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Abstract

We propose a new nonparametric estimator for the density function of multivariate bounded

data. As frequently observed in practice, the variables may be partially bounded (e.g., nonneg-

ative) or completely bounded (e.g., in the unit interval). In addition, the variables may have a

point mass. We reduce the conditions on the underlying density to a minimum by proposing a

nonparametric approach. By using a gamma, a beta, or a local linear kernel (also called bound-

ary kernels), in a product kernel, the suggested estimator becomes simple in implementation and

robust to the well known boundary bias problem. We investigate the mean integrated squared

error properties, including the rate of convergence, uniform strong consistency and asymptotic

normality. We establish consistency of the least squares cross-validation method to select op-

timal bandwidth parameters. A detailed simulation study investigates the performance of the

estimators. Applications using lottery and corporate finance data are provided.
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1 Introduction

Among multivariate nonparametric density estimators, the standard Gaussian kernel is the most

popular. The estimator has excellent asymptotic properties; see Silverman (1986), Scott (1992),

and Wand and Jones (1995) for more details. However, the estimator does not take into account

the potential finite support of the variables. When the support of some variables is bounded, for

example, in the case of nonnegative data, the standard kernel estimator continues to give weight

outside the supports. This causes a bias in the boundary region. The boundary bias problem of

the standard kernel is well documented in the univariate case. An initial solution to the boundary

problem is given by Schuster (1985), who proposes the reflection method. Müller (1991), Lejeune

and Sarda (1992), Jones (1993), Jones and Foster (1996), and Cheng, Fan, and Marron (1997)

suggest the use of adaptive and boundary kernels at the edges and a fixed standard kernel in the

interior region. Marron and Ruppert (1994) investigate some transformations before using the

standard kernels, and Cowling and Hall (1996) propose a pseudodata method. Recently, Chen

(2000), Bouezmarni and Scaillet (2003), and Bouezmarni and Rombouts (2006) study the gamma

kernels for univariate nonnegative data. For data defined on the unit interval, Chen (1999) proposes

to use a beta kernel.

The boundary bias problem becomes more severe in the multivariate case because the boundary

region increases with the dimension of the support. Boundary regions are illustrated in Figure 1

for bivariate nonnegative data. In panel (a) there is no boundary problem because the data are
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Figure 1: Illustration of boundary regions for bivariate nonnegative data.

far away from zero. In this case, the standard kernel has the best performance. However, we will

see in the simulations of this paper that the estimator we propose is very close to this optimal

performance. In panel (b) and in particular panel (c) of Figure 1, the standard kernel has poor

performance because it underestimates the density in a large area of the support. This severe under

performance in the case of two boundary problems is further illustrated in Figure 2.

Although the consequences of the boundary problem in multivariate dimensions are much more
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Figure 2: Density estimation with Gaussian kernel, gamma kernel and local linear kernel.

severe, solutions to the problem are not well investigated. Müller and Stadtmüller (1999) propose

boundary kernels for multivariate data defined on arbitrary support by selecting the kernels that

minimize a variational problem. In fact, they extend the minimum variance selection principle

kernel used to select the optimal kernel in the interior region, as in Epanechnikov (1969) and

Granovsky and Müller (1991). In the nonparametric regression context, the problem of boundary

bias is developed by Gasser, Müller, and Mammitsch (1985), and Zhang, Karunamuni, and Jones

(1999) for the univariate case, and Fan and Gijbels (1992), Ruppert (1994), Staniswalis, Messer,

and Finston (1993), and Staniswalis and Messer (1997) for multivariate data.

This paper proposes a nonparametric product kernel estimator for density functions of multi-

variate bounded data. Estimation is based on a gamma kernel or a local linear kernel when the

support of the variable is nonnegative and a beta kernel when the support is a compact set. By

doing so, no weight is assigned outside the support of the underlying density so that the estimators

are robust to the boundary problem. The method is easy in conception and implementation. We

provide the asymptotic properties of these estimators and show that the optimal rate of conver-

gence of the mean integrated squared error is obtained. For the multivariate uniform density, we

show that the estimator we propose using beta kernels is unbiased. We examine the finite sample

performance in several simulations. As for any nonparametric kernel estimator, the performance is

sensitive to the choice of the bandwidth parameters. We suggest the application of the least squares

cross-validation method to select these parameters. We prove the consistency of this method for

the proposed estimators and investigate its performance in the simulations.

The rest of the paper is organized as follows. We introduce the multivariate nonparametric

estimator for multivariate bounded data in Section 2. Section 3 provides convergence properties.

The consistency of the least squares cross-validation bandwidth selection method is established in

Section 4. In Section 5 we investigate the finite sample properties of several kernel estimators for

nonnegative bivariate data. Section 6 contains two applications, one with lottery data and another

with corporate finance data. Section 7 concludes. The proofs of the theorems are presented in the
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Appendix.

2 Nonparametric estimator

Let {(X1
i , ..., Xd

i ), i = 1, .., n} be a sample of independent and identically distributed random vari-

ables with an unknown density function f . The general multivariate nonparametric density esti-

mator is given by

f̂(x1, ..., xd) =
1

nh1...hd

n
∑

i=1

K

(

x1 − Xi1

h1
, ...,

xd − Xid

hd

)

,

where K denotes a multivariate kernel function and (h1, ..., hd) the vector of bandwidth parameters.

In practice the choice of K is especially difficult when the supports of the random variables are

potentially unequal. Therefore, we propose to use the product kernel estimator with adapted and

flexible kernels in order to solve the boundary bias problem. The estimator is defined as

f̂(x1, ..., xd) =
1

n

n
∑

i=1

d
∏

s=1

Ks(bs, Xis)(xs), (1)

where b1, ..., bd are the bandwidth parameters and the kernel Ks is a kernel for variable s. Through-

out the paper, this superscript s will be omitted for notational convenience. As described in the

introduction, the kernel for each variable is chosen to be the standard kernel, which is indeed op-

timal when the total support is IRd. We consider two cases for random variables with bounded

support.

First, when the support of the variable is nonnegative, we propose the use of either the local linear

kernel denoted by KL or one of the two gamma kernels KG, KNG as shown below. Thus,

KL(h, t)(x) = Kl

(

x, h,
x − t

h

)

,

where

Kl(x, h, t) =
a2(x, h) − a1(x, h)t

a0(x, h)a2(x, h) − a2
1(x, h)

K(t),

K is any symmetric kernel with a compact support [−1, 1] and

as(x, h) =

∫ x/h

−1
tsK(t)dt.

The kernels KG and KNG are respectively defined as

KG(b, t)(x) =
tx/b exp(−t/b)

bx/b+1Γ(x/b + 1)
,

and

KNG(b, t)(x) =
tρ(x)−1 exp(−t/b)

bρ(x)Γ(ρ(x))
,

4



where,

ρ(x) =











x/b if x ≥ 2b

1
4(x/b)2 + 1 if x ∈ [0, 2b).

Second, when the variable has a compact support (for simplicity we take here the unit interval) we

suggest the use of the beta kernel

KB(b, t)(x) = B (x/b + 1, (1 − x)/b + 1) ,

or a modified beta kernel

KNB(b, t)(x) =











B(ρ(x), (1 − x)/b) if x ∈ [0, 2b)

B(x/b, (1 − x)/b) if x ∈ [2b, 1 − 2b]

B(x/b, ρ(1 − x)) if x ∈ (1 − 2b, 1],

where B(α, β) is the beta density function with parameters α and β, b is the smoothing parameter,

and ρ(x) = 2b2 + 2.5 −
√

4b4 + 6b2 + 2.25 − x2 − x/b.

Note that finally it may also happen that there is a point mass on the boundary with probability

p. For example, Grullon and Michaely (2002) study dividends and share repurchases, which both

have multiple zero observations. In this situation we suggest the estimation of the probability p by

the observed proportion and the density function in (0, +∞), by using the normalized kernel

K∗(b, t)(x) =
K(b, t)(x)

∫∞
0 K(b, t)(s)ds

,

with the kernel K as defined above. This case is studied, for example, by Gourieroux and Monfort

(2006) for the beta kernel estimator with applications to credit risk data.

For the bivariate nonnegative data case and for the gamma kernel, Figure 3 illustrates the

flexibility of those kernels. They are asymmetric at the boundary points and symmetric away

from the boundaries. The kernel never assigns weight outside the support and is therefore free

of boundary bias. To conclude, the nonparametric estimator we propose allows the kernels in

the product kernel to be based on the support of the underlying variables. We can, for example,

combine beta with gamma kernels if the supports of the variables are the unit interval and the

positive real line, respectively. Furthermore, the nonparametric estimator with a gamma or beta

kernel is always nonnegative, while the Müller and Stadtmüller (1999) estimator can be negative.

The latter estimator also requires an additional bandwidth parameter and a weighting function.

3 Convergence properties

In this section we establish the main asymptotic properties of the nonparametric estimator de-

scribed in the previous section. We consider the case where all the variables have nonnegative
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Figure 3: Shape of gamma kernels at (x, y). The bandwidth parameters b1 = b2 = 0.2.

supports though the results can easily obtained for any other combination. Some assumptions on

the bandwidth parameters are given first.

Assumptions on the bandwidth parameters

B1. aj → 0, j = 1, ..., d and n−1
∏d

j=1 a
− 1

2

j → 0, as n → ∞.

B2. aj → 0, j = 1, ..., d and log(n)n−1
∏d

j=1 a−2
j → 0, as n → ∞.

The following result states the mean integrated squared error (MISE) of the nonparametric esti-

mator.

Theorem 1. mean integrated squared error of f̂

Suppose that f is twice differentiable. Let f̂ be the nonparametric estimator with the gamma kernel.

Under assumption B1

MISE =

∫

(
d
∑

j=1

ajBj(x))2dx +
1

n

(

d
∏

i=1

a
−1/2
j

)

∫

V (x)dx + o





d
∑

j=1

aj





2

+ o



n−1
d
∏

j=1

a
−1/2
j



 ,

where ai = bi and

Bj(x) =

(

f j(x) +
xjf

jj(x)

2

)

and V (x) = (2
√

π)−df(x)
d
∏

j=1

x
−1/2
j ,

with f j = ∂f
∂xj

and f jj = ∂2f
∂x2

j

.

The optimal bandwidths that minimize the asymptotic mean integrated squared error are

a∗j = cjn
− 2

d+4 , for some positive constants c1, ..., cd. (2)

Therefore, the optimal asymptotic mean integrated squared error is

6



AMISE∗ =







∫

(

d
∑

j=1

cjBj(x))2dx +





d
∏

j=1

c
−1/2
j





∫

V (x)dx







n− 4

d+4 .

Theorem 1 proves that the rate of convergence of the bias of the nonparametric estimator is uniform,

hence it is free of boundary bias. The rate of convergence of the mean integrated squared error

becomes slower when the dimension of the random variable increases. This is known as the curse of

dimensionality. We see that in the boundary region, the variance of the product kernel estimator is

larger in comparison with the variance in the interior region. However, the increase of the variance

is compensated by a smaller bias in this region. Away from the boundaries, we have the opposite

effect, that is, a lower variance and a slightly higher bias. Fortunately, the second derivative of the

density function is negligible away from zero.

Remark 1. If we suppose that a = a1 = ... = ad, the optimal bandwidth is

a∗i =

(

d
∫

V (x)dx

4
∫

B(x)dx

)
2

d+4

n− 2

d+4

and the optimal asymptotic mean integrated squared error is

AMISE∗ = (d/4 + 1)(d/4)−
d

d+4

(∫

V (x)dx

) 4

d+4
(∫

B(x)dx

) d
d+4

n− 4

d+4 .

The following remark states the MISE of nonparametric estimator with local linear and the new

gamma kernel.

Remark 2.

• For the local linear estimator, the results of Theorem 1 remain valid with aj = h2
j and

Bj(x) =
κ2

2
f jj(x) and V (x) = κd,

where κ2 =
∫

x2K(x)dx and κ2 =
∫

K2(x)dx.

• For the new gamma estimator, the results of Theorem 1 remain valid with aj = bj and

Bj(x) =
xjf

jj(x)

2
and V (x) = (2

√
π)−df(x)

d
∏

j=1

x
−1/2
j .

7



For the uniform density on [0, 1]d, the rate of convergence of the mean integrated square error of

the standard kernel becomes O(n−2/(d+2)). Devroye and Györfi (1985) established a corresponding

result for the mean integrated absolute error in the univariate case. This lower rate is due to the

decrease in the rate of convergence of the bias. For data on [0, 1]d, our estimator uses beta kernels.

The next proposition states that our estimator is unbiased and that a large bandwidth is needed. In

fact, when the bandwidth parameter tends to infinity the beta kernel becomes the uniform density.

Proposition 1. MISE when f is a uniform density

Suppose that f is the uniform density on [0, 1]d. Then, the nonparametric estimator f̂ with beta

kernels is an unbiased estimator for f and its integrated variance is given by:

IV (f̂) =

(√
π

2

)d

n−1
n
∏

i=1

b
−1/2
i

The following theorem establishes the uniform strong consistency of the nonparametric density

estimator using gamma kernels.

Theorem 2. Uniform strong consistency of f̂

Let f be a continuous and bounded probability density function. Under assumption B2, for any

compact set I in [0, +∞), we have

sup
t∈I

∣

∣

∣f̂(x) − f(x)
∣

∣

∣

a.s.−→ 0 as n −→ +∞.

The following theorem deals with the asymptotic normality of the nonparametric density estimator

of the gamma kernel estimator.

Theorem 3. Asymptotic normality of f̂

Suppose that f1, ..., fd are twice differentiable at x. Also suppose that the bandwidth parameters

satisfy (2). Then we have

σ∗−1n
1

2

d
∏

j=1

b
1

4

j

(

f̂(x) − f(x) − µ∗
) D−→ N(0, 1), (3)

where

σ∗(x) =



f(x)(
∏

j∈I

(2
√

π)−1x
−1/2
j )(

∏

l∈IC

(

Γ(2κj + 1)

22κj+1Γ2(κj + 1)

)

b
−1/2
j )





1

2
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with I = {j, xj/bj → ∞} and IC its complement, and

µ∗ =
d
∑

j=1

bjBj(x).

The next remark gives the asymptotic normality of the product kernel with the local linear kernel

and the new gamma kernel.

Remark 3. The asymptotic normality in (3) remains valid

• With the local linear kernel, with bj = h2
j

Bj =
s2
2(pj) − s1(pj)s3(pj)

s2(pj)s0(pj) − s2
1(pj)

f ′′(xj)

2
and σ∗(x) =

√

f(x)
s2
2(pj) − 2s2(pj)s1(pj)e1(pj) + s2

1(pj)e2(pj)

(s2(pj)s0(pj) − s2
1(pj))2

,

where pj = xj/hj, si(p) =
∫ p
−1 uiK(u)du and ei =

∫ p
−1 uiK2(u)du, and

• With the new gamma kernel, with the same σ∗ and

Bj ==











1
2xjf

′′(xj) if xj ≥ 2bj

ξbj
(xj)f

′(xj) xj < 2bj ,

where ξb(x) = (1 − x)(ρ(2, x) − x/b)/(1 + bρ(2, x) − x).

4 Bandwidth Selection

Theorem 1 establishes the optimal bandwidth parameter, which cannot be used in practice because

it depends on the unknown density function. In this section, we propose to use the least squares

cross-validation (LSCV) method to select the bandwidth. This technique has been developed by

several authors. For the Gaussian kernel estimator, its consistency is investigated by Rudemo

(1982), Hall (1983), Stone (1984), Bowman (1984), Härlde and Marron (1985), and Marron and

Härlde (1986). In this section, we show the performance of the LSCV method for the product

kernel estimator based on the gamma kernel. We first explain how the method works. The LSCV

method is based on the minimization of the integrated squared error which is defined as

ISEh =

∫

f̂2
h(x)dx − 2

∫

f̂(x)fh(x)dx +

∫

f2(x)dx.

Because the last term does not depend on the bandwidth parameter, minimizing the integrated

squared error boils down to minimizing the two first terms. However, we need to estimate the second

term since it depends on the unknown density function f . The LSCV estimator of ISEh −
∫

f2 is

LSCVh =

∫

f̂2
h(x)dx − 2

n2

∑

i6=j

K(b, Xi)(Xj)

9



where

K(b, Xi)(Xj) = K(b1, X
1
i )(X1

j )...K(bd, X
d
i )(X1

j ).

The bandwidth LSCV rule selection is defined as follows

b̂ = argminh LSCVh.

Our aim is to prove that this choice is asymptotically optimal in terms of the mean integrated

squared error. To establish this result, we need some additional assumptions. Because the optimal

bandwidth parameter is of order O(n−2/(d+2)), we suppose that b̂ ∈ Hn, where

Hn =
{

b, α1n
−2/(d+4) < bi < α2n

−2/(d+4), i = 1, .., d
}

.

We assume that

#(Hn) ≤ Anα, where A and α are positive constants (4)

and

∫ ∫

(
∑δ

i=1 xi)
1

b

Pδ
i=1

xi+
1

2

∏δ
i=1 x

xi
b

+ 1

2

i δ
1

b

Pδ
i=1

xi+1
f

(

∑δ
i=1 xi

δ

)

dx1..dxδ < constant for some integer δ. (5)

The following theorem states that b̂ is asymptotically optimal.

Theorem 4. Under condition (4) and (5), we have

MISEb̂

MISEb0

−→ 1, almost surely,

where b0 is the bandwidth that minimizes the mean integrated squared error.

5 Finite sample properties

In this section we study the finite sample properties for the nonparametric density estimator for

bivariate data with non-negative supports. We compare the two first moments of the mean inte-

grated squared error distribution of the nonparametric product kernel estimator using the following

kernels: Gaussian, Gaussian with log-transformation, local linear, gamma, and modified gamma.

We consider the following six data generating processes:

• Model A: no boundary problem, bivariate normal density with mean (µ1, µ2) = (6, 6) and

variance (σ2
1, σ

2
2) = (1, 1) and correlation r = 0.5.

• Model B: one boundary problem, truncated bivariate normal density with mean (µ1, µ2) =

(−0.5, 6) and variance (σ2
1, σ

2
2) = (1, 1) and correlation r = 0.5.

10



• Model C: two boundary problems, truncated bivariate normal density with mean (µ1, µ2) =

(−0.5,−0.5) and variance (σ2
1, σ

2
2) = (1, 1) and correlation r = 0.8.

• Model D: two boundary problems, bivariate independent Weibull density with shape param-

eter 0.91 and scale parameter 1.

• Model E: bivariate independent standard log-normal.

• Model F: bivariate independent inverse Gaussian with mean µ = 0.8 and the scaling parameter

λ = 1.

From Figure 4, which displays the densities for the six models, we observe that we cover a

wide range of shapes. In simulations, we consider the sample sizes 250 and 500 and perform 100
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Figure 4: Density functions considered for simulations.

replications for each model. In each replication the bandwidth is chosen such that the integrated

squared error is minimized. For each model, the support of integration is specified such that the

density is negligible outside this support. We report the mean and the standard deviation of the

11



Table 1: Mean of L2 error for the density function estimators.

Gaussian Log-Trans. Gamma Mod. gam. local linear

A n=250 Mean 0.00305 0.00337 0.00318 0.00312 0.00288

Std dev 0.00109 0.00104 0.00104 0.00103 0.00100

n=500 Mean 0.00190 0.00233 0.00207 0.00203 0.00186

Std dev 0.00066 0.00067 0.00066 0.00067 0.00064

B n=250 Mean 0.02075 0.01647 0.01241 0.00998 0.00943

Std dev 0.00514 0.00822 0.00393 0.00413 0.00386

n=500 Mean 0.01733 0.01102 0.00960 0.00785 0.00773

Std dev 0.00319 0.00435 0.00265 0.00267 0.00271

C n=250 Mean 0.04011 0.03679 0.02373 0.01471 0.01483

Std dev 0.00659 0.00873 0.00582 0.00462 0.00411

n=500 Mean 0.03261 0.02648 0.01742 0.01087 0.01096

Std dev 0.00398 0.00567 0.00401 0.00328 0.00282

D n=250 Mean 0.06883 0.03212 0.01974 0.01554 0.01075

Std dev 0.00476 0.01931 0.00482 0.00511 0.00280

n=500 Mean 0.06216 0.02457 0.01626 0.01118 0.00841

Std dev 0.00498 0.01407 0.00401 0.00381 0.00308

E n=250 Mean 0.01729 0.00592 0.01054 0.01030 0.01554

Std dev 0.00374 0.00221 0.00268 0.00320 0.00372

n=500 Mean 0.01216 0.00424 0.00694 0.00653 0.01072

Std dev 0.00228 0.00149 0.00170 0.00208 0.00247

F n=250 Mean 0.02944 0.03145 0.02597 0.02352 0.02949

Std dev 0.00808 0.01373 0.00786 0.00898 0.00749

n=500 Mean 0.02138 0.02672 0.02107 0.01758 0.02119

Std dev 0.00451 0.01178 0.00606 0.00501 0.00448

A: bivariate normal, B: truncated bivariate normal with one boundary problem, C: truncated bivari-

ate normal with two boundary problems, D: two independent Weibull with two boundary problems,

E: two independent standard log-normal, F: two independent inverse Gaussian. For each replica-

tion, the bandwidth parameter is chosen such that the integrated squared error is minimized. Std

dev: standard deviation, Log-Trans.: log-transform estimator and Mod. gam.: modified gamma

estimator.
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mean integrated squared error in Table 1. As a general remark we observe that the mean and the

variance of the MISE decreases for all models, as expected. Also as expected, the mean MISE

increases when the boundary region becomes larger. For example, for n = 500, the mean MISE

of the Gaussian kernel is 0.01733 in the case of one boundary problem (model B) and it becomes

0.06216 when there are two boundary problems (model D).

Next, we summarize the main findings for each model separately. For model A, the Gaussian

kernel estimator is the best since there are no observations in the boundary region. In terms of

mean MISE, the gamma and the modified gamma kernel estimators perform almost the same as

the Gaussian kernel estimator, and they are better than the log-transform estimator. In terms

of variance, the estimators have also almost the same performance. For example, for n = 500,

the mean MISE for the Gaussian and gamma kernel is 0.0019 and 0.00207, respectively, and the

standard deviation for both is 0.0066. For models B and C, the local linear and the modified gamma

kernels have the same performance and dominate the other kernels in terms of mean and variance

MISE, while the gamma kernel and especially the log-transform Gaussian kernel underperform.

Obviously, the Gaussian kernel underperforms since there is a boundary bias problem. For model

D, where the density function is unbounded at zero, the local linear estimator dominates especially

for n = 250, followed by the modified gamma and then the gamma kernel estimator. The log-

transformed Gaussian kernel is not a good estimator for this model. For example, for n = 500,

the mean MISE for the log-transformed and the local linear kernels are 0.02457 and 0.00841,

respectively. The performance of the log-transformed Gaussian kernel improves only mildly when

the sample size increases. As expected, for the standard log normal density of model E, the log-

transformed Gaussian kernel performs better than the others. For this model, the two gamma

estimators dominate the local linear estimator. For the inverse Gaussian density (model F), the

modified gamma kernel dominates clearly for both samples sizes, followed by the gamma kernel

estimator. For n = 500, the gamma kernel, the local linear and the Gaussian kernel estimators

have perform similarly and dominate the log-transformed kernel estimator.

For each replication in the simulation we also computed the optimal bandwidth by LSCV

method whose consistency was established in the previous section. Tables 2 and 3 report details

for the theoretical and LSCV bandwidth parameters for models A to D (models E and F are left

out for the sake of brevity). First, we can observe that the local linear estimator bandwidths are

larger than the bandwidths used by the Gaussian kernel. The same is true for the bandwidths

of the modified gamma estimator compared with the gamma kernel estimator. We also find as

expected that the variance decreases with the sample size. Comparing the bandwidths obtained

from LSCV procedure and that implied by minimization of the theoretical MISE, we can observe

that the means are quite close to each other. In terms of variance, the LSCV bandwidth estimates

are more variable than the theoretical ones. This is not surprising, in particular for the local linear

estimator; see Hall and Marron (1987), Scott and Terrell (1987), and Chiu (1991). For example,

for model D and n = 250, the standard deviation becomes (3.074, 2.067) instead of (5.541, 5.665)

for the theoretical case. We also remark that the two gamma kernel estimators are more stable
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than the local linear for the LSCV bandwidth selection procedure. The variation coefficient of the

gamma kernel estimators are smaller than that of the local linear estimator. For example, for model

B and n = 250, the variation coefficient for both bandwidths is (0.741,0.855) and (0.447, 0.803) for

the local linear estimator and the modified gamma kernel estimator, respectively. We also want

to draw attention to what happens with the bandwidths when we go from model A (no boundary

problem) to model B (one boundary problem). We find that with the second bandwidth (where

we have the boundary problem), the Gaussian kernel estimator substantially decreases in order to

correct the bias while the first remains invariant. For example, for n = 250, the bandwidths are

(0.121, 0.392) for model B, in comparison with bandwidths used in model A (0.372, 0.369). For

the two gamma kernel estimators, we remark the opposite effect. These use a larger bandwidth

when there is a concentration of data in the boundary region. For example, for n = 250, the mean

bandwidth of the gamma kernel estimator is (0.240, 0.221) in model A and (0.828, 0.181) in model

B. By doing this, the two estimators reduce the variance in the boundary region, which is related

to Theorem 1 of the previous section. As a final illustration of the LSCV procedure, Figure 5

shows the mean over all the replications of the theoretical MISE and its LSCV estimator for two

gamma kernel estimators. We observe that in all cases there is a global minimum for the bandwidth

parameters and that the theoretical MISE and LSCV MISE surfaces are quite similar.

6 Applications

We have two illustrations. In the first illustration we reproduce the density estimates of the second

example in Müller and Stadtmüller (1999). The data come from the 1970 US draft lottery data

and are available on the Statlib website. We have 365 pairs of observations. The first element

is the day of the year (1, 2, . . . , 365) and the second element is a priority score assigned to that

day. If the priority scores are randomly assigned to the days, the density should be flat over the

support. Figure 6 demonstrates clearly that this is not the case. Indeed, we observe that lower

scores are assigned to those born early in the year. A formal test could be conducted to check that

this surface is flat.

The second example illustrates the two boundary problem for nonnegative data. We collect

data for 620 companies from Compustat for the year 1986. The first variable (Compustat item 24)

is the price of the stock of the company when the books are closed at the end of the accounting

year. The second variable (Compustat item 25) is the number of shares that can be bought on the

stock market. Figure 7 displays the scatter plot and the nonparametric density estimates. There is

clearly a high concentration close to the origin, which would result in a serious boundary problem

if the standard Gaussian kernel were used. We notice that the price of the stock and the number

of stocks in the market seem to be positively associated.
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Table 2: Mean and standard deviation (× 10−1) of the theoretical and LSCV bandwidth.

Gaussian local linear

Optimal LSCV Optimal LSCV

n=250 Mean (0.372,0.369) (0.360,0.365) (0.814,0.783) (0.675,0.759)

Std dev (0.392,0.398) (1.086,1.085) (0.097,0.089) (3.326,3.124)

A n=500 Mean (0.332,0.324) (0.301,0.328) (0.719,0.698) (0.585,0.694)

Std dev (0.337,0.366) (1.004,0.947) (0.765,0.780) (2.884,2.845)

n=250 Mean (0.121,0.392) (0.065,0.417) (0.758,0.851) (0.781,0.671)

Std dev (0.447,0.822) (0.573,1.192) (2.407,1.718) (6.681,4.973)

B n=500 Mean (0.093,0.364) (0.052,0.366) (0.630,0.769) (0.689,0.583)

Std dev (0.438,0.734) (0.421,0.959) (2.179,1.269) (5.940,4.375)

n=250 Mean (0.153,0.137) (0.123,0.123) (0.623,0.606) (0.711,0.573)

Std dev (0.448,0.402) (1.013,0.993) (1.670,1.702) (6.060,5.688)

C n=500 Mean (0.129,0.122) (0.085,0.118) (0.525,0.499) (0.518,0.609)

Std dev (0.310,0.339) (0.718,0.825) (1.560,1.395) (5.456,5.697)

n=250 Mean (0.146,0.139) (0.109,0.152) (0.756,0.750) (0.824,0.725)

Std dev (0.521,0.514) (0.956,1.091) (3.074,2.067) (5.541,5.665)

D n=500 Mean (0.128,0.110) (0.107,0.079) (0.716,0.641) (0.693,0.618)

Std dev (0.325,0.352) (0.797,0.583) (2.883,2.399) (5.865,5.645)

A: bivariate normal, B: truncated bivariate normal with one boundary problem, C: truncated bivari-

ate normal with two boundary problems, D: two independent Weibull with two boundary problems.

Std dev means standard deviation.
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Table 3: Mean and standard deviation (× 10−2) of the theoretical and LSCV bandwidth.

Gamma Modified Gamma

Optimal LSCV Optimal LSCV

n=250 Mean (0.024,0.022) (0.022,0.025) (0.024,0.022) (0.023,0.025)

Std dev (0.060,0.059) (0.124,0.124) (0.061,0.049) (0.129,0.127)

A n=500 Mean (0.018,0.017) (0.016,0.019) (0.018,0.017) (0.016,0.019)

Std dev (0.040,0.037) (0.084,0.087) (0.043,0.039) (0.084,0.089)

n=250 Mean (0.082,0.018) (0.068,0.019) (0.117,0.026) (0.081,0.021)

Std dev (0.262,0.052) (0.542,0.101) (0.394,0.089) (0.652,0.098)

B n=500 Mean (0.062,0.015) (0.058,0.014) (0.087,0.022) (0.071,0.016)

Std dev (0.236,0.045) (0.443,0.071) (0.379,0.059) (0.485,0.071)

n=250 Mean (0.064,0.061) (0.073,0.059) (0.112,0.109) (0.105,0.110)

Std dev (0.246,0.221) (0.446,0.489) (0.416,0.355) (0.507,0.486)

C n=500 Mean (0.050,0.045) (0.058,0.048) (0.089,0.088) (0.088,0.095)

Std dev (0.175,0.177) (0.356,0.392) (0.282,0.259) (0.387,0.383)

n=250 Mean (0.064,0.091) (0.080,0.109) (0.115,0.112) (0.115,0.095)

Std dev (0.507,0.476) (0.540,0.759) (0.516,0.398) (0.421,0.752)

D n=500 Mean (0.060,0.052) (0.055,0.075) (0.087,0.083) (0.076,0.087)

Std dev (0.313,0.250) (0.469,0.448) (0.347,0.266) (0.492,0.556)

A: bivariate normal, B: truncated bivariate normal with one boundary problem, C: truncated bivari-

ate normal with two boundary problems, D: two independent Weibull with two boundary problems.

Std dev means standard deviation.
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(c) Theoretical MISE for modified gamma estima-

tor
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(d) LSCV MISE for modified gamma estimator

Figure 5: Theoretical mean integrated squared error and its LSCV estimator for gamma and

modified gamma estimator. The data are from model B (n = 500), which is a truncated gamma

density with one boundary bias problem.
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(a) Scatter plot of the lottery data.
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Figure 6: Scatter plot and nonparametric estimator with gamma kernel of the lottery data.
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data.
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rate finance data.

Figure 7: Scatter plot and nonparametric estimator with gamma kernel of the corporate finance

data.
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7 Conclusion

This paper proposes a nonparametric estimator for density functions of multivariate bounded data.

The estimator is based on a gamma kernel or a local linear kernel when the support of the variable

is nonnegative, and we use the beta kernel when the support is a compact set. By using boundary

kernels, no weight is assigned outside the support of the underlying density so that the estimators

are robust to the boundary problem. We provide the asymptotic properties of the estimator and

show that the optimal rate of convergence of the mean integrated squared error is obtained. We

examine the finite sample performance in several simulations. In fact, we find that the estimators

we propose perform almost as well as the standard Gaussian estimator when there are no boundary

problems. With respect to the choice of the bandwidth parameters, we suggest to apply the

least squares cross-validation method for which we prove consistency. In the simulations we find

indeed that the distributions of the bandwidth parameters are close to the theoretical distributions.

Further research on this work can be done on different angles. It would be interesting to perform

another detailed simulation analysis to investigate alternative bandwidth selection methods (i.e.

biased cross validation or bootstrap) and to compare our estimator with the Müller and Stadtmüller

(1999) estimator. The results can also be extended to the multivariate time series case, the censored

data case or further developed for multivariate nonparametric regression and for multivariate data

defined on more involved supports.

Appendix

We give the proofs for the nonparametric estimator using gamma kernels.

Proof of Theorem 1

We start with the bias of the nonparametric gamma estimator

IEX(f̂(x)) = IE (K(b1, X1)(x1)...K(bd, Xd)(xd))

=

∫

K(b1, t1)(x1)...K(bd, td)(xd)f(t1, ..., td) dt1...dtd

= IEY (f(Y1, ..., Yd))

where the random variables Yj are independent and gamma distributed G(xj/bj +1, bj) with mean

µ1 = xj + bj and variance σ2
j = xjbj + b2

j .

Using a second order Taylor expansion

f(Y1, ..., Yd) = f(µ1, ..., µd) +
d
∑

j=1

(yj − µj)
∂f

∂xj
+

1

2

d
∑

j=1

(yj − µj)
2 ∂2f

∂x2
j

+
d
∑

l 6=j

(yl − µl)(yj − µj)
∂2f

∂xl∂xj
+ O





d
∑

j=1

b2
j



 .
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Then

IE(f̂(x)) = f(µ1, ..., µd) +

d
∑

j=1

(xjbj + b2
j )

∂2f

∂x2
j

+ O





d
∑

j=1

b2
j





= f(x1, ..., xd) +
d
∑

j=1

bj
∂f

∂xj
+

d
∑

j=1

(xjbj + b2
j )

∂2f

∂x2
j

+ O





d
∑

j=1

b2
j





= f(x1, ..., xd) +

d
∑

j=1

bj

(

∂f

∂xj
+

1

2
xj

∂2f

∂x2
j

)

+ O





d
∑

j=1

b2
j





= f(x) +
d
∑

j=1

bjBj(x) + O





d
∑

j=1

b2
j



 .

Hence

∫

(IE(f̂(x)) − f(x))2dx =

∫

(

d
∑

j=1

bjdxBj(x))2 + O





d
∑

j=1

b2
j



 . (6)

Now, the variance of the nonparametric gamma estimator is

n var(f̂(x)) = IE (K(b1, X1)(x1)...K(bd, Xd)(xd))
2 + O(1)

=
d
∏

j=1

Bj(xj , bj)IE(f(ϕx)) + o(1)

where ϕx = (Z1, ..., Zd) and the random variables Zj are independent and gamma distributed

G(2xj/bj + 1, bj/2) and

Bj(xj , bj) =
b−1
j Γ(2xj/bj + 1)

22xj/bj+1Γ2(xj/bj + 1)

where Γ is the gamma function. Define

R(x) =
√

2πxx+1/2e−x/Γ(x + 1), x > 0.

Let us recall the following properties of R:

R(x) < 1, for all x > 0

and

R(x) −→ 1 as x −→ ∞.

Combining these properties with Stirling’s formula we can show that

Bj(xj , bj) =















1

2
√

(π)
b
−1/2
j x

−1/2
j if xj/bj → ∞

Γ(2κ+1)
22κ+1Γ2(κ+1)

b−1
j xj/bj → κ
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and from a Taylor expansion

IE(f(ϕx)) = f(x) + O(b).

Therefore

n var(f̂(x)) = f(x1, ..., xd)
∏

j∈I

(
1

2π1/2
b
−1/2
j x

−1/2
j )

∏

j∈IC

(

Γ(2κj + 1)

22κj+1Γ2(κj + 1)

)

b−1

where I = {j, xj/bj → ∞} and IC its complement.

The second product disappears in the integrated variance. Let δj = b1−ǫ
j , 0 < ǫ < 1/2 and

δ = (δ1, ..., δd), then

∫

var(f̂(x)) = n−1

{∫ δ

0
var(f̂(x))dx +

∫ ∞

δ
var(f̂(x))dx

}

= O





∏

j∈I

b
1/2−ǫ
j

∏

j∈IC

b−ǫ
j



+

∫ ∞

0

d
∏

j=1

(

1

2π1/2
b
−1/2
j x

−1/2
j

)

f(x)dx

= o





d
∏

j=1

b
−1/2
j



+
1

2dπd/2

∫ ∞

0

d
∏

j=1

(

b
−1/2
j x

−1/2
j

)

f(x)dx

=
d
∏

j=1

b
−1/2
j

∫

V (x)dx + o





d
∏

j=1

b
−1/2
j



 . (7)

By combining (7) and (6), we obtain the mean integrated squared error of the nonparametric

estimator with the gamma kernel.

Proof of theorem 2

We denote by µx = (µx1
, ..., µxd

) where µxj
is the mean of a gamma random variable with parameter

(1/bj , xj/bj + 1).

Since f is continuous, µx = x + b and b → 0, with b = (b1, ..., bd) we have, for any ǫ there exists δ

such that

|f(t) − f(x)| < ǫ, for ||t − x|| < δ. (8)

We start with

∣

∣

∣IE
(

f̂(x)
)

− f(x)
∣

∣

∣ ≤
∫

||t−x||≤δ
(KG(b1, t1)(x1)...KG(bd, td)(xd))|f(t) − f(x)|dt

+

∫

||t−x||≥δ
(KG(b1, t1)(x1)...KG(bd, td)(xd))|f(t) − f(x)|dt

= I + II.
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From (8),

I < ǫ

∫

||t−x||≤δ
(KG(b1, t1)(x1)...KG(bd, td)(xd))|f(t) − f(x)|dt < ǫ. (9)

On the other hand, using Chebyshev’s inequality and that Var(KG(bj , tj)(xj)) = xjbj + b2
j , we

obtain

II ≤ 2 sup
x

|f(x)|
∫

||t−x||≥δ
(KG(b1, t1)(x1)...KG(bd, td)(xd))dt

= 2 sup
x

|f(x)|
∏

j

(xjbj + b2
j )

= o(1). (10)

Hence, from (9) and (10),
∣

∣

∣
IE
(

f̂(x)
)

− f(x)
∣

∣

∣
→ 0.

Now, it remains to prove that the variation term
∣

∣

∣
IE
(

fnp(x) − f̂(x)
)∣

∣

∣
converges almost surely to

zero.

Using integration by parts,
∣

∣

∣
f̂(x) − IE

(

f̂(x)
)∣

∣

∣
=

∣

∣

∣

∣

∫

(KG(b1, t1)(x1)...KG(bd, td)(xd))d(Fn(t) − F (t))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

(Fn(t) − F (t))d(KG(b1, t1)(x1)...KG(bd, td)(xd))

∣

∣

∣

∣

≤ sup
x∈IR+d

|Fn(x) − F (x)|
∣

∣

∣

∣

∫

d(KG(b1, t1)(x1)...KG(bd, td)(xd))

∣

∣

∣

∣

.

We can see that ∣

∣

∣

∣

∫

d(KG(b1, t1)(x1)...KG(bd, td)(xd))

∣

∣

∣

∣

≤ 2d(
∏

j

b−1
j ).

Therefore, and from Kiefer (1961),

IP
(∣

∣

∣f̂(x) − IE
(

f̂(x)
)∣

∣

∣ > ǫ
)

≤ IP



 sup
x∈IR+d

|Fn(x) − F (x)| > ǫ2−d(
∏

j

b1)





≤ C(d) exp



−c2−2dǫ2n(
∏

j

b2
j )



 ,

with some constants c < 2 and C(d) depending on the dimension d. Let us take ǫn = α√
c

√

log(n)
n

∏

j b−2
j ,

with α ≥ 2d. This implies that

∑

n

exp



−c2−2dn(
∏

j

b2
j )



 < ∞.

Therefore,
∣

∣

∣
IE
(

fnp(x) − f̂(x)
)∣

∣

∣
converges almost surely. This concludes the proof of theorem 2.
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Proof of Theorem 3

We start with the classical decomposition and using the expression of the asymptotic bias:

(

f̂sp(x) − f(x)
)

=
(

f̂sp(x) − IE(f̂sp(x))
)

+
(

IE(f̂sp(x)) − f(x)
)

=
(

f̂sp(x) − IE(f̂sp(x))
)

+
d
∑

j=1

bjBj + O(
d
∑

j=1

b2
j )

Hence, and using that bj = O(n− 2

d+2 )

σ∗−1n
1

2

d
∏

j=1

b
1

4

j

(

f̂sp(x) − f(x) − µ∗
)

=
n
∑

i=1

Zi + O(n− 2

d+2 ),

where

Zi = σ∗−1n− 1

2

d
∏

j=1

b
1

4

j (K(b1, Xi1)(x1)...K(bd, Xid)(xd) − IE(K(b1, Xi1)(x1)...K(bd, Xid)(xd))) .

Now, we apply Liapunov central limit theorem to prove the asymptotic normality of S∗
n =

∑n
i=1 Zi.

From (7),

Var(S∗
n) = 1 + o(1)

Using (7) and that bj = O(n− 2

d+2 ),

IE(|Zi|3) = o(n−1).

Therefore, S∗
n =

∑n
i=1 Zi

D−→ N(0, 1). This concludes the proof of theorem 3.

Proof of Theorem 4

To show the results of the theorem, it suffices to establish that:

I = limmaxb,b′∈Hn

|MISEb′ − MISEb − (LSCVb′ − LSCVb)|
MISEb′ + MISEb

→ 0, a.s.

Because MISEb̂ − MISEb0 > 0 and LSCVb̂ − LSCVb0 < 0, we have
∣

∣

∣1 − MISEb0

MISE
b̂

∣

∣

∣ ≤ 2I.

To show that I converges almost surely, we state that:

ISEb

MISEb
→ 1, a.s. for all b ∈ Hn, (11)

and that

I = limmaxb,b′∈Hn

|ISEb′ − ISEb − (LSCVb′ − LSCVb)|
ISEb′ + ISEb

→ 0, a.s. (12)
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For the remainder and without loss of generality we consider that MISEb = Cn− 4

d+4 and that

b = C ′n− 2

d+4 .

We start to prove (11),

MISEb = IE

(∫

(f̂b − fb)
2(x)dx

)

+

∫

(fb − f)2(x)dx

= n−1

∫

k(b, t)2(x) dF (t)dx − n−1

∫ ∫

Kb(t, s)dF (t)dF (s) +

∫

B2(x)dx,

where Kb(t, s) =
∫

K(b, t)(x)K(b, s) dx, fb = IE(f̂b) and B(x) the bias of f̂b at x.

On the other hand,

ISEb =

∫

(f̂b − fb)
2(x)dx + 2

∫

(f̂b − fb)(fb − f)(x)dx +

∫

(fb − f)2(x)dx

=

∫ ∫

K(t, s)d(Fn − F )(t)d(Fn − F )(s) + 2

∫ ∫

K(b, t)(x)B(x)d(Fn − F )(t)dx +

∫

B2(x)dx

=

∫ ∫

t 6=s
K(t, s)d(Fn − F )(t)d(Fn − F )(s) + n−1

∫

K(b, t)2(x)d(Fn − F )(t)dx

+ n−1

∫

K(b, t)2(x)dF (t)dx + 2

∫ ∫

K(b, t)(x)B(x)d(Fn − F )(t)dx +

∫

B2(x)dx,

where Fn denotes the empirical distribution function.

Hence, we have

ISE − MISE =

∫ ∫

t 6=s
K(t, s)d(Fn − F )(t)d(Fn − F )(s) + n−1

∫

K(b, t)2(x)d(Fn − F )(t)dx

+2

∫ ∫

K(b, t)(x)B(x)d(Fn − F )(t)dx + n−1

∫ ∫

Kb(t, s)dF (t)dF (s)

= I1 + I2 + I3 + I4.

First, for the non-random term I4, let us show that there is a constant γ > 0, so that for all

k = 2, 3, .., there exist constants Ak such that

(

I4

MISE

)2k

≤ Akn
−γk.

Using that MISEb = Cn− 4

d+4 and that
∫

K(b, x)(t)dF (t) = f(x) + O(b), we obtain

(

I4

MISE

)2k

= MISE−2kn2k

(∫ ∫

Kb(t, s)dF (t)dF (s)

)2k

= MISE−2kn2k

(∫

f2(x) + O(b)

)2k

= O(n− 8k
d+4 n2k) = O(n− 2d

d+4
k).
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Second, we show that the two terms I2
MISE and I3

MISEh
converges to zero almost surely and uniformly

on Hn.

Lemma 1. Under condition (4),

sup
b∈Hn

∣

∣

∣

∣

Il

MISEb

∣

∣

∣

∣

→ 0, a.s. for l = 2, 3.

I2 and I3 can re-expressed as
1

n

∑

Wi, where for I2

Wi =

∫

K2(b, x)(Xi) dx −
∫ ∫

K2(b, x)(t)dF (t) dx

and for I3

Wi = n−1

∫

B(x)K(b, x)(Xi) dx − n−1

∫ ∫

B(x)K(b, x)(t)dF (t) dx.

The mean of Wi is zero. Now, we apply Bernstein’s inequality and (4), we obtain

IP

(

sup
b∈Hn

∣

∣

∣

∣

Il

MISEb

∣

∣

∣

∣

> ǫ

)

≤ A nαIP

(

n
∑

i=1

Wi > ǫ.n.MISEb

)

≤ A nα exp

(

− ǫ2n2MISE2
b

∑n
i=1 IE(W 2

i ) + MǫnMISEb/3

)

.

where |Wi| < M . Then, it suffices to calculate IE(W 2
i ).

For I2, from Chen (2000), we can see that
∫ ∫

K2(b, x)(t)dF (t) dx = O(b−1). On the other hand,

IE

(∫

K2(b, x)(Xi) dx

)2

=

∫ ∫ ∫

K2(b, x)(t)K2(b, y)(t)dF (t) dx dy

=

∫ ∫

Bb(x, y)IE(f(ξb)) dx dy

where ξb is a gamma random variable with parameter 2(x + y)/b + 1 and b/4 and

Bb(x, y) = b−3 Γ(2(x + y)/b + 1)

Γ2(x/b + 1)Γ2(y/b + 1)

1

42(x+y)/b+1
.

For small bandwidth, Γ(x + 1) =
√

2πe−xxx+1/2 and that IE(f(ξb)) = O(1), we can show that

IE

(∫

K2(b, x)(Xi) dx

)2

= O((b−3/2),

which is negligible in comparison with the order of the second term (O(n−2)). Then IE(Wi)
2 =

O(n−2b−2). Therefore,

IP

(

sup
b∈Hn

∣

∣

∣

∣

Il

MISEb

∣

∣

∣

∣

> ǫ

)

≤ A nα exp(−n
3d

d+4 ),
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which concludes the proof for I2.

For I3, we use that the bias of gamma kernel estimator is of order O(b) and that
∫

K(b, x)(t)dx < C

for some constant C, so that we can show,

IE(

∫

B(x)K(b, x)(Xi) dx)2 =

∫ ∫ ∫

K(b, x)(t)B(x)K(b, y)(t)B(y)f(t)dtdxdy

= O(b2).

Therefore, as for I2 term

IP

(

sup
b∈Hn

∣

∣

∣

∣

Il

MISEb

∣

∣

∣

∣

> ǫ

)

≤ A nα exp
(

−n
d

d+4

)

,

which concludes the proof for I3.

For the term I1, applying Chebyshev’s inequality and (4), we obtain

IP

(

sup
b∈Hn

∥

∥

∥

∥

I1

MISEb

∥

∥

∥

∥

> ǫ

)

≤ A nαIE

(

I1

ǫ.MISEb

)2k

.

Remark that I1 can be re-expressed as follows

I1 =
1

n

n
∑

i6=j

Wi,j ,

where

Wi,j = Kb(Xi, Xj) −
∫

Kb(t, Xj)dF (t) −
∫

Kb(Xi, s)dF (s) +

∫ ∫

Kb(t, s)dF (t)dF (s).

Note that for i 6= j, the mean of Wi,j is zero. Now, from the linearity of cumulants, it suffices to

show that there exists a constant α, so that for k = 2, 3, · · · , there are a constants αk such that

n−2kMISE−k

∣

∣

∣

∣

∣

∣

∑

i1,j1···ik,jk

cumk(Wi1,j1 , · · · , Wik,jk
)

∣

∣

∣

∣

∣

∣

≤ αkn
−αk. (13)

Let m denote the number of i1, j1, · · · i2k, j2k that are unique and that for m = 2, · · · , k, the number

of element of cumulants with m distinct elements is bounded by Cnm

∑

i1,j1···ik,jk

cumk(Wi1,j1 , · · · , Wik,jk
) ≤ C

k
∑

m=2

nmcumk(Wi1,j1 , · · · , Wik,jk
) m distinct indices. (14)

Now, for m distinct indices, i.e. ti1, tj1 · · · tik , tjk
∈ {t1 · · · tm}, and by definition of Kb(ti, tj),
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IE (Wi1,j1 · · ·Wik,jk
) =

∫

Kb(ti1, tj1) · · ·Kb(tik , tjk
)dF (t1) · · · dF (tm)

=

∫

K(b, ti)(x1)K(b, tj)(x1) · · ·K(b, tik)(xk)K(b, tjk
)(xk)dF (t1)

· · · dF (tm)dx1 · · · dxk

For simplicity, let us regroup the terms concerning t1 and suppose that there are δ1 terms in

{i1, j1, · · · ik, jk}. We get

∫

t
1

b

P

xi

1 e−δ1
t1
b

∏

Γ(xi

b + 1)b
1

b

P

xi+δ1
dF (t1) = Bb(x)IE(ηb),

where ηb is a gamma random variable with parameter (
P

xi

b + 1, b/δ1), and

Bb(x) =
Γ(

P

xi

b + 1)

∏

Γ(1
bxi + 1)δ

P

xi
b

+1

1

b1−δ1 .

For small bandwidth, using that Γ(x + 1) =
√

2πe−xxx+1/2 and that the mean of ηb is 1
b

∑

xi + b
δ1

∫

t
1

b

P

xi

1 e−δ1
t1
b

∏

Γ(xi

b + 1)b
1

b

P

xi+δ1
dF (t1) ≤ (2π)1−δ1 (

∑

xi)
1

b

P

xi+
1

2

∏

x
xi
b

+ 1

2

i δ
1

b

P

xi+1

1

f

(∑

xi

δ1

)

b
1

2
(1−δ1).

Then, and from condition (5)

∫ ∫

t
1

b

P

xi

1 e−δ1
t1
b

∏

Γ(xi

b + 1)b
1

b

P

xi+δ1
dF (t1)dx1 · · · dxδ1 ≤ const b

1

2
(1−δ1)

Using that
∑

δi = k,

IE (Wi1,j1 · · ·Wik,jk
) ≤ const b

m
2
− k

2 . (15)

Therefore, from (13), (13), (14) and (15), we conclude the almost sure convergence of I1/MISEb.

Now we prove (12). Let us see that

ISEb − LSCVb −
∫

f2 − 2Gn = 2(Gbn − Gn) + 2

∫ ∫

x 6=y
K(b, x)(y)d(Fn − F )(x)d(Fn − F )(y)

= I + II,

where Gbn = 1
n

∑

fb(Xi) − (fb(X)) and Gn = 1
n

∑

f(Xi) − (f(X)).

The first term can be expressed as

I =
1

n

n
∑

i=1

Wi,
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where

Wi = fb(Xi) − f(Xi) − IE(fb(Xi) − f(Xi)).

The expression fb(t) − f(t) is the bias of the gamma kernel estimator and is of order O(b), then

IE(W 2
i ) = Const b2. Therefore, as in Lemma 1, we can see that

IP

(

sup
b∈Hn

∣

∣

∣

∣

I

MISEb

∣

∣

∣

∣

> ǫ

)

≤ A nαIP

(

n
∑

i=1

Wi > ǫ.n.MISEb

)

≤ A nα exp

(

− ǫ2n2MISE2
b

∑n
i=1 IE(W 2

i ) + MǫnMISEb/3

)

≤ A nα exp
(

−ǫ2nd/(d+4)
)

,

which states the almost sure convergence of I/MISEb.

The second term can be expressed as

II =
1

n

n
∑

i6=j

Wi,j ,

where

Wi,j = K(b, Xi)(Xj) −
∫

K(b, Xi)(y)dF (y) −
∫

K(b, x)(Xj)dF (x) +

∫ ∫

K(b, x)(y)dF (x)dF (y).

As for I1 term, it suffices to calculate IE(Wi1,j1 , · · ·Wik,jk
). Using that K(b, x)(y) ≤ Cb−1/2 and

that each i1, j1, · · · ik, jk may appear twice, we can see that IE(Wi1,j1 , · · ·Wik,jk
) = O(b−

σk
2 ) for

0 < σ < 1. Then

n−2kMISE−k

∣

∣

∣

∣

∣

∣

∑

i1,j1···ik,jk

cumk(Wi1,j1 , · · · , Wik,jk
)

∣

∣

∣

∣

∣

∣

≤ αkn
−ǫk,

which concludes the almost sure convergence of II/MISEb, and therefore also concludes the proof

of Theorem 4.
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