency table built by cross-classifying a sample of n individuals with

respect to the levels of two categorical variables R and S, having r and s levels respectively.

Quantity of interest facing such a table is typically the joint probability distribution π =

{πij : 1 ≤ i ≤ r, 1 ≤ j ≤ s} of R and S, with

πij = P (R = i, S = j) ,

i.e. the probability that a given individual falls into cell (i, j) of the table. The analysis

of such a table is an over-studied problem in statistical literature. See e.g. Everitt (1992).

However, it is often the case that for each individual of the sample are known not only R

and S, but also a set of p explanatory variables, say X, characterizing him. In most of the

situations, it is useful to relate the cell probabilities to these characteristics. At first, to

check an eventual effect of X on R and S, and next to perform the classical analyses on

contingency tables, taking this eventual heterogeneity of the population into account. In

these purposes are needed reliable estimates of the conditional distribution of R and S given

X, denoted π(x) = {πij(x) : 1 ≤ i ≤ r, 1 ≤ j ≤ s}, with

πij(x) = P (R = i, S = j|X = x). (1.1)

This paper adresses the problem of estimation of such conditional probabilities.

For a long time, the relation between a categorical response and some explanatory variables

was almost always analysed via parametric methods, mainly logistic regression and its gen-

eralizations. McCullagh and Nelder (1989, section 6.5.4) proposed to generalize the basic

idea of binary logistic regression to multivariate categorical response models. In a general

way, their multivariate logistic regression model, also discussed by Glonek and McCullagh

(1995) and Glonek (1996), is written

Ct log(Lπ(X)) = ΘX, (1.2)

where L and C are appropriately chosen matrix of 0, 1 and −1, and Θ is a (rs− 1)× (p+1)

matrix of unknown parameters. As illustration, in the simplest case r = s = 2, it becomes†

logit (π1·(X)) = θt
RX (1.3)

logit (π·1(X)) = θt
SX (1.4)

log

(
π11(X)π22(X)

π12(X)π21(X)

)
= θt

RSX,

†We adopt the usual following subscript convention: ”·” denotes the sum over the index it replaces, e.g.
πi· =

∑s
j=1 πij .
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with θR, θS and θRS vectors of unknown parameters to be estimated. This model rests

on three structural assumptions. As it implies the univariate logistic model marginally for

R and S, it first supposes that the vector of covariates X influences the distribution of

R (resp. the one of S) only through a linear combination θt
RX (resp. θt

SX), and second,

that the functions linking these linear combinations to the resulting marginal conditional

probabilities are the same, namely the logit function. Finally, it moreover assumes that the

log of the odds, given X, is also a linear function of X.

The lack of flexibility implied by this structure seems to be a serious limitation of this model.

For example, once a marginal conditional probability to fall in some level of R or S is not a

monotonic function of one of the covariate, expressions like (1.3) or (1.4) are not appropriate.

In classical regression, such kind of fit problem is often overcome by using nonparametric

methods. These ones require no structural assumption on the underlying functions, except

very mild properties such as a certain amount of smoothness. For categorical response

model, the use of nonparametric regression techniques was first studied by Copas (1983).

Later, Azzalini et al (1989), Rodriguez-Campos and Cao-Abad (1993) and Chu and Cheng

(1995) a.o. used a Nadaraya-Watson (NW) estimator in this context. Recently, Geenens

and Simar (2008) developped a nonparametric test of independence between two categorical

variables, conditionally to a set of explanatory variables, using this estimator. This one can

be defined in the following way. Consider the random vector

Z = (Z(11), Z(12), . . . , Z(rs))t, (1.5)

with Z(ij) taking the value 1 if the individual belongs to cell (i, j) and 0 otherwise. Note

that, for ease of derivation, the components of Z are indexed by the pairs ij, so that the

subset (ij) denotes the ((i−1)s+j)th element of Z. From a sample {(Xk, Zk), k = 1, . . . , n},
and given a kernel function K and a bandwidth h, the NW estimator of πij(x) is given by†

p̂ij(x) =

n∑
k=1

Kh(x−Xk)Z
(ij)
k

n∑
k=1

Kh(x−Xk)

, (1.6)

that is a weighted average of the 0-1 responses Z
(ij)
k , with weights varying according to

the distance between x and Xk. For more details, see the classical references dealing with

nonparametric regression, such as Härdle (1990) or Wand and Jones (1995).

Although the great amount of flexibility offered by this kind of estimator, it also suffers from

an important disadvantage: it can be shown that it gets very demanding with respect to the

†Kh is the usual normalized version of K: Kh(·) = 1
hK(·/h).
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number of observations when increasing the number of regressors. Specifically, the fastest

achievable rate of convergence of nonparametric regression function estimators towards the

true curve decreases as the number of continuously distributed components of X increases

(see Stone (1980)). Hence, the larger the number of regressors, the larger the dimension of

data samples needed in order to achieve reasonable estimates, so that in practice, for data

sample of usual size, nonparametric estimators are considered as reliable if p, the number of

regressors, is 1 or 2 only. This phenomenon is known as the ”curse of dimensionality”, and

affects any nonparametric method.

The general idea developped in this paper is to propose a semiparametric method for esti-

mating the conditional probabilities (1.1). Semiparametric models can be seen as a mix of

parametric and nonparametric approaches, with the aim to compensate for their respective

drawbacks. Formally, they are characterized by a twofold parametrization, say θ and γ,

where θ lies in a finite-dimensional space Θ (parametric part of the model) and γ lies in

an infinite-dimensional space Γ (nonparametric part). This permits to relax some of the

restrictive shape assumptions of parametric models, keeping the model as flexible as possible

via γ, but in the same time to maintain many of the desirable features of them, essentially

their good properties and their ease of computation and interpretation. In particular, one

objective is to avoid the above-metionned curse of dimensionality. In this work, we formulate

a Single-Index assumption, made explicit in the next section, on the conditional probabilities

(1.1). Note that the use of semiparametric models in case of discrete response was already

discussed by Manski (1985), Klein and Spady (1993), Thompson (1993), Lee (1995) or Pagan

and Ullah (1999, section 7), among others.

The paper is organized as follows. Section 2 describes the assumed semiparametric model

for the conditional probabilities. As it will appear, the estimation is twofold: some link

functions and a vector of parameters need to be estimated. Section 3 is concerned with the

estimation of the link functions, while section 4 deals with the estimation of the parametric

part of the model. Section 5 proposes a simulation study, which illustrates the practical

performances in finite sample of the different estimators described in section 4. Section 6

concludes.

2 Single-index modelling of the conditional probabili-

ties

As mentionned in the introduction, this paper develops a semiparametric model for the

conditional probabilities based on a Single-Index assumption. Single-Index Models (SIM)
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were first introduced as such by Ichimura (1987, 1993). In a classical regression setting,

where Y is a continuous response and X a vector of covariates, a SIM is given by

Y = g0(θ
t
0X) + ε, (2.1)

with ε a random disturbance such that E(ε|X) = 0, θ0 an unknown p-vector of parameters

and g0 an unknown link function. An equivalent formulation is

∃ θ0 ∈ Rp : m(x)
.
= E(Y |X = x) = E(Y |θt

0X = θt
0x) = g0(θ

t
0x), (2.2)

i.e. the vector of covariates X influences the conditional mean of Y only through a linear

combination θt
0X of its components, called the index. In this model, the index coefficient

vector θ0, forming the parametric part of the model, and the link function g0, the non-

parametric part, have to be estimated, contrary to what happens in a Generalized Linear

Model, where the function g0 is a priori fixed and supposed invertible. At this point, an

important remark is that any pair (index coefficients vector, link function) from the set

{(cθ0, gc(.)
.
= g0(./c)), c ∈ R0} should exactly lead to the same regression function m(x), so

that they could not be distinguished. Hence, for identifiability purpose, it is necessary to fix

the scale of θ0, for example by fixing θ
(1)
0 = 1, where θ

(1)
0 is the first component of the vector

θ0. Many estimators of this θ0 have been proposed in the literature. In the remainder, we

will mainly be interested in the Semiparametric (or Pseudo) Maximum Likelihood of Klein

and Spady (1993), Ai (1997) or Delecroix et al (2003), the Semiparametric Least Squares

estimator of Ichimura (1993), the Average Derivative estimator of Powell et al (1989) and

the Sliced Inverse Regression estimator of Duan and Li (1991). Those are the most popular

methods in this context, and are comprehensively reviewed in Horowitz (1998, chapter 2),

Härdle et al (2004, chapter 6) or Geenens and Delecroix (2006).

In this paper, we propose to adapt those ideas to the case of the estimation of the conditional

probabilities in a two-way contingency table. The main difference is that only one unknown

link function is concerned in model (2.1), while it will appear that, in our framework, rs link

functions are needed. With the vector Z defined in (1.5), we will first suppose :

Assumption 1. The sample {(Xk, Zk), k = 1, . . . , n} is formed by i.i.d. replications of

(X, Z), a random vector of compact support D = SX ×{z ∈ {0, 1}rs :
∑

q z(q) = 1}, with SX

not contained in any proper linear subspace of Rp, and such that Z|X follows a multinomial

distribution, with parameters (1; π(X)).

Since we have obviously E(Z(ij)|X = x) = πij(x), analogy with (2.2) leads to write the

single-index assumption as
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Assumption 2. There exists θ0 ∈ Θ ⊂ {θ ∈ Rp : θ(1) = 1} and rs functions gij : R → R,

i = 1, . . . , r, j = 1, . . . , s such that

πij(x) = gij(θ
t
0x) ∀x ∈ SX , ∀ (i, j).

In other words, this assumption amounts to say that

(i) the influence of the vector of covariates X on the joint distribution of R and S can

entirely be captured by some linear combination θt
0X, and

(ii) no structural assumptions on the functions gij, linking this index to the related condi-

tional probabilities, are made.

Note that (i) is quite different to what model (1.2) assumed: here, one single index θt
0X is

concerned for the whole joint distribution of R and S, while in the former (r − 1) + (s− 1)

linear combinations were needed to model the marginal distributions, plus (r − 1)(s − 1)

for the interactions. On the other hand, (ii) requires the nonparametric estimation of the

functions {gij}, and therefore the use of estimators such as (1.6). This grants the model

a great flexibility. In particular, monotonicity of functions {πij} is not required. In the

remainder, it will also be assumed the following regularity conditions.

Assumption 3. The random variable U0 = θt
0X admits a bounded density f0, which has

two bounded continuous derivatives. Moreover, f0(u) > 0 for any u in the support of U0,

denoted S0.

Assumption 4. The functions gij have two bounded continuous derivatives, and 0 < gij(u) <

1, ∀u ∈ S0, ∀(i, j). Moreover, there is at least one gij which is not a constant function.

These conditions are sufficient in order to ensure the identification of the model. This can

easily be shown in the same way as the proof of theorem 4.1 of Ichimura (1993), starting from

the fact that θ0 minimizes E ((Z − E(Z|θtX))t(Z − E(Z|θtX))) on Θ. Note that a necessary

condition for Assumption 3 is that there exists at least one continuously distributed regressor,

say X(1). This therefore allows some explanatory variables to be discrete. However, in this

latter case, identification of the model requires two extra conditions: (a) varying the values

of the discrete regressors does not divide S0 into disjoints subsets, and (b) there is at least

one gij which is not a periodic function. See Ichimura (1993) or Horowitz (1998, section

2.4) for details. In the sequel, we will also refer to fθ, gθ
ij and Sθ as the density of θtX, the

conditional expectation of Z(ij) given θtX and the support of fθ, respectively. Note that

f0 ≡ fθ0 , gij ≡ gθ0
ij and S0 ≡ Sθ0 . Define also S

(h)
0 , the ”interior” of the support S0, as
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S
(h)
0

.
= {u ∈ S0 : mU + h ≤ x ≤ MU − h}, where m0 and M0 are the lower and the upper

bound of S0
†. Such a set needs to be defined as it is well known that the behavior of the

Nadaraya-Watson estimator differs when computed at points close to the boundary of the

support.

3 Estimation of the link functions

Suppose at first that the vector θ0 appearing in Assumption 2 is known. Then, any function

gij could be estimated via the regression of Z(ij) on the index θt
0X. As this index is univariate,

the curse of dimensionality mentionned in introduction would be avoided. From the sample

{(Xk, Zk), k = 1, . . . , n}, the Nadaraya-Watson estimator of gij would be given by

ĝθ0
ij (u) =

n∑
k=1

Kh(u− θt
0Xk)Z

(ij)
k

n∑
k=1

Kh(u− θt
0Xk)

. (3.1)

The asymptotic theory of such an estimator is well known. In particular, besides Assump-

tions 1-4, it is often assumed that

Assumption (link1). The kernel K is a symmetric Lipschitz continuous probability density

on [−1, 1];

and

Assumption (link2). The bandwidth sequence is such that nh5 = O(1).

Then, we have, for any u ∈ S
(h)
0 , for all (i, j),

(nh)1/2
(
ĝθ0

ij (u)− gij(u)− bij(u)
) L−→ N

(
0, σ2

ij(u)
)
, (3.2)

where

bij(u) =
1

2
κ2h

2

(
g′′ij(u) + 2g′ij(u)

f ′
0(u)

f0(u)

)
and σ2

ij(u) = ν0
gij(u)(1− gij(u))

f0(u)
, (3.3)

with κq =
∫

uqK(u)du and νq =
∫

uqK2(u)du.

Remark 3.1. As the asymptotic bias and variance depend on the function gij itself, the

asymptotic optimal value (in the sense of minimum MISE) for the bandwidth in estimator

†As SX is assumed compact (Assumption 1), its projection on θ0 is also compact, that is a closed interval
of R.
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(3.1) indicates that different values hij should be used for estimation of each function gij.

Nevertheless, we argue it is preferable in practice to use the same bandwidth h for each cell

(i, j). The reason is simple: it permits to keep, for {ĝθ0
ij (x)}, essential properties of the

underlying {πij(x)}, mainly the fact that they sum to one for any x. It should not be the

case if different bandwidths hij were used. See Geenens and Simar (2008, section 2.2) for a

more detailed related discussion.

Due to the assumed multinomial sampling, standard developments show that the asymptotic

covariance between ĝθ0
i1j1

(u) and ĝθ0
i2j2

(u) is −ν0
gi1j1

(u)gi2j2
(u)

nhf(u)
, for (i1, j1) 6= (i2, j2). Therefore,

defining vectors

g(u) =
(
g11(u), g12(u), . . . , gr(s−1)(u), grs(u)

)t
ĝθ0(u) =

(
ĝθ0
11(u), ĝθ0

12(u), . . . , ĝθ0

r(s−1)(u), ĝθ0
rs(u)

)t

b(u) =
(
b11(u), b12(u), . . . , br(s−1)(u), brs(u)

)t
,

the vector analogue of (3.2) is

(nh)1/2
(
ĝθ0(u)− g(u)− b(u)

) L−→ N rs

(
0,

ν0

f(u)

(
diag(g(u))− g(u)g(u)t

))
,

with diag(g(u)) being the diagonal matrix built on the elements of g(u).

Obviously, as θ0 is unknown in practice, estimator (3.1) is not feasible as such. However,

suppose that a consistent estimator θ̂ is known. A natural estimator for gij then becomes

ĝθ̂
ij(u) =

n∑
k=1

Kh(u− θ̂tXk)Z
(ij)
k

n∑
k=1

Kh(u− θ̂tXk)

. (3.4)

Assume moreover that θ̂ is root-n consistent, i.e.

‖θ̂ − θ0‖ = OP (n−1/2), (3.5)

which is the typical rate of convergence for parametric estimators. It is well known that

a nonparametric estimator cannot achieve this rate, so that the convergence of θ̂ towards

the true θ0 is in that case faster than the convergence of ĝθ0
ij (u) towards gij(u). Therefore,

it is intuitively clear that the difference between ĝθ̂
ij(u) and ĝθ0

ij (u) would be asymptotically

negligible. Specifically, we would have

(nh)1/2
(
ĝθ̂

ij(u)− gij(u)
)

= (nh)1/2
(
ĝθ0

ij (u)− gij(u)
)

+ oP (1)
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for any u in S0, so that the estimation of θ0 by an estimator θ̂ would have no effect on the

asymptotic distribution of the estimator of gij, provided that (3.5) holds. See a.o. Härdle

and Stoker (1989, theorem 3.3) for a formal proof of this reasoning. Hence, we can write,

for any u ∈ S0, for all (i, j), for any root-n consistent estimator θ̂ of θ0,

(nh)1/2
(
ĝθ̂

ij(u)− gij(u)− bij(u)
)

L−→ N
(
0, σ2

ij(u)
)
,

with bij(u) and σ2
ij(u) defined in (3.3), and

(nh)1/2
(
ĝθ̂(u)− g(u)− b(u)

)
L−→ N rs

(
0,

ν0

f0(u)

(
diag(g(u))− g(u)g(u)t

))
.

Besides, as kernel estimators such as ĝθ̂ inherits the smoothness properties of the kernel K,

we have also, by assumption (link1), that |ĝθ̂(θ̂tx) − ĝθ̂(θt
0x)| = O(‖θ̂ − θ0‖), and therefore,

under assumption 2, for any x ∈ SX such that θt
0x ∈ S

(h)
0 ,

(nh)1/2
(
ĝθ̂(θ̂tx)− π(x)− b(θt

0x)
)

L−→ N rs

(
0,

ν0

f0(θt
0x)

(
diag(π(x))− π(x)π(x)t

))
.

Next section shows that estimators satisfying (3.5) actually exist.

4 Estimation of the index

In this section, the main estimation procedures of the index coefficients vector θ0 in classical

SIM are adapted to our setting. First of all, notice that those methods can be classified

into two groups, according to whether they require solving a nonlinear optimization problem

(M-estimators) or not (direct estimators). Examples of M-estimators are typically the Semi-

parametric Least Squares and the Semiparametric Maximum Likelihood estimators, direct

ones are among others the Average Derivatives and the Sliced Inverse Regression estimators.

4.1 Semiparametric Maximum Likelihood estimator (SML)

Maximum Likelihood methods are well studied in semiparametric models. In the usual SIM

context (2.1)-(2.2), Ai (1997) and Delecroix et al (2003) form a quasi-likelihood function by

replacing the unknown density of the response conditional on the index by a nonparametric

estimator. Beforehand, Klein and Spady (1993) developped this idea in a binary-response

model, and Lee (1995) generalized it to the polychotomous case. An evident but interesting

observation is that the model defined by Assumptions 1-2 is nothing else but a polychotomous

choice model, so that those results directly adapt. This adaptation is presented hereafter.

8



If the link functions were known, the parametric multinomial likelihood would be

Λ(θ) =
n∏

k=1

rs∏
ij=11

gij(θ
tXk)

Z
(ij)
k ,

so that the log-likelihood would be written

L(θ) =
n∑

k=1

rs∑
ij=11

Z
(ij)
k log gij(θ

tXk) (4.1)

and the estimator would be the value which maximizes L(θ). This parametric maximum like-

lihood estimator is known to have excellent asymptotic properties, in particular its asymp-

totic efficiency.

When the functions {gij} are unknown, the semiparametric maximum likelihood estimator

is then defined as

θ̂ = arg max
θ∈Θ

n∑
k=1

rs∑
ij=11

Z
(ij)
k log ĝθ

ij(θ
tXk)1I(Xk ∈ Xn), (4.2)

that is the value which maximizes log-likelihood (4.1) where the unknown links have been

replaced by some nonparametric estimators, usually taken to be Nadaraya-Watson estimators

like

ĝθ
ij(θ

tXk) =

∑
k′ 6=k

Z
(ij)
k′ K1

(
θtXk′ − θtXk

h1

)
∑
k′ 6=k

K1

(
θtXk′ − θtXk

h1

) , (4.3)

with K1 a kernel function and h1 a bandwidth. Note that (4.2) is therefore the maximizer

of a so-called pseudo- or profile-likelihood. Also, notice that (3.4) and (4.3) are two different

estimators : the former gives the final estimator of the concerned link function once an

estimator of θ0 has been determined, while the latter defines a primary estimator of the link,

precisely needed for deriving the estimator θ̂. No confusion is possible, as the final estimator

(3.4) does not arise in the derivations of this section. In (4.3), see that the observation Xk is

excluded from the calculation of ĝθ
ij(θ

tXk) (”leave-one-out” estimator), for intuitively clear

bias reasons as well as for technical facilities. Also, a trimming term 1I(Xk ∈ Xn) is added

in (4.2), in order to avoid eventual problems from the random denominator of (4.3). In

particular, it permits the convergence of estimator ĝθ
ij towards gθ

ij, uniformly in x and θ.

Lee (1995) proposes the following trimming set†:

Xn = {x ∈ SX : ξnα ≤ x(1) ≤ ξn(1−α)}, (4.4)

†Actually, a discretized version of this trimming set is considered, for technical reasons, without changing
its purpose.
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where α is a specified small positive number, and ξnα is the αth sample quantile of the

observed {X(1)
k }. Note that this trimming indeed implies that the density of the index is

bounded away from zero on the probability limit set of Xn, i.e.

X = {x ∈ SX : ξα ≤ x(1) ≤ ξ(1−α)},

where ξα is the αth-quantile of X(1). See Lee (1995) end of section 2. Another remark is

that K1 needs to be a ”higher-order” kernel function, in order to reduce the bias of estimator

θ̂ induced by the kernel estimation of {gij}. However, the use of such kernels, which take

on positive and negative values, can cause some trouble since the estimated probabilities

are not ensured to be positive. A possible solution to this problem is to replace nonpositive

ĝθ
ij(θ

tXk) by a specified small positive number in (4.2).

For deriving the asymptotic properties of the estimator (4.2), the following extra regularity

conditions are made.

Assumption (SML1). The kernel function K1 has a bounded support S1 and is two times

differentiable with a second derivative satisfying a Lipschitz condition. Besides,
∫

K1(u)du =

1,
∫
|K1(u)|du < ∞,

∫
uqK1(u)du = 0 for q = 1 and 2 and K1(u) = 0 for u ∈ ∂S1, the

boundary of S1.

Assumption (SML2). The bandwidth sequence h1 is such that nh5
1/ log n →∞, nh4

1 →∞
and nh6

1 → 0.

Assumption (SML3). The set Θ, defined in assumption 2, is compact and convex, and

θ0 ∈ int(Θ).

Assumption (SML4). The density of the first component of X conditional to the other

components, say f1(x
(1)|X(−1) = x(−1)), is positive ∀x = (x(1), x(−1)) in the interior of SX ,

and is differentiable with respect to x1 up to order 4.

Now, define the following matrices:

W (θt
0x) = diag

(
g11(θ

t
0x), g12(θ

t
0x), . . . , grs(θ

t
0x)
)−1

,

Γ(θtx) =


∂gθ

11(θtx)

∂θ(2)

∂gθ
12(θtx)

∂θ(2) . . . ∂gθ
rs(θ

tx)

∂θ(2)

...
. . .

...
∂gθ

11(θtx)

∂θ(p) . . . ∂gθ
rs(θ

tx)

∂θ(p) (θtx)

 , (4.5)

Γ̃(θt
0x) = Γ(θt

0x)1I(x ∈ X )− E(Γ(θt
0X)1I(X ∈ X )|θt

0X),

Σ = E
(
Γ(θt

0X)W (θt
0X)Γ(θt

0X)t1I(X ∈ X
)
)
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and

Σ̃ = E
(
Γ̃(θt

0X)W (θt
0X)Γ̃(θt

0X)t1I(X ∈ X )
)

.

Note that we have, for q = 2, . . . , p,

∂gθ
ij(θ

tx)

∂θ(q)
|θ=θ0 = g′ij(θ

t
0x)
(
x(q) − E(X(q)|θt

0X = θt
0x)
)

∀ (i, j)

while
∂gij(θ

tx)

∂θ(1)
≡ 0 ∀ (i, j),

as θ(1) is fixed to one for any θ ∈ Θ, what implies that matrix Γ(θtx) has only (p− 1) rows.

Then, theorem 2 of Lee (1995) states :

Theorem 4.1. Under Assumptions 1-4 and (SML1)-(SML4), the Semiparametric Maximum

Likelihood estimator defined by (4.2) satisfies

√
n
(
θ̂ − θ0

)
L−→ N p(0, ΣSML),

with ΣSML
.
=

(
0 0

0 Σ−1Σ̃Σ−1

)
.

The null first row and column of ΣSML are obviously related to the first component of θ̂,

fixed to one.

Given the asymptotic properties of its parametric counterpart, the question of the efficiency

of this semiparametric maximum likelihood estimator is now adressed. A semiparametric

estimator is efficient if its variance matrix equals the semiparametric variance bound, which

is defined as the supremum of the Rao-Cramer bounds for all regular parametric submodels†

of the considered semiparametric model. See Newey (1990) for discussion and detailed results

about semiparametric efficiency bounds. Derivation of such bounds is not a trivial problem.

Lee (1995) found that the semiparametric variance bound for estimators of (θ
(2)
0 , . . . , θ

(p)
0 ) in

a polychotomous choice model is

V =

[
E

(
rs∑
ij

Z(ij)∂ log gij(θ
t
0X)

∂θ

(
∂ log gij(θ

t
0X)

∂θ

)t
)]−1

,

where the differentiation with respect to θ starts from its second component. See that this

can be written

V =
[
E
(
Γ(θt

0X)W (θt
0X)Γ(θt

0X)t
)]−1

, (4.6)

†A parametric submodel is a parametric model that satisfies the semiparametric assumptions and contains
the truth.
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and that this bound would be attained by estimator (4.2) if the trimming terms 1I(Xk ∈ Xn)

in (4.2) were identically equal to 1. Indeed, in that case, the conditioning on the event

X ∈ X would disappear from the different expectations in the expressions of Γ̃, Σ̃ and Σ,

and as E(Γ(θt
0X)|θt

0X) equals zero, we would have Σ = Σ̃ and Σ−1 = V , so that

ΣSML =

(
0 0
0 V

)
.

Hence, it is seen that the estimator (4.2) is not asymptotically efficient because of the sample

information lost in the trimming process. Nevertheless, this loss of efficiency can be very

small if the trimming quantile α appearing in (4.4) is very small, that is when the set X is very

close to SX . One can thus say that the proposed SML estimator is ”nearly” asymptotically

efficient.

Remark 4.1. A natural idea should be to let α decreases to zero as n tends to infinity, to

reach asymptotic efficiency. However, Lee (1995) points out that this design would create

difficult analytic issues, and we do not develop further such idea. The quantile α is thus fixed

to an arbitrarily small value.

Remark 4.2. As already mentionned, the higher order of the kernel K1 can lead to practical

troubles as the estimated probabilities are not ensured to belong to [0, 1]. Besides, criterion

(4.2) becomes very unstable when using such kernels†. Therefore, it could be advantageous

to work with a usual second order positive kernel, in order to stabilize the variance. In the

simulation study in section 5, two SML estimators, one based on a second order kernel and

another based on a higher order kernel, will be compared.

4.2 Semiparametric Least Squares estimator (SLS)

Least squares methodology is another parametric regression method which can easily be

adapted to our setting. As in the previous subsection, suppose at first that the link functions

gij are known. Then θ0 can be estimated via a classical non-linear (possibly weighted) least

squares problem such as

θ̂ = arg min
θ∈Θ

n∑
k=1

rs∑
ij=11

wij(Xk)(Z
(ij)
k − gij(θ

tXk))
2, (4.7)

that would yield a root-n consistent and asymptotically normal estimator, under usual mild

conditions. The weighting allows to take an eventual heteroskedasticity into account, and

to reach efficiency when optimal weights are used. When the link functions are unknown,

†Powell et al (1989) already pointed this out in the context of Average Derivatives Estimators.
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problem (4.7) is solved with the gij’s replaced by consistent nonparametric estimators. As

in Ichimura (1993), these links are estimated by their Nadaraya-Watson estimator

ĝθ
ij(θ

tXk) =

∑
k′ 6=k

Z
(ij)
k′ K2

(
θtXk′ − θtXk

h2

)
∑
k′ 6=k

K2

(
θtXk′ − θtXk

h2

) , (4.8)

with K2 a kernel function and h2 a bandwidth. As in (4.3), the observation Xk is excluded

from the calculation of ĝθ
ij(θ

tXk). Ichimura (1993) added trimming terms 1I(Xk ∈ Xn) in

(4.7) and in (4.8), where

Xn = {x ∈ SX : ∃x′ ∈ X : ‖x− x′‖ ≤ 2h}

and X is a compact subset of SX such that the density of the index θtX is bounded away

from zero, for any θ ∈ Θ. This prevents to find the denominator of (4.8) arbitrarily close to

0 as n increases, and permits to establish uniform convergence of the estimator towards its

probability limit. Note that no guide is given on how to select the set X in Ichimura (1993),

so that we propose to use the trimming scheme of Lee (1995) (see the previous subsection).

This does not alter Ichimura’s arguments, as the final aim of uniform convergence is the

same.

Remark 4.3. In the original version of Ichimura (1993), other extra weights appear in the

definition of estimator (4.8), in order to increase efficiency and to reduce bias. However, as

stated by its section 6, this inner weighting has no effect when the conditional variance of the

response given the covariates only depends on the index. As this is the case in the considered

setting - we have Var(Z(ij)|X) = gij(θ
t
0X)(1 − gij(θ

t
0X)) for any (i, j) by Assumption 1 -,

these weights are not considered here.

The Semiparametric Least Squares estimator of θ0 is thus given by

θ̂ = arg min
θ∈Θ

n∑
k=1

1I(Xk ∈ Xn)
rs∑

ij=11

wij(Xk)(Z
(ij)
k − ĝθ

ij(θ
tXk))

2. (4.9)

Deriving asymptotic properties for this estimator requires the following conditions.

Assumption (SLS1). The set Θ, defined in assumption 2, is compact, and θ0 ∈ int(Θ).

Assumption (SLS2). The functions fθ(u) and gθ
ij(u) are three times continuously differen-

tiable with respect to u and the third derivatives satisfy suitable Lipschitz conditions, ∀u ∈ Sθ

uniformly in θ.
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Assumption (SLS3). The kernel K2 has support [−1, 1], is two times continuously differen-

tiable, with the second derivative satisfying a Lipschitz condition, is such that
∫

K(u)du = 1

and
∫

uK(u)du = 0.

Assumption (SLS4). The bandwidth sequence h2 satisfies (log h2)/(nh3
2) → 0 and nh8

2 → 0

as n →∞.

Assumption (SLS5). The weight functions wij appearing in (4.9) are bounded and positive.

As our Assumptions 1-4 and (SLS1)-(SLS4) imply Assumptions 5.1-5.6 of Ichimura (1993)

for any (i, j), we directly find, from his Lemma 5.1, that for any ε > 0,

P
(

sup
x∈X

sup
θ∈Θ

|ĝθ
ij(θ

tx)− gθ
ij(θ

tx)| > ε

)
→ 0.

Moreover, Lemmas 5.5-5.10 of Ichimura (1993) also hold as such, while Lemmas 5.2-5.3

and Theorem 5.1 hold, with very slight modifications†, for the criterion appearing in (4.9).

Theorem 5.2, stating the root-n consistency as well as the asymptotic normality of the SLS

estimator can also very easily be adapted. The matrices of interest are slightly modified in

an evident way, and become

V = E
(
Γ(θt

0X)W(X)(Γ(θt
0X))t1I(X ∈ X )

)
(4.10)

and

Ṽ = E
(
Γ(θt

0X)W(X)Ω(θt
0X)W(X)(Γ(θt

0X))t1I(X ∈ X )
)
, (4.11)

with

Γ(θtx) =


∂gθ

11(θtx)

∂θ(2)

∂gθ
12(θtx)

∂θ(2) . . . ∂gθ
rs(θ

tx)

∂θ(2)

...
. . .

...
∂gθ

11(θtx)

∂θ(p) . . . ∂gθ
rs(θ

tx)

∂θ(p) (θtx)

 ,

as in (4.5),

Ω(θtx) = diag(g(θtx))− g(θtx)g(θtx)t (4.12)

and

W(x) = diag (w11(x), w12(x), . . . , wrs(x)) .

Remark 4.4. Ichimura (1993) states that the presence of a tricky conditioning to X ∈ X
can easily be eliminated by letting X grow very slowly with n. Nevertheless, Remark 4.1

seems to indicate the contrary. Therefore, the set X is here maintained fix.

†With respect to the original proofs, only a no effect sum over ij is added in the criterion to be minimized.
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Finally, it follows :

Theorem 4.2. Under Assumptions 1-4 and (SLS1)-(SLS5), the Semiparametric Least Squares

estimator defined by (4.9) satisfies

√
n
(
θ̂ − θ0

)
L−→ N p (0, ΣSLS) ,

with ΣSLS
.
=

(
0 0

0 V −1Ṽ V −1

)
, and matrices V and Ṽ defined by (4.10) and (4.11).

The problem of selecting the weights wij is now adressed. As usual, this weighting is intro-

duced in the minimization problem (4.9) in order to increase efficiency. What follows shows

that the choice

W(x) = W (θt
0x) = diag

(
g11(θ

t
0x), g12(θ

t
0x), . . . , grs(θ

t
0x)
)−1

leads to a nearly efficient semiparametric estimator θ̂. The ”nearly” term refers to the

conditionning to the event X ∈ X , see the comment following (4.6) at the end of the

previous section. With this choice of matrix W , direct computations lead to

W (θt
0x)Ω(θt

0x)W (θt
0x) = W (θt

0x)− 1rs1
t
rs,

with 1rs the rs-vector whose components are all equal to 1. Therefore,

Ṽ = E
(
Γ(θt

0X)W (θt
0X)(Γ(θt

0X))t1I(X ∈ X )
)
− E

(
Γ(θt

0X)1rs1
t
rs(Γ(θt

0X))t1I(X ∈ X )
)
,

which is equal to (4.10), since Γ(θt
0x)1rs is identically the null vector. Therefore, the non-zero

part of ΣSLS equals, up to the trimming term, the bound defined in (4.6). In applications,

these weights can be replaced by consistent estimators without affecting the asymptotic

distribution of the estimator, and therefore its asymptotic efficiency (usual result in M-

estimation, see e.g. comments in Newey and Stoker (1993)). Easy to implement consistent

estimators of the weights are given by the following two-steps procedure. In the first step,

estimate θ0 by the n1/2-consistent, asymptotically normal but inefficient unweighted (w ≡ 1)

SLS estimator, say θ̂1, and build the corresponding Nadaraya-Watson estimators ĝθ̂1
ij (u),

given by (3.4). In the second step, set wij(Xk) = 1/ĝθ̂1
ij (θ̂t

1Xk) and derive the (nearly)

efficient weighted SLS estimator θ̂. If some of the {ĝθ̂1
ij (θ̂t

1Xk)} are zero, just replace them

by a specified small positive number.

4.3 Average Derivatives Estimator (ADE)

Average Derivatives methods were introduced by Härdle and Stoker (1989) and Powell et al

(1989). In the classical SIM context (2.1)-(2.2), they rest on the evident following fact:

∇m(x) = g′(θt
0x)θ0 ∀x ∈ SX ,
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what induces that

δw
.
= E (w(X)∇m(X)) = E

(
w(X)g′(θt

0X)
)
θ0 (4.13)

for any bounded continuous weight function w. Hence, any vector δw, called average deriva-

tive, is proportional to θ0 provided that E (w(X)g′(θt
0X)) is not zero, so that any estimator

of δw easily leads to an estimator of θ0. In practice, the choice w(x) = f(x) appears to be

judicious, as it permits to avoid the presence of a random denominator when estimating the

average derivative (see Powell et al (1989)). Another important remark is that considering

the gradient of m implies that X is a continuously distributed random vector†.

In the setting concerned by Assumptions 1 and 2, we have that

∇πij(x) = g′ij(θ
t
0x)θ0 ∀x ∈ SX ,∀(i, j),

so that we can actually define rs (density-weighted) average derivatives

δij
.
= E(f(X)∇πij(X)) = E

(
f(X)g′ij(θ

t
0X)

)
θ0, (4.14)

each proportional to θ0, that is rs collinear vectors. Let ∆ be the (p× rs)-matrix

∆ = (δ11, δ12, . . . , δrs), (4.15)

that can clearly be written, in view of (4.14), as

∆ = θ0α
t, (4.16)

with

α =
(
E
(
f(X)g′11(θ

t
0X)

)
, . . . , E

(
f(X)g′rs(θ

t
0X)

))t
.

In addition, due to the identifiability condition θ
(1)
0 = 1, we directly have that

α = (δ
(1)
11 , δ

(1)
12 , . . . , δ(1)

rs )t.

Multiplying both sides of (4.16) by α, it follows

θ0α
tα = ∆α,

so that we have

θ0 =
1

‖α‖2
∆α

†An extension to the case where some components of X are discrete is possible, see Horowitz and Härdle
(1996). Nevertheless, such ideas are not pursued further in this work.
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if ‖α‖ 6= 0, what will be the case if at least one gij is such that E
(
f(X)g′ij(θ

t
0X)

)
6= 0.

Finally, as α is simply the first line of ∆, it is seen that any estimator ∆̂ of ∆ easily leads

to an estimator of θ0 :

θ̂ =
1

‖α̂‖2
∆̂α̂. (4.17)

Now, estimating ∆ amounts to estimate any δij defined by (4.14), so that the results of

Powell et al (1989) in the classical context (4.13) are directly applicable for each of those

estimations. In that purpose, the following conditions are needed. Let P = (p + 4)/2 if p is

even, and P = (p + 3)/2 if p is odd.

Assumption (ADE1). The random vector X is continuously distributed, and no component

of X is functionally determined by others components. Besides, the support SX of X is a

convex subset of Rp.

Assumption (ADE2). The density of X, denoted f , is continuously differentiable in the

components of X, and f(x) = 0 for all x ∈ ∂SX , where ∂SX denotes the boundary of SX .

Also, the components of the matrix E (∇f(X)X t) have finite second moment. In addition,

all partial derivatives of f of order P +1 exist, and the expectation E
(

∂ρf

∂x(l1)...∂x(lp) (X)
)

exists

for any (l1, . . . , lp) such that l1 + . . . + lp = ρ and any ρ ≤ P + 1.

Assumption (ADE3). There exists at least one cell, say (i, j), for which E
(
f(X)g′ij(θ

t
0X)

)
is not zero.

Remark that our Assumptions 1-4 and (ADE1)-(ADE3) imply Assumptions 1-3 of Powell et

al (1989). Then, it easily follows by integration by parts (see their Lemma 2.1) that

δij = −2E(Z(ij)∇f(X)). (4.18)

The idea is then to estimate this δij by a sample analogue, where the unknown f is replaced

by a consistent nonparametric estimate, e.g. the (multivariate) kernel density estimator

f̂(x) =
1

nhp
3

n∑
k=1

K3

(
x−Xk

h3

)
, (4.19)

where K3 and h3 are a kernel function and a bandwidth sequence† satisfying the following

conditions.

†For simplicty, a common bandwidth is used for all components of x−Xk. Different bandwidths, forming
a bandwidth matrix, could also be used to take into account possible different scales for those components.
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Assumption (ADE4). The kernel function K3 : S3 ⊂ Rp → R is bounded, differentiable,

symmetric†, on a convex support S3, such that all moments of K3(x) of order P exist and

K3(x) = 0 for any x on the boundary of S3. Besides, we have∫
K3(x)dx = 1,

∫
x(l1) . . . x(lρ)K3(x) = 0 for ρ < P , and∫
x(l1) . . . x(lρ)K3(x) 6= 0 for ρ = P .

Assumption (ADE5). The bandwidth sequence h3 satisfies nhp+2
3 →∞ and nh2P

3 → 0.

The sample analogue of (4.18) is now given by

δ̂ij = − 2

n

n∑
k=1

Z
(ij)
k ∇f̂(Xk), (4.20)

where ∇f̂(Xk) is the gradient of the ”leave-one-out” estimator (4.19) at Xk:

∇f̂(Xk) =
1

(n− 1)hp+1
3

∑
k′ 6=k

∇K3

(
Xk −Xk′

h3

)
.

By Theorem 3.3 of Powell et al (1989), it follows that, for any (i, j),

√
n(δ̂ij − δij)

L−→ N p(0, Σij), (4.21)

with

Σij = 4E(rij(X, Z)rij(X, Z)t)− 4δijδ
t
ij (4.22)

and

rij(x, z) = f(x)∇πij(x)− (z(ij) − πij(x))∇f(x).

Remark 4.5. Assumptions (ADE4) and (ADE5) are designed in order to make the asymp-

totic bias of the estimator δij vanish at rate
√

n. In particular, see that Assumption (ADE4)

requires the use of a ”higher-order” kernel of order P .

The next lemma gives the variance-covariance matrix Σij in a more tractable way.

Lemma 4.3.1. The variance-covariance matrix Σij given in (4.22) can be written

Σij = 4 Var
(
f(X)g′ij(θ

t
0X)

)
θ0θ

t
0 + 4E

(
gij(θ

t
0X)(1− gij(θ

t
0X))∇f(X)∇f(X)t

)
. (4.23)

†In the sense K3(u) = K3(−u).
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Proof: We have

rij(x, z) = f(x)∇πij(x)− (z(ij) − πij(x))∇f(x)

= f(x)g′ij(θ
t
0x)θ0 − (z(ij) − gij(θ

t
0x))∇f(x),

so that

rij(x, z)rij(x, z)t = f 2(x)g′2ij(θ
t
0x)θ0θ

t
0 + (z(ij) − gij(θ

t
0x))2∇f(x)∇f(x)t

− f(x)g′ij(θ
t
0x)(z(ij) − gij(θ

t
0x))

(
θ0∇f(x)t +∇f(x)θt

0

)
.

As gij(θ
t
0X) = E(Z(ij)|X), we have

E(rij(X, Z)rij(X, Z)t) = E
(
f 2(X)g′2ij(θ

t
0X)

)
θ0θ

t
0 + E

(
(Z(ij) − gij(θ

t
0X))2∇f(X)∇f(X)t

)
= E

(
f 2(X)g′2ij(θ

t
0X)

)
θ0θ

t
0 + E

(
Var(Z(ij)|X)∇f(X)∇f(X)t

)
= E

(
f 2(X)g′2ij(θ

t
0X)

)
θ0θ

t
0 + E

(
gij(θ

t
0X)(1− gij(θ

t
0X))∇f(X)∇f(X)t

)
.

Now, as δijδ
t
ij =

(
E(f(X)g′ij(θ

t
0X))

)2
θ0θ

t
0, (4.23) directly follows, by definition (4.22) of Σij.

�

Now, remind definition (4.15) of ∆, and let ∆∗ be the vectorized version of it, in the following

sense:

∆∗ = (δt
11, δ

t
12, . . . , δ

t
rs)

t,

that is ∆∗ is a (prs)-vector. Denote also ∆̂∗ the estimated version of ∆∗, from estimators

(4.20). From (4.21), we have

√
n(∆̂∗ −∆∗)

L−→ N prs(0, Σ∆),

with

Σ∆ =



Σ11 Σ11,12 · · · Σ11,rs

Σ12,11 Σ12

. . . Σi2j2,i1j1
... Σij

Σi1j1,i2j2
. . .

Σrs,11 Σrs


,

where matrices of type Σij are defined by (4.23), and matrices of type Σi1j1,i2,j2 are given by†

Σi1j1,i2j2 = 4 Cov
(
f(X)g′i1j1

(θt
0X), f(X)g′i2j2

(θt
0X)

)
θ0θ

t
0

− 4E
(
gi1j1(θ

t
0X)gi2j2(θ

t
0X)∇f(X)∇f(X)t

)
. (4.24)

†This result can be shown exactly the same way as the proof of Lemma 4.3.1, seeing that Σi1j1,i2,j2 is the
covariance matrix between 2ri1j1(X, Z) and 2ri2j2(X, Z).
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Then, define the transformation φ : Rprs → Rp, given by

φ(∆∗) =
1

rs∑
ij=11

δ
(1)2

ij

rs∑
ij=11

δ
(1)
ij δij, (4.25)

and see that θ0 = φ(∆∗), while from (4.17) we have also θ̂ = φ(∆̂∗). By a usual Delta method

argument, it directly follows that

√
n
(
θ̂ − θ0

)
L−→ N p(0, ΣADE),

with ΣADE
.
= φ′Σ∆φ′t and φ′ being the (p × prs)-matrix of partial derivatives of the trans-

formation φ at ∆∗, that is φ′
q1,(q2,ij) = ∂φ(q1)

∂δ
(q2)
ij

(∆∗). Differentiation of (4.25) and a bit algebra

lead to

φ′
q1,(q2,ij) =


δ
(1)
ijPrs

ij=11 δ
(1)2

ij

if q1 6= 1, q2 = q1

−θ
(q1)
0

δ
(1)
ijPrs

ij=11 δ
(1)2

ij

if q1 6= 1, q2 = 1

0 otherwise

.

Call βij the quantity
δ
(1)
ijPrs

ij=11 δ
(1)2

ij

, and see that φ′ can be written as a block matrix φ′ =(
β11φ̃′ β12φ̃′ . . . βrsφ̃′

)
, with

φ̃′ =


0 0 · · · 0

−θ
(2)
0 1 0
...

. . .

−θ
(p)
0 0 1

 . (4.26)

As it can easily be checked that φ̃′θ0 = 0, any contribution of the first term of the right-hand

sides of (4.23) and (4.24), for all (i, j), vanishes in ΣADE, so that it remains, after a little bit

more algebraic work,

ΣADE =
4(∑rs

ij=11 δ
(1)2

ij

)2 E

([
rs∑

ij=11

δ
(1)2

ij gij(θ
t
0X)(1− gij(θ

t
0X))

−
∑
i1j1

∑
i2j2 6=i1j1

δ
(1)
i1j1

δ
(1)
i2j2

gi1j1(θ
t
0X)gi2j2(θ

t
0X)

]
φ̃′∇f(X)∇f(X)tφ̃′t

)
,

that is

ΣADE = 4E
(

αtΩ(θt
0X)α

αtα
φ̃′∇f(X)∇f(X)tφ̃′t

)
, (4.27)

with the matrix Ω(θt
0x) already defined in (4.12).

Hence, we finally state the following result:
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Theorem 4.3. Under assumptions 1-4 and (ADE1)-(ADE5), the Average Derivative esti-

mator θ̂ defined by (4.17) satisfies

√
n
(
θ̂ − θ0

)
L−→ N p(0, ΣADE),

with variance-covariance matrix ΣADE given by (4.27).

4.4 Sliced Inverse Regression estimator (SIR)

Sliced Inverse Regression, or Slicing Regression, is another direct estimation scheme, intro-

duced by Duan and Li (1991). As it will be seen, this procedure does not need any kernel

estimates of the link function or other, what makes it very interesting in practice, since

a.o. the delicate problem of bandwidth choice is avoided. However, it rests on an extra

assumption on the design:

Assumption (SIR1). The vector of regressors X follows a nondegenerate elliptically sym-

metric distribution, i.e. from its mean vector µX and its variance-covariance matrix ΣX , its

density f can be written

f(x) = kp|ΣX |−1/2v
(
(x− µX)tΣ−1

X (x− µX)
)
, (4.28)

where v is a one-dimensional real-valued function independent of p, and kp is a scalar pro-

portionality constant.

For example, the multivariate normal distribution is elliptically symmetric, with v(·) =

exp(− · /2) and kp = (2π)−p/2, so that this assumption is often admissible. Besides, Duan

and Li (1991) provide a bound on the bias appearing when this design assumption is violated.

In the classical SIM setting (2.1)-(2.2), the method takes advantage of the following two

facts. First, contrary to the usual regression function m(x) = E(Y |X = x) whose estimation

hardly suffers from the curse of dimensionality for large dimensional X, the inverse regression

function ξ(y)
.
= E(X|Y = y) can be component by component safely estimated, as Y is one-

dimensional. Second, the assumed elliptically symmetric distribution of X permits to draw

an interesting relationship between this inverse regression function and the vector θ0, what

will be the base of the estimation procedure. Moreover, it appears that the function ξ(y) can

be estimated very crudely without affecting the performance of the estimator of θ0, what is

of interest since no kernel-type estimation has to be considered. In fact, a step function is

used, after having partitionned the range of Y into slices.

The concept of slices in the response range is especially well adapted to the context defined by

Assumption 1. Indeed, the vector of responses Z essentially defines rs groups of individuals,
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one for each cell of the contingency table. There are therefore a priori existing ”slices” in

the observations, and the ”crude” sliced inverse regression estimation is therefore the best

possible. It becomes ξ(z) = E(X|Z = z), which actually takes only on rs values

ξij = E(X|Z(ij) = 1).

Then, from assumption (SIR1), it can be shown (see results of Duan and Li (1991)) that

ξij = µX + γijΣXθ0 (4.29)

with

γij =
E
(
θt
0(X − µX)|Z(ij) = 1

)
θt
0ΣXθ0

.

It directly follows from (4.29) that

θ0 =
1

γij

Σ−1
X (ξij − µX)

for any cell (i, j) such that γij 6= 0. Therefore, due to the identifiability constraint θ
(1)
0 = 1,

estimating one ξij, µX and ΣX is sufficient for estimating θ0. In addition, in order to combine

information from all cells, define Σξ = Cov(ξ(Z)). Corollary 2.2 of Duan and Li (1991) states

that

θ0 = arg max
θ∈Θ

θtΣξθ

θtΣXθ
, (4.30)

and that this maximizer is unique if and only if there exists at least one γij 6= 0. Consistency

of the procedure therefore requires the following assumption:

Assumption (SIR2). There exists at least one cell of the table, say (i, j), such that

E
(
θt
0(X − µX)|Z(ij) = 1

)
6= 0.

This condition simply requires that in at least one cell, the expectation of the index is

different to the global expectation of it. Note also that (4.30) amounts to say that θ0 is

the principal eigenvector of Σ−1
X Σξ, belonging to Θ. It is furthermore the only eigenvector

associated to a non-zero eigenvalue, as Σξ has rank one, from (4.29).

Now, ΣX will be estimated by the usual sample covariance matrix Σ̂X for the observed {Xk},
while Σξ will be estimated the following way. First, take

ξ̂ij =

∑n
k=1 XkZ

(ij)
k∑n

k=1 Z
(ij)
k
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as estimate of the inverse regression function in the (ij)th cell of the table, that is the (ij)th

slice. Then, introducing the following notations

γ = (γ11, γ12, . . . , γrs)
t Ξ = (ξ11, ξ12, . . . , ξrs) Ξ̂ = (ξ̂11, ξ̂12, . . . , ξ̂rs)

p̂ij =

∑n
k=1 Z

(ij)
k

n
p̂ = (p̂11, p̂12, . . . , p̂rs)

t Ω̂ = diag(p̂)− p̂p̂t Ω = diag(π)− ππt,

we take

Σ̂ξ = Ξ̂Ω̂Ξ̂t.

Finally, we define the SIR estimator as

θ̂ = arg max
θ∈Θ

θtΣ̂ξθ

θtΣ̂Xθ
, (4.31)

or as the principal eigenvector of Σ̂−1
X Σ̂ξ belonging to Θ.

Remark 4.6. Σ̂ξ can be interpreted as a weighted covariance matrix for the matrix Ξ̂,

with weight matrix Ω̂, an estimated version of Ω, the matrix defining the distribution of

the individuals through the different cells of the table. Another weighting could be considered,

but Duan and Li (1991, section 5) show that this weighting is optimal when the design

distribution is normal, so that we only consider it here.

Main results of Duan and Li (1991) focus on β0, the vector collinear to θ0 normalized as

βt
0ΣXβ0 = 1, and β̂ the vector collinear to θ̂ such that β̂tΣ̂X β̂ = 1. They show that

√
n(β̂ − β0)

L−→ N p(0, V ),

with V = S(Σ−1
X − β0β

t
0) + Tβ0β

t
0, for some defined constants S and T .

In order to adapt those results to our estimator θ̂, define the transformation φ : Rp → Rp,

such that

φ(β) =
β

β(1)
,

and see that θ0 = φ(β0) and θ̂ = φ(β̂). Now use Delta method arguments to derive

√
n
(
θ̂ − θ0

)
L−→ N p(0, ΣSIR),

with ΣSIR
.
= φ′V φ′t and φ′ the p × p matrix of partial derivatives of φ, taken at β0, which

can easily be shown to be

φ′ =
1

β
(1)
0


0 0 · · · 0

−θ
(2)
0 1 0
...

. . .

−θ
(p)
0 0 1

 .
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Now, remark first that, as βt
0ΣXβ0 = 1, we have that β

(1)
0 = 1√

θt
0ΣXθ0

. Second, as φ′β0 = 0,

it follows

ΣSIR = S(θt
0ΣXθ0)φ̃′Σ−1

X φ̃′t, (4.32)

where φ̃′ is the matrix defined in (4.26). Third, from the design assumption (SIR1), it can

be shown that

Var(X|θt
0X) = w(θt

0X)

(
ΣX −

1

θt
0ΣXθ0

ΣXθ0θ
t
0ΣX

)
,

where w is a scalar function such that E(w(θt
0X)) = 1. Note that if the design is normal,

then w ≡ 1. Denote

wij = E(w(θt
0X)|Z(ij) = 1)

and define also

cij =
E(w(θt

0X)θt
0(X − µX)|Z(ij)) = 1

θt
0ΣXθ0

, c = (c11, c12, . . . , crs)
t and η = Ωγ.

From results of Duan and Li (1991), we find that the constant S can be written as S =

A + B − 2C, with

A =

rs∑
ij=11

wijη
2
ij/πij

(ηtγ)2
, B =

E(w(θt
0X)(θt

0(X − µX))2)

θt
0ΣXθ0

, C =
ηtc

ηtγ
.

We can now state :

Theorem 4.4. Under Assumptions 1-2 and (SIR1)-(SIR2), the Sliced Inverse Regression

estimator defined by (4.31) satisfies

√
n
(
θ̂ − θ0

)
L−→ N p(0, ΣSIR),

with ΣSIR given in (4.32).

Remark 4.7. See that the link functions {gij} do not arise in the asymptotic distribution of

the SIR estimator, what was expected as those quantities are nowhere used in the procedure.

Only the difference of behaviour of X in the different cells plays a role.

Remark 4.8. As already mentionned, in case of normal design, we have w ≡ 1. Then, great

simplifications in the result occur. Indeed, we would have

wij = 1 ∀(i, j), B = 1, C = 1,
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so that

S =

rs∑
ij=11

η2
ij/πij

(ηtγ)2
− 1 =

γtΩ(diag(π))−1Ωγ

(γtΩγ)2
− 1,

that can still be simplified to

S =
1

γtΩγ
− 1.

Remark 4.9. A natural question is to ask whether the estimator still behaves quite well when

the design assumption (SIR1) is not fulfilled. Duan and Li (1991) answer this question by

providing a bound for the noncollinearity† between θ0 and θ̂:

sin2(θ̂, θ0) ≤
τ(1− λ)

λ(1− τ)
,

where τ is the second eigenvalue of Σ−1
X Λ, with Λ = Var(E(X|θt

0X)), and λ the maximum

value attained by the ratio (4.30). If Assumption (SIR1) holds, then Λ is of rank one and

τ = 0, so that θ̂ and θ0 are collinear (what obviously leads to consistency). If not, but

the design is nearly elliptically symmetric, then τ ' 0 and the estimator remains a good

approximation of the true direction. Estimating τ permits to control the deviation between

the estimated and the true directions, when the elliptical symmetry of the distribution of X

is not ensured. Anyway, the usual good behavior of the SIR estimator is discussed in the

rejoinder to Li (1991), even under mild to severe violation of Assumption (SIR1).

4.5 Discussion

In this section are discussed some advantages and drawbacks of the four estimation schemes

presented in the previous sections, from a theoretical point of view. First of all, Theorems

4.1, 4.2, 4.3 and 4.4 all state the root-n consistency and the asymptotic normality of the

analyzed four estimators θ̂. Besides, the particular forms of matrices ΣSML, ΣSLS, ΣADE

and ΣSIR, with first row and first column equal to 0‡, obviously render the fact the the first

component of θ0 is fixed to one. More interesting is the (almost) efficient character of the

M-estimators (SML and SLS with optimal weighting), while the direct estimators (ADE and

SIR) fail to reach the semiparametric efficiency bound (4.6).

Concerning the ease of computation of the estimator, it is clear that M-estimators are com-

puted in a much more tricky way than direct ones, as the formers are the solutions of

†The sine function is here defined with respect to the inner product (θ1, θ2) = θt
1ΣXθ2, by analogy with

results of Duan and Li (1991), i.e. sin2(θ̂, θ0) = 1− (θ̂tΣXθ0)
2

(θ̂tΣX θ̂)(θt
0ΣXθ0)

.
‡Explicit for ΣSML and ΣSLS , directly induced by the structure of φ̃ for ΣADE and ΣSIR.
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complicated optimization problems (4.2) and (4.9), since the latters are given by analytical

expressions like (4.17)-(4.20) and (4.31). Moreover, each iteration in the optimization pro-

cesses requires the evaluation of Nadaraya-Watson estimators {ĝθ
ij} at observations, what

leads to a still more computing-intensive procedure. By the way, the required conditions on

the kernel and the bandwidth for this estimation are more restricting for the SML than for

the SLS estimator. Indeed, in theory, the former needs a higher-order kernel and a bandwidth

h ∼ n−a, with a ∈]1/5, 1/4[, while the latter allows a second order kernel, and a bandwidth

h ∼ n−b, with b ∈]1/8, 1/3[. In particular, the usual optimal order of the bandwidth, i.e.

h ∼ n−1/5, is acceptable for SLS, not for SML. Finally, note that the ADE estimator also

relies on a (multivariate) kernel estimation of the density of X, with higher-order kernel, but

which has to be computed only one time. On the other hand, SIR estimator is not built on

any kernel estimator, what makes its computation very fast and simple. For example, no

bandwidth has to be selected, contrary to ADE.

Besides their lack of efficiency, direct estimators also suffers for their need of strong as-

sumptions on the design of the covariates. First of all, ADE and SIR basically adapt to

continuously distributed vector of regressors only. Further, the SIR methodology requires

vector X to have an elliptical symmetric distribution, which is not trivially the case in

applications, and that E
(
θt
0(X − µX)|Z(ij)

)
6= 0 for at least one cell (i, j), which excludes

a.o. situations where the distribution of X is symmetric around µX in each subpopulation

defined by the cells of the contingency table. The ADE procedure requires the same kind

of condition, namely E
(
f(X)g′ij(θ

t
0X)

)
6= 0 for at least one cell (i, j), which excludes for

example spherically symmetric (around 0) distributions of X with even link functions. Also,

the condition f(x) = 0 ∀x ∈ ∂SX in Assumption (ADE2) excludes uniform designs, for

example. None of such structural assumptions are required for SML and SLS, except the

identification Assumptions 1-4.

Finally, having a look at the technical conditions assumed by the four theorems, it appears

that SLS requires smoothness of fθ and gθ (3 times continuously differentiable, with a third

derivative Lipschitz), that SML needs f1(x
(1)|X(−1) = x(−1)) positive and 4 times differen-

tiable w.r.t. x(1) (what implies fθ continuous and uniformly bounded, see comment following

Assumption 2 in Lee (1995)), that a strong assumption on the density of X, namely assump-

tion (ADE2), is necessary for ADE, but nothing about the behaviour of the index (and the

related functions), and that SIR is free of that type of conditions, except the identification

conditions.

As a conclusion, it seems that the M-estimators (SML and SLS) provide the most interesting

26



procedures, in terms of efficiency and mildness of the required assumptions, but at the

expense of solving a possibly intricate optimization problem. When the distribution of X is

continuous and can be considered as ellipitical symmetric†, SIR could be a serious competitor,

while ADE does not seem to present many advantages, from a purely theoretical point-of-

view, with respect to other methods. The small sample performances of these four estimators

are analyzed, through a simulation study, in the next section.

5 A simulation study

In this section a simulation study is performed in order to compare the methods described

in the previous sections from a practical point-of-view. Three simulated models were ana-

lyzed. For each, r = s = 2 and p = 2, and the assumed conditional probabilities satisfy

Assumption 2 (Sinlge-Index assumption), with θ0 = (1, 2)t. Note that, as θ
(1)
0 is fixed to

1 for identification, the only unknown to be estimated is the second component θ
(2)
0 = 2.

For each model, three sample sizes were considered, n = 50, n = 200 and n = 500, for

which 500 Monte-Carlo replications were drawn. We computed 8 estimators, namely the

Semiparametric Maximum Likelihood estimator with a second order kernel (SML2), the

Semiparametric Maximum Likelihood with a fourth order kernel (SML4)‡, the unweighted

Semiparametric Least Squares estimator (SLS), the weighted Semiparametric Least Squares

estimator (WSLS), the Average Derivatives Estimator with 3 bandwidths set to Cn−1/7, with

C = 1, 2 and 3 (ADE1, ADE2 and ADE3), and the Sliced Inverse Regression estimator. For

the M-estimators, the optimization problem was solved via a grid search, with a bandwidth

determined by a plug-in method.

For the first scenario, we took

X = (X1, X2)
t ∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
and conditional probabilities as

π1·(x) = 0.95 exp(−(θt
0x)2), π2·(x) = 1− π1·(x),

π·1(x) = 0.95
exp(−(θt

0x))

1 + exp(−(θt
0x))

, π·2(x) = 1− π·1(x)

πij(x) = πi·(x)π·j(x) ∀(i, j).
†Tests for elliptical symmetry are described in Huffer and Park (2007), Manzotti et al (2002) or Schott

(2002). Other more classical references, as Mardia (1970) and Baringhaus and Henze (1988), deal with
testing for multivariate normality.

‡See Remark 4.2.
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The mean and the MSE of each estimators, computed from the Monte-Carlo replications,

are shown in table 1.

n = 50 n = 200 n = 500

mean(θ̂(2)) MSE(θ̂(2)) mean(θ̂(2)) MSE(θ̂(2)) mean(θ̂(2)) MSE(θ̂(2))
SML2 2.209 0.080 2.061 0.019 2.007 0.009
SML4 2.449 0.258 2.213 0.070 2.082 0.022
SLS 2.142 0.052 2.060 0.016 2.009 0.015

WSLS 2.108 0.042 2.054 0.015 2.010 0.007
ADE1 0.040 3.871 0.234 3.145 0.483 2.330
ADE2 0.547 2.145 1.302 0.515 1.794 0.065
ADE3 1.065 0.904 1.729 0.095 1.958 0.018
SIR 2.565 0.396 2.121 0.041 2.014 0.013

Table 1: Results for scenario 1.

For scenario 2, we took

(X1 + 1)/2 ∼ Beta(2, 2), (X2 + 1)/2 ∼ Beta(2, 2),

X1 independent to X2, that is a non elliptical symmetric distribution for vector X, as it can

be written

f(x1, x2) =
9

4
(1− x2

1)(1− x2
2)

on [−1, 1] × [−1, 1], which fails to be written as (4.28). Nevertheless, the bound given by

Remark 4.9 is found to be close to zero. The conditional probabilities are the same as in

scenario 1. Table 2 shows the results for the 8 estimation schemes.

n = 50 n = 200 n = 500

mean(θ̂(2)) MSE(θ̂(2)) mean(θ̂(2)) MSE(θ̂(2)) mean(θ̂(2)) MSE(θ̂(2))
SML2 2.017 0.052 2.158 0.048 2.056 0.015
SML4 2.545 0.341 2.148 0.103 2.268 0.093
SLS 2.047 0.059 2.120 0.035 2.020 0.011

WSLS 2.042 0.058 2.110 0.031 2.013 0.010
ADE1 0.307 2.897 0.635 1.894 1.191 0.678
ADE2 0.846 1.364 1.620 0.167 1.852 0.038
ADE3 0.851 1.347 1.614 0.168 1.855 0.035
SIR 1.758 0.126 2.093 0.036 2.000 0.015

Table 2: Results for scenario 2.
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The third scenario was the following. The distribution of X was taken to be

X = (X1, X2)
t ∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
as in scenario 1, while the conditional probabilities were

π1·(x) = 0.5 + (sin(θt
0x) + cos(θt

0x))/3, π2·(x) = 1− π1·(x),

π·1(x) = 0.95
exp(−(θt

0x))

1 + exp(−(θt
0x))

, π·2(x) = 1− π·1(x)

πij(x) = πi·(x)π·j(x) ∀(i, j).

One could think that the unusual form of π1·(x) (periodic function) leads to a more chal-

lenging situation with respect to the estimation of θ0. The results are given in table 3.

n = 50 n = 200 n = 500

mean(θ̂(2)) MSE(θ̂(2)) mean(θ̂(2)) MSE(θ̂(2)) mean(θ̂(2)) MSE(θ̂(2))
SML2 2.191 0.086 2.090 0.030 2.046 0.016
SML4 2.456 0.277 2.409 0.207 2.217 0.069
SLS 2.241 0.110 2.105 0.032 2.019 0.011

WSLS 2.166 0.081 2.096 0.030 2.023 0.011
ADE1 0.091 3.670 0.137 3.501 0.348 2.760
ADE2 0.349 2.755 1.035 0.961 1.552 0.223
ADE3 0.808 1.448 1.599 0.185 1.827 0.046
SIR 2.282 0.146 2.170 0.059 2.024 0.016

Table 3: Results for scenario 3.

It clearly appears from the results of Tables 1, 2 and 3 that the Weighted Semiparametric

Least Squares is the best performer in practice, as it attains the minimum Mean Squared

Error among the considered 8 estimators, for all scenarii and all sample sizes, except (scenario

2, n = 50). With respect to the unweighted SLS, the efficiency gained by the weighting

appears, but is quite fair. It is also seen that the Semiparametric Maximum Likelihood

estimator is much more stable when using a second order kernel rather than a fourth order

kernel, what makes the SML2 estimator another good competitor. Results related to the

ADE estimators seems to indicate that the method is very sensitive to the bandwidth choice.

Estimator ADE1 was based on a clearly not appropriate bandwidth, while estimator ADE3

seems to be the best among those 3, but still far after the other estimation schemes. Finally,

the SIR estimator leads to good results when the sample size is important enough, even when

the elliptical symmetry assumption on the distribution of X is not fulfilled. As it is given

by an analytic form, so fast and easy computed, this estimator could be the preliminary
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estimator of θ0 needed in the weighting procedure of the WSLS estimator, or could be of use

as initial value in the optimization process of the M-estimators.

6 Conclusion

When analyzing a contingency table, built on the cross-classification of a sample of individu-

als with respect to the levels of two categorical variable R and S, it is often worth considering

the conditional joint distribution of (R,S) given an eventual set of explanatory variables,

say X. First, this allows to check a possible effect of X and the distribution of (R,S), and

second, this allows to take this effect into account when performing the usual analyzes of

such tables. In this paper, a semiparametric model for this conditional distribution is pro-

posed, in order to avoid the rash maintained hypotheses of parametric approaches, as well

as the well known curse of dimensionality problem of nonparametric procedures. Essentially,

it is assumed that the effect of the vector X on (R,S) can be captured by a single index

θt
0X, where θ0 is an unknown vector. The link between this index and the related condi-

tional probabilities is also kept free, which grants the model an important flexibility, while

the univariate character of the index permits to avoid the curse of dimensionality. Inspired

by the usual estimation schemes already proposed for Single-Index Models in classical re-

gression problems, four estimators for θ0 are proposed, namely a Semiparametric Maximum

Likelihood estimator, a Semiparametric Least Squares estimator, an Average Derivatives

estimator and a Sliced Inverse Regression estimator. These are all root-n consistent, with

asymptotic normal distribution. The former two asymptotically reach the semiparametric

efficiency bound (up to a technical trimming), but are defined as the solution of a possibly

tricky optimization problem. The latter two, directly given by an analytical expression, are

fast and easy to compute, but are not asymptotically efficient and are based on stronger

structural assumptions on the covariates. The practical performances of the estimators are

also compared through a simulation study. The Semiparametric Least Squares estimator,

with a suitable weighting scheme, gives the best results, while the Semiparametric Maxi-

mum Likelihood estimator and the Sliced Inverse Regression also lead to good results. On

the other hand, the Average Derivatives estimator seems to be a cut below. At a second step,

the conditional probabilities are estimated via standard univariate nonparametric regression

techniques, without being affected by the estimation of θ0. Obviously, the study developped

in this work would be of greater interest if the Single-Index assumption could be tested from

a sample. Future work will be devoted to implement such a test.
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