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Abstract: The production/econometric frontier is the locus of thérapl combinations of inputs and
outputs. From a statistical point of view, it can be viewedles upper surface of the support of a
random vector under shape constraints. In this paper watigate the problem of nonparametric
monotone frontier estimation from an extreme-values the@erspective. This allows to revisit the
asymptotic theory of the popular FDH estimator in a geneztils to derive new and asymptotically
Gaussian estimators and to provide useful asymptotic cemdiel bands for the monotone boundary
function. The study of the asymptotic properties of the itesyifrontier estimators is carried out by
relating them to an original dimensionless random sampldtaen applying standard extreme-values
theory. The finite sample behavior of the suggested estmhagoexplored through Monte-Carlo
experiments. We also apply our approach to a real data set.
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1 Introduction

In production theory and efficiency analysis (®g. Shephard [31]), one is willing to estimate the
boundary of a production set (the set of feasible combinataf inputs and outputs). This boundary
(the production frontier) represents the set of optimadpation plans so that the efficiency of a
production unit (a firm, ...) is obtained by measuring theatise from this unit to the estimated
production frontier. Parametric approaches rely on patacmmodels for the frontier and for the
underlying stochastic process, whereas nonparametrioagipes offer much more flexible models
for the Data Generating Process (geg Daraio and Simar [5] for recent surveys on this topic).
Formally, we consider in this paper technologies wheeeR" , a vector of production factors
(inputs) is used to produce a single quantity (output)R.. The attainable production set is then
defined, in standard microeconomic theory of the firmTas {(x,y) € R x R, | x can produce}.
Assumptions are usually done on this set, such as free dibpityg of inputs and outputs, meaning
that if (x,y) € T, then(X,y') € T, for any(X,y) such thak’ > x (this inequality has to be understood



componentwise) angl <vy. As far as efficiency of a firm is of concern, the boundaryTois of
interest. The efficient boundary (production frontier)Tofs the locus of optimal production plans
(maximal achievable output for a given level of the inputh).our setup, the production frontier
is represented by the graph of the production functpox) = sup{y|(x,y) € T}. Then the Farrell-
Debreu output efficiency score ([11], [6]) of a firm operatatgthe level(x,y) is given by the ratio
@®(x)/y.

Cazals, Florens and Simar [2] propose a probabilistic pmetation of the production frontier.
Let (Q, 4,P) be the probability space on which the random variablesdY are defined and I€f
be the support of the joint distribution 0X,Y). The distribution function ofX,Y) can be denoted
F(x,y) andF(-|x) = F(x,-)/Fx(x) will be used to denote the conditional distribution funatiaf Y
givenX < x, with Fx(x) = F(x,) > 0. It has been proven in Cazals et al [2] that the function

¢(x) = sup{y > O[F (y|x) < 1}

is monotone nondecreasing withSo for allx' > x with respect to the partial ordef(xX') > ¢(x). The
graph of¢ is the smallest nondecreasing surface which is larger thagual to the upper boundary
of T. Further, it has been shown that under the free disposahgdgumptiond = @, i.e., the graph of
¢ coincides with the production frontier.

SinceT is unknown, it has to be estimated from a sample of i.i.d. fiths= {(X;,Yi)]i =
1,...,n}. The Free Disposal Hull (FDH) ok, introduced by Deprins, Simar and Tulkens [9] is
Trpy = {(x,y) S Rﬁ+1|y§Yi, X> X, 1= 1,...,n}. The resulting FDH estimator of the frontier
function¢(x) is defined as

$1(x) = suply > O[F (y|x) < 1} = max

where F (y|x) = Fn(X,Y)/Fx(X) with Fy(x,y) = (1/n) 31, 10X < XY <y) and Fx(X) = Fy(x, ).
This estimator represents the lowest monotone step functieering all the data points, Y;). The
asymptotic behavior df1(x) was first derived by Korostelev, Simar and Tsybakov [25] fer tonsis-
tency and by Park, Simar and Weiner [27] and Hwang, Park and 23] for the asymptotic sampling
distribution. To summarize, under regularity conditiotiee FDH estimato;(x) is consistent and
converges to a Weibull distribution with some unknown pagters. In Park et al [27], the obtained
convergence rate 1/ (P+1) requires that the joint density 0K,Y) has a jump at its support boundary.
In addition, the estimation of the parameters of the Weitrduires the specification of smoothing
parameters and the resulting procedure has very poor agculineHwang et al [22], the convergence
of §1(x) to the Weibull distribution has been established in a gdmase where the density X, Y)
may decrease to zero or rise up to infinity at a speed of p@\fr> —1) of the distance from the
frontier. They obtain the convergence raté/(#+2 and extend the particular result of Park et al [27]
where3 = 0, but their result is only derived in the simple case of omeethsional inputgp = 1)
which may be of less interest in practice.

In this paper we first analyze the properties of the FDH egoinfeom an extreme-value theory
perspective. By doing so, we generalize and extend thetsesuiPark et al [27] and Hwang et al
[22] in at least three directions. First we provide the neagsand sufficient condition for the FDH
estimator to converge in distribution and we specify thexgsptic distribution with the appropriate
rate of convergence. We also provide a limit theorem of mdmena general framework. Second,
we show how the unknown paramepgr> 0 involved by the necessary and sufficient extreme-value
condition, is linked to the dimensiop+ 1 of the data and to the shape param@er —1 of the
joint density: in the general setting whepe> 1 and3 = Bx may depend orx, we obtain under
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a convenient regularity condition the general convergeaten1/Px = n~1/(B+P+1) of the FDH
estimatord1(x). Third, we suggest a strongly consistent and asymptoyicadfmal estimator of
the unknown parametes, of the asymptotic Weibull distribution af1(x). This also answers the
important question of how to estimate the shape paranfigtef the joint density of(X,Y) when it
approaches to the frontier of the suppbrt

By construction, the FDH estimator is very non-robust ta@xtes. Recently Aragon, Daouia
and Thomas-Agnan [1] have built an original estimato$ 0f), which is more robust thaf (x) but
it keeps the same limiting Weibull distribution ég(x) under the restrictive conditio®= 0. In this
paper, we give more insights and generalize their maint.edld also suggest attractive estimators of
¢ (x) converging to a normal distribution and which appear to isbto outliers. The study of the
asymptotic properties of the different estimators congidén this paper, is carried out in a simple and
clever way by relating them to an original dimensionlesslcan sample and then applying standard
extreme-values theory. The paper is organized as followsti® 2 presents the main results of the
paper and Section 3 illustrates how the theoretical asytepsults behave in finite sample situations
and shows an example with a real data set on the productimtyaof the French post offices. Section
4 concludes and the proofs are reserved for the Appendix.

2 The Main Results

From now on we assume thatc RP such thatFx(x) > 0 and will denote bybq(x) and §q(x),
respectively, the™ quantiles of the distribution functioR(-|x) and its empirical versiof (-|x),

do(X) =inf{y > O|F(yjx) > a} and ¢a(x)=inf{y > O|F(y|x) > a}

with a €]0,1]. Whena T 1, the conditional quantilgy(X) tends top1(x) which coincides with the
frontier functiond (x). Likewise,dq(X) tends to the FDH estimatdrn (x) of ¢(x) asa 1 1.

2.1 Asymptotic Weibull distribution

We first derive the following interesting results on the peob of convergence in distribution of
suitably normalized maximia, 2($1(x) — ¢ (x)).

Theorem 2.1. (i) If there exist constants;o> 0 and some non-degenerate distribution functign G

such that ;

by 2($1(X) — (X)) — G, (2.1)

then G(y) coincides with the Weibull distribution function

q_;px<y> :{ exp{_(_y>px} y<0

1 y>0 for some pyx > 0.

(ii) There exists > 0 such that B1($1(x) — ¢ (x)) converges in distribution if and only if

1-F($() — 5

lim =zP< forall z>0 2.2
18 T (600~ 10 @2
[ regular variation with exponent py, notationl— F(¢(x) — #|x) € RV px]
In this case the norming constantsdan be chosen as nb= ¢ (X) — 1 (1/n5(x)) (X)-
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(iii) Given (2.2), if E(YX|X < x) < o for some integer & 1, then
lim E{by (99 — $1.00)}* = (1+koyY),
whererl () denotes the gamma function.
(iv) Given(2.2),if E(Y?|X < X) < oo then

: $1(x) —E(1(x))
W | Va0 =

y} W, [{F(14 2058 — P21+ p )2y — T2+ pg ).

Remark 2.1. SinceFx (x)[1—F(¢(x) — % |X)] € RV_p, by (2.2), this function can be represented as
t~PxLy(t) with Lx(-) € RVp (L being slowly varying) and so, the extreme-value condit@&) holds
if and only if we have the following representation

1
d(x) -y

Fe()[1— F(y|%)] = LX( )<¢<x>—y>px ) 2.3)

In the particular case wheits (ﬁ) = Iy is a strictly positive function irx, it is shown in the
following corollary thathy, ~ (néy) =1/,

Corollary 2.1. Given(2.3)or equivalently(2.2) with Ly (Mx—%—y> =/lyx > 0, we have

()P (¢ (x) — B1(X)) — Weibull(1,p) as n— oo,

Remark 2.2. Park et al [27] and Hwang et al [22] have obtained similarltesinder more restrictive
conditions. Indeed, a unified formulation of the assumiosed in [27] and [22] can be expressed
as follows:

f(xy) =cx{0(x) —y}P+o({d(x) —y}P) as y1o(x), (2.4)

where f(x,y) is the joint density function ofX,Y), B is a constant satisfyin > —1, andcy is a
strictly positive function inx. Under the restrictive condition that the densitys strictly positive on
the frontier {.e. B = 0) among others, Park et al [27] have obtained the limitingowledistribution
of the FDH estimator with the convergence raté/(P*1). Whenp may be non null, Hwang et al
[22] have obtained the asymptotic Weibull distribution wthe convergence rate ¥/(B+2 in the
simple case wherp = 1 (here it is also assumed that (2.4) holds uniformly in almeighood of the
point at which we want to estimatg-) and that this frontier function is strictly increasing imath
neighborhood and satisfies a Lipschitz condition of ordedri}he general setting wheg> 1 and
B = Bx > —1 may depend o, we have the following more general result which involves lihk
between the regular variation indpx, the dimensiorp+ 1 of the data and the shape param@ieof
the joint density near the boundary.

Corollary 2.2. If the condition of Corollary 2.1 holds with (,y) being differentiable near the fron-
tier (i.e. ¢x > 0, px > p and¢(x) are differentiable in x with first partial derivatives ¢f(x) being
strictly positive), ther§2.4) holds withp3 = x = px— (p+ 1) and we have

()Y BPED (§(x) — §1.(x)) 9, Weibull(1,Bx+ p+1) as n— o.



Remark 2.3. We assume the differentiability of the functiofg py with px > p and¢(x) in order

to ensure the existence of the joint density near its suggmrhdary. We distinguish between three
different behaviors of this density at the frontier pojmt$(x)) € RP** following the value ofpy
compared with the dimensidip+ 1): whenpy > p+ 1 the joint density decays to zero at a speed of
powerpy — (p+ 1) of the distance from the frontier; whgm = p+ 1 the density has a sudden jump
at the frontier; whemy < p+ 1 the density rises up to infinity at a speed of poper (p+ 1) of the
distance from the frontier. The cagg< p+ 1 corresponds to sharp or fault-type frontiers.

Remark 2.4. As an immediate consequence of Corollary 2.2, whenl andfyx = 3 (or equivalently
px = p) does not depend ax we obtain the convergence in distribution of the FDH estonas in
Hwang et al [22] (see Remark 2.2) with the same convergerteenrd/(B+2) (in the notations of
Theorem 1 in [22]u(x) = k(B +2)¢'(X) = xpxd’(X)). In the other particular case where the joint
density is strictly positive on the frontier, we achieve test rate of convergence ¥/ (Pt1) as in Park
et al [27] (in the notations of Theorem 3.1 in [2fkwo/y = & P = £¥/P%).

Note also that the condition (2.4) wifh= x > —1 (as in Corollary 2.2) has been considered
by Hardle, Park and Tsybakov [21], Hall, Park and Stern [2@] by Gijbels and Peng [14]. In a next
section (see Conditional tail index estimation) we answweritnportant question of how to estimate
the shape parametBy in (2.4) or equivalently the regular variation exponpptn (2.2).

Onthe other hand, as an immediate consequence of Theordnn) 2riconjunction with Corol-
lary 2.2, we obtain

E{(X) — b1(X) }< = k{Bx+ p+ 1} "1{ney} </ BetprLp ( ) +o(n KBl - (2.5)

Bx+p+1

This extends the limit theorem of moments of Park et al ([AHeorem 3.3) to the more general
setting wherdx may be non null. Likewise, Hwang et al ([22], see Remark 1yjl® (2.5) only for
ke {1,2}, p=1 andByx = B. The result (2.5) also reflects the well known curse of dineraity
from which suffers the FDH estimatdr (x) as the numbep of inputs-usage increases, pointed out
earlier by Park et al [27] in the particular case whgye= 0.

2.2 Robust frontier estimators

By an appropriate choice of the orderas a function oin, Aragon et al [1] have shown that the
empirical partial frontiehy (x) estimates the full frontiep(x) itself and converges to the same Weibull
distribution as the FDHp1(x) under the restrictive conditions of Park et al [27]. The rt&etorem
gives more insights and generalizes their main result.

Theorem 2.2. (i) Ifb;Y($1(X) — d(X)) 4, Gy, then for any fixed integer k 0,

—1 — i> — 00
b; (@l_nﬂ%m ¢<x>) He as no

for the distribution function K(y) = Gx(y) YK o(—logGx(y))' /i!.

(i) Suppose the upper bound of the support of Y is finite. S #($1(x) — d(x)) 4, Gy, then
b (P, (X) — (X)) 4, Gy for all sequencesi, — 1 satisfying nigt(1—ay,) — 0.



Remark 2.5. When the FDHp1(x) converges in distribution, the conditional quantile-lthsstimator
B, (X), foran :=1—k/nFx(x) < 1 (i.e. k=1,2,...in Theorem 2.2 (i), estimates the frontier function
¢ (x) itself and converges in distribution as well, with the saediag but a different limit distribution
(herenb; 1(1—ay) 22 ). To recover the same limit distribution as the FDH estimatasuffices to
choosen,, — 1 rapidly so thanb;(1—ap) — 0. This extends the main result of Aragon et al ([1],
Theorem 4.3) where the convergence rate achiavésPtl) under the restrictive assumption that
the joint density of(X,Y) is strictly positive on the frontier. Note also that the estted,, does
not envelop all the data points providing a robust altevestiv the FDH frontied;: see Daouia and
Ruiz-Gazen [3] for an analysis of its quantitative and daéiie robustness properties.

2.3 Conditional tail index estimation

An important question in the setup of the obtained reswdtispiv to estimatey from the multivariate
random sample of production unit¥;,Y;),i = 1,...,n. This problem is very similar to that of estima-
tion of the so-called extreme value index based rather ompleeof univariaterandom variables (see
e.g.[10] and the references therein). An attractive estimatiethod has been proposed by Pickands
[28]. This procedure can be easily adapted to our approasttk #+ k, be a sequence of integers
tending to infinity and lek/n — 0 asn — . A Pickands type estimate p§ can be derived as:

qslflkf_l (X) - q)lf_“lﬂ (X) -
ﬁX _ |ng IOg nFx (x) nFx (x) ) )

(151 k=1 (X)—di 2%k-1 (X

TR (0 i ()

We show in the next theorem that this estimate is weakly stersi and that ik, increases suitably
rapidly, then there is strong consistency. We also giveeax¢rvalue conditions under whig is
asymptotically normal. This result is particularly impamt since it allows to test the hypothesis
px > 0 and will be employed in a next section to derive asymptaiitfidence intervals fop(x).

Theorem 2.3. (i) If (2.2)holds, k — « and k,/n — 0, thenpy — px.

(ii) If (2.2)holds, k/n— 0and k/loglogn — o, thenpy =5 py.

Fx (%)
positive function £ ) such that for z- 0

(iii) Assume that Ut) := ¢17%(x), t> % has a positive derivative and that there exists a
thy (X

i (t2) e U/ (tz) —tH A U/ (1)
tTeo A(t)

= *log(2),

1
for either choice of the sighMn-variation, notationﬂ:t”ﬁu’(t) €M(A)]. Then

VEa(Bx— px) ~ A(0,0%(py)), (2.6)

with asymptotic variance?(py) = p>2((21*p*2X + 1)/{(21% —1)log4}?, for k, — oo satisfying
2
kn = o(n/g~1(n)), where g is the generalized inverse function df g=t> s {U’(t) /A(t)}°.

(iv) If for somek > 0 andd > 0 the function{tP1F/(¢(x) — 1|x) — 8} € RV_, then(2.6) holds
2
with g(t) = 35 {U'(1)/ (19U (1) — [8Fx(x)] /P (p)7 )}



Remark 2.6. Note that the second-order regular variation conditipis and (iv) of Theorem 2.3
are difficult to check in practice, which makes the theoedtahoice of the sequendg,} a hard
problem. In practice, in order to choose a reasonable estipyék,) of px, one can make the plot
of Py consisting of the point§(k, px(K)), 1 < k < nFx(x) /4}, and pick out a value gy at which the
obtained graph looks stable. This technique is known asitti@Rds plot in the univariate extreme-
value literature (see.g. Resnick [30] and the references therein, Section 4.5, 883-This is this
kind of idea which guides the automatic data driven rule wggsest in Section 3.

We also can easily adapt the well-known moment estimatdh#index of a univariate extreme-
value distribution (Dekkers et al [8]) to our conditionatige Define

1

k—1
() __ + i _
Mp _kiZ <Iog¢1m(x) logd, «

j
(x)) foreach j=1,2 and k=k,<n.
nFx ()

Then one can define the moment type estimator for the conditregular-variation exponep as

1 (Mﬁl))z
2 el

n

-1

The next theorem gives quite general conditions under whjcls consistent and asymptotically
normal.

Theorem 2.4. (i) If (2.2)holds, ls/n— 0and k — oo, thenpx P, Px-
(i) If (2.2)holds, k/n— 0and k/(logn)® — o for somed > 0, thenpy == py.
(i) Supposettl/P<{¢(x) —U(t)} € M(B) for some positive function B. Then
Vka(Px— px)

has asymptotically a normal distribution with me@and variance

(2+px) n (11+5px)(2+ pX)}
(3+px) (B+px)(4+px) |’

Px(2+ px) (1+px)? {4_ 8

for ky — oo satisfying k = o(n/g=1(n)), where dt) = M ox [{logd(x) —logU (t)}/B(t)]2.

Remark 2.7. Note that thd1-variation conditiortttl+?1xu’(t) € M of Theorem 2.3 (iii) is equivalent
to +(tY/P<{¢(x) —U(t)})’ € RV_; following Theorem A.3 in [7] and that this equivalent regula
variation condition impliesttY/Px{¢(x) — U (t)} € M according to Proposition 0.11(a) in [29], with
auxiliary functionB(t) = +t(t¥/Px{¢(x) —U(t)})’. Hence the condition of Theorem 2.3 (iii) implies
that of Theorem 2.4 (iii). Note also that a similar result toedrem 2.4 (iii) can be given under the
conditions of Theorem 2.3 (iv).

2.4 Asymptotic confidence intervals

Another question of particular interest is how to deriveragtotically normal estimates and/or as-
ymptotic confidence intervals for high partial frontigrg(x), whena = a(n) 1 1, and for the true full

frontier ¢ (x) itself by making use of large frontieds, _« () in the finite case wherleis fixed and
P (x)
in the limiting situation wheré& = k, grow without bound.
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2.4.1 Using differences of large empirical partial frontigs

The following theorem enables one to construct confidenteals for¢(x) and for high quantile-
type frontiersq)l,% (x) whenp, — 0 andnp, — .

Theorem 2.5. (i) Suppose F-|x) has a positive density’F|x) such that (¢ (X) — {|X) € RVi_p,.

Then
G k1 (X) =01 _en (X)
P () X0 d
mq)l "anx<)(X>_¢l n2|5§<>(x> O

2
where \{(py) = p;zzl’p%/ (2*1/9X — 1) , provided p — 0, np, — o and k, = [npy].

(i) Suppose the conditions of Theorem 2.3 (iii) or (iv) haltd define

¢1 kp-1 () 451 2n-1 ()

% . nFX (x) nFX(x)
X) . +
¢1( ) 21/px ¢ nFX( )

Then
$1(%) —d(x) d.
q)lkn () ¢12kn(>

nFy (X nFx (X)

N

6
where \6(py) = 3p522 1o/ <2_1/Px _ 1) .

Let us now consider the asymptotic behaviod@fx) in two particular cases: the case whsn
is known (here we will denote the resulting estimafig(x)) and the case wheleis fixed (here we
denote the estimatdr(X)).

Theorem 2.6. (i) Suppose the conditions of Theorem 2.3 (iii) or (iv) hohdialefine
by to1 (0~ 0y 20109

$i00 = —== 21/px nX(X) +0; o (-
Then
o 1) —9(x) d
2 — O,V X)) s
ko ¢1_n‘<Fn ( ) ¢1_2k;(x)( ) N( S(p >)

where \4(px) = p;22‘p%/ <2—1/px _ 1) . and
ka1 (X) — (151_ 21 (X)
P ()

nFy (X P _ M
i Pp(-2 V) as nee @7
2kn 2kn

(i) Assume tha(2.2)holds and defing(x) := ¢;(x) with k fixed. Then

§1(X) — () d “1/pxy-1 | [aH -1
S (1—27 Yl fetPe 1)
(]517 k1 (X) —(1517 21 (X) ( ) { }
P (X) P (x)
where H is a random variable having a beta-type density function:
|
fi(2) = (! 1)z (1—e 21 forz>o0.

KI(k—1)!



Remark 2.8. Note that Theorem 2.5ii) is still valid if the estimatedy is replaced by the true
value px up to a change of the asymptotic variance. In view of the féasiofVs(px) andVs(py),

it is easy to see thatx(px) > V3(px) and so the estimatdj;(x) of ¢p(x) is more efficient than
$3(x). We also conclude from (2.7) that boftj(x) and$;(x) have the same rate of convergence,
namelynU’(%)/(an)S/z. In the particular case whetg (ﬁ) = lxin (2.3), we haveU’(%) =

é(é_lx)l/px(%)lﬂ/px_

Remark 2.9. In the particular case whetsg <ﬁ> = Iy in (2.3), the condition of Theorem 2(§

holds, that is=’(¢(x) — £ |x) = ,fxx% (%)prl € RV1_p,. But the conditions of Theorem 2(8i) and

1 1/px
(iv) do not hold in this particular case since both funct'rt}ﬁ@lxu’(t) = p—lx (%) / andtP1F’(¢(x) —

%|x) = ,f;%(‘) are constant irt. Nevertheless, we havé—%U’(t) = constant (with the notation
Yx = —1/px of our proofs), so that the left-hand side of Equation (2m8Pekkers and de Haan [7]
is identically zero. It follows that the conclusion of Theor 2.3(iii) or (iv) holds for all sequences
kn — o0 satisfying% — 0. The same is true for the conclusion of Theorem(R)5 The next theorem

gives another variant of this result.

Theorem 2.7. Suppose the condition of Corollary 2.1 holds. Then
1/2
Pxkn 1/p d
————®, k1 (X)+ (kn/Nly) " —d(X)| — AN(0,1) as n— oo,
(kn/nﬁx)l/px 1 FFW( ) + (kn/Néx) (%) (0,1)
provided that K — o and k/n— 0 as n— co.
Alternatively, we have the following formulation.

Corollary 2.3. Suppose, T 1and n1—ay,) — o« as n— o. Then, under the condition of Theorem
2.7,

[Ban(X) = O(X) + Ba] - AL(0,1) as n— oo,

where B, = (kn/nly)Y/Px with k, — 1 being the integral part of fi. — an)Fx (X).

Remark 2.10. It is easy to see that the value kf which minimizes the asymptotic mean squared
error, MSE= B2 + B2/(p2kn), does not even depend an So the optimization of the MSE of

$, -1 (x), or equivalentlyhq, (x), is not the appropriate theoretical criteria for selectimgoptimal
P (%)
sequencé,.

2.4.2 Using sums of large empirical partial frontiers
We shall now construct asymptotic confidence intervals @th i (x) andcl)l,Fpi?) (x) using the sums
X (X

Mrgl) and Mr@. We first get the following results in the infinite case={ k, unbounded) similarly to
Theorem 2.5.

Theorem 2.8. (i) Under the conditions of Theorem 2.5 (i),

by o (901 n (9

m nFx )
MY, 1w (%)

nFx (X)

L A0, Va(py))

where M(px) = (14 1/px)?, provided p — 0, np, — o and k, = [npy).
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(i) Suppose the conditions of Theorem 2.4 (iii) hold and tha) has a regularly varying derivative
U’ € RV_p,. Define a moment estimator fdp(x) as

800 =8, 10 (N{1+MP (140}

nFx (%)
Then
X) — (X
Vio 289 0,50,
Mn” (14+1/P0)8;__ta_(X)
P ()
where
Px (2+px) | (11+45p)(2+ pX)} 4px }
Ve — p2 +px(2+ {4—8 - .
90 =68 | 7+ o200 {48 05+ (TR o | e
Next we consider the estimation ¢fx) andq)l_%(x) when thek occurring ing,  « (X)
X nFx (%)

andMﬁl) Is fixed. In this situation we propose to estimdite . (x) as follows:

Ppu () = by__x (%) {14 M 1+ pen) (1= (k/npy) /oen) §

with px n being any consistent estimate

Theorem 2.9. (i) Suppose p— 0and np, — c €]0,[ as n— . Let the number k occurring in
the definition ofppn(x) be fixed with k> c. Then, provide@2.2) holds,

Bonl0) — 01X

MGy i ()
nFx (%)
(1 poL- (0 P+ pel Q) Y~ 1/ | LS |1~ 5 £
Px Px{(Qx ki;px P ,Z.jpx )

with Q, Ep, .. ., Ex_1 independent, Qgamma with k degrees of freedom, andE0, ..., k—1,
i.i.d. exponential.

(i) Supposg2.2)holds and let k in the definition @f(x) be fixed. Then
-1
) — b(x 1 k-1 k-1 g
&() Lty 4 A+p0)+ RZ}exp —Z.—J -1 .
Mi ', _x (X i= = 1Px
(1)

Remark 2.11. In Theorem 2.9, it should be clear that the numibased in the definition oMy~ re-
mains bounded whereas, if fpgn [ occurring in the definition oti)pn(x) ] one uses Pickands estimate
Px or the moment estimaf, one needs to use an unbounded nunkbir their definitions.

Remark 2.12. Theorems 2.1-2.6 and Theorems 2.8-2.9 follow easily byyapplthe elegant de-
vices of Dekkers and de Haan [7] and Dekkers et al [8], amohgrst in conjunction with the
simple and clever idea that(x) coincides with the right endpoint of the common distribatiof
the univariaterandom variableZ := Y;1(X; < x), i =1,...,n. It is also clear from Lemma .1(i) in
Appendix thatpyx andpy as well as the estimates of the high partial frontiers andheffll frontier
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can be easily computed in practice by employing the ordeistts Zz‘n_k) =6, « (x) for each
nFx (%)

k=0,1,. ..,nlfx(x) — 1. This identity can also be of some help in finding an optintalice for the
sequencd,. Indeed various selection methods karsuggested in the context of univariate extreme
value estimation (see.g.Guillou and Hall [17]) could be adapted to our problem. Of sy the se-
lected numbek, of extreme observatior& involved in the definition of the estimatopg, Px, §7(X),
$3(x), §(x),... should depend on the fixed lewet RP of inputs-usage. We do not enter in this paper
into the question of how to choose theoreticddlyx) in an optimal way. In Section 3, we suggest a
simple data driven method for selecting reasonable valtilkg %) for a set of grid of values fax.

2.5 Examples

Example 2.1. We consider the case where the monotone boundary of the gugdgX,Y) is linear.
We choosgX,Y) uniformly distributed over the regioD = {(x,y) |0 <x <1 0<y<x}. In this
case (see Daouia and Ruiz-Gazen [3], Daouia and Simar [¢jpgmthers), it can be easily seen that
o (x) = x andFx (X)[1— F(y|x)] = (¢(x) —y)? for all 0 < y < ¢(X). ThusLy(-) = ¢x = 1 andpy = 2

for all x. Therefore the conclusions of all Theorems 2.1-2.7 hold Bemark 2.9)

Example 2.2. We now choose a non linear monotone upper boundary givenebZtiob-Douglas
modelY = X¥/2exp(—U), whereX is uniform on|0, 1] andU, independent oX,, is Exponential with
paramete = 3 (see,e.g, Gijbels, Mammen, Park and Simar [13]). Here, the frontigrction is
®(x) = x1/2 and the conditional distribution function B(y|x) = 3x 1y — 2x=3/2y3 for0< x < 1
and 0<y < ¢(x). Itis then easy to see that the extreme-value conditior),(@2quivalently (2.3),
holds withpy = 2 andLy(2) = Fx (X)[3¢(x) — 2] /[ (x)]* for all x €]0,1] andz > 0.

3 Finite Sample Performance

The simulation experiments of this section illustrate hbe/¢onvergence results work out in practice.
We also apply our approach to a real data set.

3.1 Monte-Carlo experiment

We will simulate 2000 samples of size= 1000 and of sizen = 5000 according the scenario of
Example 2.1 above. Herg(x) = x andpy = 2. Denote byNy = nFx(x) the number of observations
(X,Yi) with X; < x. By construction of the estimatof and ¢;(x), the thresholdk,(x) can vary
between 1 andll/4. For the estimator with knowpy, §;(X), ka(x) is bounded byNy/2 and finally,
for the moment estimatofs and®(x), the upper bound fdk,(X) is given byNy — 1.

So, in our Monte-Carlo experiments for the Pickands estmé&j(x) was selected on a grid
of values determined by the observed valué&laf We choose,(X) = [Nx/4] —k+ 1, wherek is an
integer varying between 1 arjtl/4]. In the tables belowly is the average value observed over
the 2000 Monte-Carlo replications, the tables display thlees oﬂ?n(x) which is the average of the
Monte-Carlo values of,(X) obtained for a fixed selection of valueslofFor the moment estimators,
the upper values df,(x) were chosen ably — 1. The Tables display only a part of the results to
save place, but typically we choose, in each case, a setwéwvalfk that includes not only the most
favourable cases but also covering a wide range of valuds, fgy.
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The tables below (from Table 1 to 6) provide the Monte-Cadbneates of the Bias and the
Mean Squared Error (MSE) of the various estimators componed the 2000 random replications,
as well as the average lengths and the achieved coveragbe obtresponding 95% asymptotic
confidence intervals.

The number of extreme observatigg, Y; ), with X; < x, used to estimatgy and¢(x) is 4k (X)
for px andd; (x), whereas it is B (x) for §; (x) andkn(x) for px andd(x). Then, as it can be expected,
if ka(X) or Nx is too small, the variance of the estimatormf may be large because of the large
variation of the few extreme observatiofi§, Y;), with X; < x, involved in the estimation gby: this
large variation may result in negative or too large valuethefestimator. For instance, it is easy to
see thapy > 0 if and only if

By k1) =0 2am-100 <P 2-1(X) — Py aqe-1(X).
P (4 P (4 P () P ()

Likewise, the confidence ban@g+ 1.960(px)/+/kn(X) of px obtained from (2.6) may be negative or
too large. In particular, the use of small input valxasray result in disappointing estimatgg(and
also ford; (x) that suffers from the vexing defects @f) and corresponding confidence bands due to
the conditioning byX < x (this is a border effect). The same is true for the other egbns.

We will first comment the results obtained for the Pickandsrestors and for the estimator of
¢ (x) obtained by knowing thaix = p+ 1 = 2 (jump of the joint density ofX,Y) on the frontier).

We observe the disappointing behavior of the Pickands astisnvhen the sample sizens-
1000 and for values of as small as 0.25 (see the first top block of Tables 1, 2). Ondh&ary, the
estimatord; (x) computed with the true value @i = 2 provides more reasonable estimates o)
and is rather stable with respect to the choicétk). We see the improvement §f (x) over the
FDH in terms of the bias, without increasing too much the M8H this even with sample sizes as
small asNy = 62. The achieved coverages of the normal confidence inteolahined fromp; (x)
are also quite satisfactory, and much more easy to derivethizgse obtained from the FDH estimator
(assuming alspx = 2).

The tables show also the results for larger values ahd, as expected, the estimatpgsand
$7(x) behave better, at least for appropriate valuek,gt). Again§;(x) performs rather well and
is again stable to the selected valugkg(fx). The achieved coverages of the confidence intervals are
almost equal to the nominal level of 95%.
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Table 1: Pickands and knowpy cases. Bias (B) and Mean Squared Error (MSE) of the estimates
over 2000 Monte-Carlo simulations, sample size h000

X=025 Ny=62  FDH:By — 0028136 andiSE,y = 0.001005
[ ka0 By, | MSE, [ Byx | MSEyw | Baw | MSBywx |
12.0 -0.48504 906.91451 || -0.03127 6.63766 0.00148 0.00142
114 -053609| 9149.56965| -0.06785| 36.77153| 0.00168| 0.00139
10.7 -1.26568 2095.81240(| -0.12033 18.01733 0.00190 0.00142
10.1 -1.34925 2727.05598(| -0.09043 13.39646 0.00165 0.00141
9.4 || -1.01003| 887.86044| -0.06853|  4.08058|| 0.00213| 0.00142
8.8 -0.99741 836.96814 || -0.06174 3.82524 0.00220 0.00138
8.2 || -143421| 1084.83722 -0.07957|  4.19400|| 0.00302| 0.00135
75 || -1.37656| 1070.81436| -0.06913|  4.36908|| 0.00340| 0.00139
6.9 -1.09290 994.97474 || -0.05734 3.45696 0.00446 0.00144
6.3 || -040340| 1406.03721| -0.01208|  4.61059|| 0.00431| 0.00137

X=050 N¢=250  FDH:By, — —0.027821 andVSEy, — 0.000984
[ ka® B, MSE, [ Byx | MSEyw | Baw | MSByw |
62.1 0.86492 1022.60093 0.16285 35.07153 0.00067 0.00154
583 || 077734| 118.17269| 013897| 3.84698| 0.00045| 0.00154
546 | 206630| 3042.01785|| 0.35339| 85.80074| 0.00052| 0.00149
50.8 1.58387 750.31800 0.26137 21.46568 0.00049 0.00142
470| 017207| 326.01713|| 0.02348| 878341 0.00023| 0.00139
43.2 1.03623 969.17487 0.15767 22.84893 || -0.00025 0.00142
39.4 8.17365| 138392.15086 1.09759 | 2490.23917 0.00008 0.00139
356 | 060146| 664.65620|| 0.09650| 15.59017 | -0.00062| 0.00146
31.8 0.23675 407.42921 0.04079 5.64263 || -0.00071 0.00139
2811|| 1.10798| 3006.45644| 011228| 34.33301| -0.00045| 0.00137

x=075 Ny=562  FDH:By,x = —0.028080 andVSEy, = 0.001002

[ ka0 B, MSE, [ Byx | MSEyw | Baw | MSBywx |
1202 026635 6.32441]] 0.07343] 047926 000030| 0.00140
131.3 0.23266 1.28492 0.06191 0.09050 || -0.00070 0.00138
1224 | 025461 1.20701|| 0.06549| 008546 || -0.00065| 0.00144
113.4 -0.09004 344.07913|| -0.02658 22.67641 || -0.00034 0.00142
104.5 0.42033 7.63112 0.09925 0.41662 0.00014 0.00145
956 || 033652 8.45253|| 0.07712| 044647 | -0.00004| 0.00145
86.7 -9.40572 | 167972.74166|| -2.13352 | 8553.19136 0.00036 0.00144
777 055786 22.85975|| 0.11535|  0.99713 || -0.00007| 0.00148
68.8 0.25662 265.60614 0.04855 10.49201 || -0.00008 0.00155
59.9 452123 23061.37346 0.82289 753.52315 0.00049 0.00151

Xx=100 Ne=1000 FDH:By, = 0027473 andMSE, = 0.000953

[ ka9 By, MSE, | Byoo | MSByw [ Brw | MSEyw |
250.0 0.12371 1.07603 0.04634 0.14997 0.00060 0.00143
234.0 3.26046 19628.31961 1.20848 | 2701.85640 0.00143 0.00143
218.0 0.15243 0.65257 0.05318 0.07912 0.00131 0.00143
202.0 0.17401 0.72369 0.05785 0.07620 0.00147 0.00143
186.0 0.24197 7.54008 0.07658 0.70279 0.00141 0.00143
170.0 0.27017 12.07866 0.08205 1.06230 0.00110 0.00140
154.0 0.27529 6.77502 0.07947 0.51830 0.00109 0.00141
138.0 0.27553 1.75793 0.07667 0.13168 0.00145 0.00146
122.0 0.32059 2.08038 0.08371 0.13564 0.00143 0.00150
106.0 0.41294 5.18075 0.10076 0.29355 0.00108 0.00152
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Table 2: Pickands and knowpy cases. Average Lengths (avl) and Coverages (cov) of the 95%
confidence intervals, over 2000 Monte-Carlo simulatioasygle size B= 1000

Xx=025 Ny=62
[ k) ] avh, | cow, || avigg [ covg [| avigo | 000 ||
12.0 1881.0192| 0.8160 159.5440| 0.7965 0.1504 0.9180
11.4 20972.8304| 0.8185 1306.2047| 0.7970 0.1507 0.9195
10.7 5065.5884 | 0.8035 467.0065 0.7810 0.1510 0.9190
10.1 6725.7862| 0.8010 465.4399 | 0.7780 0.1508 0.9165
9.4 2061.6130| 0.7960 132.1592 0.7735 0.1514 0.9130
8.8 2156.7584 | 0.7850 134.9646 0.7630 0.1514 0.9085
8.2 3305.2779| 0.7780 182.7162| 0.7545 0.1526 0.9085
7.5 3404.4945| 0.7610 194.7502 0.7335 0.1534 0.8990
6.9 3559.2686 | 0.7335 170.6059| 0.7065 0.1555 0.8975
6.3 4439.2558| 0.6990 225.3314 0.6690 0.1557 0.8825

Xx=050 Ny=250

| kn (X) | | aVlf,x | COVF‘,X | | avlm x) | COV‘EI (x) | | avlﬂ x) | COV@;(X) | |
62.1 929.5066 | 0.8870 172.1322| 0.8815 0.1497 | 0.9315
58.3 115.6243| 0.8810 20.8087 | 0.8725|| 0.1496| 0.9375
54.6 2869.5863| 0.8860 481.9853| 0.8745| 0.1496| 0.9390
50.8 753.0965| 0.8850 127.2271| 0.8850 0.1496 | 0.9475
47.0 338.1331| 0.8840 55.3762 | 0.8825 || 0.1494 | 0.9445

43.2 1062.7489| 0.8755 163.1122| 0.8675|| 0.1491| 0.9295
39.4 || 156622.5426| 0.8635 || 21009.3710| 0.8610 || 0.1494 | 0.9400
35.6 784.5760| 0.8540 119.6340| 0.8430|| 0.1489 | 0.9415
31.8 531.2606 | 0.8665 62.1563 | 0.8560 || 0.1488 | 0.9395
28.1 4235.2917| 0.8575 451.2239| 0.8540 || 0.1490 | 0.9460

Xx=075 Ny =562

| k] avip, [ cop, | I ETEET
140.2 6.6631 | 0.9190 1.8299 | 0.9150|| 0.1496 | 0.9520
131.3 3.7299 | 0.9130 0.9875 | 0.9055 0.1493 | 0.9520
122.4 3.9269 | 0.9020 1.0045 | 0.8985 0.1493 | 0.9420
1134 231.0248| 0.9045 59.2685| 0.9025 || 0.1494 | 0.9430
104.5 9.1233 | 0.9150 2.1431 | 0.9030 0.1496 | 0.9445
95.6 9.8572 | 0.9115 2.2522 | 0.9040 || 0.1495| 0.9485
86.7 || 127039.0252| 0.9065 || 28640.0512| 0.9010 0.1497 | 0.9540
7.7 22.9894 | 0.8990 4.7819 | 0.8950 0.1495 | 0.9470
68.8 230.8260| 0.8910 45.8299 | 0.8805 || 0.1495| 0.9325
59.9 20400.0683| 0.8950 3687.5438| 0.8825 0.1498 | 0.9390

x=100 Ny =1000

[k ] v, [ con || aviw [ cO%iw [| i | %0 |
250.0 2.4226 | 0.9310 0.8867 | 0.9285 0.1496 | 0.9495
234.0 9074.1624| 0.9320 3366.6221| 0.9275|| 0.1499| 0.9500
218.0 2.4451 | 0.9255 0.8347 | 0.9260 0.1498 | 0.9510
202.0 2.6171 | 0.9355 0.8564 | 0.9330 0.1499 | 0.9590
186.0 6.3956 | 0.9270 1.9769 | 0.9275|| 0.1499| 0.9570
170.0 9.2088 | 0.9200 2.7443 | 0.9155 0.1498 | 0.9565
154.0 6.6668 | 0.9180 1.8731| 0.9200 || 0.1498| 0.9460
138.0 4.0256 | 0.9180 1.0966 | 0.9125|| 0.1499| 0.9495
122.0 4.5997 | 0.9115 1.1767 | 0.9010 0.1499 | 0.9465
106.0 7.3086 | 0.8985 1.7440 | 0.8965 || 0.1497 | 0.9445

When the sample size increases, the Pickands estimataredetuch better, even for moderate
values ofx. Tables 3 and 4 display the results fo= 5000. The improvements @ and$;(x) are
remarkable, although the convergence is rather slow. Herepon adl is larger than 1000, all the
estimators provide reasonably good confidence intervalseotorresponding unknown, with quite
good achieved coverages. In these cablks>(1000), we observe also some stability of the results
with respect to the choice &f(x).
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Table 3: Pickands and knowpy cases. Bias (B) and Mean Squared Error (MSE) of the estimates
over 2000 Monte-Carlo simulations, sample size 5000

x=025 N,=312 FDH:Bg ) = 0012591 andVSE,(, = 0.000203
[ ™ | Bo | MSB | Brio | MSByw || Baiw [ MSEico |
77.7]] -025757] 784.19539]| -0.02585] 6.93961| 0.00021] 0.00028
744 | 041215| 17.20703|| 0.03723| 0.14471|| 0.00024| 0.00028
71.0|| 042344| 10575775/ 0.03830| 0.89895| 0.00016| 0.00028
67.7|| 044401 16.30552| 0.03877| 0.11468| 0.00030| 0.00028
644 || 030552 14508207 0.02564| 1.01166| 0.00031| 0.00029
61.0|| 068905 3513730| 0.05654| 0.24012| 0.00053| 0.00029
57.7 || 082177| 15489.98302|| 0.05929 | 89.02353| 0.00053| 0.00029
543 || 117914| 1780.66037| 0.08527| 9.90370| 0.00055| 0.00029
51.0 || -4.41384| 13169.38480|| -0.33207 | 74.80129 0.00046| 0.00030
476 | 003147| 3204.61688| -0.00179| 14.27123| 0.00064| 0.00029
X=050 N=1250 FDH:By, ) = —0.012563 andMSE, ) = 0.000200
[ ™ | Bo. MSE || Boiw | MSByw || Boioy | MSBiieo |
312.1| 009248  0.22503] 0.01696] 0.00735] 0.00026] 0.00029
297.0|| 009311  0.24340|| 001668| 0.00759| 0.00012| 0.00029
2819 || 009124|  0.24958| 0.01595| 0.00742 -0.00001| 0.00029
266.8|| 009201|  0.27538| 0.01579| 0.00780 -0.00009| 0.00029
251.7|| 008954|  0.29784| 0.01490| 0.00797 || -0.00042| 0.00030
2366 || 009840|  0.33195| 0.01584| 0.00831| -0.00049| 0.00030
2215|| 011387|  0.38048| 0.01768| 0.00893| -0.00043| 0.00030
2063 || 012297|  0.47557| 001840| 0.01038| -0.00060| 0.00030
1912|| 012060|  0.43562| 0.01720| 0.00881| -0.00081| 0.00030
1761]| 014573]  0.72946|| 001989| 0.01371| -0.00080| 0.00029
X=075 N, =2813 FDH:By ) = 0012627 andMSE, ) = 0.000201
[k ] B MSE, | Boieo [ MSByio [|  Biow | MSByw ||
7029]] 003859]  0.08296] 001034] 0.00614] -0.00016] 0.00030
6682 || 004106|  0.08652| 0.01096| 0.00610| 0.00014| 0.00029
6336 || 004436  0.09402| 001146| 0.00622| 0.00010| 0.00029
598.9 || 004647  0.09685| 0.01170| 0.00606| 0.00017| 0.00028
5642 || 005097  0.10266| 0.01251| 0.00605| 0.00033| 0.00027
5205 || 005241  0.11087| 001247| 0.00614| 0.00022| 0.00028
4948 005749|  0.11876| 001314| 0.00614( 0.00024| 0.00027
4602 007181  0.13817| 001581| 0.00668( 0.00054| 0.00028
4255 006895|  0.14227| 001470| 0.00635| 0.00039| 0.00028
3908 | 007308|  0.16153| 001506| 0.00660 | 0.00041| 0.00028
X=100 N =5000 FDH:By, ) = 0012663 andMSE, ) = 0.000202
CH| B, MSE || Bpiow [ MSByw [ By [ MSEy ||
12500]] 002/55]  0.04085]| 001025] 0.00540] 0.00078] 0.00028
1188.0|| 002863|  0.04254|| 001047| 0.00537| 0.00085| 0.00028
11260|| 002780  0.04643|| 0.00991| 0.00557| 0.00065| 0.00029
10640|| 002689|  0.05068| 0.00953| 0.00575| 0.00064| 0.00030
10020|| 002890|  0.05241| 0.00981| 0.00559| 0.00061| 0.00029
9400|| 002670|  0.05545| 0.00875| 0.00552| 0.00032| 0.00029
8780 | 002738  0.06064| 000872| 0.00564( 0.00029| 0.00029
8160 002877|  0.06738| 000882| 0.00577| 0.00024| 0.00028
7540 || 003001|  0.07071| 0.00899| 0.00562| 0.00037| 0.00028
6920 || 003686|  0.07869| 0.01065| 0.00583| 0.00065| 0.00029
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Table 4: Pickands and knowpy cases. Average Lengths (avl) and Coverages (cov) of the 95%
confidence intervals, over 2000 Monte-Carlo simulatioasgle size B= 5000

Xx=025 Ny=312

[ k¥ ] avp | cow, | avigiw [ covgo || avlgi | 0% ||
777]]  6309019] 09040 59.3041] 08925] 00670] 09455
744 18.4635| 09060 1.6821| 08970| 00670 0.9505
71.0 92.5814 | 0.9000 8.5104 0.8960 0.0670 0.9480
677|| 186125| 08990 1.5673| 0.8910| 00670 0.9485
64.4 131.0169 | 0.8910 10.9372 0.8845 0.0670 0.9525
61.0 37.9315| 0.8960 3.1260 0.8840 0.0671 0.9465

57.7 || 14491.7449| 0.8965 || 1098.2578| 0.8850 | 0.0671| 0.9470
54.3 1735.9675| 0.8930 129.3070| 0.8820 || 0.0671| 0.9430
51.0 || 13077.3352| 0.8910 981.3170| 0.8805 (| 0.0671| 0.9440
47.6 3374.6016| 0.8925 224.7041| 0.8735| 0.0672| 0.9410

Xx=050 Ny =1250

| kn(X) || aVlf,x | COVF‘,X || avlmw | COV@;(X) || avlaﬂx) | COV‘FI(X> ||
3121 1.7798 | 0.9295 0.3232 | 0.9195 0.0670 | 0.9485
297.0 1.8330 | 0.9255 0.3248 | 0.9245| 0.0669 | 0.9490
281.9 1.8810 | 0.9250 0.3247 | 0.9240| 0.0669 | 0.9475
266.8 1.9457 | 0.9220 0.3269 | 0.9240 0.0669 | 0.9460
251.7 2.0095 | 0.9200 0.3279 | 0.9145| 0.0668 | 0.9505
236.6 2.1038 | 0.9195 0.3329 | 0.9165 0.0668 | 0.9420
2215 2.2256 | 0.9150 0.3409 | 0.9100 0.0668 | 0.9390
206.3 2.3707 | 0.9115 0.3506 | 0.9075| 0.0668 | 0.9440
191.2 2.4375 | 0.9105 0.3468 | 0.9085 0.0667 | 0.9455
176.1 2.7460 | 0.9155 0.3754 | 0.9080 | 0.0667 | 0.9440

Xx=075 N,=2813

| kX | T ENETIETEIEr
702.9 1.0921 | 0.9460 0.2970 | 0.9430 0.0669 | 0.9445
668.2 1.1237 | 0.9480 0.2981 0.9435 0.0669 0.9490
633.6 1.1598 | 0.9445 0.2996 0.9410 0.0669 0.9495
598.9 1.1961 | 0.9485 0.3004 | 0.9455 0.0669 | 0.9500
564.2 1.2392 | 0.9485 0.3022 0.9430 0.0670 0.9555
529.5 1.2834 | 0.9415 0.3032 | 0.9425 0.0670 | 0.9560
494.8 1.3365 | 0.9470 0.3052 0.9460 0.0670 0.9525
460.2 1.4106 | 0.9475 0.3109 0.9490 0.0670 0.9555
425.5 1.4646 | 0.9450 0.3103 | 0.9415 0.0670 | 0.9550
390.8 1.5408 | 0.9380 0.3130 0.9355 0.0670 0.9560
x=100 N;=5000

| kn(X) || aVlf,x | COVF‘,X || avlﬂw | COV@»{(X) || avlaxi()() | COV‘H(X) ||
1250.0 0.8019 | 0.9645 0.2909 0.9605 0.0670 0.9540
1188.0 0.8238 | 0.9625 0.2914 | 0.9595 0.0670 | 0.9555
1126.0 0.8463 | 0.9535 0.2914 0.9495 0.0670 0.9425
1064.0 0.8707 | 0.9510 0.2915 0.9445 0.0670 0.9435
1002.0 0.8994 | 0.9530 0.2922 | 0.9455 0.0670 | 0.9475
940.0 0.9273 | 0.9445 0.2918 0.9420 0.0669 0.9460
878.0 0.9614 | 0.9420 0.2923 | 0.9450 0.0669 | 0.9420
816.0 1.0002 | 0.9450 0.2932 | 0.9440 0.0669 | 0.9500
754.0 1.0426 | 0.9475 0.2939 0.9460 0.0669 0.9550
692.0 1.0976 | 0.9455 0.2966 | 0.9430 0.0670 | 0.9455

We now turn to the performances of the moment estimgigndd(x). The results are dis-
played in Table 5 fon = 1000 and Table 6 fon = 5000. Note that we used the same seed in the
Monte-Carlo experiments than the one used for the precddbigs.

We observe here much more reasonable results, in terms &iaseand MSE of the moment
estimatorx andd(x), as soon ad\ is larger than, say, 200. In addition, whbk increases, the
results are much less sensitive to the choide, 0f) than for the Pickands estimators. We also observe
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that the most favorable valueslaf(x) for estimatingpy or ¢(x) are not necessarily in the same range
of values.

We note that the confidence intervals fgr achieve quite reasonable coverage as sodxcas
is greater than, say, 500. However, the results for the cemdiel intervals o (x) obtained from the
moment estimato(x) are very poor even wheNy is as large as 5000. A more detailed analysis
of the Monte-Carlo results allows us to conclude that thisies from an under evaluation of the
asymptotic variance a(x) given in Theorem 2.8. Indeed, in most of the cases, the MGare
standard deviation of(x) was larger than the asymptotic theoretical expression aceif of the
order 2 to 5 wherNy = 1250 and by a factor of 1.3 to 1.7 whél = 5000. So the poor behavior
seems to improve slightly whe¥, increases but at a very slow rate.

So to summarize, we could say that using the Pickands estisfat and$;(x), is only rea-
sonable in our set-up whe¥y is larger than, say, 1000. These estimators are highly tsengy the
choice ofks(x). The moment estimatof®, and$(x) have a much better behavior in terms of bias
and MSE and a greater stability with respect to the choide,©f) even for moderate sample sizes.
WhenNy is very large Ny = 5000), the Pickands estimator becomes more accurate thandment
estimator.

Inference on the value gy, built from the asymptotic distribution gdx, shows quite good
coverage of the corresponding confidence intervals. Homewenference purpose on the frontier
function itself, the estimate of the asymptotic varianceé of) does not provide reliable confidence
intervals even for relatively large values §f. It would be better to use in the latter case estimates
obtained by the bootstrap (but at a computational cost).

However wherpy is known, we have remarkable results {gi(x) even wherlNy is small with
remarkable properties of the resulting normal confidenterwals with a great stability with respect
to the choice ok, (x). Remember that in most situations described so far in theauetric literature
on frontier analysis, this tail indepy is supposed to be known and equalpte 1 (herepy = 2): this
corresponds to the common assumption that there is jumpgbiht density of(X,Y) at the frontier.

This might suggest the following strategy with a real dataai¢herpy is known (typically equal
to p+1if the assumption of a jump at the frontier is reasonabld)sarwe can use the estimaigr(x),
or px is unknown, in this case we could suggest to use the followingstep estimator: first estimate
px (the moment estimator qfy seems the more appropriate, unldigss very large) and second use
the estimato®; (x), as if px was known, by plugging the estimated val@gsit the place opy. In the
next section, we suggest sormé hocprocedure for determining appropriate valuekgi) with a
real data set.
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Table 5:Moment Estimators. Bias (B), Mean Squared Error (MSE) anerdge Lengths (avl) and
Coverages (cov) of the 95% confidence intervals, over 2000tdAGarlo simulations, sample size

n= 1000

Xx=025 Ny=62

[ ka0 Bp, MSE, [ Bsy MSEy || avh, [ coy, | vl | Covn |
314 7.69194 98852.85196]| 0.18856|  102.10294 69618.3092] 0.8105 2237.8909| 0.4845
285 | 0.78155 603.95223|| -0.02837 0.61147 465.2116| 0.8075 14,7657 | 0.5210
25.3 2.91920 6022.50946|| 0.04939 6.39901 4536.7150| 0.8105 147.9476 | 0.5535
22.3 5.14393 21118.10510|| 0.12234 21.75798 18862.3079| 0.8285 605.2293 | 0.5940
19.2 || -0.13751 1402.87695| -0.03458 1.38802 1249.5570| 0.8225 39.1572 | 0.6020
16.0 || -0.57398 3611.92685| -0.03721 2.06825 3643.9352| 0.7910 86.5993 | 0.6235
129 -2.87575 5952.16812| -0.09824 4.32304 6474.0510| 0.8150 173.0064 | 0.6455
9.8 | -0.69028 2209.06514|| -0.02620 1.17234 3140.6753| 0.7690 71.6783 | 0.6310
6.7 || 154.77576| 48461004.94003|| 2.22488 | 10164.75120|| 77554551.1229) 0.7280 || 1123213.7963| 0.6190
36| -1.21190 1912.09995|| -0.03132 0.58698 4166.0973| 0.6175 71.9080 | 0.5080
20| -0.87003 2394.13723|| -0.03639 0.31533 6640.2573| 0.4625 68.3937 | 0.3635

x=050 Ny=250

[ ka0 ]l Bp. MSE, [ Bpy MSEy || avl, [ cow, | vl | covn |
1380 0.39692 2.60024 || -0.10693 0.02356 3.1218 0.8590 0.2101 | 0.2850
1253 || 0.38007 1.72622 || -0.08996 0.01569 2.9481 | 0.8695 0.1974 | 0.3410
113.0|| 0.37306 1.66457 || -0.07481 0.01268 3.0650 | 0.8695 0.2031 | 0.4060
100.4 || 0.38515 2.11384 || -0.05954 0.01194 3.4478 | 0.8795 0.2240 | 0.4655
88.0| 0.37768 3.32329 || -0.04718 0.01508 4.2040 | 0.8945 0.2657 | 0.5315
755 ||  0.45592 8.06492 || -0.03055 0.03275 6.8652 | 0.8900 0.4282 | 0.5960
62.9 | 052777 22.24659 || -0.01650 0.07686 14.6330 | 0.8940 0.8597 | 0.6450
50.4 ||  0.44658 32.58286 || -0.01254 0.09383 21.6793 | 0.8870 1.1609 | 0.6895
380 087725 397.77359| 0.01816 1.06690 266.8216| 0.8870 13.8012 | 0.7215
255 |  0.07688 171.77509|| -0.01379 0.24232 138.6520| 0.8650 5.1985 | 0.7535
6.8 | -1.35243 5682.59492|| -0.04653 1.83434 8816.0056| 0.7310 148.0389 | 0.6485

Xx=075 Ny=562

[k ] Bp. MSE || Bow MSBy || avly, | cow, || vl | covgo |
2815 0.22963 0.43342 || -0.14881 0.02651 15512 | 0.8845 0.1537 | 0.1820
2536 || 0.24167 0.45421 || -0.12336 0.01954 1.6506 | 0.9190 0.1623 | 0.2535
225.4 || 0.24100 0.48387 || -0.10137 0.01476 1.7570 | 0.9225 0.1698 | 0.3310
197.3 || 0.22582 0.49760 || -0.08310 0.01121 1.8650 | 0.9255 0.1749 | 0.3985
169.2 || 0.21128 0.55801 || -0.06660 0.00872 2.0150 | 0.9210 0.1808 | 0.4900
141.0| 0.21154 0.54369 || -0.05033 0.00625 2.2000 | 0.9205 0.1863 | 0.5900
1129 || 0.22414 0.74955 || -0.03492 0.00563 2.5452 | 0.9015 0.1993 | 0.6400
848 0.23220 1.02117 || -0.02156 0.00544 3.0558 | 0.9120 0.2148 | 0.7115
56.7 || 0.29779 3.60304 || -0.00729 0.01205 5.1691 | 0.8835 0.3054 | 0.7475
286 | -0.47319 1765.30827|| -0.03043 2.80568 1288.1794| 0.8750 51.3417 | 0.7915
14.5 1.06058 508.21548| 0.02489 0.47542 533.3150| 0.8130 16.2354 | 0.7430

x=100 N,=1000

L ka0 ]l Bpx MSE, [ Bpy MSEy || avl, [ cow, | vl | cov |
500.0 || 0.20400 0.24793 || -0.20017 0.04425 1.1180 | 0.8300 0.1473 | 0.0825
450.0| 0.19013 0.23874 || -0.16962 0.03277 1.1669 | 0.8610 0.1525 | 0.1280
40001 0.17333 0.22090 || -0.14244 0.02384 1.2216 | 0.8910 0.1566 | 0.1895
350.0 | 0.16584 0.23578 || -0.11662 0.01721 1.3024 | 0.9075 0.1621 | 0.2775
300.0 | 0.15620 0.22091 || -0.09339 0.01182 1.3952 | 0.9265 0.1663 | 0.3885
250.0 | 0.14678 0.25498 || -0.07248 0.00847 1.5263 | 0.9295 0.1716 | 0.4915
200.0 ||  0.15006 0.31032 || -0.05223 0.00596 1.7232 | 0.9310 0.1789 | 0.5955
150.0 |  0.15083 0.39042 || -0.03440 0.00443 2.0127 | 0.9275 0.1867 | 0.6935
100.0 | 0.17579 0.64048 || -0.01732 0.00395 2.5892 | 0.9120 0.2024 | 0.7815
50.0 || 0.22896 5.70734 || -0.00257 0.02059 6.5478 | 0.9025 0.3844 | 0.8170
25.0 || 0.99667 2025.55489|| 0.02869 3.47448 1594.6012| 0.8555 65.7858 | 0.7970
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Table 6: Moment Estimators. Bias (B), Mean Squared Error (MSE) anerdge Lengths (avl) and
Coverages (cov) of the 95% confidence intervals, over 2000tdAGarlo simulations, sample size

n= 5000

x=0.25 Ny=312

[ k¥ Bs, MSE, [| By | MSE | avh, [ cow, [[ avigy [ cowy |
150.4 0.36520 1.47278 || -0.04187 | 0.00339 2.5969 | 0.8900 0.0869 | 0.3350
137.9 0.35077 1.86333|| -0.03615| 0.00337 2.8243 | 0.8905 0.0939 | 0.3765
125.3 0.33799 1.26492 || -0.03080 | 0.00226 2.7378 | 0.8990 0.0893 | 0.4435
112.9 0.30315 1.02334 || -0.02670| 0.00173 2.7495 | 0.9005 0.0874 | 0.4840
100.4 0.27374 0.93872 || -0.02284 | 0.00139 2.8414 | 0.8930 0.0873 | 0.5495
87.9 0.28569 1.22921 || -0.01810| 0.00137 3.1695 | 0.8965 0.0936 | 0.5860
75.4 0.30500 9.96907 || -0.01330| 0.00806 7.3693 | 0.8865 0.2075 | 0.6340
62.9 0.26381| 29.37920| -0.01097 | 0.02156 17.2434 | 0.8880 0.4629 | 0.6740
50.5 0.51850| 18.67121| -0.00130| 0.01090 14.4349 | 0.8780 0.3524 | 0.7020
38.0 0.53418| 21.11753| 0.00124| 0.00956 18.2022 | 0.8645 0.3897 | 0.7225
19.2 0.62323| 267.28452| 0.00481| 0.06789 246.3768| 0.8430 3.8848 | 0.7525
12.9 || -0.30491| 1266.44113| -0.00977 | 0.30730|| 1431.7282| 0.8150 || 22.2514| 0.7315
x=050 Ny=1250

[ k(0 ] By, MSE, || By | MSEy | avlp, | cow, || aviw [ covp ||
600.5 0.16644 0.16966 || -0.09657 | 0.01004 0.9860 | 0.8375 0.0645| 0.0575
550.5 0.16412 0.16874 | -0.08407 | 0.00776 1.0281 | 0.8590 0.0667 | 0.0890
500.4 0.16750 0.17596 || -0.07212| 0.00588 1.0818 | 0.8735 0.0691 | 0.1360
450.5 0.17133 0.18419| -0.06106| 0.00440 1.1442 | 0.8970 0.0715 | 0.2155
400.5 0.16370 0.19777 -0.05158| 0.00334 1.2099 | 0.9085 0.0733 | 0.2945
350.5 0.15716 0.20738 || -0.04270| 0.00250 1.2897 | 0.9225 0.0751 | 0.3815
300.5 0.16437 0.23740|| -0.03370| 0.00182 1.4051 | 0.9335 0.0778 | 0.4775
250.4 0.15151 0.25663 || -0.02649 | 0.00137 1.5307 | 0.9430 0.0794 | 0.5650
200.5 0.13915 0.28167 || -0.01987 | 0.00101 1.7031 | 0.9415 0.0811 | 0.6475
150.5 0.12971 0.36589 | -0.01373| 0.00082 1.9765 | 0.9305 0.0836 | 0.7180
50.5 0.29865 6.19391 || 0.00098 | 0.00356 6.8895 | 0.8895 0.1734 | 0.8000
13.0 || -0.58590| 9410.59672| -0.01445| 1.57034 || 10243.4270| 0.8150 || 131.6029| 0.7550
x=075 Ny=2813

L k¥ Bp, MSE, [ Bpx | MSEy | avh, [ cop, [ avigy [ cowy |
1125.7 0.14910 0.08588 ][ -0.10940| 0.01264 0.7039 | 0.8355 0.0674 | 0.0235
1013.2 0.14041 0.08293 || -0.09393 | 0.00945 0.7374 | 0.8605 0.0690 | 0.0430
900.7 0.12149 0.07648 || -0.08060| 0.00707 0.7716 | 0.8890 0.0700 | 0.0720
788.2 0.11754 0.08188 || -0.06686 | 0.00504 0.8233 | 0.9025 0.0718 | 0.1525
675.7 0.10905 0.08467 || -0.05454 | 0.00352 0.8845 | 0.9250 0.0732 | 0.2565
563.0 0.10191 0.09542 || -0.04300| 0.00239 0.9658 | 0.9255 0.0749 | 0.3910
450.6 0.09008 0.11126 || -0.03272| 0.00163 1.0734 | 0.9310 0.0763 | 0.5145
338.1 0.08654 0.13468 || -0.02274 | 0.00104 1.2404 | 0.9405 0.0783 | 0.6520
2255 0.08933 0.19885 || -0.01341| 0.00071 1.5356 | 0.9420 0.0812 | 0.7665
113.0 0.10900 0.40414 || -0.00468 | 0.00059 2.2621 | 0.9255 0.0875 | 0.8445
84.9 0.15855 0.61982 | -0.00131| 0.00065 2.7736 | 0.9170 0.0941 | 0.8515
56.7 0.08492 | 16.31728| -0.00208| 0.01225 11.4038 | 0.8900 0.3139 | 0.8305
x=100 Ny=5000

[ k(¥ ] By, MSE, [| By | MSH || avip | cow, || avig | cow ||
2000.0 0.13502 0.05141 [ -0.14729| 0.02230 0.5207 | 0.7685 0.0664 | 0.0000
1800.0 0.13019 0.05132| -0.12609 | 0.01649 0.5471 | 0.8140 0.0682 | 0.0025
1600.0 0.12099 0.04935|| -0.10701| 0.01202 0.5765 | 0.8455 0.0697 | 0.0145
1400.0 0.11212 0.05190 || -0.08930 | 0.00855 0.6129 | 0.8595 0.0712 | 0.0455
1200.0 0.10555 0.05445 || -0.07261| 0.00584 0.6593 | 0.8965 0.0727 | 0.1055
1000.0 0.09393 0.05677 || -0.05771| 0.00388 0.7168 | 0.9180 0.0740 | 0.2325
800.0 0.07446 0.05965 || -0.04469 | 0.00251 0.7911| 0.9245 0.0748 | 0.3680
600.0 0.07713 0.07992 || -0.03069 | 0.00148 0.9179 | 0.9310 0.0771| 0.5615
400.0 0.06905 0.10581 || -0.01877 | 0.00087 1.1221 | 0.9415 0.0790 | 0.7255
200.0 0.07559 0.20770|| -0.00744| 0.00059 1.6176 | 0.9365 0.0830 | 0.8375
100.0 0.09821 0.49803 || -0.00225 | 0.00067 2.4204 | 0.9095 0.0896 | 0.8465
50.0 0.15884 1.20953 || 0.00051| 0.00083 3.9082 | 0.8920 0.1034 | 0.8420
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3.2 A data driven method for selectingkn(X)

In a real data set situation, the question of selecting thienapvalue ofk,(x) is still an open issue and
is not addressed here. We only suggest an empirical ruléuireg out to give reasonable estimates of
the frontier in the simulated samples above.

First we have observed in our Monte-Carlo exercise that gienal value for selecting,(x)
when estimating the tail indep is not necessarily the same than the value for estimatinfyahéer
functiond(x).

The idea is thus to select first, for eackin a chosen grid of values), a grid of values ka(x)
for estimatingpy. For the Pickands estimat@k, we choosek,(x) = [Nx/4] — k+ 1, wherek is an
integer varying between 1 arjtlk/4] and for the moment estimat@x we choosek,(x) = Ny — Kk,
wherek is an integer varying between 1 aNg.

Then we evaluate the estimai@y(k) (resp. px(k)) and we select thk where the variation of
the results is the smaller. We achieve this by computingtdmedsard deviations giy(k) (resp.px(K))
over a “window” of 2x [/Nx/4] (resp. 2x [v/Nx]) successive values &f The value ok where this
standard deviation is minimal defines the valudggk).

We follow the same idea for selecting a value kg{x) for estimating the frontier functiog(x)
itself. Here, in all the cases, we choose a grid of valueskfx) given byk = 1,...,[v/Ny] and
select thek where the variation of the results is the smaller. To achtbigehere, we compute the
standard deviations df;(x) (resp. §;(x) andd(x)) over a “window” of size 2« max(3,[/Nx/20])
(this corresponds to have a window large enough to covemnar@0% of the possible values kin
the selected range of values (x)).

For one sample generated witk- 1000 in the uniform case of our Monte-Carlo exercise above,
we obtain the results shown in Figures 1 and 2. In Figure 1stimator;(x) is first computed with
the true valugy = 2 (top panel of the figure) and then with a plug-in valuepgfestimated by the
Pickands estimator (middle panel) and for the moment estinfigs (bottom panel). The pointwise
confidence intervals are also displayed. The three rightlgatorrespond to the same data set plus
one outlier. This allows to illustrate how our robust estiona behave in the presence of outlying
points, in contrast with the FDH estimator. In particulanedo the remarkable behavior §f(x)
in the Monte-Carlo experiment, if we know thgg = 2, we should use the top panel results and
according our suggestion at the end of the preceding sedfigg is unknown, we should use the
bottom panel results, where we replageby its moment estimatgiy (hereNy < 1000) and continue
as if px was known. It is quite admirable that both panels are veryiaim
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Figure 1:Resulting estimato; (x) for a uniform data set of size-a 1000(plus one outlier for the
right panels), from top to bottom, we have the cases 2, pluggingpx, pluggingpx.

We know that with small values &« (whenx = 0.25, Ny is of the order 60) we cannot hope to
have remarkable results when using the Pickands and the mestenator ofp(x). This is confirmed
in Figure 2 where we illustrate the behavior of a plug-in i@rof the Pickands estimatdf; (x) (top
panel) and of the moment estimafiix) (bottom panel). It is a plug-in version because we used here
too a two-step estimator: first step, estimatioppthen plugging the obtained valuesmf(resp.px)
for computing the estimatois; (x) (resp. $(x)) and their variances. Again we know by our Monte-
Carlo experiment that for small valuesx{and so ofNy) the confidence intervals provided by the
moment estimators are too narrow and we see that those etitaynthe Pickands estimator are quite
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unstable. However, as expected, we observe a reasonablpetavior of the estimators themselves.
We did the same exercise with a sample of $ize 5000, showing even better results but we do not
reproduced them for saving space.
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Figure 2: The uniform data set of size=a 1000 (plus one outlier for the right panels), from top to
bottom, the plug-in versions of the Pickanjgigx) and of the moment estimat(x).

3.3 An application

We use the same real data example as in Cazals et al [2] andaDawai Simar [4] on the frontier
analysis of 9521 French post offices observed in 1994, Xits the quantity of labor and as the
volume of delivered mail. In this illustration, we only cader then = 4000 observed post offices
with the smallest levels;. We used the empirical rules explained above for seleceéaganable
values fork,(x). We illustrate the same estimators described in the pregesgiction.

The cloud of points and the resulting estimates are providdeigures 3 and 4. The FDH
estimator is clearly determined by only a few very extremaso If we delete 4 extreme points
from the sample (represented by circles in the figures), waioithe pictures of the left panels: the
FDH estimator changes drastically, whereas the extrerhesdased estimators are very robust to
the presence of these 4 extreme points.

We also note the great stability of the various forms of thivestor$; (x), whenpy is supposed
to be equal to 2 or when it is estimated by the Pickands or theeno estimator.
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Figure 3: Resulting estimato;(x) for the French post offices. We include 4 extreme data points
(circles) for the right panels. From top to bottom, we havethsepy = 2, pluggingpx, pluggingpx.
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Figure 4: The French post offices, where we include 4 extreme datagp@irtles) for the right
panels. From top to bottom, the plug-in versions of the Rids#; (x) and of the moment estimator

().

4 Concluding Remarks

In our approach, we provide the necessary and sufficientitondor the FDH estimato;(x) to
converge in distribution, we specify its asymptotic distition with the appropriate convergence rate
and provide a limit theorem of moments in a general framewadhlle also give more insights and
generalize the main result of Aragon et al [1] on robust vasaf the FDH estimator and provide
strongly consistent and asymptotically normal estimapgrand py of the unknown conditional tail
index py involved in the limit law of(1(x). Moreover when the joint density ¢X,Y) decreases to
zero or rises up to infinity at a speed of poigr> —1 of the distance from the boundary, as it is often
assumed in the literature, we answer the question of pyis linked to the dimensiop + 1 of the
data and to the shape paramdigrThe quantityx # O describes the rate at which the density tends
to infinity (in casefyx < 0) or to O (in casgy > 0) at the boundary. Whey = 0, the joint density is
strictly positive on the frontier. We establish tiggt= Bx+ (p+1). As an immediate consequence,
we extend the previous results of Park et al [27] and Hwand @24 to the general setting where
p > 1 andp} = Bx may depend oRr.

There is a vast literature on nonparametric estimation efibundary of the joint suppoft
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of (X,Y). From a practical point of view, compared with the extrerakig based estimators (see
e.g. [12], [15], [16]), projection estimators (seeg. [23]) or piecewise polynomial estimators (see
e.g. [26], [21]), our frontier estimator$1(X), da,(X), §5(X), §3(x) and h(x) have the advantage
to not be limited to a bi-dimensional support since they dbrequire a partition ofl. Moreover
our estimators benefit from their explicit and easy formalat which is not the case of estimators
defined by optimization problems such as local polynomifregors (see.qg.[19], [20], [24]). From

a theoretical point of view, the limit laws of our frontiertesators are derived under quite natural and
general extreme-value conditions, without Lipschitz gbads on the boundary and without recourse
to assumptions neither on the marginal distributioXafor on the conditional distribution &f given

X = x as it is often the case in both statistical and econometitiesature on frontier estimation.
Moreover, the new estimatods;(x), §3(x) and ¢(x) are asymptotically normally distributed and
provide useful asymptotic confidence bands for the mondroméier functiond (x). The study of the
asymptotic properties of the different estimators congiden the present paper, is easily carried out
by relating them to a simple dimensionless random sampléemapplying standard extreme-values
theory ([7], [8],...).

A closely related work in boundary estimation via extrenadses theory includes [18] in which
the estimation of the frontier function at a pokis based on an increasing number of upper order
statistics generated by tifeobservations falling into a strip arourgdand [14] in which estimators are
rather based on a fixed number of upper order statistics. Hiedifference with the present approach
is that Hall et al [18] only focus on estimation of the suppmtve of a bivariate density.¢. p=1) in
the caséy > 1 (i.e. the decrease in density is no more than algebraically fakgre it is known that
estimators based on an increasing number of upper ordestisggive optimal convergence rates.
In contrast, Gijbels and Peng [14] consider the maximum lo¥;abbservations falling into a strip
aroundx and an endpoint type of estimator based on three large aatesties of they;’s in the strip.
This methodology is closely related and comparable withestimation method using the Pickands
type estimator but, like the procedure of Hall et al [18]siinly provided in the simple cage= 1
and involves in addition to the sequerigean extra smoothing parameter (bandwidth of the strip)
which also needs to be selected. Moreover the asymptotitisas [14] are provided for densities of
(X,Y) decreasing as a power of the distance from the boundarygahéne setup in our approach is a
general one. Note also that our transformed dimensionkssse{(Z5, ..., Zy) is constructed in such
a way to take into account the monotonicity of the frontiee(€éndpoint of the common distribution of
the ZX's coincides with the frontier functiof(x)), the univariate random variabl&$ do not depend
on the sample size and allow to employ easily the availalslelt®from the standard extreme-values
theory, which is not the case for both [14] and [18].

It should be clear that the monotonicity constraint on tlomfiier is the main difference with
most of the existing approaches in the statistical litematundeed, the joint support of a random
vector (X,Y) is often described in the literature as the Sety)|y < @(x)} where the graph of is
interpreted as its upper boundary. As a matter of fact, thetfan of interesth in our approach is
the smallest monotone nondecreasing function which igfatgan or equal to the frontier functign
To our knowledge, only the estimators FDH and DEA estimatajiiiantityg. Of coursep coincides
with ¢ when the boundary curve is monotone, but the constructi@stihators of the endpoigx)
of the conditional distribution of givenX = x requires a smoothing procedure which is not the case
when the distribution oY is conditioned byX < x.

We illustrate how the large sample theory applies in pradbig doing some Monte-Carlo ex-
periment. Good estimates of the frontigfx) and the conditional tail indegy may require a large
sample of the order of several thousand. Selecting theatlgtthe optimal extreme conditional quan-

25



tiles dia(kn(x)) for estimating the frontier and/or the tail index is a difficguestion that deserves for
future work. Here, we suggest a simple automatic data dmwethod that provides a reasonable
choice of the sequendg(x)} for large samples. As shown in Remark 2.8 the estim@{ox) of

¢ (x) based on the true value pf is theoretically more efficient than the estimajq(x) based on the
Pickands estimate q.

The empirical study reveals that the simultaneous estimati the tail index and of the frontier
function requires large sample sizes to provide sensilslelise The moment estimators pf and
of ¢(x) provide more accurate estimations than the Pickands dsSmehen considering bias and
MSE. When the sample size becomes very large (say of the ofdeweral thousands), the Pickands
estimators improve a lot and even seem to outperform the mbaséimators. As far as the inference
on py is concerned, the moment estimator provides also quitgaleliconfidence intervals. However,
when inference about the frontier function itself is comest, the moment estimator provides very
poor results. The problem seems to come from an underegim@dithe sampling standard deviation
of the estimator. This might advocate for the use of altéradtootstrap methods.

On the other hand, the performance of the estim@x), computed whepy is known, is quite
remarkable even compared with the benchmarked FDH. Thedemde intervals fof(x) are very
easy to compute and have quite good coverages. In additiemesults are quite stable with respect
to the choice of the “smoothing” parametgi(x). As shown in our illustrations, the estimates have
also the merit of being robust to extreme values. This suggegen ifpy is unknown, to use a plug-in
version of;(x) for making inference o (x): here, in a first step we estimgbe (by the moment
estimator unleshly is huge), then we use the asymptotic resultsjx), as if px was known.

Appendix: Proofs

Proof of Theorem 2.1(i) Let ZX =Y I(X < x) andF(-) = {1 — Fx(X)[1— F(-|x)]}2(- > 0). It can
be easily seen th&(Z* <y) = F(y) for anyy € R. Therefore{Z* = Y1(X <x),i =1,...,n} is an
iild sequence of random variables with common distributiomcfion . Moreover, it is easy to see
that the right endpoint oy coincides with¢(x) and that max.1 . nZ* coincides withd1(x). Thus

according to the Fisher-Tippett Theorem, if there exgts- 0 such thab; 1($1(x) — ¢ (X)) 4 Gfor
a non-degenerate distribution functi@) thenG(y) = e~ (-¥° with support] — ,0] andp > 0 (see
e.g.Embrechts et al [10], Theorem 3.2.3, p. 121).

(if) On the other hand (seeg.[10], Theorem 3.3.12, p. 135), there exist norming constant

such thab($1(x) — (X)) LV (Fx belongs to the domain of attraction Gf= W) if and only if

(00 2) e A

whereF, = 1— Fy. This necessary and sufficient condition is equivalent t®)(2n this casebh, can
be taken equal to(x) —inf{y > O|F(y) > 1— 2} which coincides withp(x) — inf{y > O|F (y|x) >

(iii)-(iv) Under the given regularity conditions, we knowdt (A.1) holds and it is easy to see
thatE[|Z¥4] = Fx (X)E(YK|X < x) < . Then it is immediate (see.g. Resnick [29], Proposition 2.1,
p.77) that limy_e E{b; 1($1(X) — d(x)) ¥ = (1)K (1+k/pyx). Likewise, the last result follows from
[29] (see Corollary 2.3, p.83). [

Proof of Corollary 2.1 Notation: a random variabM follows the distribution WeibullL, px) if WPx
is Exponential with parameter 1. Following the proof of Thesa 2.1, we can sé = ¢ (x) — F, 1(1—
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1) whereF1(t) = inf{y €]0,¢(x)] : Fx(y) >t} for all t €]0,1]. It follows from the regularity condi-
tion (2.3) thatr, 1(t) = ¢(x) — ((1 —t)/£X)1/px ast 7 1. Whenceb, = (1/nfx) /P« for all n sufficiently
large. O

Proof of Corollary 2.2 Under the given conditions, it can be easily seen from (&) t

f(xy) = (0(x) —y)P PV | fepy(px— 1) - (px— P) de)() a?(p<1><><>+0(1) as y1¢(x),

where the terno(1) depends on the partial derivativesof> /y, X — pyx andx+— ¢(x). O
For the next proofs we need the following lemma.

(n
(i) If Fx(x) > 0, then for each ke {0,1,...,nFx(x) — 1},

Lemma .1. Let %) <. <X ) be the order statistics generated by the random variables.ZZ).

(i) For any fixed integer k> 0,

<]517¢(x):zz‘n7k) as n— oo, with probability1.
P ()

(iii) For any sequence of integerg & 0 such that k/n — 0as n— oo,

b, (X)=2Z y, as n—oo, with probabilityl.

The lemma is quite easy to prove but for the sake of complstewe include a proof.

Proof of Lemma .1 (i) First note that sinceFx(x) is an integer an(ﬁx( X) > 0, thennFx (x) >
Note also that for eack € {0,1,...,nFx(x) — 1}, we have 0< 1— FX(X) < 1. Then the emplrlcal

conditional quantilé,  « (x) is well defined and we have by its definition
an(X)
) (X) inf{y>0|lf(y|x)>1 k } inf{y>0|lf(xy)+1 P (x) > 1 k}
k = _—— = s — = _
1- nFy (X) - B nFx (X) - : n

n
- inf{yz 0|%_ZI<Z¥ <y)> 1—%} = Z{o k-
i=

(ii) Since Fx(x) > 0 andFx(x) =2 Fx(x) asn — «, we have the evenfiF(x) > 0 and 0<
= ( 7 < 1 asn — =} almost surely. This event is equivalent{té (x) > 0 andk € {0, 1, ..., nFx (x) —

1} asn — oo} which is contained inthe evefp, « (x) = Zz( _ash— o} in view of Lemma .1
nFx (x)

(). Thus the later event has a probability 1.
(iii) Here also, sincé (x) > 0 andk,/n — 0, the even{Fx(x) — Fx(x), n — o} implies the
event{Fx(x) > 0 and 0< FFIZnT@ <1,n—w}={Fx(x)>0andk, € {0,1,...,nFx(x) — 1}, n — o}

ok (X)= Zz‘nikn), n— oo} in view of Lemma .1 (i). There-
nF ()

fore the last event has a probability 1 sift&ex) — Fx(x) with probability 1. [
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Proof of Theorem 2.2(i) Let 2%, be thei™ order statistic generated by the random variaBlgs., 2.

(i)
Sinced (x) = F, (1) (the endpoint of the distributiof of theZX’s) and$; (x) = 2, foralln > 1, we

(n)
have(@1(X) — (X)) = (Z%, — F X(1)). Hence, ifby 1($1() — $(x)) — Gy, thenby 1(Z%, —FX(1)
converges as well to the same non-degenerate distrib@ionTherefore, following the standard
extreme-value theory (se=g. [32], Theorem 21.18, p. 313;1;1(22(”7@ —F1(2) 9 Hy for any

fixed integerk > 0, whereHy(y) = Gx(y) TK o(—logG(y))!/i!. Finally sinceZp, =6, . (X),

asn — o, in view of Lemma .1 (ii), we obtaib, 1 (¢, _« (x) —F (1)) 9 Hy.
P ()

(i) Writing by 1($a(X) — (X)) = b 2 ($a(X) — B1(X)) + by 1 (B1(X) — d(X)), it suffices to find an
appropriate sequence= a, — 1 so thato; ($q, (X) — $1(X)) 4o, Aragon et al [1] (see the proof
of Theorem 4.3, Equation (20)) showed that for any O:

|Ba(X) — d1(X)| < (1—a)nFx(x)M  with probability 1
whereM < o is the upper bound of the supportYof Thus it suffices to choose= a, — 1 such that

nb;i(1—-a,) —0. O

Proof of Theorem 2.3(i) Let us consider again the random sample of univariatelbteszy, . .., Z3
introduced in the proof of Theorem 2.1, andygt= —1/px in (A.1). Then the Pickands [28] estimate
of the exponent of variatiog < 0 is given by:

zX -z

¥ := (log2) ! log Z)fn_kﬂ) _Z(Q_ZkH) .
(n—2k+1) (n—4k+1)

Under (2.2), the condition (A.1) holds and so there exigts O such that

im P b, 1(Z) — $(9) < y| = W1, ().

Nn—oo

Since this limit is unique only up to affine transformatiows, have

lim P [CEJ'(ZE(n) — dn) < y] = LPfl/yX(—yXy— 1) = exp{_(l_i_yxy)*l/yx} ’

n—oo

for ally < 0, wherec, = —yxbp andd, = ¢(x) — b,. Thus condition (1.1) in Dekkers and de Haan [7]
holds. Thereforgy LN Yx If kn — o and% — 0 in view of Theorem 2.1 in [7]. This gives the weak
consistency opy sincefy = —1/pyx, asn — oo, in view of Lemma .1 (iii).
(i) Likewise, if %2 — 0 andpgfaz: — oo, thenfi == y via Theorem 2.2 in [7] and s >3 py.
(iii) We haveU (t) = inf{y > 0| ﬁx(y) >t} which corresponds to the inverse functidy' (1 —
Fx))~1(t). Sincet!™%U’(t) € M(A) with yy = —1/px < 0, it follows from [7] (see Theorem 2.3)

that v/kn(5k — ¥x) ~ A(0,02(w)) with 02(yx) = V(221 4- 1)/ {2(2% — 1) log 2} for ky — o sat-

isfying k, = o(n/g~1(n)), whereg(t) :=t3-2% {U’(t) /A(t) }°. By using the fact tha{/Kn(px — px) =

Vkn(—3 + ), asn — w, in view of Lemma .1 (iii) and applying the delta method we dowle that

VRa(Bx— px) —& AL(0,0%(py)), with asymptotic variance?(py) = 02(vy) /Y.

(iv) Under the regularity condition, we have 1w Fi(d(X) — 1) —8Fx(X) t € RV_¢. The
desired conclusion follows then immediately from TheoreBh& Dekkers and de Haan [7] in con-
junction with Lemma .1 (iii). O
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Proof of Theorem 2.4(i)-(ii) We have by Lemma .1 (iii), for each= 1,2,

k—1 i
MY = (1/k) Z} (Iogz?nfi) - Iogz?rkl())J as n— oo, with probability 1 (A.2)

Then—1/py coincides almost surely, for afllarge enough, with the well-known moment estimator
Y« (given by Equation (1.7) in [8]) for the inde, defined in (A.1) byyx = —1/px. Hence Theorem
2.4 (i) and (i) follow from the weak and strong consisten€ypproved in Theorem 2.1 of Dekkers
et al [8].

(iii) We know by Corollary 3.2 in [8] that/kn{Jx — Y} has asymptotically a normal distribution
with mean 0 and variance

(120 (1~ y)? {4_ gl =2%) | (5~ 11VX><1—2Vx>}

(1-3yx)  (1—3yx)(1—4y)

provided thak, — o andk, = o(n/g~1(n)), whereg(t) = t~2x [{log$(x) — logU (t)} /B(t)]?. The
desired conclusion follows by usingx = —1/yx, Px = —1/¥x asn — w, and applying the delta
method. [

Proof of Theorem 2.5(i) Under the regularity condition, the distribution furat F, of Z* has a
positive derivativer,(y) = Fx(X)F’(y|x) for all y > 0 such thaf(¢(x) — ) € RV, 1. Therefore,
YX

n kn+1) F_l(l—pn)

according to [7] (see Theorem 3.1y, 2ky ZX ——x

is asymptotically normal with

(n—kn+1) (n—2Kkn+1)
mean zero and variancé21y2 /(2% — 1)%. We conclude by using, (1 — pn) = (I)l_FD_?)(X) and
X (X
X -1 a1 (X) =Rt (21—
o Zh ey~ B ML= Pn) o - ®1_tot (=R (1= pn) N
Zin k1) ~ Zln-2nt1) ¢, oL (X)— &, 20 1 (%)

(“) We haveqj ( ) (“ kn+1) (n 2kn+1) —|—Z

1 (n—ky+1) @SN — . Then following Theorem 3.2 in

7], V2o 7" 009 g6 asymptotically normal with mean 0 and variangg28%—1 /(2% —

(n—kn+1) Z<Xn 2kn+1)

1)®. This completes the proof. [

Proof of Theorem 2.6(i) Let E;) < --- < E(; be the order statistics of iid exponential variables
Ei,...,En. Then{Z k1) Heeq 4 {U (eE<n—k+1>)}E:1. Writing V (t) := U (€"), we obtain

\/%{ T, Zo i) — (%) }i\/ﬂ{ 1 V(En-kn+1) —¢(X) }
2-%—1  Z¥ —ZX -

(N—kn+1) ~ £(n—2kn+1) 2% =1 V(En k1) —V(En-2x11)

(00) =V (log ) L1
’(Iog%) Yx

/2K { n—knt1) V(E(n_zkn+1))_1_2_yx} 2% V'(En-211))

25V (En-2k,+1)) Yx 1-2% V'(logx-)
\/ E(n—2ky+1)) i XV(E(n—kn+l)>_V(|Og%) V'(log )
'092kn V/(log ) V(En-ky+1) —V(En-2k+1)
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The first term at the right hand side tends to zero as esta&blisi Dekkers and de Haan ([7], proof
of Theorem 3.2, p. 1809). The second term converges in loligion to A’(0,1) x % in view of
Lemma 3.1 and Corollary 3.1 of [7]. The third term convergegiiobability to% by the same
Corollary 3.1. This ends the proof of (i) in conjunction witte fact that

N

X

LX) — d(x) @m{ T, (n—kor1) ~ %) } s e

¢1—n—kﬁf;(—(—i) (x) — ‘151_“3% (X) 2% —1 Zz(n—kn+l) - Zz(n—an—i-l)

(i) As indicated in the proof of Theorem 2.3 (i), the extrenadue condition (1.1) in Dekkers

and de Haan [7] holds under (2.2). Therefore Theorem 3.4]aff{@lies that_ 9109 —d:((X)
(n—k+1) Z(n—2k+1)

converges in distribution to the random variafile- 2%) 1 + {e%" — 11~1 whereHy has the distri-

bution ofzfik+l Ej/j with E1,Ep,... being iid standard exponential. The densityHxfis given in

Remark 3.1 of [7]. This completes the proof of (ii) in conjtioa with the fact that

P10 —¢( as _ $1(x) -0 (x)

= as nN— o

¢1TF% (%) — 451,% X Zkin) ~ Zn-2xrn)

in view of Lemma .1 (ii). O

Proof of Theorem 2.7Write F(y) := Fx(X)[1 — F(y[x)] andFy(y) := 1 — F(y) for all y > 0. Let
Re(y) := —log{Fx(y)} for all y € [0,¢(x)[, and letEn_k,4+1) be the(n—kn+ 1) order statistic
generated by independent standard exponential random variables. 'Zh]grl}n 1) has the same
distribution asR [En_i,+1)], where

R L(t) :=inf{y>O|R«(y) >t} =inf{y > 0|F(y) > 1—e '} :=F }(1—e™).

Hence

_ Kn\ d . n
Zz(nfkrﬁl) —FK ! (l_ F) =R 1[E(n*kn+1)] — Ry ! {log (E)}

~ [t —toa (¢ )| R o9 (& )|+ 5 [En s —toa ()] CRY 5

provided tha€n_, 1) Alog(n/kn) < &n < En_k,+1) V10g(n/kn). By the regularity condition (2.3),
we haveR 1(t) = ¢(x) — (e‘t/éx)l/yx for all t large enough. Whence, for allsufficiently large,

pxkfl1/2 X - kn d 1/2 n
pr G G R R G (3]

k%/z n\12 1 n
e [Borern —1oa (i) e = [an-rea ()}

Sinceka’*[Eqn. k1) — 10g(n/kn)] > A(0, 1) and|8n — log(n/kn)| < [Eqn k1) —log(n/kn)| > 0, as
n — oo, We obtain

pxkrlw/2 { X &

- d
e meg 7 | Ztar) ~F 1= n>] L A(0,1) as n—w.
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SinceF, 1(t) = ¢(x) — ((1—t)/6) P for all t < 1 large enough, we haw(x) — F, 1(1— %) =
(kn/nx)Y/P* for all n sufficiently large. Thus

d

1/2
Pxkn [ x —N(0,1) as n— . (A.3)

(ko /) /P ZX orn) T (kn/nt) Mo — ¢(X)]

We conclude by USi”@Z(n_an) = ¢, w1 (X)asn—ow. O
nFx (X)

Proof of Corollary 2.3 We haven —kn+1 > n—n(1—dn)Fx(X) > n—kn, and sabq, (x) = inf{y >
OisN A(Z'<y)>1-(1-an)Fx(X)} =Z* k1 2)- We also havén — o andkn/n— 0 asn — o,
and so (A.3) holds. This ends the proofD

Proof of Theorem 2.8(i) As shown in the proof of Theorem 2.5 (i), we had (x) — %) €ERVyi 1)y,
Then by applying Theorem 5.1 in Dekkers et al [8] in conjumetivith (A.2), we get

z* —F(1—pn)
Vig L 5 AL(0,Va(~1/)-
D 7x
N “(n—kn)

This ends the proof by using simpfy 1(1— py) = b1 (x) andZf,_, | = 451_;% (X) ash — oo,
(i) Sincezf, % L0, i () andj = —1/px asn— w (as shown in the proof of Theorem
nFx NPy (X)
2.4 (i)), we have

d(x) = Zz(n_kn)Mr(l )(1 /%) + 2 y: N . (A.4)
It is then easy to see from (A.2) thétx) coincides almost surely, for afi large enough, with the
endpoint estimatox:"of F2(1) introduced by Dekkeres et al [8] in Equation (4.8). It is assy to

check thatJ (t) = (1/(1—Fy))~L(t) satisfies the conditions of Theorem 3.1 in [8] wjth= —1/px <
0. Then according to Theorem 5.2 in [8], we have

Vo — 5B 4 0 v(—1/p0)
()ZE( )(1 ¥x)

which gives to the desired convergence in distribution oédiem 2.8 (ii) sincer, (1) = ¢(X),
)A(Easqs( X), Vx— 1/pxandzz(n as(ﬁl Kk (X)asn— oo, [
NPy (x)

Proof of Theorem 2.9(i) Puttingyyxn := —1/pxn @s any consistent estimateygf= —1/px < 0, we
have by Lemma .1 (ii),

(1)
(k/npn)¥n —1 Zz‘n_k)Mn
Yx,n 1/(1—Yxn)

[

Eppn( ) +Zz(n7k)’ n — oo,

We also havaqi” 2 (1/k) 5! 1IogZ( , —109Z};, ), asn— w, by Lemma .1 (i). Then itis easy

to check thatppn( X) commdes almost surely, for afl large enough, with the estimatgy , of the
unconditional quantil&_*(1— p,) introduced by Dekkeres et al [8] in Equation (4.3). Therefor

)zp,n Fo (1 pn) as. E\ppn( ) q)l— x ( )

= n— oo,

MAYZE MY, ()

nFX
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Hence, the desired convergence in distribution follows edrately from Theorem 4.1 in [8].
(i) By Lemma .1 (ii), §(x) coincides here also almost surely, for mllarge enough, with the
endpoint estimatox;; introduced by Dekkeres et al [8] in Equation (4.8) and we have

Moreover, we have by Theorem 4.3 in [8],
-1
or -1 k—1 k-1E.
L"g)&(l—i)Jr }Z)exp yXZ—_‘ -1 , n—ooo.
Zz(n*k)Mn yX k|: J=i J

This completes the proof by replacing the indgxvith —1/py. O
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