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1 History of QSAR models

Quantitative Structure-Activity Relationships (QSARs) are mathematical models approximating the of-
ten complex link between chemical properties and biological activities of compounds. They are used in
many different fields such as agrochemistry, pharmaceutical chemistry or toxicology. This paper reviews
the existing literature about QSAR modelling, more particularly concerning the statistical tools used to
evaluate their quality. Those are quite basic statistical tools, not necessarily appropiate and not necessarily
well applied in practice but, the aim of this paper is to present the state of the art about statistics in QSAR.

The development of a QSAR is based on the assumption expressed more than a century ago by Crum-
Brown and Fraser (1868), that the physiological action of a substance is a function of its chemical composi-
tion. This leads to the idea that similar structures have similar biological properties and a small change in
chemical structure is accompanied by a proportionally small shift in biological activity.

During the following hundred years, researchers tried to formalise some of those relationships. Richard-
son (1868) showed that the toxicities of ethers and alcohols were inversely related to their water solubility.
Richet (1893) demonstrated a relationship between the narcotic1 effect of alcohols and their molecular weight
and Overton (1897) and Meyer (1899) independently showed that the narcotic action of many compounds
was dependent on their oil/water partition coefficients2. Then, great strides were being made in the delin-
eation of substituent effects on organic reactions, mainly by the work of Hammett (1937) and Taft (1952).
Those contributions constitute together the mechanistic basis for the development of the QSAR paradigm
in the 60’s by Corwin Hansch, the first chemist that really succeeds in quantifying relationships between
compound physicochemical properties and biological activities. His series of papers about the relationships
of plant growth regulators and their dependency on Hammett constants3 and hydrophobicity laid the foun-
dation of QSARs (Hansch et al., 1962, 1963, 1964; Fujita et al., 1964).

Since then, with the increasing knowledge in chemistry and the exploding power of computers, researchers
are developing and using more and more QSAR models. QSARs development has now became an important
branch of chemometrics, the science of the application of mathematical or statistical methods to chemical
data.

0Institute of Statistics from the Université catholique de Louvain – 20, voie du roman pays, 1348 Louvain-la-Neuve, Belgium
– lebailly@stat.ucl.ac.be – Supported by the IAP research network grant no P6/03 of the Belgian Government (Belgian Science
Policy).

1Narcotic refers to a variety of substances that induced sleep.
2The oil/water partition coefficient is a measure of the hydrophobicity (repelled by water) and hydrophilicity (able to

bond with water) of a substance.
3Hammett constants are measures of electron-withdrawing or electron-donating effects.
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There are two common objectives of QSARs (Eriksson et al., 2003). A first goal can be to understand the
link between structure and activity and extract clues of which chemical properties are likely determinants for
the biological activities of a compound. To achieve this objective, the models should be transparent and as
simple as possible. A second aim can be to allow prediction of biological activity for untested and sometimes
yet unavailable compounds. In this case, a QSAR model should have a good predictive power, whatever its
complexity.

The modelling technique to apply in QSAR development depends on the kind of available data. A
distinction is done by Livingstone (1995) between a SAR (Structure-Activity Relationship) and a QSAR
(Quantitative Structure-Activity Relationship) model:

- A SAR is an association between a chemical substructure and a biological activity, a kind of structural
alert. As an example, the presence of a carboxylic group or an amino group in a molecule is known to
impart skin corrosion potential.

- A QSAR is a mathematical relationship between a quantitative measure of chemical structure, or a
quantitative measure of a physicochemical property, and a biological activity. Two types of QSARs
can be distinguished: classification models for which the response variable is on a categorical scale,
and regression models, for which the response is continuous.

All statistical methods to model the link between a quantitative or a qualitative response and a set of
quantitative and/or qualitative explanatory variables can then be applied to QSAR data. The most popular
techniques for quantitative endpoints are simple or multiple linear regression, principal components regres-
sion, partial least squares regression, as well as regression trees and neural networks. If the activity property
is qualitative, discriminent analysis, decision trees or distance-based similarity analysis are often applied to
model its relationship with the physicochemical explanatory variables (Jaworska et al., 2003).

The types of statistical models used in QSAR as well as the techniques to assess their qualities depend on
the nature of the response. In this paper, only quantitative activity endpoints are considered. The different
kinds of activity responses and chemical explanatory variables are detailed in Section 2 and 3 respectively.
The different modelling techniques as well as the selection of an explanatory variables subset are reviewed
in Section 4.

The main area of QSAR application is the pharmaceutical industry (Tong et al., 2004). QSAR is now an
inexorably embedded tool in drug discovery, from lead discovery to lead optimisation (the background of the
thesis) (Hopfinger and Tokarski, 1997; Kubinyi et al., 1998). Indeed, a successful new drug requires many
properties, such as a low toxicity, and an appropriate absorption, distribution, metabolism and excretion
(ADME ) profile. The chemical entity should also be easily and, if possible, cheaply synthesised. If a drug
candidate fails one of those drug-like properties, it can never come to the market. As, once developed,
QSAR models are easily and rapidely applied to predict the activity endpoint for any new compound (not
yet synthesised) if its chemical structure is known, there is increasing use of QSARs early in the drug dis-
covery process as a tool to virtually screen large chemical databases. On the basis of the QSAR predictions,
chemists can eliminate from further development those chemicals lacking drug-like properties and construct
a priority list with the most promising compounds for further testing.

Authorities, industries and other institutions also use QSAR models for assessing the risks of chemicals
released to the environment and allowing their regulation. For example, in 1996, the Environmental Pro-
tection Agency4 used QSAR modelling for developing and implementing a screening and testing program
for chemicals that may disrupt the endocrine system. More than 87 000 chemicals were initially selected for
evaluation. It was of course impossible to synthesise and test all those compounds. QSAR models were used

4The Environmental Protection Agency is an agency charged by the United States federal government with protecting
human health and with safeguarding the natural environment.
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to virtually screen this huge database and rank the compounds for priority testing (Tong et al., 2003).

The great advantage of QSAR models is that predicting activity instead of measuring it allows to save
time and money in chemical management and to speed up managerial decision. In addition, QSAR models
can be used to reduce, refine, or replace the use of animals for an experimental purpose. To avoid animal
testing is an important request of international associations (Cronin et al., 2003a,b) and QSAR models as
well as in vitro5 tests constitute alternative methods.

As with any estimated statistical model, predictions provided by QSAR models are always uncertain.
The current challenge is no longer in fitting a model that is statistically able to predict the activity within
the chemical training set, but in developing a model with the capability to accurately predict the activity of
untested compounds. The expected quality of a QSAR model depends on the application domain and the
achieved goals. But there are growing international concerns to standardise criteria to measure the quality
of a QSAR model with scientific basis.

The European Economic Community (1996) presented, in a technical guidance document, a general
framework in which QSARs can be used within the risk assessment process. In this document, it is pointed
out that QSAR models are only approximating methods and that it is important to perform further analysis
to validate the QSAR models. In order to ensure transparency of any QSAR model, the European Commis-
sion suggested to provide minimal information as presented in Table 1.

A number of principles for assessing the validity of QSARs were proposed at an international workshop
on the ”Regulatory Acceptance of QSARs for Human Health and Environmental endpoints”, organised by
the International Council of Chemical Associations (ICCA)6 and the European Chemical Industry Council
(CEFIC)7, held in Setubal, Portugal, on 4-6 March, 2002 (Worth, 2002). But the workshop did not produce
any guidance on how to interpret and apply these principles. .

The Organisation for Economic Co-operation and Development8 (OECD) started a program in 2003 in
order to enhance the use of QSARs in the regulatory assessment of chemicals (report from the expert group
on (Q)SAR, OECD, 2004). The expert group worked on the basis of the Setubal principles and added a
check list to provide guidance on the interpretation of those principles and to encourage consistency in their
application to individual QSARs.

According to the OECD principles for (Q)SAR validation, “a (Q)SAR should be associated with the
following information:

(1.) a defined endpoint,

(2.) an unambiguous algorithm,

(3.) a defined domain of applicability,

(4.) appropriate measures of goodness-of-fit, robustness and predictivity and

(5.) a mechanistic interpretation, if possible.”

The intent of Principle 1 (defined endpoint) is to ensure clarity in the endpoint being predicted by a given
model, since a given endpoint could be determined by different experimental protocols and under different

5An in vitro (Latin: ”within glass”) test is an experimental technique where the experiment is performed in a test tube, or
generally outside a living organism or cell.

6The International Council of Chemical Associations is the world-wide voice of the chemical industry, representing
chemical manufacturers and producers all over the world. ICCA has a central role in the exchange of information within the
international industry, and in the development of position statements on matters of policy

7The European Chemical Industry Council is aimed to maintain and develop a prosperous chemical industry in Europe.
CEFIC promotes the best possible economic, social and environmental conditions to bring benefits to society with a commitment
to the continuous improvement of all its activities including the safety, health and environmental performance

8The Organisation for Economic Co-operation and Development is an intergovernemental organisation in which
representatives of 30 industrialised countries in North America, Europe and the Pacific, as well as the European Commission.
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General information Reference:
Process modelled:
Domain of model:

Y-variable (dependent variable) Species
Type:
Other information:

Test method
Experimental procedure:

End-point modelled
Type:
Reliability:
Data source:
Units:

X-variable (independent variable) Descriptors
\ of initial descriptors:
List of initial descriptors:
descriptors:
\ of final descriptors:
List of final descriptors:
descriptors:
Data source:
Other remarks:

Model Samples:
\ initial compounds:
\ final compounds:

Presentation of data:
Design of training set:
Outliers:
Technique:
Model Statistics

r-squared:
q-squared (x-val):
External validation:
ratio \ compounds / \ descriptors(initial):
ratio \ compounds / \ descriptors(final):
Validation:
Range of validity:

Accuracy

Remarks

Table 1: Minimal information for an approach based on QSAR models. European Economic Community (1996)
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experimental conditions. It is therefore important to identify the experimental system that is being modelled
by the (Q)SAR.

The intent of Principle 2 (unambiguous algorithm) is to ensure transparency in the model algorithm that
generates predictions of an endpoint from information on chemical structure and/or physicochemical proper-
ties. The issue of reproducibility of the predictions is covered by this principle. The different kinds of QSAR
models as well as the choice of entering descriptors and other complexity parameters are reviewed in Section 4.

The need to define an applicability domain (Principle 3) expresses the fact that (Q)SARs are reductionist
models which are inevitably associated with limitations in terms of the types of chemical structures, physic-
ochemical properties and mechanisms of action for which the models can generate reliable predictions. The
applicability domain is the set of molecules for which the QSAR model is valide. If a new molecule is outside
the applicability domain, the prediction provided by the QSAR model may be unreliable as this molecule is
not similar to the ones used to train the model. The different definitions of QSAR applicability domain are
reviewed in Section 8.

The wording of the Principle 4 (appropriate measures of goodness-of-fit, robustness and predictivity)
is intended to point out the distinction between the internal performance of a model (goodness-of-fit and
robustness) and the predictive power of a model (external validation). Such statistical tools are reviewed in
Sections 6 and 7.

It is recognised that it is not always possible, from a scientific viewpoint, to provide a mechanistic inter-
pretation of a given (Q)SAR (Principle 5), or that there can even exist multiple mechanistic interpretations
of a given model. The absence of a mechanistic interpretation for a model does not mean that a model is not
potentially useful in the regulatory context. The intent of Principle 5 is to ensure that some consideration is
given to the possibility of a mechanistic association between the physicochemical properties used in a model
and the endpoint being predicted, and to ensure that this association is documented.

The OECD provides also a check list to help the application of those principles. This check list is pre-
sented in Table 2. When developing a QSAR model, it is recommended to fill in this list and join it to the
document describing the model to ensure transparency as done by Gramatica in the report from the expert
group on (Q)SAR, OECD (2004).

This international effort to transparently validate QSAR models is a consequence of the increasing inter-
est in developing and using those modelling techniques. As the Figure 1 shows, the number of QSAR models
publications has exponentially increased in the past twenty years.

QSARs have been subject to a number of excellent reviews: Cronin (2000); Dearden et al. (1997);
Hulzebos et al. (1999); Walker et al. (2002). For a review of QSAR modelling in virtual screening and data
mining, see Oprea et al. (2005). For applications of QSARs in modelling mutagenicity and carcinogenicity,
see Benigni (2003) and in modelling toxicity and fate, see Cronin and Livingstone (2004).

2 The responses modelled in QSAR

In most QSARs definitions, the kind of modelled responses are said to be any biological activity of the
compounds. In this paper, some frequent biological endpoints are reviewed.

QSARs have been developed for a large number of toxic endpoints in both pharmaceutical and envi-
ronment fields. There is a great interest in modelling the deleterious effect of a substance on organisms,
individual organs, cells or plants. One of these most important acute toxic endpoints is the LC50, i.e. the
concentration of a compound that causes 50% lethality of the animal in a test batch. Several countries have
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CONSIDERATIONS YES/NO

1) Defined endpoint
• Does the model have a clearly defined scientific purpose? (i.e. does it make predic-
tions of a clearly defined physicochemical, biological or environmental effect?)
• Does the model have the potential to address (or partially address) a clearly defined
regulatory need? (i.e. does it make predictions of a specific endpoint associated with
a specific test method or test guideline)?
• Is information given about important experimental conditions that affect the measu-
rement and therefore the prediction (e.g. sex, species, temperature, exposure period)
• Are the units of measurement of the endpoint given?

2) Defined algorithm
• In the case of a SAR, is there an explicit description of the substructure, including
an explicit identification of its substituents?
• In the case of a QSAR, is the equation explicitly defined, including definitions of
all descriptors used3?

3) Domain of applicability
• In the case of a SAR, is the substructure associated with any inclusion and/or
exclusion rules on its applicability to groups of chemicals?
• In the case of a SAR, is the substructure associated with rules regarding the
modulatory effects of the substructure’s molecular environment?
• In the case of a (Q)SAR, are the descriptor and response variables with inclusion
and/or exclusion rules that define the variable associated ranges for which the
QSAR is applicable (i.e. makes reliable estimates)?

4) Internal performance
• Are full details of the training set given, including details of chemical names,
structural formulae, CAS numbers (if available), and data for all descriptor and
response variables?
• If the data used to the develop the model were based upon the processing of raw
data (e.g. the averaging of replicate values):a) is there an adequate description of the
data processing?b) are the raw data provided?
• Is there a specification of the statistical method(s) used to develop the QSAR
(including details of any software packages used)?
• Is the QSAR associated with basic statistics for its goodness-of-fit to the training
set?(e.g. r2 values and standard error of the estimate in the case of regression models)
• Is the QSAR associated with any statistics based on cross-validation or resampling?
• If yes, is the number or samples used indicated?

5) Mechanistic basis
• In the case of a SAR, is there a description of the molecular events that underlie
the reactivity of the molecule?(e.g. a description of how substructural features could
act as nucleophiles or electrophiles, or form part or all of a receptor-binding region)
• In the case of a QSAR, do the descriptors have a physicochemical interpretation
that is consistent with a known mechanism (of biological action)?
• Are any literature references cited in support of the purported mechanistic basis
of the (Q)SAR?

Table 2: Check list in applying the OECD principles. report from the expert group on (Q)SAR, OECD (2004)
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Figure 1: Number of references per year of publications which were retrieved using QSAR keyword with Pubmed
(see http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed).

taken steps to ban the oral evaluation of LC50 on animals as it is judged cruel and sometimes unnecessary.
As the OECD abolished the requirement of this oral test (Test guideline 401, 2003), alternative methods
such as QSARs are required. For more details about toxic endpoints and measurements, see Cronin (2002)
or Schultz et al. (2003)

To become a drug candidate, a compound should verify multiple other properties than being non-toxic.
To be effective, a compound should optimise the crucial ADME properties. ADME stands for Absorption,
Distribution, Metabolisation, and Excretion. Before a compound can become biologically active, it has to
be taken into the bloodstream (absorption), to spread in the body, sometimes breaking barriers such as
the blood-brain barrier, to finally arrive in the target organs or cells (distribution). Once the compound
has worked its effect, it has to be broken down by biochemical reaction in the body (metabolisation) and
the metabolised compound has then to be eliminated (excretion) in order to be not accumulated in the tissues.

In the past, a lot of drug investigations were failing in the last stages of the drug discovery and develop-
ment process because of poor ADME properties. QSARs offer the opportunity to explore those properties
even in the beginning of the process. That’s why QSARs are increasingling used in pharmaceutical indus-
tries. For more details about QSARs predictions of ADME properties, see Selick et al. (2002).

The modelled endpoints can be of different nature: continuous, categorical ordinal or categorical nominal.
The toxicity of a compound, for instance, can be continuously measured by its concentration that causes
50% lethality (LC50) as explained upper. The toxicity can also be an ordinal property like a compound is
non-toxic, acceptably slightly toxic or too much toxic to become a new medicine. Finally, a response can
be nominal as the fact that a compound can either break the blood-brain barrier or not. According to the
nature of the response, the statistical tools applied to model it as well as the QSAR validation process are
different. This paper only concentrates on continuous responses.

Whatever the type of response is, it should be clearly defined as recommended by the first OECD
principle. The conditions in which the endpoint is measured should be detailed as well as the protocol(s)
applied. This is an important requirement to ensure appropriate QSAR predictions by other users than the
model builders.
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Figure 2: Number of dimensions taken into account in descriptors computation.

3 The explanatory variables entered in QSAR models

There are two approaches in modelling the activity-structure relationships: fragment-based QSAR and
descriptor-based QSAR. The first approach consists in dividing each molecule of the database in all possi-
ble fragments (atoms or group of atoms) and modelling the activity of molecules only with the fragments
counts. The second approach makes use of the whole structure of the compounds by modelling the activity
as a function of chemical descriptors. Those descriptors could be simply the number of such atom, as well
as properties characterising the links between atoms or the three-dimensional shape of the molecule. This
paper focuses on chemical descriptors and the choice of descriptors that enter QSAR models.

Six years ago, Todeschini and Consonni (2000) have already listed more than 3000 molecular descriptors
in their Handbook of molecular descriptors. Nowadays, around 8000 chemical properties can be used to
describe a molecule. Descriptors are often classified according to the molecule dimensions taken into account
as represented in Figure 2:

- 1D: one-dimensional linear representation of the molecule
This class of descriptors contains simple indexes that can be deduced from the molecular formula, for
instance, the number of such atoms or groups, the molecular weight9 or the molar refractivity10.

- 2D: two-dimensional planar representation of the molecule
Two-dimensional descriptors regroup mainly topological and connectivity indexes. One of the most
well-known 2D-descriptor is the octanol-water partition coefficient, KOW , that is a measure of hydrophobicity11

and hydrophilicity12 of a substance.

- 3D: three-dimensional spatial representation of the molecule
Three-dimensional descriptors summarise the geometry, the surface and the volume, as well as other
electrostatic properties of the molecule such as the HOMO13 or the LUMO14. The difference of the
energies of the HOMO and LUMO can sometimes serve as a measure of the excitability of the molecule.

For more examples of descriptors, see (Livingstone, 2000; Todeschini and Consonni, 2000)

Some descriptors have to be measured in laboratories by performing experiences on the molecule, such
as the acidity constant Ka. They are often referred to as empirical descriptors. These descriptors can be
heavy to use in practice, especially if the goal of QSAR modelling is to speed up the drug discovery process.
Hopefully, more and more descriptors can be computed exactly by applying new softwares such as ADAPT
(Jurs, 2002; Stuper and Jurs, 1976), OASIS (Mekenyan and Bonchev, 1986), CODESSA (Katritzky et al.,

9The molecular weight can be calculated as the sum of the atomic weights of all the atoms constituing the molecule.
10Molar refractivity is a measure of the volume occupied by an atom or group
11Hydrophobicity is the property of a molecule that is repelled by water.
12Hydrophilicity is the property of a molecule that can bond with water.
13HOMO stands for Highest Occupied Molecular Orbital. It is the highest-energy orbital of a molecule with one or two

electrons.
14LUMO stands for Lowest Unoccupied Molecular Orbital. It is the lowest-energy orbital with no electrons.
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1994), and DRAGON (Consonni et al., 2005) .

Those software can theoretically compute a set of descriptors for any molecule coded using a universal
text representation called SMILES. The name SMILES stands for ”Simplified Molecular Input Line Entry
Specification”. This universal text coding of a molecule was first introduced by Weininger (1988). It allows
to specify the structure of chemical substances in a ASCII format that can be understood by most chemical
softwares that compute descriptors. On Figure 3 are shown the SMILES coding for the acetic acid and the
benzene molecules.

Figure 3: Two examples of SMILES coding: acetic acid and benzene molecules.

The nature of the descriptors may be either continuous (e.g. molecular weight), discrete (e.g. number
of such atom), ordinal or nominal (e.g. solvent type). Continuous descriptors can be also transformed by
centering or scaling, to ensure the same weight for each descriptor in the QSAR models. To avoid asymetric
explanatory variables, it is not rare to work with the logarithm of descriptors. Other transformations are
possible such as any power of the descriptors.

The number of available molecular descriptors is great. Allowing transformations and cross-products for
interactions make the number of possible models exploding. And it is often frequent that the number of
explanatory variables exceeds the number of observations, leading the failure of multiple linear regression
models. With any kind of modelling techniques, using too many explanatory variables may cause overfitting
and results in poor predictive power for new compounds. Not all available explanatory variables can enter
the model and a choice between them has to be performed.

In practice, for some defined endpoint, important descriptors that influence this endpoint are known. For
instance, it is well-known that the octanol-water partition coefficient, KOW , influences greatly the LC50,
i.e. the concentration of a substance that causes 50% lethality (report from the expert group on (Q)SAR,
OECD, 2004). For those situations, one can hope to obtain good QSAR only with one or several of those
few known descriptors. But, most of the time, the structure-activity relationship is much more complex,
ambiguous and it is often necessary to use a greater number of chemical descriptors to be able to explain
it. It is then necessary to apply descriptors selection methods to the huge set of available descriptors. But
trying all the subsets of explanatory variables is impossible.

A first rapid screening can be made by discarding constant values and paired correlated variables that
could lead to collinearity and unstability problems with multiple linear regression models. Then, there exists
a number of various techniques to select a descriptors subset that will enter the regression models, such as
stepwise regression, backward elimination, forward selection, simulated annealing, evolutionary and genetic
algorithm. Subset variables selection constitutes the subject of a great part of QSAR papers (Kubinyi, 1994,
1996; Waller and Bradley, 1999; Whitley et al., 2000). A recent comparison has given a demonstration of
the advantages and success of genetic algorithm (Xu and Zhang, 2001).

Whatever is the subset variable selection method, the second OECD principle states that the descriptors
choice should be transparent, saying which variables were first considered and finally which variables are
kept in the model and why. Eriksson et al. (2003) noted that the choice of descriptors used is far more
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important than the specific modelling method employed. Nevertheless other methods than multiple linear
regression are used in QSAR modelling, less sensitive to the correlation between the descriptors. The main
used modelling methods are reviewed in the next section.

4 Different classes of QSAR models

The most common modelling techniques in QSAR to link the descriptors to the activity response are
based on regression analysis. Among those techniques, Multiple Linear Regression (abbreviated MLR) is
the most classical one. But, as explained upper, MLR is not adapted to the existing correlations between
descriptors. Other alternatives exist. Multivariate projection methods to a subspace of orthogonal latent
variables have became more and more popular in QSAR. Partial Least Squares Regression (PLSR) and
Principal Components Regression (PCR) are two such projection techniques increasingly used. Another
alternative, close to MLR, is the Ridge Regression (RR) who imposes a penalty to the size of the coefficient
in the linear regression model. MLR, PLSR, PCR and RR are reviewed in details below. Other modelling
techniques such as Regression Trees (RT ), k-Nearest Neighbours (kNN ) and Neural Networks (NN ) are also
briefly introduced.

The following notations are used :
• Y is the (random) activity response;
• x is a K-vector of (deterministic) descriptor variables (or any transformation of them, including power,
cross-product, dummy variables encoding a categorical descriptor, constant term...);
• xc and z are respectively the mean-centered and the standardised x;
• y = (y1, y2, . . . , yN)T is the N -vector of observed responses;
• yc is the mean-centered y;
• xi is the ith observed K-vector of transformed descriptor variables (i = 1, 2, . . . , N);
• xc

i and zi are respectively the mean-centered and the standardised xi (i = 1, 2, . . . , N);
• X is a (N ×K) matrix where each row is an observed vector of transformed descriptor variables;
• Xc and Z are respectively the mean-centered and standardised matrix X.

4.1 Multiple Linear Regression (MLR)

MLR assumes that the link between the activity response and the standardised descriptors is given by
the equation

Y = z′β + ε (1)

where β is a K-vector of coefficients and ε is the random error term with zero mean, constant variance σ2
ε

and independent from one observation to another.

This model is traditionally fitted to the data by least squares method, estimating the regression coeffi-
cients β by β̂ = argminβ (y − Zβ)

′
(y − Zβ). If the inverse of the matrix Z′Z exists, the solution of this

minimisation problem is unique and depends explicitly on both observed responses and observed descriptors:
β̂ = (Z′Z)−1Z′y. Using this least squares estimate, the predicted responses ŷ = Zβ̂ = Z(Z′Z)−1Z′y are
the orthogonal projections of the observed responses y on the space spanned by the columns of standardised
transformed descriptors Z.

MLR is very popular in QSAR modelling because of its simplicity and its well-known theoretical back-
ground (Cronin and Schultz, 2003; Schultz and Cronin, 2003). Through the estimated equation

Ŷ = z′β̂ , (2)

the effect of each descriptor used on the response is understood as well as its amplitude. The hypothesis
testing on the parameters allows to check if those effects are significant. The confidence interval and the
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prediction interval for the expected response and for the individual response respectively can be used to
quantify the uncertainty of their estimations.

Concurrently to those advantages, MLR has its own limitations. A main drawback of MLR in the field
of QSAR modelling is that it can not be used when the number of explanatory variables exceeds the number
of observations. In addition, MLR assumes the predictor variables to be not linearly dependent, i.e. the
rank of the matrix Z is K. If the data exhibit collinearity among the variables z, the estimated regression
coefficients get unstable. As a consequence, MLR can be used but a carefull selection within the set of
available descriptors has to be performed as proposed in the previous section.

Examples of the application of MLR coupled with a variables selection by a genetic algorithm can be
found in the report from the expert group on (Q)SAR, OECD (2004).

4.2 Principal Components Regression (PCR)

Principal Components Regression is an alternative to MLR when the explanatory variables are corre-
lated (Draper and Smith, 1981; Myers, 1986). A Principal Components Analysis (PCA) is first applied to
construct orthogonal latent variables, called the Principal Components (PCs), that can then enter a MLR
model without any more collinearity problem.

The PCs are computed as linear combinations of the mean-centered descriptors, tK = WKxc, where the
weight matrix W of dimension (K ×K) is composed of the K eigenvectors of the covariance matrix of the
observed mean-centered descriptors Xc. One may use all the PCs (ordinary least squares results) as they are
orthogonal or one may select only a few ones. A selection can be done by discarding the less important PCs
and keeping only the M < K first PCs such that the retained explained variance is large enough. The more
the explanatory variables are correlated, the less PCs are necessary to recover most of the Xc information.

The M uncorrelated selected PCs, tM , are used to model the response:

Y = tM
′β + ε = xc′WM

′β + ε (3)

where β is a M -vector of parameters that can be estimated using least squares. The corresponding predicted
responses

ŷ = TM(TM
′TM)−1TM

′y = XcWM
′(WMXc′XcWM

′)−1WMXc′y (4)

are the orthogonal projections of the observed responses y on the space spanned by the M PCs. The effect
of the original descriptors on the activity is not as direct as with MLR models. One has to inspect the
scores and the loadings to interpret the PCs as a function of the original descriptors and analyse the most
impacting descriptors.

While fitting a MLR model to explain the response by the M first PCs or all the PCs, one can then
discard the PCs that have non-significant effect on the activity response or if there eliminations do not
decrease the predictive power. Indeed, the PCs are only summarising the observed explanatory variables
ignoring their potential link with the response. There is no guarantee that the M first PCs are the M best
ones in predicting the response. Partial Least Squares Regression attempts to take also the response into
account in the construction of the new regressors.

4.3 Partial Least Squares Regression (PLSR)

Partial Least Squares were first developed in 1966 in the field of econometrics by a Swedish statistician,
Herman Wold (Wold, H., 1966). PLS Regression was finalised in 1982 by Herman Wold and his son, Svante
Wold (Wold S. et al., 1982). Svante Wold introduced this modelling technique in chemometrics (Wold and
Dunn, 1983). Till that date, PLSR is increasingly used in QSAR modelling as it manages a great number of
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explanatory variables (even possibly greater than the number of available data) and the existing correlations
between descriptors (Eriksson et al., 2001). PLSR also does not assume that the explanatory variables are ex-
act and 100% relevant for modelling the response. For all those reasons, PLSR is now far as popular as MLR.

The principle of PLSR is very similar to PCR as the link between the activity response and the descriptors
is modeled through newly constructed latent variables. The specificity of PLSR is that those latent variables
are recursively chosen to perform a simultaneous decomposition of the observed mean-centered descriptors
Xc and the mean-centered observed responses yc with the constraint that they explain as much as possible
of the covariance between Xc and yc. More precisely, M latent variables are defined as linear combinations
of the original descriptors, tM = VMxc, to model simultaneously Xc and yc:

{
Xc=TMPM + E
yc =TMqM + f .

(5)

TM is the (N ×M) matrix of scores and PM and qM are respectively the (M ×K) matrix and M -vector
of loadings.

An adequate recursive algorithm (Wold S. et al., 1982; Martens, 1985; de Jong, 1993) is used to define
the scores TM = XcVM

′ = Xc(WM
′PM)−1WM

′ based on the singular value decomposition of Xc′yc. As
thoses scores are linear combinations of the original descriptors, the model for the response in (5) can be
rewritten similarly to a MLR model:

yc = XcbM + f (6)

with the M -vector bM = VM
′qM = (WM

′PM)−1WM
′qM.

Using the definition of the loadings qM = (TM
′TM)−1TM

′yc provided by the PLS algorithm, the N
responses are predicted by

ŷc = TM(TM
′TM)−1TM

′yc = XcVM
′(VMXc′XcVM

′)−1VMXc′yc, (7)

which is similar to MLR or PCR predictions. Those predictions can also be interpreted as the orthogonal
projections of the observed responses yc on the space spanned by the columns of the observed latent variables
TM = XcVM

′.

The problem of variable selection remains as in MLR modelling but PLSR solves the collinearity problem
of the descriptors. A lot of different methods exist to choose the adequate number latent variables M . A
quite often used technique in the field of QSAR modelling is the one of Baroni et al. (1993) called GOLPE
(Generating optimal linear PLS estimations). It mixes a preliminary descriptors selection by means of D-
optimal design in the loadings space and an iterative evaluation of the effects of the individual variables on
the model predictivity.

The effect of original descriptors on the activity response is not as direct as with MLR models. But the
scores and loadings can be used to interpret the latent variables as a function of the original descriptors and
analyse the most impacting descriptors. For examples of PLSR applications to QSAR modelling, see for
instance the work of Eriksson et al. (1997) or Eriksson et al. (2003)

4.4 Ridge Regression (RR)

Instead of selecting a variables subset and dropping descriptors from a MLR model, one can use a
modification of the classical least squares MLR method, called Ridge Regression (RR). The assumed model
of RR is exactly the same as the MLR model, Y = z′β+ ε. The difference stands in the least squares criteria
that is penalised by a multiple of the sum of squared regression coefficients. For a fixed constant λ, the K
least squares RR coefficients estimates are given by

β̂
RR

= argminβ
{

(y − Zβ)
′
(y − Zβ) + λβ′β

}
= (Z′Z + λI)−1Z′y . (8)
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The activity response of a new molecule with transformed descriptors x is predicted by

ŷ = z′β̂
RR

= z′(Z′Z + λI)−1Z′y . (9)

This RR sum of squares is equivalent to the minimisation of the ordinary sum of squares under the
constraint that the sum of the squared coefficients does not exceed a given size. This constraint protects the
gradiants of the response surface in the direction of the smallest PCs in correlated Z-space against poten-
tially high variance. These directions are exactly the causes of trouble in MLR. That is how the additionnal
penalty term has the effect to shrink the vector of coefficients and limits the two cited risks.

It is well-known that RR produces biased estimates of β. RR modifies β̂
MLR

by introducing a bias,
which decreases the variance of the estimates by more than the squared bias, so that the RR estimates of

β have lower mean squared error (MSE) than β̂
MLR

. More precisely, the ridge existence theorem (Vinod,

1981) shows that, for 0 < λ < 2σ2

βTβ
, MSE(β̂

RR
) < MSE(β̂

MLR
) where σ2 is the residual variance. That’s

why RR performs pretty well in practice for prediction. Hastie et al. (2001) summarise: “For minimising
prediction error, RR is generally preferable to MLR with variables subset selection, PCR and PLS. However
the improvement over the latter two methods is only slight.”.

For a comparison of RR, PLS and PCR in QSAR applications, see Hawkins et al. (2001).

4.5 Regression Tree (RT)

The principle of Regression Trees is really different from the previous regression methods (MLR, PLSR,
PCR or RR) as the nature of the relationship between the activity response and the descriptors is not pre-
specified. RTs are nonparametric models.

The most simple technique for fitting a RT to QSAR data consists in recursively partitioning the data
into successively smaller groups (called nodes) with binary splits based on a single descriptor (example:
xj ≤ c and xj > c for the jth transformed descriptor and a constant c). At each step, splits for all of
the descriptors are examined by an exhaustive search procedure and the best split is chosen. The idea of
Breiman et al. (1984) is to define the best split at stage M as the one that minimises the total residual sum

of squares over all the current M nodes,
∑M

m=1

∑Nm
i=1 (yi − ŷi)2.

In the mth node, the predicted activity ŷi of the ith molecule can be simply defined as the average value of
the Nm observed activities of the compounds in that node. Indeed, this is the constant value that minimises
the sum of squares. The activity response of a new molecule can be predicted by

ŷ =

M∑

m=1

ȳmIm(x) (10)

where x is the K-vector of transformed descriptors, Im(x) is the indicator of the node (1 if the observation
x belongs to the node m; 0 otherwise) and ȳm is the average observed value at node m. One can also
imagine to build local predictive model in each node of the tree, such as a MLR model, to obtain at the end
a smoother regression surface.

The tree can recursively be splitted till all terminal nodes (called leaves) contain only one molecule.
Techniques such as cross-validation can then be used to prune the overfitted tree to an optimal size (see
Therneau and Atkinson (1997)).

The output is a tree diagram with the branches determined by the splitting rules and a series of terminal
nodes that contain the mean response or a local model. An example of a regression tree with average response
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Figure 4: Schematic example of regression tree using the 5 explanatory variables x1, x2, x3, x4 and x5 to recursively
split the data set in 8 final leaves where the response is predicted by the mean response of observations belonging to
that leave.

in the leaves is shown in Figure 4.

RT is a very flexible modelling technique. Indeed, there are various methods for growing the tree, allow-
ing not only binary splitting, various criteria to optimise while splitting and also various tools for pruning
(Hastie et al., 2001). For all those variation of the presented basic RT, there is no a priori assumption about
the kind of activity-structure relationship. RT is appreciated in QSAR applications as it can handle large
data sets, it allows interactions and nonlinear relation between descriptors and response, and also because
it produces sequences of prediction rules that are readily interpretable. Both continuous and categorical
descriptors can be handeled when splitting.

For applications of RT to QSAR modelling, see Dzeroski (2001), Izrailev and Agrafiotis (2001) or Blockeel
et al. (2004).

4.6 k-Nearest Neighbours (kNN)

The k-nearest neighbours method consists in predicting the activity of a molecule as the average (or
weighted average) of the observed activity values of the k nearest molecules. kNN is greatly appreciated
by QSAR practitionners as it is really intuitive. Indeed, its principle reflects the ancestral idea that similar
compounds reveal similar activity property. Like RT, kNN does not make any a priori assumption about
the nature of the activity-structure relationship. The descriptors are not directly used to model the activity
but to define the neighbourhood. More precisely, for any molecule with observed descriptors x, the predicted
value is

ŷ =
1

k

∑

xi∈Nk(x)

yi , (11)

i.e. the average response of the k closest observations xi in the neighbourhood Nk(x) of x.

Even if the kNN principle seems simple, its application in practice requires some crucial choices about
the following parameters (Hastie et al., 2001):

- Choice of k, the number of points belonging to the neighbourhood.
The traditional rule of thumb suggests to adapt k to the number of observations: k =

√
N . One can
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also use cross-validation to choose k to obtain the best bias-variance tradeoff.

- Choice of the distance between two observations.
Some possible choices are the Euclidean distance, the Mahalanobis distance or the L1-norm for quan-
titative descriptors and an indicator (Tutz, 1990) for qualitative descriptors (0 if the two observations
share the same category, 1 otherwise). Those distances are precisely defined in Section 8.

- Choice of the weighting method.
Computing the average of the observed activity in the neighbourhood provides the same weight to the
k observations, the closest as the furthest observations of the neighbourhood. One can also weight the
response values by a function of their distances or by using kernels.

Due to the curse of dimensionality, the kNN method performs very poorly in a high-dimensional descrip-
tors space like it is often the case in QSAR modelling. Before applying the kNN method, it is necessary to
perform a subset variables selection to eliminate irrelevant descriptors. Zheng and Tropsha (2000) proposed
a variables selection based on simulated annealing to apply kNN to QSAR data. For another application of
kNN to QSAR modelling, see Hoffman et al. (1999) or Baurin et al. (2002).

4.7 Neural Networks (NN)

The most common (Artificial) Neural Network model equation is of the form

f(x) = G
(∑

j

(wjgj(x))
)

(12)

where x is the K-vector of transformed descriptors. Like the neurons in the brain, the descriptors x (continu-
ous or binary), the functions gj and the function G are multiple layers that are interconnected to produce the
prediction of the activity response by f(x). When the number and the shape of functions gj (often logistic
functions) and the function G (often tanh) have been fixed, the weights wi are estimated to minimise the
squared prediction error. The gradient-based backpropagation method can achieve this task (Werbos, 1974) .

NN models are nonlinear models that can be represented as a network structure as depicted in Figure 5.
There exist different architectures of NN according to the number of hidden layers, the number of nodes for
each layer and the connections existing between all the different layers. The two main forms of NN are the
feedforward NN and NN using radial basis functions.

Neural Networks are described with more details in Bishop (1995). For examples of QSAR Neural
Network applications, see (Andrea and Kalayeh, 1991), (Devillers, 1996), (Duprat et al., 1998), (Kovesdi et
al., 1999), (Manallack and Livingstone, 1999) or (Huuskonen et al., 2000)

4.8 Choice of complexity parameters

All the presented models depend on some complexity or tuning parameters: the number of explanatory
variables (descriptors) in MLR, the number of latent variables kept in PLSR or the number of PCs in PCR,
the penalty parameter λ in RR, the level of pruning in RT, the number k of neighbours in kNN or the
number of layers or nodes in NN. The idea is to try different values for those parameters and select the value
that yields to the best model performance.

If the criteria measuring the model performance is only based on the fit to the training set (such as the
squared error loss summarising the difference between the observed responses and the fitted values), then
there is a clear risk of overfitting. Jaworska et al. (2005a,b) suggest to use other analytical criteria (Mallow
Cp statistic, Akaike Information Criterion, Bayesian or Schwartz Information Criterion) or sample re-use
techniques (Y-scrambling, cross-validation or bootstrap).
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Figure 5: Schematic example of feedforward Neural Network (from the website http :
//smig.usgs.gov/SMIG/features0902/tualatinann.fig3.gif).

With the recent computer advances, it’s no more expensive to fit the data with a selected modelling
technique using different complexity parameters. It is even also recommended to try different modelling
technique and to choose the most performing one (Eriksson et al., 2003).

5 Data collection and model fit

The biological data to which modelers have access are very limited in terms of chemical and biological
space. Chemists often have to collect their own data for QSAR modelling. There is a lack of international
dash to gather biological database, with adequate explanation of the way they have been obtained. This is
one of the goal of the OECD principles.

The selection of the training set is crucial whatever is the field of application. The intuitive idea is
to collect data similar to the data for which predictions will be made with the fitted QSAR model. The
objective is to select molecules that well span the chemical domain of interest.

In theory, design of experiments should be used to generate the training set to ensure maximum variance
in the descriptors space and produce a representative training set. But the powerful tools of experimental
design can not directly be applied to construct a training set. Indeed, when a molecule is even not yet
synthesised, the corresponding descriptors can be computed thanks to its SMILES coding, but the opposite
is not possible as no chemist is able to construct a molecule with such given values of descriptors.

In many QSAR papers, nothing is said about the choice of the molecules in the training set. Most of
the time the only remark is that the QSAR is fitted on molecules having the same mechanism of action
(for instance, all esters, all antioxidant, all disinfectant,...). This ensures the adequacy of a unique QSAR
to model the activity response of those molecules because a “universal” QSAR able to model chemicals
with significantly different structures and modes of action may not seem plausible. A set of such predefined
molecules is often called a library in chemical jargon.

A chemical library may be composed either of compounds having the same mechanism of action or com-
pounds obtained by systematic reactions of a small number of starting compounds with a larger number of
reagents (combinatorial library). The chemist may choose as a starting data set such a library. Often, as
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the compounds are not yet synthesised, the collection of compounds is referred to as a virtual library.

In practice, if this virtual library contains too much compounds to synthesise, the statistician may help
the chemist to select a sub-library of reasonable size with diverse molecules. The statistical techniques to
select a subset of compounds from a greater starting set is called multivariate design (Wold S. et al., 1986)
or statistical molecular design (Eriksson et al., 1996; Linusson, 2000). Eriksson et al. (2000) proposed to
apply fractional factorial designs and De Aguiar et al. (1995) proposed to apply D-optimal designs to obtain
a representative data set from a virtual library. Those techniques of experimental design (Box et al., 1978)
are based on the descriptors computed for the compounds in the virtual library or on summaries of those
descriptors such as the latent variables obtained with PLS or the principal components obtained with PCA.

In the first OECD principle, it is recommended to use the same assay protocol to obtain high quality
data and to explain this protocol with the QSAR equation. Some preliminary analysis can be performed
on the collected data to ensure their quality before applying the modelling techniques. One can first check
if the standard deviation of experimental error is constant over the domain of interest. This is possible if
replicates have been tested but this is not always the case.

When the quality of the collected data is insured, a QSAR model can be fitted. The data used to fit the
QSAR model is called the training set. One can use the PLS or PCA techniques to project the training set
in a space of smaller dimensions to analyse their distribution, looking for outliers or clusters. Compounds
are often gathered in clusters and it has to be decided if a QSAR model for each cluster may be better than
a global model on all data. The necessary homogeneity of the data and the absence of outlier can also be
graphically analysed for any kind of models by plotting the observed responses (yi, i = 1, · · · , N) against
the predicted ones (ŷi, i = 1, · · · , N) or the residuals (ei = yi−ŷi, i = 1, · · · , N) against the data numbers (i).

Different other tools can be used to detect outliers in the training set according to the QSAR model
class. The standard instrument for MLR models is the leverage (Atkinson, 1985) that measures the distance
from one molecule to the whole training set in the descriptors space. It is traditionally computed for the ith

compound of the training set as the ith diagonal element of the Hat matrix

H = Z(Z′Z)−1Z′ . (13)

An observation with a leverage higher than 2K/N for great samples (Belsley et al., 1980) or 3K/N for small
samples (Vellman and Welsch, 1981) may be considered potentially as an influential point and the effect of
removing such an observation from the training set has to be analysed. The leverage can be computed for
any kind of model but is more meaningful for MLR and RR.

The standardised residual in prediction is another tool to detect outliers with MLR models. It is defined
for the ith observation in the training set as

eSRPi =
eCVi

σ̂
√

(1− hii)
(14)

where eCVi is the difference between the observed ith response and its prediction using the model fitted on
the rest of the data, σ̂ is an estimate of the standard deviation of the residuals and hii is the leverage of the
ith observation. Molecules with a standardised residual in prediction greater than 2 or 3 are considered as
outliers.

Leverages and standardised residuals in prediction can be simulateously represented on a graph called
William plot to visualize outliers and define the applicability domain of the MLR model, as detailed in the
sub-section 8.5.
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For other classes of models, other distances (Euclidean, Mahalanobis, L1, DModX , Hotteling’s T 2) can
be defined to measure the distance of a molecule to the training set and detect outliers. They are reviewed
in section 8 on the applicability domain.

When outliers and influential points have been removed from the training set, further analyses have to be
performed to assess the validity of the model. There is three main points in the validation of a QSAR model:
the analysis of the model performance on the training set and on an external data set (OECD Principle 4),
and the definition of its applicability domain (OECD principle 3), i.e. the group of compounds for which
the QSAR model predictions are valid. A review of the QSAR literature about those three validation steps
constitute the three next sections.

6 Internal model performance

There is an increasingly international interest to validate QSAR models (Cronin and Livingstone, 2004;
report from the expert group on (Q)SAR, OECD, 2004). OECD principle 4 intends to make the distinction
between the internal performance of a QSAR model characterised by goodness of fit and robustness mea-
surements and its external performance characterised by its predictive power for new chemicals. The aim of
this section is to review internal performance criteria for the practical application of OECD principle 4.

6.1 Validation of underlying assumptions

The assumptions underlying the QSAR model must be validated. In regression analysis, the residuals are
often assumed to be independently normally distributed with zero mean and constant variance. To validate
the normality assumption, an histogram or a normal probability plot of the observed residuals ei’s can be
made. A graph of the observed residuals (ei) against the predicted values (ŷi) validates the other undelying
assumptions of the regression model (MLR, RR, PLSR and PCR).

6.2 Goodness of fit criteria

An intuitive idea is that a good model should provide predicted values similar to the observed ones. This
can be visualised for any kind of models by plotting the observed responses (yi, i = 1, · · · , N) against the
predicted ones (ŷi, i = 1, · · · , N). The most well-known index for measuring the alignment of those points
(yi, ŷi) is the coefficient of determination

R2
Y = 1−

∑N
i=1 (yi − ŷi)2

∑N
i=1 (yi − ȳ)2

. (15)

This coefficient, bounded by 0 and 1, represents the percentage of the variation of the observed activity
endpoint explained by the model. The higher it is, the better the fit is. This coefficient was introduced in
the field of MLR but can be computed for any other kind of model with the same interpretation.

The main drawback of R2
Y is that entering new explanatory variables in the model always increases

its value. According to the parsimony principle, not too many variables should be entered in the model,
especially if the number of observations is small. With MLR models, the R2

Y is adjusted to take the number
of parameters, K, into account as well as the number of observations, N :

R2
YADJ = R2

Y −
K − 1

N −K (1−R2
Y ) . (16)

R2
YADJ

is upper-bounded by 1 but can decrease if the contribution of an additional variable is less than the
impact on the degrees of freedom. The higher it is, the better the model is.
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Other indexes are used with MLR models in the QSAR literature to compare the observed and the
predicted data such as the standard error of estimate, s, or the Fisher statistics, F . The standard error of
estimate, s, is the classical estimator for the residual standard deviation in MLR:

s =

√√√√ 1

N −K

N∑

i=1

(yi − ŷi)2 . (17)

If the model fits well the data, s should be small. If replicates have been performed, the experimental
variance can be estimated and the estimated residual variance s2 should be of the same order otherwise,
this indicates that the model suffers from a lack of fit. The Fisher statistics, F is used in MLR analysis to
test the global utility of the model by comparing the part of the response variation that is explained by the
model to the part that left unexplained:

F =

PN
i=1 (yi−ȳ)2−PN

i=1 (yi−ŷi)2

K−1P
N
i=1 (yi−ŷi)2

N−K

=

PN
i=1 (ŷi−ȳ)2

K−1P
N
i=1 (yi−ŷi)2

N−K

=

R2
Y

K−1

1−R2
Y

N−K
. (18)

The higher is F , the better is the fit of the model. The F statistics can be compared to the 95% quantile of
the Fisher distribution, F 0.95

K−1,N−K , and if F > F 0.95
K−1,N−K , the MLR model is significantly useful.

With other QSAR models classes, such criteria can be generalised by an adequate measure of model
complexity (K for MLR). With PLSR, the complexity can be measured by the number of latent variables
and with RT, by the number of nodes.

To summarise, the higher are the indexes R2
Y , R2

YADJ
and F , or the smaller is the residual standard

deviation s, the better is the fit of the data by the model. But the model with the best fit is not surely the
best model for prediction. If the model is changed to improve too much the fitting, the model will explain
also the noise contained in the observed activity responses yi’s. A such overfitted model, even if it seems to
be very good, may be useless to predict the activity response for new molecules not included in the training
set. As the objective of the QSAR models developer is to apply them for the activity prediction of new
compounds, even not yet synthesised, the developer should find a model with a maximised predictive power
and not only with good fitting criteria. The predictive power of a model can be measured either on the
training set (next subsection) or on an external set (next section).

6.3 Robustness and internal predictivity

The most important method in QSAR modelling to quantify the predictive power on the basis only of
the training set is the cross-validation technique. The principle of cross-validation is to simulate predictions
for new molecules not used in the fitting of the model. The training set is divided in distinct subgroups. A
series of models are fitted on reduced datasets constructed by omitting each subgroup in its turn from the
training set and each fitted model is applied on the left subgroup for predicting the Y response. In this way,
a prediction is associated to every molecule of the original training set using a model trained on other data.

Let’s denote ŷCVi the prediction of the activity response of the ith molecule obtained by cross-validation.
The classical index to summarise the internal predictive power is the cross-validated R2

Y defined as

Q2
Y = 1−

∑N
i=1 (yi − ŷCVi )2

∑N
i=1 (yi − ȳ)2

. (19)

This is a cross-validation estimate of the percentage of the variance of the activity response explained by
the model. The higher Q2

Y is, the more predictive the model is. The value of Q2
Y must be compared to the
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value of R2
Y (see equation (15)). If they are not of the same order and the difference R2

Y −Q2
Y is larger than

0.2 or 0.3, this indicates that the model overfits the training data or that there are some outliers (Eriksson
et al., 2003).

There is two main practices in defining the subgroups. The leave-one-out method considers each com-
pound as a subgroup. Each compound is omitted in its turn. The model is fitted on the N − 1 other
observations of the training set and the activity response of the remaining compound is predicted using
the obtained model. To simulate predictions for new molecules not used in the fitting of the model, the
leave-one-out principle is the most intuitive idea as the most information as possible is taken into account in
the training of the model by removing only one observation. But leave-one-out is too optimistic and tends
to overestimate the predictive power for independent new compounds.

The alternative is to delete more than one compound at each turn by defining subgroups with up to
50% of the data set. This method is called leave-many-out. The reasonable number of compounds to be
included in each subgroup depends on the sample size. Let’s denote G the number of groups, generally
selected between 2 and 10. N

G is the size of groups. Every group in its turn is left out of the training set

and the model is fitted on the N − N
G other compounds. This fitted model is then applied to the remaining

group to predict the responses of its N
G compounds.

Another technique to quantify the predictive power is the bootstrap. N compounds are drawn at random
with replacement from the original dataset. Some of the original molecules might appear more than once in
the resample while other molecules might not be included. The model is fitted on this resample and applied

on the remaining compounds to predict the endpoint. Let’s denote ŷ
(b)
i the prediction of the activity response

of the ith molecule obtained with this bootstrap model. An estimate of the percentage of the variance of the
activity response explained by the model is

Q2
Y

(b)
= 1−

∑
i (yi − ŷ(b)

i )2

∑
i (yi − ȳ(b))2

. (20)

This resampling is repeated a great number of time. Then the predictive power can be summarised by

averaging the Q2
Y

(b)
’s of each bootstrap model.

A final tool to insure that the model has not been obtained by chance correlation is the response per-
mutation testing or Y -scrambling (Eriksson et al., 2003). The N -vector of observed responses is permuted
at random and the model is fitted on these permuted responses keeping intact the matrix of observed de-
scriptors X. The two indexes R2

Y and the cross-validated Q2
Y are computed. This permutation procedure

is repeated a great number of times providing reference distributions of both R2
Y and Q2

Y . If the R2
Y and

Q2
Y of the initial model are higher than the values of the simulated distributions, this constitutes a stong

indication that the initial model correlation was not obtained by chance.

The Q2
Y , either computed by cross-validation (19) or by bootstrapping (20), is the most used index to

quantify the internal predictive power of a QSAR model. Using leave-one-out cross-validation, Eriksson et
al. (2001) suggested that Q2

Y > 0.5 is good and Q2
Y > 0.9 is excellent. But Golbraikh and Tropsha (2002)

recommended to beware of Q2
Y , especially if it is computed by leave-one-out cross-validation. Indeed, the

only thing that is sure is that a small value of Q2
Y is the sign of a poor predictive power. But a high value of

Q2
Y does not imply automatically a high predictive power for new compounds not used in the training set.

The right way to estimate the predictive power is to test the model on a sufficiently large external data set.
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7 External performance

7.1 Global external performance

According to Doweyko (2004), only about half of the QSAR models published in the last decade made
reasonable predictions about test compounds not used to create the model. Tropsha et al. (2003) pointed
out that the quality of QSAR models is often typically measured on the training set alone, but this approach
does not necessarily generate good predictive QSAR models. The most demanding way to quantify the
predictive power of a QSAR model should be based on an external data set, by making predictions for an
independent set of data, not used in the model calibration. This provides a more rigorous evaluation of the
model predictive capability for untested chemicals than cross-validation or bootstrap on the training set.

An external data set may be found in the QSAR literature but this is quite rare. Indeed, such data
should concern the same endpoint, measured with the same protocol and the whole data set with all the
computed descriptors should be known. This kind of data is often not publically available. If it is, there is
always a risk of interlaboratory and assay variability among the different data sources.

If no similar data can be found in the QSAR literature, an external data set can be obtained by splitting
the original data into a training set and a test set. The training set is the set of data which is used to
construct the QSAR model and the test set is the set of data which is used to validate the QSAR model.
The best splitting of the original data set can be found by an experimental design procedure (Marengo and
Todeschini, 1992; Eriksson et al., 2000).

Whatever the origin of the external set is, it has first to be checked that this external set is composed of
compounds similar to the training data (cfr Section 8 on applicability domain) and contains no outlier. Then
the estimated model can be applied to predict the activity response of each of the N ′ molecules in the external
set. Those predictions (ŷ′i, i = 1, · · · , N ′) are finally compared to the observed responses (y′i, i = 1, · · · , N ′)
graphically and using

R2
Y

(ext)
= 1−

∑N ′

i=1 (y′i − ŷ′i)2

∑N ′

i=1 (y′i − ȳ′)2
. (21)

Setting aside an external data set is not reasonable when the number of available data is small. If no sim-
ilar data can be found in the QSAR literature, only internal predictivity can be assed using cross-validation
or boostrap technique. But this overestimates the predictive power for new molecules.

Like any other kind of models, a QSAR model is never better than the series of measurements it was
obtained from. As Aristotle was saying: ”It is the mark of an instructed mind to rest easy with the degree of
precision which the nature of the subject permits and not to seek an exactness where only an approximation
of the truth is possible.” This means that, whatever is the degree of validation of the model, the QSAR user
has to keep in mind that it is never possible to predict the activity response of an unknown chemical with
absolute certainty. This is then crucial to measure the uncertainty of the predictions provided by QSAR
models and verify that this uncertainty is adequate for the purpose of the QSAR application.

7.2 Local external performance

Once the predictive power of the QSAR model has been assessed on an external test set, it can be used
to predict the activity of a new compound. Only a small part of QSAR papers mention the uncertainty of
such pointwise prediction. This subsection reviews this rare QSAR literature on prediction uncertainty for
a given new compound.

For MLR, a 95% confidence interval for the expected activity value of the new compound E[Y |x] is
centered around its estimated value z′β̂ and is constructed as z′β̂± t0.975

N−K
√
s2z′(Z′Z)−1z. A 95% prediction
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interval for the activity of the new compound Y |x is centered around its predicted value z′β̂ and is con-
structed as z′β̂ ± t0.975

N−K
√
s2(1 + z′(Z′Z)−1z).

In the report from the expert group on (Q)SAR, OECD (2004), the standard deviation of the residuals

of the external set s(ext) =
√

1
N ′−K

∑N ′

i=1 (yi − ŷi)2 is computed and used to construct a 95% prediction

interval for the activity response y0 of any new molecule as ŷ0 ± z0.975 · s(ext). This seems not correct as the
standard error of prediction is considered constant over the chemical domain although it is certainly greater
at the edges than in the center of the experimental domain. But no other QSAR paper evokes the subject
of prediction uncertainty of a new particular molecule.

8 Applicability domain

8.1 Definition of the applicability domain

Wold and Dunn (1983) have shown that QSAR models normally have local validity only. They can em-
brace only compounds with similar chemical and biological properties as the compounds in the training set.
Whereas excellent fit to the training data may be attainable, often QSAR models fail to predict accurately
chemicals that differ substantially from the training set molecules. In order yo state clearly this intrinsec
limitation of any QSAR model, the OECD recommended, in the report from the expert group on (Q)SAR,
OECD (2004), to define the applicability domain of the QSAR model. This way, any chemist that wants to
use a QSAR model for the prediction of a new compound with descriptors x0 is able to first check if it is
included in its applicability domain and the corresponding prediction is reliable.

The applicability domain is the group of substances for which the QSAR model is valid. Any new
compound that lies in the chemical space beyond this boundary may possess a different structure-activity
relationship than the molecules in the training set and the prediction provided by the QSAR model may be
unreliable.

The applicability domain can be defined regarding the descriptors space and/or the response as well as
the chemical class, the mechanism of action or the species considered. In practice, an applicability domain
is defined for the descriptors space and another applicability domain is defined for the response. The QSAR
model can then be applied for a new molecule if it is included in the two applicability domains.

Simple tools such as the descriptors ranges can be used or more complex tools such as the convex hull,
the leverages and the William plot, some other distance measurements (Euclidean, Mahalanobis distance or
DModX), the Hotteling T 2 or density measurements. Their exact definitions can often become complex due
to the highly multivariate nature of the data.

The different definitions are given below and applied on a simple QSAR data set provided by Veith and
Mekenyan (1993). A MLR was developed to model the 96h LC50 of organic chemicals to a fish species,
the fathead minnow (Pimephales promelas). The 96h LC50 is the concentration (in moles per litre) causing
50% lethality in Pimephales promelas after an exposure of 96 hours. Two descriptors are used to model the
96h LC50: KOW , the octanol-water partition coefficient and ELUMO , the energy of the lowest unoccupied
molecular orbital. The training set is composed of 114 observations and a MLR model was fitted on those
data, transforming the response and the first descriptor with the logarithm function: ˆlog(LC50) = −2.414 +
0.579log(KOW )− 0.473ELUMO.

8.2 Applicability domain based on the ranges

The most simple definition for the applicability domain can be achieved using the ranges of the descrip-
tors. The range of a variable is, by definition, the difference between the observed maximum and minimum.
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Based on this idea, a new compound is considered to belong to the applicability domain if its computed
descriptors x0 are within the minimum and the maximum of each descriptor. If the QSAR model uses only
one descriptor, the applicability domain reduces to a simple interval. With two descriptors, it is a rectangle
and with K > 2 descriptors, the applicability domain is a K-dimensional hyper-rectangle.

This definition of the applicability domain takes the descriptors into account only separately. The min-
imum and the maximum of each descriptor are listed and sometimes also an histogram of observed values
is constructed for each descriptor. But the applicability domain should take into account the overall distri-
bution of the data in the structure space. In addition, this definition relies on the assumption that the data
are uniformly distributed. This is not always the case with QSAR data as observations are often clustered
and the K-dimensional hyper-rectangle defined with the ranges contains often empty spaces, especially in
the edges.

An alternative consists in applying first PCA and then defining the applicability domain on the ranges
of the principal components scores. The resulting hyper-rectangle may also include empty spaces, but the
volume enclosed will be most of the time less empty than in the original descriptors ranges case.

8.3 Applicability domain based on the convex hull

To insure no extrapolation, the convex hull of the descriptors in the training set can be computed. The
convex hull is defined as the smallest convex polyhedra that contains the data. If a new molecule with
descriptors x0 is outside this boundary, the prediction may be unreliable.

Efficient algorithms for convex hull calculation are available for dimension 2 or 3 (Graham, 1972; Jarvis,
1973). But the complexity increases rapidely in higher dimension. Moreover, this approach does not consider
the global distribution of the data as the convex hull definition is only based on the boundary of the data
set. This does not prevent from empty spaces in the convex hull.

8.4 Applicability domain based on the Euclidean, Mahalanobis or L1 distance

The intuitive idea of distance-based applicability domain is that a compound too far from the compounds
in the training set may be badly predicted. The distance of a new molecule to the training set may be
computed as its distance to the mean of the elements of the training set, the averaged distance between this
new molecule and all the molecules of the training set or the maximum distance between the new molecule
and all the molecules of the training set. A definition of the distance between two substances is, for instance,
already used with the kNN modelling technique. Each compound is represented by a K-vector of observed
transformed descriptors x. The distance between two substances with descriptors x1 and x2 can be defined
using the Euclidean distance (dE), the Mahalanobis distance (dM ) or the L1-distance (dL1) defined as follows:

dE(x1,x2) =

√√√√
K∑

k=1

(z1k − z2k)2

dM (x1,x2) = (x1 − x2)S−1(x1 − x2)′

dL1(x1,x2) =
K∑

k=1

|z1k − z2k|

As S denotes the covariance matrix of the observed transformed descriptors, the Mahalanobis distance
takes into account the correlation between the transformed descriptors which is not the case with the two
other definitions. For Euclidean and L1 distance, it is necessary to standardise the descriptors (z) otherwise
the descriptors with wider scales would have higher weights in the distance calculation. For those two dis-
tances, it is also recommended to apply PCA and measure the distances in the principal components space
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where new variables are uncorrelated.

A new molecule with descriptors x0 is considered outside of the applicability domain of the QSAR model
if its distance to the molecules of the training set exceeds a certain threshold fixed by the QSAR developer.
This threshold can be defined as, for instance, the largest distance of any molecule in the training set to the
rest of the molecules.

The Euclidean and Mahalanobis distances are specially adapted for observations that are normally dis-
tributed. The L1 distance assumes that the observations are uniformely distributed. Any of those three
distances take into account possible empty regions in the structure space.

8.5 Applicability domain based on leverages

The leverage is another measure of the distance between a new molecule and the molecules in the training
set. As explained in Section 5, the leverage is originally defined in the MLR literature to detect outliers
in the training set. This definition can be extended to any new molecule with the standardised descriptors
contained in the K-vector z0 by h0 = z0

′(Z′Z)−1z0.

The leverage of each molecule in the data set can be represented on a graph referred to as the William
plot (report from the expert group on (Q)SAR, OECD, 2004). The William plot is a scatterplot representing
the leverages and the standardised residuals in prediction as defined in Section 5. This graph allows to detect
outliers and defines the boundary of the applicability domain with the limits 2 or 3 for the standardised
residual in prediction and 2K/N or 3K/N for the leverage.

8.6 Applicability domain based on DModX

For PLSR or PCR, another tool is used to detect outliers and define the applicability domain: DModX,
the distance from one observation to the model in the space of original explanatory variables space (SIMCA,
1998). More formally, for the ith compound of the training set, DModX is computed as DModXi =√

1
K−M

∑K
k=1 e

2
ik where eik is the element ik of the residual matrix E = Xc − TMWM

−1, TM contains

the M latent variables or PCs scores vectors of the model and WM is the weight matrix used to construct
the latent variables as linear combination of the original variables Xc. This definition can be generalised to
any new compound for which the descriptors can be computed as well as the scores in the new latent subspace.

A high value of DModX indicates that the compound is quite different from the compounds in the
training set. An applicability domain can be defined by normalising the distances and considering as ex-
trapolating points observations having standardised distances greater than 3.

This definition of the applicability domain is not illustrated on the data of Veith and Mekenyan (1993)
because PLSR or PCR has no sense as the two latent variables or the two principal components are significant.

8.7 Applicability domain based on the Hotelling’s T 2

Another distance tool to detect strong outliers and define the applicability domain is given by the
Hotelling’s T 2 (Jackson, 1991). This statistic is a multivariate generalisation of Student’s t-test, and pro-
vides a check for observations adhering to multivariate normality. For the ith compound of the training set,
the Hotelling’s T 2 is given by T 2

i = (xi− x̄)S−1(xi− x̄)′ where xi is the observed K-vector of descriptors, x̄ is
the K-vector of mean descriptors and S is the variance-covariance matrix of the observed descriptors in the
training set. This definition can be generalised to any other new molecule using the corresponding observed
descriptors x0. If the descriptors are centered, the Hotelling’s T 2 is the same distance as the Mahalanobis
one and the leverage.
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A high value of T 2
i denotes a compound that is far from the central molecule. The 95% significance

limits of the Hotelling distribution (proportional to the Fisher) correspond to 95% of the data and can
detect extreme compounds. Assuming normality of the data, the Hotelling’s T 2 can be computed with any
modelling technique but is mainly used with PLSR and PCR.

8.8 Applicability domain based on the density

Most of the tools used for the definition of applicability domain assume implicitly an underlying distri-
bution of the data, either uniform or normal. Those assumptions are not realistic with QSAR data as such
data are often clustered, with empty regions in the descriptors space. Nonparametric density estimation is
an approach capable of identifying such empty regions (Jaworska et al., 2005a,b).

The most well-known method for nonparametric density estimation is the kernel-based method. To sim-
plify the multivariate density estimation, a PCA is first applied to the QSAR data to obtain orthogonal
variables. Jaworska et al. (2005a,b) proposed to estimate each PC density using kernel estimators and take
their product.

The applicability domain is then defined by high density regions of level (1 − α), with 0 < α < 1. A
(1− α) high density region is the smallest multidimensional region comprising (1− α) ∗ 100 percents of the
probability mass. In practice, delimiting exactly this region may be quite complicated with high dimensional
data.
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Figure 6: Applicability domain based on the ranges of the two observed descriptors (left) or on the ranges of the
two principal components scores (left). Data of Veith and Mekenyan (1993).
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Figure 7: Applicability domain based on the convex hull of the 114 observed pairs of descriptors. Data of Veith and
Mekenyan (1993).

8.9 Comparison of different applicability domains on a QSAR model example

Jaworska et al. (2005a,b) compared the different cited approaches and concluded that the range-based
definition with a preliminary PCA rotation is the most adapted practical approach. In addition, only the
PCA transformation and the ranges need to be stocked to be able to check if any new molecule is in the
applicability domain of the QSAR model.

The report from the expert group on (Q)SAR, OECD (2004), recommend that further work is carried out
to define more precisely the tools that can be used to define QSAR applicability domain. There is a need to
reconcile the method used for the model development and the applicability domain definition. Whatever is
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Figure 8: Applicability domain based on the Euclidean distance to the center of the dataset after a standardisation
of the two descriptors (left) or after the transformation to the two PCs scores (right). The inner (resp. outer) dashed
circle is the applicability domain considering a maximal Euclidean distance such that it contains 95% (resp. 100%)
of the data.
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Figure 9: Applicability domain based on the L1-distance to the center of the data after a standardisation of the
two descriptors (left) or after the transformation to the two PCs scores (right). The inner (rep. outer) dashed circle
is the applicability domain considering a maximal L1-distance such that it contains 95% (resp. 100%) of the data.
Data of Veith and Mekenyan (1993).

the statistical tool used, the exact definition of the applicability domain should be stated. If a new compound
reveals to be outside the applicability domain, this information should be considered as a warning. Indeed,
there is always the possibility that the QSAR model extrapolates correctly.
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Figure 11: Left: Applicability domain based on the leverages. The inner dashed circle corresponds to the limit
2K/N and the outer circle to 3K/N . Right: Williams plot. The vectical dashed line represent the limit 3K/N and
the two horizontal dashed lines are the limits in ±2. Data of Veith and Mekenyan (1993).

Nearly all the presented methods are only applicable for quantitative descriptors. Jaworska et al.
(2005a,b) suggest to divide the data set according to the levels of categorical descriptors and construct
an applicability domain for each level. Only the L1-distance or the leverages can manage dummy variables
for encoding the categorical descriptors.
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Figure 12: Applicability domain based on the Hotelling’s T 2. Data of Veith and Mekenyan (1993).
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Figure 13: Applicability domain based on the joint density estimated using kernels after the transformation to the
two principal components scores. The outer dashed line represents the high density region of level 0.95. The other
inner lines represent different levels of density. Data of Veith and Mekenyan (1993).

9 Conclusion

QSAR modeling is an emerging tool in pharmaceutical industry. MLR, PLSR and RT are the three most
often used classes of models. NN is becoming also more and more popular. In practice, it is recommended to
fit different model families, to enter different subsets of descriptors, and select the “best” model. There is an
increasing concern in statistically validating QSAR models and measuring their performance. The coefficient
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of determination (R2) and its cross-validated version (Q2) are the two most important statistical tools to
measure respectively the goodness-of-fit and the predictive power of the model. Nevertheless, the importance
of measuring the predictive power on an independent test set is not yet ingrained in mind of all practitioners.

The definition of the applicability domain of a QSAR model is encouraged to be able to check if the
QSAR model is valid for new molecules and provides reliable predictions. However, in practice, a QSAR
model is still often used for the prediction of new compounds without comparing them to the training set
and without measuring the reliability of those local predictions.
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