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2 Méthodes quantitatives en sciences sociales,
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Abstract

Positron Emission Tomography (PET) is an imaging technique in which

a radionuclide is introduced into a molecule of potential biological rele-

vance (to form what is called a tracer) and administered to a patient. The

regional evolution of the uptake of the tracer over time is called a Time-

Activity-Curve (TAC) and is used to derive some clinical measures that

give information about the process under study. One of these measures is

the Distribution Volume (DV ) which can be estimated by several meth-

ods, notably the Graphical Analysis Method (GA). It has been shown that
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using GA method on noisy TAC leads to a systematic underestimation of

the Distribution Volume (Hsu et al., 1997; Slifstein and Laruelle, 1999).

We propose a method that allows to smooth the Time-Activity-Curves

in a non-parametric way by using Bayesian P-splines. This method may

be used in all the cases, whatever the compartmental model that might

underly the observed data. Simulations have shown that this method gives

an unbiased estimation of the true TAC, whatever the level of noise.

We show that smoothing TAC with the non-parametric method before

computing the Distribution Volume allows to reduce considerably the bias.

Logan et al. (2001) proposes to smooth data before computing the Distri-

bution Volume by using the Generalized Linear Least Squares (GLLS)

method if a one-tissue compartment model is considered and by applying

the GLLS to the data in two parts for a two-tissues compartment model :

one set of parameters is estimated from times 0 to T1 and a second set from

T1 to the end time where T1 has to be chosen from data. This method pro-

vides good results but, if we are not sure about the compartmental model

suitable for the data or, if we want to avoid the choice of T1, using the

Bayesian nonparameteric model is a good alternative.

1 Introduction

Positron Emission Tomography (PET) is an imaging technique that allows the

diagnosis of many diseases, particularly cancer and mental diseases. During a

PET study, a radionuclide is synthetically introduced into a molecule of potential

biological relevance and administered to a patient. The subsequent uptake of

the radiotracer is measured over time and used to obtain information about the

physiological process of interest. The evolution of the radiotracer uptake with

time in a given region is called a Time-Activity-Curve (TAC).

Some important clinical measures are derived from these TAC, using different

estimation methods. For instance, the Graphical Analysis Method allows to esti-
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mate the Distribution Volume; the ratio method may be used to get an estimate

of the receptor occupancy (van Warde, 2000). The kinetic measures obtained

with these methods may be badly estimated if the TAC are noisy. It has been

notably shown that using the Graphical Analysis Method on noisy TAC leads

to a systematic underestimation of the Distribution Volume (Hsu et al., 1997;

Slifstein and Laruelle, 1999). That’s why, prior to any quantitative analysis, it

may be necessary to smooth the time-course of radioactivity measured in PET

scans.

In this paper, we propose a method that allows to smooth the Time-Activity-

Curves in a non-parametric way by using Bayesian P-splines. This method may

be used in all the cases, whatever the compartmental model that might underly

the observed data: it provides a satisfactory and unbiased fit of the radioactivity

uptakes.

The plan of the paper is as follows. In Section 2, we present the non-

parametric Bayesian method. In Section 3, we show results of some simulations

where the proposed method is applied on data generated from different compart-

mental models with several levels of noise. In Section 4, we present an illustration

of the method in the case of Distribution Volume estimation. We end this paper

with a discussion of key results.

2 Method

In this section, we present the Bayesian model that allows to smooth Time-

Activity-Curves: it is based on P-splines techniques.

2.1 Basic Bayesian P-splines model

Penalized B-splines (named P-splines) are a convenient tool to obtain a non

parametric fit to a curve (Eilers and Marx, 1996). The idea is to take a linear
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combination of a B-splines basis noted b(x). A B-spline of degree q consists of

q + 1 polynomial pieces, each of degree q, which join at q inner knots of the

experimental domain. Figure (1-a) presents a B-splines basis of degree 2 with 20

equidistant knots between 0 and 1.
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Figure 1: (a): B-splines basis of degree 2 with 20 knots. (b): Example of a fitted

curve using the B-splines basis.

The fitted curve to the m data points (xi, yi) on Figure(1-b), ŷ(x), is obtained

by taking the linear combination b(x)′θ̂ where θ̂ is the estimated vector of B-

splines coefficients obtained by minimizing S =
∑m

i=1{yi − b(xi)
′θ}2.

The smoothness of the curve highly depends on the number of knots. To

avoid this influence, Eilers and Marx (1996) propose to take a large number of

equidistant knots and to add to the least squares equation, a penalty on finite

differences of the coefficients of adjacent B-splines : S =
∑m

i=1{yi − b(xi)
′θ}2 +

λ
∑

k(∆
rθk)

2 where ∆ is the first order difference operator. In matricial terms,

the penalty can be written as: λθ′Pθ where P = D′D and D is the rth order

difference matrix. Parameter λ represents the weight that we give to the penalty.

If λ is large, we give a large weight to the penalty, which results in a very smoothed
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curve.

In a Bayesian setting, the penalty translates into a prior distribution for the

rth order differences of successive B-splines parameters, θj, yielding for a condi-

tional normal response Yx :

(Yx|θ, τ) ∼ N
(

b′

xθ, τ−1
)

p(τ) ∝ τ−1

p(θ|λ) ∝ exp [−0.5 λ θ′Pθ]

λ ∼ G (a, b)

where λ is the roughness penalty parameter and G (a, b) stands for a gamma

distribution with mean a/b and variance a/b2. The hyperparameters a and b are

usually chosen to have a large variance conjugate prior distribution by taking for

instance a equal to 1 and b equal to a small quantity (10−5, say).

2.1.1 Two extentions to the basic Bayesian P-splines model

Jullion and Lambert (2007) have shown that the fit can be influenced by the

choice of the hyperparameters a and b in some specific circumstances. They

propose to use a more robust prior for the roughness penalty parameter by using

the following reparametrisation : a = ν/2 and b = δν/2. A prior distribution is

added on δ:

(λ|δ) ∼ G (0.5 ν, 0.5 δν)

δ ∼ G (aδ, bδ)

The same authors show that more flexibility is obtained by using adaptive penal-

ties : instead of having a global penalty λ, they propose to have a penalty pa-

rameter λ×λ(k) for each rth-order difference between successive components of

θ. The λ(k) are obtained sequentially to ensure a progressive evolution of the
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penalty parameters with x :

p(θ|λ, Λ) ∝ exp



−0.5 λ
K
∑

k=r+1





k
∏

l=r+1

λl



 (∆rθk)
2





= exp



−0.5 λ
K
∑

k=r+1

λ(k)(∆rθk)
2





= exp [−0.5 λ θ′D′ΛDθ]

λk ∼ G (ω, ω) when k > r + 1 ; λr+1 = 1

where Λ is the matrix having the λ(k)’s on its diagonal. The conditional posterior

distributions are given in Appendix 1.

In Figure 2, we have generated 20 observations from yx = µx exp(ǫx) with

ǫx ∼ N (0, 0.01) and µx = A ka

ka−ke

[exp(−kex) − exp(−kax)] with A = 3.74, ke =

0.78, ka = 50. The thick solid line is the true curve. The thin solid line is esti-

mated with the basic Bayesian P-splines model while the dashed line is estimated

with the model having the adaptive penalties and the robust prior. The basic

Bayesian P-splines model does not provide a satisfactory fit. The fit is markedly

improved when using the two proposed extensions. For more details, we refer to

Jullion and Lambert (2007).

3 Simulations

In this part, we shall study the quality of the fit obtained with the proposed

method. Data coming from a one-tissue and a two-tissues compartment model

were generated. The one-tissue compartment model is described by (Acton et al.,

1999):

dCtot(t)

dt
= K1Cp(t) − k2Ctot(t)

where Ctot(t) is the concentration in tissue and Cp(t) is a measured plasma input

function, with K1 = 0.7 (mLmin−1mL−1) and k2 = 0.01 (min−1). The equations
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Figure 2: TAC estimation with the basic P-splines model (thin solid curve) and

with the extended model (dashed line). The thick solid line is the true curve.

of the two-tissues compartment model are the following (Acton et al., 1999):

dC1(t)

dt
= K1Cp(t) − (k2 + k3)C1(t) + k4C2(t)

dC2(t)

dt
= k3C1(t) − k4C2(t)

Ctot(t) = C1(t) + C2(t)

where Ctot(t) is the measured concentration in the region of interest. C1(t) and

C2(t) are the concentrations in the non-specific and specific compartments re-

spectively with K1 =0.7 (mLmin−1mL−1), k2=0.05 (min−1), k3 =0.125 (min−1)

and k4 = 0.3 (min−1). Noise-free time activity data were generated at 27 time

points for 90 minutes (with frame duration ranging from 30 seconds to 5 min-

utes). Then, normally distributed noise with mean 0 are added to these data.

The chosen standard deviation is the same as in Ichise et al. (2002):

SD(ti) = SF

√

exp(λti)Ctot(ti)

∆ti
(1)

such that

C(ti) = Ctot(ti) + ǫi
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with ǫi ∼ N(0, SD(ti)
2). SF is the scale factor that controls the level of noise,

Ctot(ti) is the noise-free simulated radioactivity, ∆ti is the scan duration and

λ is the radioisotope decay constant (fixed to log(2)/20). The values of SF

were selected such that the mean percent noise (f) contained in the noisy data,

computed as the ratio of the mean SD to the mean tissue activity, is 4.49%,

8.99% and 15.73% for the one-tissue compartment model, and 4.52%, 9.05% and

18.1% for the two-tissues compartment model. Five hundreds noisy data sets are

generated in each case.

Figure 3 and 4 show a generated dataset corresponding to the one- and two-

tissues compartment model respectively, for each level of noise. Circles are gen-

erated with low noise, stars with medium noise and dots with high noise. The

solid line represents the true curve.
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Figure 3: Example of generated datasets with the one-tissue compartment model.

Circle are generated with low noise, stars with medium noise and dots with high

noise. The solid line represents the true curve.

Figure 5 compares the estimated curves to the true curve for the one-tissue

compartment model. The circles are the means of the 500 estimated uptakes

obtained with the Bayesian method. The solid line is the true curve. The 90%

credibility sets for the estimated concentration at each time-point are shown.
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Figure 4: Example of generated datasets with the two-tissues compartment

model. Circle are generated with low noise, stars with medium noise and dots

with high noise. The solid line represents the true curve.

Figure 6 shows the same for the two-tissues compartment model.

We can see on Figures 5-6 that the proposed method provides virtually unbi-

ased estimations of the true Time-Activity-Curve, whatever the underlying com-

partmental model and level of noise.

4 Estimation of the distribution volume (DV )

We now apply the Bayesian P-splines smoothing method for Distribution Vol-

ume (DV ) estimation. Several strategies have been proposed in the literature to

estimate this parameter. One commonly used method relies on compartmental ki-

netic models in combination with the Nonlinear least squares estimation method:

it provides accurate estimates. However, due to its iterative aspects, it can be

computationally intensive (Motulsky and Ransnas, 1987). Furthermore, conver-

gence problems may arise. Linear least squares methods avoid these drawbacks by

relying on some form of linearization of the compartment model equations which

does not require an iterative search in the parameter space Blomqvist (1984).
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Figure 5: Results of the simulations for the one-compartment model. The true

curve is the solid line. The circles are the means of the 500 estimated uptakes

obtained with the Bayesian method. The 90% credibility sets for the estimated

concentration at each time-point are shown

Logan et al. (1990) provide a simplified method, named the Graphical Analysis

Method (GA) where the set of linear equations is associated to a linear plot. This

method is simple to implement, does not face convergence problems and does not

make any assumptions about the compartmental configuration of the underlying

data. However, when the Time-Activity Curves are noisy, it has been shown that

the slope of the linear plot, which is DV in the case of reversibly binding ligands,

is underestimated (Hsu et al., 1997; Slifstein and Laruelle, 1999).

Several approaches have been studied recently to reduce the bias in DV es-

timation in the presence of noisy data. Ichise et al. (2002) have proposed three
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Figure 6: Results of the simulations for the two-compartments model. The true

curve is the solid line. The circles are the means of the 500 estimated uptakes

obtained with the Bayesian method. The 90% credibility sets for the estimated

concentration at each time-point are shown

alternative noniterative linear methods to improve DV estimation. The first one

is based on the total least squares estimation method while the two others rely

on multilinear analyses based on mathematical arrangement of GA equations.

An alternative approach is provided by Logan et al. (2001). Their idea is first,

to smooth TAC with a parametric model and then apply the GA method to the

smoothed data. If a one-tissue compartment model is considered, they apply the

Generalized Linear Least Squares (GLLS) method (Feng et al., 1996) to the data.

For a two-tissues compartment model, they apply the GLLS to the data in two

parts : one set of parameters is estimated from times 0 to T1 and a second set
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from T1 to the end time.

We propose to estimate the Distribution Volume with the Graphical Analysis

Method of Logan et al. (1990), but prior to this computation, we first smooth the

Time-Activity-Curves with the Bayesian non-parametric method. We shall make

some simulations to show that this procedure does not lead to an underestimation

of the Distribution Volume.

4.1 Graphical Analysis Method

We briefly review the Graphical Analysis Method of Logan et al. (1990). This

method, applied on PET data acquired with a reversible radiotracer, relies on

the following equation :

∫ ti
0 C1(t)dt

C1(ti)
= DV

∫ ti
0 Cp(t)dt

C1(ti)
+ b

where the ti’s are the midframe scanning times, C1(t) is the radioactivity concen-

tration at time t in the target region of interest, Cp(t) is the metabolite corrected

plasma concentration at time t, DV is the Distribution Volume and b is the in-

tercept which becomes constant when ti > t∗ (where t∗ is the equilibrium time).

4.2 Material and methods

We consider a two-tissues compartment model to simulate the data, using a

measured plasma input function Cp(t). We perform two simulations. For Sim-

ulation 1, the two-tissues compartment model parameters used are K1 =0.0613

(mLmin−1mL−1), k2 =0.0776 (min−1), k3=0.0734 (min−1), k4 =0.0135 (min−1)

and DV = 4.56 while for Simulation 2, K1 = 0.8542 (mLmin−1mL−1), k2 =0.0785

(min−1), k3 = 0.0502 (min−1), k4 = 0.0227 (min−1) and DV = 33.05. Using

these parameter values and the input function, noise-free time activity data are

generated at 27 time points for 90 minutes (with framing time increasing from 30

seconds to 5 minutes). Then, normally distributed noise with mean 0 and stan-
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dard deviation computed according to Equation (1) were added to these data

(Ichise et al., 2002). λ is fixed to log(2)/109.8 for Simulation 1 and to log(2)/20.4

for Simulation 2. Different ranges of SF values are selected : 0.35-3.00 for Sim-

ulation 1, and 0.75-7.00 for Simulation 2.

We generate 500 noisy data sets for each value of SF . The mean percent noise

(f) contained in the noisy data ranges from 2.09 to 17.90% for Simulation 1 and

from 2.07 to 19.34% for Simulation 2. To compute DV with the Logan method,

a value for t∗ must be selected : it was set to 20 min for both simulations. This

t∗ value was chosen graphically from preliminary GA of the noise-free data sets.

4.3 Results

Tables 1 and 2 summarize the results of the simulations. They give the median of

the relative bias in the computation of DV i.e. (DVestimated−DVtrue)/DVtrue and

the Variation Coefficient (V C) computed as the standard deviation divided by the

mean. As expected, Graphical Analysis applied to the noisy data underestimates

DV as the noise increases. If we first smooth the data with the Bayesian method

before computing DV , we can see that the bias is markedly reduced. However,

we can note that, when the noise is more important, the method tends to have a

larger V C than GA.

Figures 7 and 8 give, for the two simulations, the boxplots of the logarithm

of the squared error (SE = (DVtrue − DVestimated,m)2, m = 1, ..., M , with M , the

number of simulations). Boxplots for the Bayesian method are on the left. Those

for the GA method are on the right. The mean SE (MSE) and the variability

are smaller with the Bayesian method than with GA. In both simulations, the

MSE tends to be smaller with the Bayesian method : it is particularly marked

when noise (SF ) is large.
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SF 0.35 0.7 1.25 2 2.5 3

f 2.09% 4.18% 7.46% 11.93% 14.91% 17.90%

GA Bias -0.7% -2.5% -6.6% -15.5% -21.7% -28%

Bayes Bias -0.11% -0.15% -0.16% -1.25% -1.57% -1.96%

GA V C 0.0173 0.0354 0.0567 0.0983 0.1067 0.1185

Bayes V C 0.0168 0.0337 0.0596 0.0940 0.1070 0.1445

Table 1: Simulation 1: median of the Relative bias and Variation Coefficient

for DV with the GA applied on noisy data and with the GA applied to data

smoothed with the Bayesian method.

SF 0.75 1.5 3.5 5 7

f 2.07% 4.15% 9.67% 13.82% 19.34%

GA Bias -0.49% -2.19% -9% -14.72% -21.52%

Bayes Bias -0.47% -0.65% -0.66% -0.68% -0.9%

GA V C 0.0145 0.0296 0.0685 0.0863 0.1133

Bayes V C 0.0154 0.0294 0.0684 0.0994 0.1483

Table 2: Simulation 2: median of the Relative bias and Variation Coefficient

for DV with the GA applied on noisy data and with the GA applied to data

smoothed with the Bayesian method.
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Figure 7: Boxplots of the logarithm of the squared error for Simulation 1 for the

Bayesian method (on the left) and the GA method (on the right).

5 Discussion

We have proposed a method that allows to smooth Time-Activity-Curves without

any prior assumptions on the behaviour of the data. Simulations have shown that

this method gives an unbiased estimation of the true Time-Activity-Curve, for

both one- and two-tissues compartment models, whatever the level of noise.

Smoothing TAC before computing the Distribution Volume improves the es-

timation. We have provided an example where smoothing noisy TAC with the

non-parametric method before computing the Distribution Volume considerably

reduces the bias in DV estimation. Logan already proposed to first smooth data

before computing the Distribution Volume (Logan et al., 2001). They advised to

use the Generalized Linear Least Squares (GLLS) method if a one-tissue com-

partment model is considered and to apply the GLLS to the data in two parts for

a two-tissues compartment model : one set of parameters is estimated from times
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Figure 8: Boxplots of the logarithm of the squared error for Simulation 2 for the

Bayesian method (on the left) and the GA method (on the right).

0 to T1 and a second set from T1 to the end time where T1 has to be chosen from

data. This method has been shown to provide good results but, if we are not

sure about the compartmental model suitable for the data or, if we want to avoid

the choice of T1, using the Bayesian nonparameteric model is a good alternative.
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Appendix 1

The conditional posterior distributions are:

(θ|τ, λ, δ, λ; y) ∼ N (τ ΣθB
′y, Σθ)

(τ |rest; y) ≡ (τ |θ; y) ∼ G (0.5 n, 0.5 (y − Bθ)′(y − Bθ))

(λl|rest; y) ≡ (λl|θ, λ, λ−l; y)
l>r+1
∼ G

(

ω +
K − l + 1

2
, ω +

λ

2

K
∑

k=l

λ(k)

λl

(∆rθk)
2

)

(λ|rest; y) ≡ (λ|θ, δ, λ; y) ∼ G (0.5 ν + 0.5 ρ(P ), 0.5 δν + 0.5 θ′D′ΛDθ)

(δ|τ, λ, λ; y) ∼ G (aδ + 0.5 ν, bδ + 0.5 νλ)

where

Σ−1
θ = τB′R−1B + λD′ΛD
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